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Abstract22

Tracking of cells in live-imaging microscopy videos of epithelial sheets is a powerful tool for inves-23

tigating fundamental processes in embryonic development. Observing the growth, proliferation,24

intercalation, and apoptosis of individual cells helps us understand how global morphogenetic25

processes, such as tissue invagination or extension, are locally regulated and controlled. Accu-26

rate cell tracking requires correctly resolving cells moving in and out of field of view between27

frames, cell neighbour exchanges, cell removal and cell division events. Here, we present a novel28

algorithm for epithelial cell tracking. The algorithm exploits the graph-theoretic concept of29

a ‘maximum common subgraph’ to track cells between successive frames of a video. It does30

not require the adjustment of tissue-specific parameters, and scales in polyonomial time with31

tissue size. The algorithm does not rely on precise positional information and thus permits large32

cell movements between frames, enabling cell tracking in data sets acquired at low temporal33

resolution due to experimental constraints such as photoxicity.34
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1 Introduction35

Live-imaging microscopy is a powerful, and increasingly quantitative, tool for gaining insight into36

fundamental processes during embryonic development [1–3]. Quantitative information on cell37

growth, proliferation, death, shape changes and movement extracted from live-imaging reveals38

how such processes are regulated to give correct tissue-level behaviour. This approach has39

been particularly successful in characterising the growth and patterning of embryonic epithelial40

tissues in a number of model organisms [4–9].41

A common experimental technique for visualising cell shapes in an epithelial sheet is to42

fluorescently tag a binding molecule, such as E-cadherin (figure 1A). The analysis of time-lapse43

microscopy data obtained from such tissues is extremely challenging [2, 3], especially in cases44

of imaging data of rapidly evolving tissues, and when limitations of, for example, microscope45

speed, imaging resolution or phototoxicity inhibit the creation of datasets with high temporal46

and spatial resolution.47

The analysis of time-lapse microscopy data comprises two major steps: segmentation and48

tracking (registration). Segmentation must be performed for each frame of a video and in-49

volves the identification of objects and landmarks, such as cell shapes (figure 1B). Automated50

segmentation is hindered by various factors such as noise in fluorescent signals, uneven illu-51

mination of the sample, or overlapping cells in a two-dimensional projection. Often, manual52

correction is necessary to address over-segmentation, where too many cells are detected, or53

under-segmentation, where too few cells are detected [10–12]. Tracking involves the association54

of segmented cells across video frames (figure 1C) and requires resolving cellular movement, cell55

division, cell death, and cells entering and leaving the field of view [12].56

Numerous algorithms are available for the segmentation and tracking of cellular-resolution57

microscopy data [10,11,13]. Common methods for cell tracking utilize optimization techniques58

to minimise differences in cellular properties between two frames [11, 14–17]. The min-cost59

max-flow algorithm [14] uses linear integer programming to minimise differences in cell areas,60

perimeters, orientations, and locations between frames, whereas multiple-parameter tracking61

[15] employs global optimization to minimize differences in cell shapes as well as locations.62

In contrast, multitemporal association tracking [16, 17] minimises differences in cell locations63

and sizes by using a probabilistic approach that finds the most likely extension to existing cell64
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A. Raw data B. Segmentation

C. Tracking

Figure 1: Pipeline for analysing epithelial tissues. (A) Example raw data. Frame of a live-
imaging microscopy video of the lateral epidermis of a stage-eleven Drosophila embryo, express-
ing DE-Cadherin::GFP. See Experimental Methods for details. (B) Segmentation of this image,
showing cell shapes (coloured regions) and polygonal approximation based on three-cell junc-
tions (black lines). See Methods section for details of segmentation. (C) Cell tracking involves
registering individual cells across consecutive segmented images.

trajectories. Chain-graph models [18] minimise differences in cell velocity while overcoming mis-65

segmentation by verifying that each segmented object continues or begins a cell trajectory in66

successive frames. Optical flow (‘warping’) between successive frames can be used to guide cell67

tracking as well as segmentation [19]. It is also possible to combine segmentation and tracking68

of 2D microscopy videos by interpreting time as a third spatial dimension and employing 3D69

segmentation techniques [20].70

The nearest-neighbour method associates two cells in consecutive frames with each other if71

their respective centroids have minimal distance within the field of view [10], or if their overlap72

in pixels within the field of view is maximal [21, 22]. Particle image velocimetry, a technique73

originally developed to analyse fluid flow [23], has also been employed to track cells in epithelial74

tissues [24].75
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Software implementations and computational tools for cell tracking include FARSIGHT [25]76

(segmentation only), SeedWaterSegmenter [10] (nearest-neighbour tracking), ilastik [18] (chain-77

graph models), Tufts Tissue Tracker [11] (min-cost max-flow algorithm), Tracking with Gaus-78

sian Mixture Models [26] (nearest-neighbour tracking), Packing Analyzer [27] (particle image79

velocimetry) and EpiTools [13] (nearest-neighbour tracking). These algorithms and software80

tools primarily rely on there being small differences in cell positions and shapes across consecu-81

tive images. Their performance is therefore hindered when analysing data from in vivo studies82

where phototoxicity provides a barrier to high temporal resolution imaging [28–30]. To address83

this limitation, we propose a novel algorithm for cell tracking that uses only the connectivity of84

cell apical surfaces (figure 1). By representing the cell sheet as a physical network in which each85

pair of adjacent cells shares an edge, we show that cells can be tracked between successive frames86

by finding the maximum common subgraph (MCS) of the two networks: the largest network of87

connected cells that is contained in these two consecutive frames. It is then possible to track88

any remaining cells based on their adjacency to cells tracked using the MCS. Our algorithm89

does not require the tuning of parameters to a specific application, and scales in subquadratic90

time with the number of cells in the sheet, making it amenable to the analysis of large tissues.91

We demonstrate here that our algorithm resolves tissue movements, cell neighbour ex-92

changes, cell division, and cell removal (for example, by delamination, extrusion, or death)93

in a large number of in silico data sets, and successfully tracks cells across sample segmented94

frames from in vivo microscopy data. The remainder of the paper is structured as follows. In95

Section 2 we describe the technical details. In Section 3 we analyse the performance of the96

algorithm on in silico and in vivo datasets. Finally, in Section 4 we discuss future extensions97

and potential applications.98

2 Methods99

We begin with a conceptual overview of our cell tracking algorithm; a detailed description of100

each step of the algorithm is provided in the section ‘2.1 Mathematical formulation’. The input101

to the algorithm is a set of segmented images obtained from a live-imaging microscopy data set102

of the apical surface of an epithelial cell sheet. For each image, the segmentation is assumed103

to have correctly identified which cells are adjacent and the locations of junctions where three104
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or more cells meet. This information is used to generate a polygonal approximation to the cell105

tessellation (figure 1B-C). The statistics of polygonal approximations are commonly used to106

characterise and explore morphological processes in epithelial tissues [11,31–34].107

Our algorithm tracks cells between each pair of consecutive images in three steps (figure 2).108

First, we use a MCS-approach [35, 36] to generate an initial bijection between the two images109

that includes every cell whose connections to its neighbours do not change between images, e.g.110

due to cell rearrangements (figure 2B). Second, we remove from the bijection any cells that have111

less than three isolated connections to other cells in the MCS (figure 2B-C), since these cells are112

likely to have been matched incorrectly. Third, we extend the MCS to track any remaining cells113

that were not included in the bijection and we identify cell division and ‘removal’ (delamination,114

extrusion or death) events (figure 2D) through characteristic changes to the local cell network115

under these events.116

In the first of the three steps shown in figure 2, the MCS is constructed by iterative extension117

from an initial seed. The technical details of this iterative extension are described below. Briefly,118

this initial seed is found by identifying two cells in consecutive images whose neighbourhoods119

have identical graph structures. The full MCS is then constructed by iteratively adding cells120

after inspecting MCSs of the cells’ extended neighbourhoods.121

2.1 Mathematical formulation122

Preliminaries We begin by introducing the graph theoretic terminology and notation [37]123

used to describe our algorithm. We consider each pair of successive segmented images as vertex-124

labelled graphs1 G = (V,E) and G′ = (V ′, E′), respectively. Here and throughout, we use125

a prime symbol ′ to refer to the latter of the consecutive images. Each vertex in G or G′126

corresponds to one cell in the respective segmentation, and two vertices share an edge in the127

graph if the corresponding cells are adjacent. Throughout, we assume the graphs G and G′128

to be simple, planar and connected; we emphasise that these graphs represent the dual of the129

polygonal cell packing (figure 3A). These assumptions are reasonable in the case of simple130

epithelial cell sheets.131

The vertex labelling of G is defined by three functions, pG : V → N, xG : V → R and132

1A graph is an ordered pair G = (V,E), where V ⊆ N and E ⊆ {A ⊆ V : |A| = 2}. The elements of V and E
are called the vertices and edges of G, respectively. Given a graph G = (V,E), a vertex labelling is a function of
V to a set of labels. With this function, G is called a vertex-labelled graph.
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A

B

C

D

Figure 2: Illustration of our cell tracking algorithm. (A) Two consecutive segmented time-lapse
images (left and right columns) of the lateral epidermis of a stage-eleven Drosophila embryo,
taken five minutes apart. See Experimental Methods for details. There are several cell neigh-
bour exchanges between these images. (B) We first identify a cell mapping between the two
graphs based on the conserved MCS. This includes correctly tracked (green/light) cells and
weakly connected cells (purple/dark). Here, the conserved MCS incorrectly tracks two cells
(yellow/light dots). (C) Weakly connected cells are removed from the conserved MCS to pre-
vent mismatches. (D) An extended tracking mapping is constructed, which includes more cells.
See Methods section for details. The remaining white cells enter or leave the frame of view
between images and therefore are not tracked.
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Figure 3: Construction of the MCS. (A) Overlay of a polygonal tessellation (grey) and the
corresponding cell network (black). Each cell corresponds to one vertex in the network, and
two vertices share an edge if the corresponding cells are adjacent. The network of cells is used
by the algorithm to determine the MCS between tessellations corresponding to consecutive time
frames in a microscopy video. Note that the network degree of a cell and its polygon number
differ at the boundary of the tissue. For example, the highlighted cell has polygon number five
and network degree three. (B) The dark grey cells are members of the conserved MCS between
the two in silico tissues. In this example, two distinct MCSs are possible. Both MCSs include
all highlighted grey, green, and red cells. The two MCSs differ in the way the numbered cells
are mapped. The first MCS includes the cell pairings as indicated by the green (light) and red
(dark) cells. The second MCS includes the pairings as indicated by the numbers one and two.
White cells are not members of the MCSs. (C) The algorithm picks a first match of cells for the
MCS (blue) if their neighbourhoods form identical networks. The considered neighbourhood
includes all neighbours and second nearest neighbours and is shown in grey. (D-E) Additional
cells are added to the MCS iteratively by inspecting the MCS between the grey area on the left,
and the white area on the right. In (D), where the black cell is paired correctly, the local MCS
is larger than in (E), where the selected cell is not considered for mapping. Hence, the pairing
of black cells is added to the MCS.

yG : V → R. For a vertex v ∈ V , we refer to pG(v), xG(v) and yG(v) as the polygon number,133

x coordinate and y coordinate of v, respectively. For a given vertex, the polygon number is the134

number of neighbours of the corresponding cell, and the x and y coordinates are defined by135

the centroid of that cell. An overlay of a polygonal tessellation with the corresponding graph136
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structure is shown in figure 3A.137

Let φ be an isomorphism2 from A ⊆ V to B ⊆ V ′ such that for all v ∈ A, we have138

pG(v) = pG′(φ(v)) and for all x, y ∈ A, we have {x, y} ∈ E ⇔ {φ(x), φ(y)} ∈ E′. We call φ a139

cell mapping from G to G′ and define the size of φ to be |φ| = |A|.140

Let S denote the set of cell mappings from subgraphs of G to subgraphs of G′. Suppose that141

φMCS ∈ S has maximum size, i.e. |φMCS | ≥ |φ| ∀φ ∈ S, and let VMCS ⊆ V denote the domain142

of φMCS . We call the subgraph induced3 by VMCS a maximum common subgraph (MCS) of G143

and G′ (this may not be unique). A non-trivial, i.e. non-empty, MCS exists if there are two144

vertices v ∈ V and v′ ∈ V ′ that have the same polygon number, which is always true in our145

test cases. Our definition of a MCS differs slightly from previous definitions since it requires146

equivalence of the polygon number in addition to equivalence of edges [35, 38]. Note that the147

polygon number and degree4 of a vertex may not coincide for cells at the tissue boundary148

(figure 3A).149

Suppose that G and G′ have k MCSs, with associated cell mappings φ1, . . . , φk. Let Vc150

denote the set of vertices in V that are mapped to the same vertex in V ′ by every cell mapping151

φ1, . . . , φk, and let φc denote the restriction of φ1 (or, equivalently, any of the cell mappings)152

to Vc. We call Vc the conserved MCS of G and G′. In contrast to MCSs, conserved MCSs are153

unique. Examples of MCSs and conserved MCSs are illustrated in figure 3B.154

Construction of the conserved MCS155

In general, finding a MCS between two graphs is an NP-hard problem [35]. Here we adapt an156

efficient MCS detection algorithm [36] by exploiting graph planarity to reduce computational157

complexity. Instead of exploring all possible combinations of vertex-to-vertex matches [36] we158

construct the conserved MCS iteratively by finding the MCSs of small subgraphs of G and G′.159

To describe this construction we make use of the following definitions.160

For a graph G = (V,E), we define the extended neighbourhood of a vertex v ∈ V to be161

the set Γ(2)
G (v) = {w ∈ V : dG(v, w) ≤ 2}, where dG denotes graph distance5. The extended162

2Graphs G = (V,E) and G′ = (V ′, E′) are isomorphic if there exists a bijection φ : V → V ′ such that, for
each x, y ∈ V , we have {x, y} ∈ E ⇔ {φ(x), φ(y)} ∈ E′. We say that φ is an isomorphism.

3A graph G′ = (V ′, E′) is a subgraph of G = (V,E) if V ′ ⊆ V and E′ ⊆ E. The subgraph G′ of G is induced
by the vertices A ⊆ V if it contains all edges whose endpoints are both in A.

4The degree of a vertex v of a graph G = (V,E) is the number of incident edges, degG(v) = |{w ∈ V : {v, w} ∈
E}|.

5The distance dG(v, w) between two vertices v, w of a graph G is the number of edges in a shortest path
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neighbourhood contains v, all neighbours of v, and all second nearest neighbours of v. An163

example of an extended neighbourhood is illustrated in figure 3C as the set of highlighted blue164

and grey cells.165

Let ρ : A→ B be a cell mapping, v ∈ V \A and v′ ∈ V ′ \B be vertices in successive graphs,166

and SρLM be the set of cell mappings whose domains lie in Γ(2)
G (v), whose images lie in V ′, which167

map v to v′, and which map va to ρ(va) for all va ∈ A ∩ Γ(2)
G (v). Suppose that φρLM ∈ S

ρ
LM has168

maximum size, i.e. |φρLM | ≥ |φ| ∀φ ∈ S
ρ
LM , and let VLM denote the domain of φLM . We call169

the subgraph induced by V ρ
LM a local MCS (LM) of v and v′ under ρ.170

Further, let SρRLM denote the set of cell mappings whose domains lie in the extended171

neighbourhood of v excluding v, whose images lie in V ′, and which map va to ρ(va) for all172

va ∈ A ∩ Γ(2)
G (v). Suppose that φρRLM ∈ SρRLM has maximum size and let V ρ

RLM denote the173

domain of φρRLM . We call the subgraph induced by V ρ
RLM a reduced local MCS (RLM) of v174

under ρ.175

Finally, we say that v′ ∈ V ′ \ B is mappable to v ∈ V \ A under ρ if pG(v) = pG′(v′),176

dG(w, v) = 1⇔ dG′(ρ(w), v′) = 1 for all w ∈ A, and if (xG(v)−xG′(v′))2 + (yG(v)− yG′(v′))2 <177

d2
max, where throughout this paper we choose the threshold dmax to be ten times the average178

cell diameter in the tissue (defined as the square root of the average area of the polygonal179

approximations of the cells in the segmented microscopy image). The threshold dmax is used in180

our MCS finding algorithm to restrict any possible vertex pairings to those that are in physical181

proximity. This restriction reduces the size of the search space.182

Initial step To construct the conserved MCS, we first define a cell mapping φ1 between single183

vertices of the consecutive graphs (figure 3C). Formally, we search through vertices in V and184

V ′ to find v1 ∈ V , v′1 ∈ V ′ such that the order6 of any local MCS of v1 and v′1 under the cell185

mapping7 φ0 : ∅ → ∅ is equal to |Γ2
G(v1)| and, for any vertex v′2 ∈ V ′ \ {v′1} that is mappable186

to v1 under φ0, the order of any local MCS of v1 and v′2 is strictly less than |Γ2
G(v1)|. We then187

define a first cell mapping φ1 : V1 → V ′1 with V1 = {v1}, V ′1 = {v′1} and a first set of inspected188

vertices V ins
1 = ∅. Since we wish to use the MCS to aid our cell tracking, the equivalence of189

the extended neighbourhoods of v1 and v′1 gives us confidence that the corresponding cells are190

connecting them. If no such path exists, then the distance is set equal to ∞.
6The order of G is the number of its vertices, |V |.
7Here and throughout, ∅ denotes the empty set.
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correctly tracked under φ1. If we cannot find an initial cell mapping, then the algorithm halts;191

this means that the cell connectivity changes so quickly that the extended neighbourhood of192

every cell differs between consecutive images.193

Iterative extension Our next step is to iteratively construct a cell mapping φcell : Vcell →194

V ′cell for the conserved MCS between G and G′, as follows.195

For n = 1, 2, . . ., given a cell mapping φn : Vn → V ′n and a set of already inspected vertices196

V ins
n ⊆ V , we determine the set of vertices Sn ⊆ ΓG(Vn)\V ins

n with at least one mappable vertex197

in V ′ \ V ′n under φn. If there are no such vertices (Sn = ∅), then we simply define φn+1 = φn,198

Vn+1 = Vn, V ′n+1 = V ′n, and set V ins
n+1 = ∅. Otherwise, if there are such vertices (Sn 6= ∅), then199

we find a vertex vn+1 ∈ Sn with a smallest set of mappable vertices M ′n+1 ⊆ V ′ \ V ′n under φn.200

We then find all RLMs of vn+1 under φn and, for each vertex v′m ∈ M ′n+1, we find all LMs of201

vn+1 and v′m under φn. Next, we find if there is a vertex v′n+1 ∈M ′n+1 for which all LMs of vn+1202

and v′n+1 are larger than all LMs of vn+1 and v′m ∈ M ′n+1 \ {v′n+1}, and larger than all RLMs203

of vn+1. Finally, we distinguish between the case where v′n+1 exists or not. If such a vertex204

v′n+1 exists, then we define a new cell mapping φn+1 : Vn ∪ {vn+1} → V ′n ∪ {v′n+1} such that205

φn+1(vn+1) = v′n+1 and φn+1(v) = φn(v) ∀v ∈ Vn, and define a new set of inspected vertices206

V ins
n+1 = V ins

n . If there is no such vertex v′n+1 ∈ ΓG(Vn) \ V ins
n , then we construct an extended207

set of inspected vertices V ins
n+1 = V ins

n ∪ {vn+1}, and set φn+1 = φn, Vn+1 = Vn, and V ′n+1 = V ′n.208

We then increment n and return to the start of the iteration. Note that at each iteration the209

algorithm proceeds even if there are no non-trivial LMs or RLMs for a given vertex vn+1.210

The iteration halts as soon as we encounter Sn = ∅ for two consecutive values of n. We then211

define φcell = φn, Vcell = Vn and V ′cell = V ′n. Figure 3D-E illustrates the cells considered when212

searching for the RLMs and LMs of a given vertex.213

Post-processing214

The cell mapping φcell is intended to correctly track as many cells as possible between consecutive215

images. Nevertheless, it is possible that some members of Vcell may be tracked incorrectly, while216

the cell mapping may have excluded some vertices in V that could have been tracked correctly.217

To eliminate tracking errors and track cells that are not included in the conserved MCS, we218

construct a tracking mapping, ψtrack, from Ṽtrack ⊆ V to Ṽ ′track ⊆ V ′. We call a mapping219
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ψ : Ṽ ⊆ V → Ṽ ′ ⊆ V ′ a tracking mapping if it is an isomorphism from Ṽ to Ṽ ′. In contrast to a220

cell mapping, a tracking mapping need not preserve polygon numbers or edges between vertices221

of the subgraphs induced by Ṽ and Ṽ ′.222

We begin by defining a first tracking mapping ψ1 = φcell from Ṽ1 = Vcell to Ṽ ′1 = V ′cell. In the223

following, we describe how we iteratively refine the tracking mapping by first removing vertices224

from the domain that we suspect to correspond to incorrectly tracked cells (figure 2B-C), and225

then we add vertices to the domain to track cells that are not members of the MCS (figure 2D).226

Removing weakly connected cells Let ψ be a tracking mapping from Ṽ ⊆ V to Ṽ ′ ⊆ V ′.227

We define v ∈ Ṽ to be weakly connected with respect to ψ if the set ΓG(v) ∩ Ṽ contains228

either: exactly one vertex; or exactly two vertices that are not adjacent. We remove any weakly229

connected vertices from the tracking mapping since the corresponding cells may have been230

tracked incorrectly by the MCS (figure 2). To do this, we first find the set of vertices S̃n ⊆ Ṽ1 that231

are weakly connected with respect to ψ1. Next, we let Ṽ2 = Ṽ1 \ S̃n, Ṽ ′
2 = Ṽ

′
1 \{ψ1(w) : w ∈ S̃n},232

and define a new tracking mapping ψ2 : Ṽ2 → Ṽ
′

2 to be the restriction of ψ1 to Ṽ2. Note that233

this step accounts for the possibility that S̃n = ∅; in this case, we simply have ψ2 = ψ1.234

Adding cells that were not tracked by the MCS We next add cells to the tracking map-235

ping. This is necessary, since any cells that have undergone neighbour exchanges between the236

consecutive images may have changed their polygon numbers, or their adjacency to each other.237

This means that their corresponding vertices cannot be members of the conserved MCS, and so238

regions of cell neighbour exchanges will leave gaps of untracked cells in the MCS (figure 2B-C).239

In the following, we iteratively extend the domain of the tracking mapping to include vertices240

that have neighbours within the domain of the tracking mapping. Possible images of a given241

vertex can be identified by the aid of the images of the neighbours of the vertex. In this way,242

we track as many remaining cells as possible based on their neighbour relationships to cells that243

have been tracked by the conserved MCS. The more mapped neighbours that are preserved244

between a newly added vertex and its image, the higher our confidence that the corresponding245

cells are correctly tracked. For this reason, the algorithm starts by requiring that at least np = 4246

previously mapped neighbours are preserved for newly added cells. Once no further cell can be247

added that fulfils this condition, the algorithm is restarted with requiring np = 3, and finally248
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with np = 2.249

Formally, we start with a tracking mapping ψn : Ṽn → Ṽ ′n (initially with n = 2). We250

inspect all vertices in V \ Ṽn consecutively. At each step, one such vertex v is considered. Let251

Tn(v) = {ψn(w) : w ∈ ΓG(v) ∩ Ṽn} denote the set of images of all adjacent vertices of v in252

the domain of the current tracking mapping. If |Tn(v)| ≥ np (note, that np = 4 initially), we253

construct the set of vertices in V ′ \ Ṽ ′n that elements of Tn(v) share as neighbours,254

W (1)
n (v) =

⋃
v′∈Tn(v)

ΓG′(v′) \ Ṽ ′n. (1)

If W (1)
n (v) is empty and |Tn(v)| ≥ np + 1, then we consider reduced sets of images of the form255

Tn(v) \ {w′}, where one element w′ is removed from Tn(v), and we define the set of all shared256

neighbours of each reduced image set that are not in the image of ψn:257

W (2)
n (v) =

⋃
w′∈Tn(v)

 ⋂
v′∈Tn(v)\{w′}

ΓG′(v′) \ Ṽ ′n

 . (2)

By construction, the set W (2)
n (v) contains those vertices in V ′ \ Ṽ ′n that are shared neighbours258

of images of neighbours of v, each excluding one such neighbour. We introduce the condition259

|Tn(v)| ≥ np+1 above to ensure that the number of preserved neighbours in each reduced image260

set Tn(v) \ {w′} is at least np.261

If (i) W (1)
n (v) contains exactly one vertex v′, or if W (1)

n (v) = ∅ and W (2)
n (v) contains exactly262

one vertex v′, and (ii) v’ has at most two neighbours in Ṽ ′n that are not neighbours of v in Ṽn, then263

we let Ṽn+1 = Ṽn ∪{v}, Ṽ ′n = Ṽ ′n ∪{v′} and define a new tracking mapping ψn+1 : Ṽn+1 → Ṽ ′n+1264

to be the extension of ψn for which ψn+1(v) = v′. Otherwise, if (i) or (ii) is not satisfied, then265

we leave ψn : Ṽn → Ṽ ′n unchanged. Condition (ii) ensures that cell matches that would add a266

large number of neighbours to the tracked cell between G and G′ are not accepted.267

Once v has been inspected, and ψn has been extended if possible, a next vertex in V \ Ṽn is268

chosen and inspected. When all vertices in V \ Ṽn have been inspected, the search is restarted,269

and all vertices in V \ Ṽn are again consecutively inspected. The search is restarted repeatedly270

in this manner to ensure that any cells that have gained mapped neighbours during the post-271

processing step can be inspected for mapping again. We halt our search as soon as ψn is not272

extended between two consecutive restarts. Once the search is halted, we repeat the procedure273
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A

B C

x xx x x

Figure 4: Resolving division events. Dividing cells are coloured blue. (A) Division events
are resolved by identifying cells that gain an edge between the time frames (grey cells). The
dividing cell and the daughter cells are shared neighbours of the grey cells. (B) When one of
the daughter cells is four-sided, two mother cells are possible, the blue marked mother cell, and
the cell marked by an ‘x’. (C) When one of the daughter cells is three-sided the mother cell can
be mistaken as having gained an edge if it is identified with the daughter cell marked by an ‘x’.
Our algorithm correctly resolves division events such as in (A), (B), and (C).

with np = 3, and finally with np = 2.274

Resolving division events If a cell divides between consecutive frames, then the tracking275

mapping ψn we have constructed thus far may incorrectly identify the mother cell with one of276

its daughter cells (figure 4). To address this issue, we construct a tracking mapping ψtrack in277

which incorrectly tracked mother cells are removed. To resolve division events, we first identify278

boundary vertices to be those vertices v ∈ V whose polygon number and degree differ. This279

corresponds to cells that are at the physical boundary of the sheet, where polygon number280

and network degree do not coincide (figure 3A). We then identify all connected sets of vertices281

M ′ ⊆ V ′ \ Ṽ ′n that satisfy Γ′G(M ′) ⊆ Ṽ ′n and that contain no boundary vertices of V ′. Each such282

set M ′ corresponds to one division event, and in the following we treat each M ′ individually.283

For each M ′, we define SM,1 = ψ−1
n (Γ′G(M ′)) to be the set of inverse images of the mapped284

neighbours of M ′ under ψn. Next, we identify the set Sborder ⊆ SM,1 of potential bordering cells285

of the division, i.e. cells that are adjacent to the division, by finding those vertices v ∈ SM,1286

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 20, 2016. ; https://doi.org/10.1101/049551doi: bioRxiv preprint 

https://doi.org/10.1101/049551
http://creativecommons.org/licenses/by-nc-nd/4.0/


that gain an edge under the tracking mapping ψn:287

Sborder = {v ∈ SM,1 : pG′(ψn(v)) = pG(v) + 1}. (3)

We also identify the set Smother of potential mother cells by finding any shared neighbours of288

potential bordering cells:289

Smother =
⋂

v∈Sborder

ΓG(v). (4)

Based on the sets Sborder and Smother we decide which cells are the mother and daughter cells290

of the division event, distinguishing between the following cases:291

(i) If Smother contains exactly one vertex, then this is identified as the mother cell of the292

division, and M ′ must contain exactly two vertices, which are identified as the daughter293

cells. In this case, neither the mother nor daughter cells are three- or four-sided.294

(ii) If Smother = ∅, then one of the daughter cells must be three-sided (figure 4c). In this case,295

a geometry-inferred selection of mother and daughter cells is required. To this end, we296

define a set of potential daughter cells297

S′daughter = ψn(Sborder)
⋃  ⋂

v′∈ψn(Sborder)
ΓG′(v′)

 . (5)

that contains the images of the potential bordering cells and all shared neighbours of298

these images in V ′. Next, we find a definite daughter cell as an element v′ ∈ Sdaughter299

that is three-sided (pG′(v) = 3). The geometry-inferred selection of the second daughter300

cell proceeds as follows. For each w′ ∈ S′daughter \ {v′}, we construct the geometrically301

merged cell of v′ and w′ by removing the edge between the polygons that corresponds to302

v′ and w′ in the segmentation of the microscopy video frame from which the graph G′303

was generated, as well as the cell junctions where three or more cells meet at the end304

of this edge. We then calculate the distance of the centroid of the geometrically merged305

cell to the centroid of the cell associated with vertex ψ−1
n (w′). The vertex w′ for which306

this distance is minimal is identified as the second daughter cell, and the mother cell is307

identified as its inverse image under ψn.308

(iii) If Smother contains more than one vertex, then we define a set of potential daughter cells309
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as any shared neighbours of images of the potential bordering cells310

S′daughter =
⋂

v′∈ψn(Sborder)
ΓG′(v′). (6)

If S′daughter contains exactly four vertices, then the mother cell and both daughter cells311

are four-sided, and the mother cell can be identified as the single vertex in the set SM,2,312

which we define as the set of cells which are shared neighbours of all cells in SM,1 (the313

inverse images of neighbours of the division), and which are not in the domain of ψn, i.e.314

SM,2 =
⋂

v∈SM,1

ΓG(v) \ Ṽn (7)

The daughter cells correspond to the only two vertices in M ′.315

If S′daughter contains exactly three vertices, then one of the daughter cells is four-sided,316

and we identify this cell as the definite daughter cell of the division v′, i.e. we identify317

v′ ∈ S′daughter : pG′(v′) = 4. In this case, geometry-inferred selection of the second daughter318

cell is required, and we achieve this in a similar way to that described for three-sided319

daughter cells above. For each cell w′ ∈ S′daughter \ {v′}, we construct the merged cell of320

v′ and w′, and calculate the distance of its centroid to the centroid of ψ−1
n (w′). The cell321

w′ ∈ S′daughter \{v′} for which this distance is smallest is the second daughter cell. Since in322

this case Smother contains more than one cell, S′daughter must contain at least three cells8.323

Once each set M ′ has been inspected and the associated division event has been resolved324

by identifying the mother and daughter cells, we construct a tracking mapping in which any325

incorrectly tracked mother cells are removed. To this end, we define the set of all mother cells326

for which geometry-inferred selection has been used as Sgeo, and we construct a final tracking327

mapping ψtrack : Ṽn \ Sgeo → Ṽ ′n \ ψn(Sgeo) such that ψtrack(v) = ψn(v) ∀v ∈ Ṽn \ ψn(Sgeo).328

In general, the division resolution step may incorrectly track cells in cases where there is329

a cell neighbour exchange next to the division, or if there are two adjacent divisions between330

frames. For example, if each of the bordering cells, i.e. the cells adjacent to the division, were to331

undergo a neighbour exchange in which they lose an edge between images, then our algorithm332

8If S′
daughter contains more than four cells, then our algorithm fails; however, this was never encountered in

our test cases.
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would fail to correctly resolve the division event.333

Resolving remaining events At this stage, the tracking algorithm for the two consecutive334

time frames is completed, and it is straightforward to identify cell neighbour exchanges by335

finding any cells that have changed their polygon number from one frame to the next. Cell336

removal events correspond to any vertices v ∈ V that are not in the domain of ψtrack, and for337

which ΓG(v) ⊆ Vtrack, and that do not correspond to mother cells of a division event.338

Computational implementation339

We use Krissinel’s MCS finding algorithm [36] to find all RLMs and LMs in the above steps. This340

algorithm will always halt eventually. In particular, since the domains on which the RLMs and341

LMs are calculated only contain extended neighbourhoods of individual cells, the MCS finding342

does not pose computational barriers. We adapt the procedure for MCS finding proposed in [36]343

in two ways: (i) whenever a next vertex is considered for mapping, we pick a vertex that is344

adjacent to already mapped cells, hence the adapted algorithm only finds connected subgraphs;345

(ii) since the RLMs and LMs are small, we do not implement subgraph-size dependent conditions346

to interrupt the search early.347

When finding the initial mapping, for any two possible matches LMs are first calculated348

by considering nearest neighbours only rather than extended neighbourhoods. Once the neigh-349

bourhoods9 of two matching vertices are found to be isomorphic, the extended neighbourhood350

is considered. This step reduces the time that is needed to find the initial match.351

In the computational implementation of the tracking algorithm we use a further vertex-label352

cG : V → N, which we call the cell identifier. In practice, integer identifiers for a given vertex v353

arise naturally in the segmentation step. Cell identifiers allow us to easily identify vertices and354

relate them to a cell in a given image independent of how they are stored in the graph structure.355

The code used in this article is publicly available under the 3-clause BSD license as the356

MCSTracker project (https://github.com/kursawe/MCSTracker). The project is implemented357

in pure-Python, employs unit-testing [39] and is fully documented. Graphs in our code are rep-358

resented using the NetworkX package in Python [40].359

9The set of adjacent vertices, ΓG(v) = {w ∈ V : {v, w} ∈ E} is called the neighbourhood of v, so the degree of v
is |ΓG(v)|. We define the neighbourhood of a subset V ′ ⊆ V to be ΓG(V ′) = {w ∈ V \V ′ : ∃ v ∈ V ′ with d(w, v) =
1}.
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A B

Figure 5: Generation of in silico data. (A) Random seeds (black dots) are placed inside a
domain Ω, the border of which is shown using a black line. Additional, evenly spaced seeds
are placed outside Ω. The Voronoi tessellation of all seeds is shown in grey, excluding Voronoi
regions corresponding to the outermost row of seeds, since these are large or unbounded. The
centroids of the Voronoi regions differ from the seeds, and are shown as grey crosses. (B) The
centroids of the Voronoi regions in (A) are used as seeds for a new Voronoi tessellation, for which
evenly spaced seeds are again added outside the domain Ω. Voronoi regions whose centroids lie
within a window (dashed black line) at the centre of the domain are collected to form the in
silico tissue (blue). In this figure, one Lloyd’s relaxation step (nL = 1) is shown. Throughout
this study, we generate in silico tissues using nL = 4 Lloyd’s relaxation steps.

Generation of in silico data sets360

To test the algorithm, we generate in silico data sets that include examples of cell divisions,361

removals and neighbour exchanges, as well as tissue movement. These data sets are generated362

using Voronoi tessellations modified using Lloyd’s relaxation, which resemble cell packings in a363

variety of epithelial tissues [33,41].364

To generate polygonal patterns of size m × n, where m and n are natural numbers, (m +365

g)× (n+ g) Voronoi seeds are uniformly random distributed in a 2D domain Ω of width m+ g366

and height n + g (figure 5A). Here, g is the size of a boundary region that is introduced to367

reduce the impact of the Voronoi boundary on the patterns. The domain Ω is surrounded by368

two rows of evenly spaced additional seeds on each side. The inner row has a distance of 0.5369

to Ω, and the seed-spacing is 1.0. The outer row has a distance of 1.5 to Ω, and the seeds are370

shifted parallel to the first row by a distance of 0.5. The Voronoi tessellation of all these seeds371

is then constructed.372

In each Lloyd’s relaxation step, the polygons (or infinitely large areas) corresponding to the373
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regularly spaced seeds outside Ω are removed from the tessellation. Next, the centroid of each374

remaining polygon is calculated and registered as a new seed. Further seeds are added that375

again correspond to two rows of evenly spaced seeds outside Ω. A new Voronoi tessellation376

is then constructed (figure 5B). This procedure is repeated for L relaxation steps, after which377

all generated polygons are discarded except those whose centroid lies within an area occupying378

n×m area units in the centre of Ω (figure 5B).379

The polygonal tessellations have approximately m×n polygons of average area 1.0. During380

the generation of the tessellations, evenly spaced seeds outside Ω are added to prevent the381

occurrence of infinitely large polygons inside Ω. The boundary of size g is added in between the382

generated tessellation and the evenly spaced seeds in order to reduce the effect of the evenly383

spaced boundary seeds on the tessellation. Throughout this study, we use g = 8 and nL = 4,384

resulting in cell packings similar to those observed in the Drosophila wing imaginal disc [33].385

We provide further details of how tissue rearrangements are implemented in the Results section.386

Experimental methods387

Live-imaging of cell proliferation was performed in stage-eleven Drosophila embryos expressing a388

tagged version of DE-Cadherin (DE-Cadherin::GFP) using a spinning disc confocal microscope,389

as described in [42]. For the embryo setup, a modified version of the standard live-imaging390

protocol was used [43].391

Data segmentation Microscopy images were segmented manually using SeedWaterSegmen-392

ter [10]. Each segmentation was saved as a 16-bit grayscale image where pixels belonging to393

different cells have different integer values. Polygonal tessellations for the tracking algorithm394

were generated from the segmented image in two steps. First, all junctions between three or395

more cells were identified as points where pixels of three or more different cells meet, and second,396

vertices were assigned to cells. Finally, edges shorter than two pixels (0.5 µm) were removed397

and replaced by a single vertex at the midpoint of the edge.398
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3 Results399

In silico testing of the algorithm. To assess the performance of the algorithm, we begin400

by applying it to in silico data sets that include cell neighbour exchanges, tissue movement, cell401

removal and cell division, respectively. In each case, we compare the outcome of the tracking402

algorithm to the ground truth.403

We begin by assessing the ability of the algorithm to resolve permutations in otherwise404

identical tissues (figure 6A). In this test, a random tessellation of size nine by nine cells is created405

as described in the Methods section, and integer identifiers ci are assigned to each cell. Next,406

an identical copy of the tissue is created in which the integer identifiers are randomly shuffled.407

A ground truth mapping from the first to the second integer identifiers is generated. Next,408

the algorithm is applied. Upon conducting 100 such tests, all identified cell-to-cell mappings409

are matched correctly, as compared to the ground truth. In rare examples, isolated cells at410

the boundary of the tissue are are not tracked. In these examples, either a single cell has only411

one adjacent cell in the tissue, or two cells of identical polygon number are adjacent and share412

exactly one neighbour. Neither the MCS detection algorithm, nor the post-processing algorithm413

are able to resolve such mappings, which involve fewer than four cells in each dataset (fewer414

than five percent of the tissue).415

We design four further tests of tissue rearrangements (figure 6B-E). The first test comprises416

tissue movements between images (figure 6B). In this test, a tissue of size fifteen by eight cells is417

generated as described in the Methods section. Two smaller tissues of width seven are cut out of418

this tissue, which each cover the full height of the tissue, and which are horizontally translated419

relative to each other by a distance of two cell lengths. The position of each three-cell junction420

in both tissues is shifted such that the x-coordinate of the left-most junction in each tissue is 0.421

The second test (figure 6C) generates cell neighbour exchanges, also called T1 transitions422

[44, 45]. In our implementation of T1 transitions, an edge shared by two cells is replaced by a423

new perpendicular edge (of length lT1 = 0.2 units) such that the local cell connectivity changes424

(figure 2B). We create two identical copies of a tissue of size nine by nine cells. In the second425

copy, a T1 transition is performed on an edge in centre of the tissue.426

The third test involves cell removal (figure 6D). In this test, we first generate two identical427

copies of a tissue of size nine by nine cells. In the second copy, we replace the central cell by a428
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Cell death

Tissue translation

Cell neighbour exchange

A B

C D

E

Identical tissues

Cell division

Figure 6: Examples of in silico test cases. In each image, cells identified by the MCS algorithm
are highlighted in green (light), whereas cells that have been filled in by the post-processing
steps are highlighted in red (dark). The algorithm tracks cells between identical tissues (A),
in tissues undergoing translation (B), cell neighbour exchange (T1 swap) (C), cell removal (D)
and cell division (E).

vertex shared by its neighbouring cells. This rearrangement is similar to so-called T2 transitions429

in the foams literature [44]. The final test involves cell divisions (figure 6E). Here, we once again430

create two identical copies of size nine by nine cells. In the second copy, a cell in the centre of431

the tissue is divided by introducing a straight line in a random direction through centroid of432

that cell.433

For all tests generated in this way, integer cell identifiers in the second tissue are randomly434

shuffled, and a ground truth is generated. We run 100 realisations of each test case, and compare435

the tracking outcome to the ground truth. In all cases cells are tracked correctly, with at most436

three unmatched cells at the boundary of the sheet.437

In figure 6, all cells identified after the cleaning step, in which weakly connected cells are re-438

moved from the MCS, are coloured green, whereas cells that are identified by the post-processing439
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algorithm are coloured red. Note that the exact number of cells that are identified by the post-440

processing algorithm varies between individual realisations of the tests. In many cases, the cells441

identified by the post-processing algorithm include cells that are adjacent to the cells that are442

undergoing division, removal or neighbour exchange.443

We next analyse the extent to which the success of our tracking algorithm depends on the444

number of Lloyd’s relaxation steps, nL, used to generate the in silico data sets. To investigate445

this we iteratively increase nL, and so generate tissues with increasingly homogeneous graph446

structures, and repeat all tests. We find that the algorithm successfully passes all tests for all447

values of nL from 4 up to 14.448

Application of the algorithm to in vivo data Figure 7 shows three sample segmented449

images of the lateral epidermis of a stage-eleven Drosophila embryo, taken five minutes apart,450

and to which we apply the algorithm. These images comprise 271, 263 and 263 cells, respectively.451

Between the first and the second images, 247 cells are tracked, whereas 245 cells are tracked452

between the second and third images. The number of cells that are tracked across all three453

images is 234. The centroids of cells of previous images are plotted on top of the tracking,454

showing that the tracking algorithm successfully tracks cells in situations where it is difficult to455

match cells between images based on the centroid positions alone. Cells that include only their456

corresponding centroid from the previous image are coloured in green, whereas cells that do not457

include their corresponding centroid from the previous image, and cells that include multiple458

centroids from the previous image, are coloured in purple.459

On average, cell centroids move 0.75 cell lengths between the first and second images, with a460

maximal displacement of 1.17 cell lengths. Between the first and second images 36 cells undergo461

a net gain in edges, whereas 20 cells have net loss of edges. In total, four cell deaths and no cell462

divisions are observed across all three data images, and none of the cells are tracked incorrectly.463

Calculation times To analyse the scaling of the calculation times with tissue size we repeat464

the permutation test with tissues of square dimension of varying size on a desktop computer465

with an Intel i5-6500T CPU (2.5GHz) and 8GB R. We find that the calculation times scale466

subquadratically with cell number (figure 8).467
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Figure 7: Three segmented data frames. Cells that are tracked across all frames are coloured
green or purple, and cells that leave or enter the tissue at the boundary are white. Dying cells
are black. The centroids of tracked cells of the respective previous frames are included as yellow
dots, and cells that contain only their centroid from the previous frame are coloured green,
whereas cells that do not contain their centroid from the previous frame, and cells that contain
multiple centroids, are coloured purple. Together, the centroids and the colouring illustrate
that it is challenging to track cells between the data frames using solely centroid positions.
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Figure 8: Scaling of the calculation times with tissue size. Virtual tissues of square dimension of
varying sizes were generated and the calculation times of the algorithm under the permutation
test in figure 6A recorded. Orange dots represent calculation times for individual realisations of
the test and error bars denote the standard deviation. The exponent b of the polynomial fit is
1.6. The calculation times were measured on a desktop computer with an Intel i5-6500T CPU
(2.5GHz) and 8GB R.

The calculation times for the experimental images analysed in figure 7 vary more widely468

than for the in silico data sets. For the tracking between the first and second frames in this469

figure, the algorithm required 96 seconds to run, whereas between the second and the third470

frames the algorithm required 15 seconds. This difference appears to arise from differences in471

the time required to find the first correct mapping. In the first example 154 cells were searched472

before the first correct mapping was found, whereas in the second example only 12 cells were473

searched. This means that the number of cells considered when finding the initial mappings474

depends on the graph structure of the analysed frames and impacts on the calculation time of475

the algorithm.476

Algorithm performance on rearranging tissues To assess the performance of the algo-477

rithm on rearranging tissues, we applied the algorithm to in silico data sets with increasing478

numbers of cell rearrangements (figure 9). The number of correctly tracked cells decreases as479

the number cell rearrangements increases. However, the number of incorrectly tracked cells480

remains low even for large numbers of cell rearrangements.481
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Figure 9: Success rate of the algorithm on in silico tissues with increasing amounts of cell
rearrangements. Virtual tissues spanning 20 cell lengths in each dimension are generated, and
T1 swaps are applied to an increasing proportion of the inner edges of the tissue. For each ratio
of T1 swaps, 10 repetitions of the test are run, and the ratio of correctly and incorrectly tracked
cells in the tissue is recorded. The dashed blue and solid red lines correspond to mean values of
correctly and incorrectly tracked cells, respectively. Error bars denote the standard deviation
of the mean, and results of individual runs of the test are represented by dots.

The number of untracked cells increases rapidly as the percentage of edge rearrangements,482

i.e. the percentage of inner edges in the tissue that are swapped between successive images,483

increases from five to ten percent. Note that the number of cells involved in these cell rear-484

rangements is larger than five to ten percent, since an individual T1 transition changes the485

cell neighbour relations of four different cells, and each cell shares multiple inner edges. For486

example, rearranging five percent of the inner edges of the tissue affects roughly 40 percent487

of the cells in the tissue, whereas rearranging ten percent of the tissue edges affects up to 70488

percent of the cells. The number of (correctly or incorrectly) tracked cells drops to zero if the489

tissue rearranges so much that the extended neighbourhood of each cell rearranges. In this case490

a first match cannot be found to initialise the MCS construction algorithm.491

4 Discussion492

Cell tracking in epithelial sheets has the potential to generate a vast amount of quantitative493

data to inform our understanding of the contributions of different cellular processes to tissue494

morphogenesis. However, cell tracking is notoriously difficult, especially for the complex mor-495
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phogenetic processes that occur as embryogenesis proceeds. Here, we present an algorithm496

based on MCS detection for the tracking of cells in segmented images of epithelial sheets. Our497

algorithm successfully tracks cells in in vivo images of the Drosophila embryonic epidermis, as498

well as in randomly generated in silico data sets, without the need for the adjustment of tissue499

specific parameters, such as weights for individual terms in a global minimisation scheme [14].500

The use of in silico data to test our algorithm allows us to analyse the performance of our501

algorithm for a large range of experimentally observed cell rearrangements and tessellations.502

Our algorithm is able to track cells that undergo significant movement and neighbour ex-503

changes between frames. For example, we can correctly track cells in tissues where more than504

40 percent of the cells rearrange between successive movie frames (figure 9). In addition, even505

comparably large gaps in the initial MCS can be filled in during the post-processing step (figures506

2 and 7). For example, in the first tracking step in figure 1, only 182 of the 246 tracked cells507

were identified by the MCS algorithm, and it was possible to track the 64 remaining cells during508

the post-processing step. For comparison, Heller et al [13] report 15 cell rearrangements per509

1000 cells per hour at an imaging interval of six minutes for their time-laps microscopy data of510

Drosophila wing imaginal discs. In addition, the experimental data shown in figures 2 and 7,511

as well as our in silico cell removal data sets, contain multicellular rosettes, hence rosettes do512

not pose a challenge to our algorithm.513

Our algorithm is able to correctly track cells in all considered test cases. However, on rare514

occasions a few cells at the tissue boundary cannot be tracked. It may be possible to adapt the515

algorithm to track these cells, if this is considered necessary for the application at hand. In the516

current version of the algorithm, two connections to already tracked cells that are preserved517

between two time frames are a condition to add a cell-to-cell mapping in the post-processing518

algorithm. Further analysis of cases where this condition is not fulfilled may reveal ways to519

relax it.520

When generating in silico data to test the algorithm, we used Voronoi tessellations in com-521

bination with Lloyd’s relaxation to generate data that resembles tissues in the Drosophila wing522

imaginal disc [33]. We expect the algorithm to perform less well on tissues whose network523

structure is near homogeneous. For example, in an epithelial sheet where cells are arranged524

in a hexagonal fashion, such as the early Drosophila embryonic epidermis [46] or the late pu-525
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pal Drosophila wing [47], the local adjacency network of each cell is identical, and hence a526

network-based tracking algorithm may not be able to distinguish cells. When generating in527

silico tissues, we use four Lloyd’s relaxation steps after Voronoi tessellation. With each Lloyd’s528

relaxation step, the homogeneity of the tissue increases. We were able to successfully repeat529

all in silico tests on virtual tissues that were generated using up to nL = 14 Lloyd’s relaxation530

steps. Hence, we expect the algorithm to be suitable for tissues that can be well described with531

14 or fewer Lloyd’s relaxation steps, such as the chick neural tube embryonic epithelium, or the532

Drosophila eye disc [33].533

The algorithm relies on being able to generate polygonal tessellations from segmented video534

microscopy data. In particular, all in silico tests we conducted consider tissues where each cell535

has at least three neighbours. Conceptually, it would be possible to apply the algorithm to536

tissues in which individual cells may have only two neighbours, although such examples have537

not been included in our analysis.538

In microscopy videos including division events we expect the algorithm to perform well in539

tissues in which no adjacent divisions occur between successive movie frames, and in which540

cells adjacent to the dividing cell do not undergo rearrangements before the next frame is541

captured. Our algorithm is designed to identify mother and daughter cells of a division event542

by establishing which are the bordering cells that gain an edge during the division event. In543

the case of two adjacent divisions, and if cells adjacent to a division event gain edges due to544

cell rearrangements, the dividing cell cannot be correctly identified. An example of a typical545

tracking error for two adjacent divisions is shown in figure 10. In cases where the division546

resolution step fails, our Python implementation returns all tracked cells of the post-processing547

step, and gives a warning that the division has not been resolved. In these cases, manual548

correction methods could be used for incorrectly tracked cells in the vicinity of division events.549

The parameters of the algorithm are chosen to maximise the robustness of the algorithm550

and avoid the necessity to adjust the parameters to individual applications. For example, the551

cutoff length, dmax, that determines the distance below which two cells in consecutive movie552

frames are considered mappable to each other was chosen at 10 times the average cell length553

in the tissue, which is significantly larger than the movement that is to be expected between554

consecutive frames of a live-imaging microscopy video. However, parameter adjustments may555
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A B

Figure 10: Tracking errors can occur if adjacent cells divide. Here, all green (light) cells are
tracked correctly. One of the mother cells (red/dark) of the division events has been incorrectly
associated with one of the daughter cells of the division.

be possible for individual applications in order to decrease the algorithm calculation times. For556

example, the size of the extended neighbourhood considered in the initial step or the iterative557

extension could be reduced to include only nearest neighbours instead of nearest neighbours and558

second nearest neighbours in case the tissue is sufficiently heterogeneous. Similarly, one might559

decrease the cutoff length, dmax, for possible cell pairings if the cell positions are not expected560

to vary significantly between time frames. When filling in any gaps in the MCS (figure 2C-D),561

requiring that np = 4 neighbours are preserved between consecutive frames for newly added562

cells seems to be a sufficiently large number in practice. However, it is possible to start the563

post-processing requiring a higher number of previously mapped neighbours for the tracking.564

Adjustments may be possible to extend the applicability of the algorithm to a wider range of565

tissues. For example, instead of automatic detection of the initial seeds for the MCS detection566

algorithm, a small set of seeds could be manually supplied to guide the tracking. This should567

improve the performance of the algorithm on homogeneous tissues. A further option to improve568

tracking of cells in homogeneous tissues is to make adaptations that ensure that the cyclic order569

of neighbours of each cell is preserved under the mapping. In such cases, irregular boundaries570

may also help to aid the initial seeding. Finally, in cases where the algorithm is not able to571

track all cells due to a larger number of cell neighbour exchanges than in the tissues considered572

here, it may be possible to extend the current algorithm by removing the assumption that the573

MCS is connected, and using a set of non-adjacent cells as initial seeds.574

In the presented work, we have deliberately kept the geometrical input to the algorithm575

to a minimum. Cases where geometric data are taken into account comprise division events576

where one of the daughter cells is four- or three- sided, since in these cases we are not able to577
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make a decision on which cell is the second daughter cell based on network adjacency alone. If578

future applications reveal cases where the algorithm performs poorly due to a large number of579

cell neighbour exchanges or high degree of tissue homogeneity, it may be possible to construct580

algorithms that combine information on the network topology with data on cell shapes, cell581

positions and cell movements to improve performance. For example, information on network582

topology could be integrated into previous algorithms which minimise differences between ge-583

ometric properties of cells, such as cell size and location [24], with information about network584

connectivity.585

In cell tracking applications, the scaling of the algorithm with tissue size is crucial. Potential586

applications range from systems of 30 cells (Drosophila embryonic epidermal P compartments587

[9]), to 10,000 cells (Drosophila imaginal wing disc [31]). Calculation times in the presented588

algorithm scale subquadratically with cell number, making it suitable for applications of varying589

sizes. For example, extrapolating the data in figure 8, a tissue of 10,000 cells could be tracked590

across two frames within 20 minutes. The scaling of the algorithm is polynomial despite the591

fact that it is based on MCS detection, which is known to be an NP-hard problem in the general592

case, i.e. the calculation times scale exponentially with the problem size. MCS detection has a593

wide range of research applications, including protein interaction networks [48, 49] and finding594

the binding sites of chemical structures [38]. Our approach of reducing the MCS search to595

a local, close to quadratically scaling search may have applications in other areas where the596

networks are inherently planar.597

Our algorithm is designed to track cells in segmented microscopy videos of epithelial sheets598

in two dimensions. However, it may be possible to apply the algorithm to datasets of epithelial599

sheets that are embedded in a three-dimensional environment, such as the Drosophila imaginal600

wing disc [4], or the Drosophila embryonic epidermis [6,9], including tissues that can be mapped601

onto a cylinder or ellipsoid, such as the mouse visceral endoderm [50].602

A large number of cell tracking algorithms have been developed for varying applications [10–603

27]. Further efforts are required to compare these algorithms with our own, and to identify the604

algorithm best suited for an individual data set. In the cell tracking challenge [51] the authors605

provide microscopy videos from a variety of in vitro cell cultures, including, for example, mouse606

embryonic stem cells and human squamous lung carcinoma cells, together with ground-truth607
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segmentation and tracking data as benchmarks for cell tracking and segmentation algorithms.608

However, many of the published algorithms above have not yet been applied to the challenge,609

and benchmark datasets for epithelial sheets are currently not available. In [52] in silico data610

sets are used as benchmarking data sets for particle tracking algorithms.611

The proposed algorithm provides a tracking solution specialised for cell-tracking in epithelial612

sheets that attempts to maximise the information that can be gained from the packing that is613

typical to epithelial tissues. It may, however, be possible to extend this algorithm to applica-614

tions of two-dimensional cell tracking where cells are not physically connected by constructing615

adjacency networks from Voronoi tessellations that use the cell locations as seeds. We hope616

that, as segmentation tools are developed further, the combination of our algorithm with these617

tools will lead to further insights into cellular behaviour in epithelial tissues.618
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