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Abstract 
Summary: Copy number variation (CNV) is a major component of structural differences between 
individual genomes. The recent emergence of population-scale whole-genome sequencing (WGS) 
datasets has enabled genome-wide CNV delineation. However, molecular validation at this scale is 
impractical, so visualization is an invaluable preliminary screening approach when evaluating CNVs.  
Standardized tools for visualization of CNVs in large WGS datasets are therefore in wide demand.  
Methods & Results: To address this demand, we developed a software tool, CNView, for normalized 
visualization, statistical scoring, and annotation of CNVs from population-scale WGS datasets. 
CNView surmounts challenges of sequencing depth variability between individual libraries by locally 
adapting to cohort-wide variance in sequencing uniformity at any locus. Importantly, CNView is 
broadly extensible to any reference genome assembly and most current WGS data types. 
Availability	and	Implementation:	CNView is written in R, is supported on OS X, MS Windows, and 
Linux, and is freely distributed under the MIT license. Source code and documentation are available 
from https://github.com/RCollins13/CNView 
Contact:	talkowski@chgr.mgh.harvard.edu  
Supplementary	Information:	Supplementary data are available online. 

 
 

1 Introduction  
Deletions and duplications of genomic segments, collectively known as 
copy number variants (CNVs), are the single largest influence in deter-
mining the content and organization of an individual genome (Sudamant 
et al., 2015) and are strongly associated with an increased risk of numer-
ous cancers and neurodevelopmental disorders (McCarroll & Altshuler, 
2007). Whole genome sequencing (WGS) is the only currently practical 
method able to capture the full size spectrum of CNV in the human ge-
nome (Sudamant et al., 2015). Detection of CNV in WGS data common-
ly relies on measuring relative losses or gains in depth of sequencing 
coverage, but most algorithms yield too many candidate CNV calls to be 

molecularly validated at scale. Visual assessment of sequencing depth 
can quickly assess CNV in silico, but there is presently a paucity of tools 
for CNV visualization from population-scale WGS data.  

We present CNView, an R software tool for normalized visualiza-
tion of sequencing depth in population-scale WGS datasets. CNView 
applies global intra-sample normalization and localized inter-sample 
normalization to delineate, annotate, and statistically score CNVs in 
individual samples or up to hundreds of WGS libraries simultaneously.  

2 Methods & Application 
As input, the BEDtools coverage and uniongbed commands are used to 
generate a matrix of uniformly binned sequencing coverages for each 
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library (Quinlan & Hall, 2010; Online Documentation). Compressing 
coverage into bins of 100bp–1kb smooths visible noise in the sequencing 
depth while also lowering local computational requirements. After gen-
erating this input coverage matrix, CNView can assess and visualize any 
query region in up to 300 samples at once in under a minute on a laptop 
with a 2.3 GHz dual-core processor and 8GB RAM. 

CNView has six sequential steps: (1) matrix filtering, (2) matrix 
compression, (3) intra-sample normalization, (4) inter-sample normaliza-
tion, (5) coverage visualization, and (6) genome annotation. Coverage is 
extracted from the query region including several flanking megabases 
(default=5Mb). CNView further compresses this subsetted matrix to 
reduce local noise. Each library is then normalized by dividing the cov-
erage of each bin by the library’s median nonzero binwise coverage. The 
intra-sample normalized coverage in each bin is then normalized across 
all samples to fit the standard normal distribution (µ=0, σ=1). This nor-
malization procedure produces a t-score per sample per bin. 

Coverage t-scores are plotted as semi-contiguous step functions for 
each sample specified by the user. Individual bins significantly depleted  

Figure 1. CNView renderings of simple and compound CNVs. Both panels can be regen-

erated directly from CNView with no post-hoc modifications directly from the Supple-

mentary Data. (A) CNView shows copy loss over a 46,166 bp two-exon deletion of 

PDE11A (red) in a child (top) and his father (bottom), but not the mother (middle). (B) 

CNView provides evidence of a compound CNV, in which a 467 kb deletion overlaps a 

449 kb duplication, resulting in small segments of decreased (red) and increased (blue) 

copy number, while the rest of the site (yellow) remains copy number-neutral (grey).  

or enriched for normalized sequencing depth are indicated by red and 
blue outlines, respectively (α=0.05, Bonferroni correction). P-values of 
deletion and duplication are calculated for each highlighted interval by 
computing the mean t-score of all bins overlapping that interval. The 
background of each plot is shaded with measurements of central tenden-
cy (median) and deviation (median absolute deviation; MAD) per bin. 
Median and MAD identify regions with unusually high or low coverage 
variability across samples, which could occur at sites of multiallelic 
segmental duplications or across regions of heterochromatin, as exam-
ples. These features of the coverage distribution per bin cannot be cap-
tured by mean and standard deviation due to the normalization function 
applied in step four, but are readily reflected at regions where the median 
and MAD diverge significantly from the scaled mean (0) and standard 
deviation (1). Finally, CNView provides an extensible interface to the 
UCSC MySQL database and plots specified genomic annotations be-
neath the normalized coverage signal (Kent et al., 2002). 

3 Results 
We previously applied an alpha version of CNView to delineate 

simple and complex CNVs in two independent WGS cohorts (Brand et 
al., 2014; Brand et al., 2015). Here, we also applied CNView to a recent-
ly described WGS cohort of 160 individuals comprising 40 quartet fami-
lies (Turner et al., 2016) to show that CNView readily visualizes simple 
CNVs in individual samples, like the 46kb paternally-inherited, two-
exon deletion of PDE11A shown in Figure 1A. Further, CNView can 
provide visual confirmation of unbalanced complex genomic rearrange-
ments or compound CNV sites, as shown in Figure 1B. In this example, 
sequencing analysis predicted two large, rare, overlapping CNVs near 
the p-terminus of chromosome 7: a 467 kb distal deletion and a 449 kb 
proximal duplication. CNView assessment of this site provides support-
ing evidence of the compound CNV by illustrating copy loss of the dele-
tion-specific interval, copy gain of the duplication-specific copy number, 
and no change in copy number in the overlapping interval between the 
deletion and duplication.  Links to the data used to create both panels of 
Figure 1 are available in the Supplementary Information. 

Funding 
This work was supported by funds to M.E.T. from the Simons Foundation for 
Autism Research [SFARI #346042], the March of Dimes, and the National Insti-
tutes of Health [MH095867, HD081256, GM061354]. Dr. Talkowski is the Des-
mond and Ann Heathwood MGH Research Scholar. 
Conflict	of	Interest:	none	declared. 

References 
Brand, H. et al. (2014) Cryptic and Complex Chromosomal Abberations in Early-

Onset Neuropsychiatric Disorders. Am. J. Hum. Genet., 95(4), 451-461. 
Brand, H. et al. (2015) Paired-Duplication Signatures Mark Cryptic Inversions and 

Other Complex Structural Variation. Am. J. Hum. Genet., 97, 170-176. 
Kent, W.J. et al. (2002) The Human Genome Browser at UCSC. Genome Res., 12, 

996–1006. 
McCarroll, S. and Altschuler, D. (2007) Copy-Number Variation and Association 

Studies of Human Disease. Nat. Genet., 39, 37-42. 
Quinlan, A.R. & Hall, I.M. BEDTools: A Flexible Suite of Utilities for Comparing 

Genomic Features. Bioinformatics, 26, 841-842. 
Sudmant, P. et al. (2015) An Integrated Map of Structural Variation in 2,504 Hu-

man Genomes. Nature, 526, 75-81. 
Turner, T.N. et al. (2016) Genome Sequencing of Autism-Affected Families Re-

veals Disruption of Putative Noncoding Regulatory DNA. Am. J. Hum. Genet., 
98, 58-74. 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 20, 2016. ; https://doi.org/10.1101/049536doi: bioRxiv preprint 

https://doi.org/10.1101/049536
http://creativecommons.org/licenses/by/4.0/

