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Abstract

Motivation: There are few tools that allow longitudinal analysis of metagenomic data subjected
to distinct perturbations.
Methods: This study examines longitudinal metagenomics data modelled as a Markov Decision
Process (MDP). Given an external perturbation, the MDP predicts the next microbiome state in a
temporal sequence, selected from a finite set of possible microbiome states.
Results: We examined three distinct datasets to demonstrate this approach. An MDP created for a
vaginal microbiome time series generates a variety of behaviour policies. For example, that moving
from a state associated with bacterial vaginosis to a healthier one, requires avoiding perturbations
such as lubricant, sex toys, tampons and anal sex. The flexibility of our proposal is verified after
applying MDPs to human gut and chick gut microbiomes, taking nutritional intakes, or salmonella and
probiotic treatments, respectively, as perturbations. In the latter case, MDPs provided a quantitative
explanation for why salmonella vaccine accelerates microbiome maturation in chicks. This novel
analytical approach has applications in, for example, medicine where the MDP could suggest the
sequence of perturbations (e.g. clinical interventions) to apply to follow the best path from any given
starting state, to a desired (healthy) state, avoiding strongly negative states.

1 Introduction

High-throughput sequencing allows us to determine
the microbial composition of samples more rapidly
than typical bacterial culture techniques. It is also
able to identify bacteria which cannot be cultured
in laboratory conditions. As a result, it is feasible,
using metagenomics to temporally monitor the de-
tailed dynamics of a complex bacterial community,
frequently, and over short time-intervals. This al-
lows analysis of changes in microbial composition
over time, possible interactions between groups of
microbes, and/or the influence of external pertur-
bations. Such data could then be used in the con-
struction of models useful for in silico prediction of
perturbation-outcomes (Fritz et al., 2013).

An example of where such predictions would be
useful is in a hospital critical-care setting. Patients
suffering from sepsis often die before traditional

bacterial cultures can be returned. As such, with
little information about the cause of the infection,
a wide breadth of clinical interventions are applied
to the patient in the hope that one might prove
effective. Unfortunately, the resulting disruption -
including to the normal microflora of the patient
- often leads to serious complicating illnesses such
as pneumonia (Boyd et al., 2014). In silico models
could provide badly-needed guidance on a specific
course of interventions - for example, a personalized
and contextually-correct sequence of drugs and/or
food - that would lead the patient safely back to a
healthy state.

There are few large, publicly available longitudi-
nal metagenomics datasets available (Voigt et al.,
2015) that could be used to design such models.
Most datasets span short periods of time (weeks),
though some span several years (Voigt et al., 2015).
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Most studies are focused on the human gut, but un-
fortunately, they seldom include longitudinal meta-
data (i.e. possible perturbations) associated with
each sample.

A recent review (Faust et al., 2015), lists a series
of observations made regarding temporal changes
in the microbiome that are particularly relevant
to the work reported here. First, microbial diver-
sity tends to be stable over time in the same en-
vironment. Second, microbial communities evolve
through stable states that change due to a) exter-
nal perturbations (e.g. diet), b) direct modifica-
tions (e.g. antibiotics, probiotics) or c) transient
perturbations (e.g. microbial interactions). Third,
subsequent to a perturbation, the community may
return to its original state, or may remain in the
new (or another) state. Finally, that communities
exhibit a priority effect, where the existence of cer-
tain strains will prevent specific other taxa from es-
tablishing themselves in a community. These obser-
vations are encouraging, in that they suggest that it
should be possible to build predictive state-change
models. Moreover, they reveal that not all state-
changes are possible, thus indicating that a desired
state-change might require sequential, planned in-
terventions.

State transition diagrams have appeared in prior
metagenomics studies (Gajer et al., 2012; Ding and
Schloss, 2014). We propose here to add actions
to the edges of these diagrams, and to break-up
the complete set of transitions into subsets within
which different external perturbations could have
influence.

Markov Decision Processes (MDPs) have been
used to suggest course-of-treatment within clinical
decision support systems (Capan et al., 2015; Son-
nenberg and Beck, 1993). We decided, therefore,
to apply MDP as a novel approach to the analysis
of metagenomics data. Although Brotman et al.
(2014) used continuous-time Markov models to ex-
amine a vaginal microbiome dataset (Gajer et al.,
2012) (a dataset which we also examine in this
manuscript), their approach differs from our chiefly
in that they did not correlate actions/perturbations
with state-transitions. Apart from applying a dif-
ferent type of Markov model (not an MDP), their
objective was also distinct, in that their model mea-
sured temporal transitions between infection/non-
infection with human papillomavirus (HPV), esti-
mating transition rates between HPV positive and

negative states.

Our approach of using MDPs should allow us
to stochastically represent changes in microbiomes
states, to identify which perturbations change the
microbiome state, with what frequency, and how
a goal state could be reached and/or how an un-
desirable state could be avoided. Our intent is to
develop and demonstrate a methodology that will
identify the sequence of microbiomes (i.e. OTU
vectors) that should be traversed to reach a goal
microbiome state, starting from any other state,
while avoiding undesirable states. Thereby, we
will be able to quantitatively predict the nature
and sequence of external perturbations required to
achieve a goal.

The main contributions of the manuscript are: 1)
considering actions or external perturbations that
cause transitions between microbiome states; and
2) given an existing state, to determine the opti-
mal sequence of perturbations to apply to reach or
preserve a desired microbiome state.

2 Methods

2.1 Approach overview

Figure 1 outlines our proposed solution. In sum-
mary, to determine the optimal external perturba-
tion to employ to achieve a given state-transition,
given a specific starting state, we propose to apply
a MDP. We represent a microbiome time series as a
state transition diagram with actions (i.e. a ‘road-
map’), and solve the MDP to determine the opti-
mal strategy of sequential interventions that will
lead the microbiome to a goal state.

Our input is a time series of microbiome data (see
Figure 1, top left corner), where each series corre-
sponds to a different subject. Each time point in
the series is a microbiome sample, represented by
an Operational Taxonomic Unit (OTU) vector, and
the number of time points may differ between sub-
jects. Each transition between two time points is la-
belled with an external perturbation, such as some
specific dietary intake, drug, pre/probiotic treat-
ment, etc. That action perturbs the subject micro-
biome between those two consecutive time points,
and therefore is presumed to be the cause of any
resulting composition-change.

To create an MDP, we convert the time series of
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Figure 1: General schema for identifying a temporal sequence of microbiomes depending on
perturbations and predicting temporal actions to achieve a defined goal.

OTU vectors to a time series of microbiome states
by means of clustering OTU vectors based on the
similarity of their microbial abundance composi-
tion. So, MDP states are clusters of OTU vec-
tors, and the transitions, with associated actions,
remain the same (see Figure 1, bottom left). Next,
from the time series of microbiome states, we obtain
a probability transition table for each perturba-
tion/action, and its equivalent transition diagram,
labelling each transition with a perturbation and
its frequency (see Figure 1, top right). Finally, we
apply an MDP solver to identify the path to the
goal state through the transition diagram (see Fig-
ure 1, bottom right).

2.2 Markov Decision Process
(MDP)

Markov Processes describe systems with stochas-
tic transitions between discrete-time states. MDP
(Bellman, 1957; Howard, 1960; Puterman, 1994) is
a type of Markov processes where there are actions
to move between states. In a basic Markov Process,
the probability of the transitions between states are
defined in a bi-dimensional square state-matrix. In
an MDP, actions are an added dimension to the

matrix. MDP stochasticity allows various transi-
tions to occur from any given state, even given the
same action.

An MDP is formally defined as a tuple
〈S,A, T ,R〉, where:

� S is a set of finite states

� A is a set of finite actions

� T : S × A �P(S) = Pr(st+1|st, a), ∀s ∈
S,∀a ∈ A

� R(S) �<

T corresponds to the transition probabilities -
the probability of going from st to st+1 in the next
time slot, given an action a. This probability is de-
fined for every triplet of two states and one action.
R is the reward, and is a real-value depending on
the state s, representing how ”good” that state s
is. A common alternative definition is R : S × A
�< (Puterman, 1994), where the reward is asso-
ciated to the transition, rather than to the state;
and R(s, a) is the reward obtained after taking the
action a from the state s. Sometimes, an addi-
tional element is also included in the MDP defini-
tion: γ ∈ [0, 1[; called the discount factor, it is a
constant typically close to 1.
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A solution to an MDP is a policy (π : S �A),
i.e., a mapping from states into actions that is used
as the basis for decision making. The optimal pol-
icy π∗ for an MDP is the policy that maximizes
the expected reward. The optimal policy is usually
computed with a dynamic programming algorithm
such as value iteration and policy iteration (Bell-
man, 1957; Howard, 1960).

2.3 MDP for temporal metage-
nomics

Our problem is represented as a generic
MDP=〈S,A, T ,R〉 as follows:

� S = {group of microbiome samples}
Goal states ∈ S

� A = {perturbation}

� T = {Pr(stateOut | stateIn,action)}, ∀
〈stateIn, action, stateOut〉
= Frequency(〈stateIn, action, stateOut〉),
∀ stateIn/Out ∈ S, ∀ action ∈ A,

where
∑

sout∈S Frequency(stateIn, action,
sout) = 1

� R(S)�<, where:

{
R(s) = 1, if s ∈ {goal states}
R(s) = 0, otherwise

Applying our MDP proposal to find pathways
through the resulting ‘road-map’involves: pre-
processing; defining the four elements of the MDP
(states, actions, transitions and goal states for re-
wards); and solving the MDP. These steps are de-
scribed in the following subsections.

2.3.1 Step 1: Pre-processing microbiome
data

Metagenomics pre-processing steps are necessary,
but not standardized, being highly variable from
laboratory-to-laboratory. Pre-processing is depen-
dent on the specific methodologies/technologies for
sample preparation and data generation, and can-
not be prescribed in a generic manner for all
datasets. This is particularly relevant for this
study, since we utilize datasets generated by three
other laboratories, each with its own intrinsic pre-
processing requirements.

The pre-processing steps described below were
applied in our first two datasets (human and chick
gut microbiome, see section 2.4.1 and 2.4.2), but
not the third (vaginal microbiome, see section
2.4.3) because the prepared data was available on-
line.

Our pre-processing followed the methodology of
David et al. (2014). It includes removing OTUs do
not present in any samples (from other body sites,
other donor, etc.); removing samples due to suspi-
cion of experimental noise or contamination (as de-
fined per experimental procedure); removing sam-
ples with low read-counts (less than 10,000); and
normalizing the OTUs (see below). Additionally,
it is sometimes useful to aggregate taxa at higher
taxonomic level than species, for example, aggrega-
tion at the genus level as was done by Larsen and
Dai (2015) for the David et al. (2014) dataset.

Our pre-processing follows the steps described in
the section ‘Sample quality control’of David et al.
(2014). It includes removing OTUs whose sum is 0
(from other body sites, other donor, etc.); remov-
ing samples due to suspicion of experimental noise
or contamination (as defined per experimental pro-
cedure; for example in David et al. (2014), but not
in Ballou et al. (2016)); removing samples with low
read-counts (less than 10,000); and normalizing the
OTUs (see below). As additional pre-processing, it
is sometimes useful to aggregate taxa at higher tax-
onomic level than species, for example, aggregation
at the genus level as was done by Larsen and Dai
(2015) for the David et al. (2014) dataset.

One of the most influential pre-processing steps
is normalization of the OTU counts. We have se-
lected David et.al.’s normalization (David, 2014),
because it includes a log transformation which is
recommended to preserve the relative microbe rela-
tions, taking into account the compositional nature
of the data (Aitchison, 1982). We use the python
code published by the authors (David, 2014) but
we add a pseudo-count with “a value smaller than
the minimum abundance value prior to transfor-
mation”(Costea et al., 2014). In particular, the se-
lected pseudo-count is one order of magnitude (base
10) less than the minimum abundance value, as rec-
ommended by Costea et al. (2014). For example,
for a minimum abundance value of 1.623e-06, the
pseudo-count will be 1e-07.
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2.3.2 Step 2: Defining MDP states

The set of possible microbiome states clearly must
be simplified, since the total space of the OTU
vector is so large as to not be computationally
tractable for MDP solutions. However, over-
simplification results in small numbers of states,
which are insufficiently granular to measure any-
thing “biologically meaningful”. Therefore, we
must consider this when defining an approximation
to group similar OTU vectors.

How to deterministically convert an OTU vec-
tor into a MDP state: Our definition of MDP
states involves a standard clustering-of-samples.
Historically, clustering in metagenomics applies dif-
ferent approaches, in terms of distance measure,
algorithm and number of clusters. As distance
measure, the Jensen-Shanon Distance (JSD) (or
its root squared, as in Arumugam et al. (2011a))
is the most frequently used (Gajer et al., 2012;
Ding and Schloss, 2014); although the cophenetic
or the Euclidean distance are sometimes applied.
Several clustering algorithms have been used to
group metagenomics samples, such as PAM, Agnes,
Hclust, or Dirichlet Multinomial Mixture; with dif-
ferent linkage options. For determination of the
number of clusters, diverse assesment criteria have
been used in the literature: the average Silhouette
width (SI), Calinski-Harabasz (CH) index, Laplace
approximation, etc.

For example, a clustering of samples was applied
to define enterotypes (Arumugam et al., 2011a).
According their tutorial (Arumugam et al., 2011b),
they computed the distance as the root square of
the JSD, with the PAM algorithm and selecting
the number of clusters with the CH index com-
bined with a SI assessment. On the other hand,
Gajer et al. (2012) applied hierarchical clustering
with JSD, and SI assessment. Of these, the latter
is the most similar to our selected approach.

Our selected procedure consists of applying
Agnes (Kaufman and Rousseeuw, 1990), a hierar-
chical clustering algorithm, taking the JSD beta
diversity metric as the distance measure between
samples (with its weighted average linkage to mea-
sure the distance between clusters), and SI as the
criterion for selecting the number of clusters. Clus-
tering and the distances between OTU vectors were
computed with the R implementation of Agnes
(Maechler et al., 2015), and the distance func-

tion from the R phyloseq package (McMurdie and
Holmes, 2013).

Our choice of clustering parameters was guided
by the desire to identify several (>2) well-
populated microbiome states both within and be-
tween individuals, which is a goal disparate from
the more common research-aim which considers
the stable-state microbiome as a single entity (as
with the enterotype studies). As such, the ‘de-
fault’ clustering parameters that appear in most
of the published approaches do not mirror our
problem requirements. We are interested in more
than two, relatively well-populated clusters, which
provides sufficient heterogeneity in MDP states
that we can build a richer, wider, more granu-
lar, and (we believe) potentially more biologically-
interesting MDP model.

To tune the clustering parameters to our MDP
modelling requirements, we attempted two alter-
native procedures. The first was taken from Gajer
et al. (2012), that searches for the k number of clus-
ters with the best SI being k limited to a range of 2
to 10. When this procedure results in a single clus-
ter (MDP state) with a size equal to or greater than
5 samples, we attempt to get more well-populated
MDP states using the second approach. This sec-
ond approach involved selecting the nearest k with
an SI greater than 0.25 (the minimum threshold for
‘sensible’clusters, according to Rousseeuw (1987)).

Subsequent to either approach, we added an ad-
ditional step that avoids clusters/states with very
few samples (less than 5 samples), redistributing
the instances of these very small clusters to the
nearest cluster according to the original Agnes re-
sults. If that nearest cluster reported by the Agnes
R object is also a removed cluster, due to its small
size, the sample is moved to the first large cluster
of the nearest sample, according to the previously
computed JSDs, repeating this procedure until a
neighbour sample belonging to a large preserved
cluster is found.

2.3.3 Step 3: Defining MDP actions

This is the primary contribution of this manuscript.
Including perturbation actions in microbiome anal-
ysis has not been reported in any of the (rela-
tively few) prior studies that discuss microbiome
state-transitions. The definition of what consti-
tutes an ‘action’depends on the particular experi-
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mental question, and so we define it independently
in each of our analysed datasets below 2.4. Briefly,
actions can be nominal, for example, salmonella
vaccine and probiotic in chicks (see section 2.4.2);
numerical after discretizing, such as nutritional in-
take in human gut (see section 2.4.1); or binary,
for instance, sexual practices (see section 2.4.3).
Since the set of actions in an MDP must be finite,
we must discretize any quantitative and continuous
values in perturbations. Finally, for simultaneous
or concurrent actions, we represent and solve a dif-
ferent MDP for each. For example, an MDP for the
{low, medium, high} fiber intake, another MDP for
the {low, medium, high} fat intake, etc.

2.3.4 Step 4: Defining MDP transitions

Transition probabilities T are built on a set of
triplets taken from the microbiome temporal se-
quences, by looking for the preceding and subse-
quent states of every external perturbation. The
microbiome sequence of each subject is split into
as many triplets as there are perturbations, where
the input (respectively, output) state of the triplet
is the microbiome sample before (resp., after) the
perturbation occurs. So, triplets 〈input–state, ac-
tion, output–state〉 come from individual steps in
the microbiome time series. Finally, the frequency
of this triplet is computed.

2.3.5 Step 5: Defining MDP goal states

Our reward modelling depends only on states. R
is based on either desirable ‘goal’state(s) or on ‘un-
desirable’state(s). In the latter case, goal states=S
–{undesirable states}. However, a more specific re-
ward schema could be defined, depending also on
the action per state, if the microbiome data in-
cludes sufficiently detailed meta-data regarding in-
terventions.

2.3.6 Step 6: Solving the microbiome MDP

Here we apply a search algorithm to identify a
policy. We use the MDPtoolbox (Chads et al.,
2014) R package (version 4.0.2) to solve our MDPs.
In our scenario, the time horizon over which de-
cisions need to be made by the MDP is indefi-
nite horizon, because we have some terminal states
that correspond to our goal (e.g. a healthy state,

or the state/s with the highest microbial diver-
sity). MDPtoolbox allows rewards depending on
transitions. Among the available algorithms and
optimization criteria (Chads et al., 2014; Puter-
man, 1994), we have selected the policy iteration
(Howard, 1960), because it requires fewer itera-
tions; however any algorithm that converges could
provide us with a valid policy. We selected a dis-
count factor γ = 0.9̄. There could also be more
than one optimal policy. For example, given a state
Q1, when the application of two different actions a1
and a2 from Qi results in exactly the same reward,
both strategies a1 and a2 are equally good for Qi.

2.4 Datasets

Few public longitudinal microbiome datasets in-
clude sufficiently frequent sampling and associated
meta-data to allow perturbation studies. Never-
theless, we found three distinct datasets which can
be modelled as MDPs according to our proposed
methodology, to determine the perturbation influ-
ence on microbiome dynamics.

2.4.1 Human gut microbiome

We analyzed a dataset from David et al. (2014), the
longest longitudinal study, as far as we know, about
the gut microbiome in healthy subjects, which has
also been used in other posterior studies (Larsen
and Dai, 2015). It consists of near-daily saliva
and stool sampling of two subjects, donor A and
donor B, along a whole year (i.e. our temporal
microbiome sequences). It includes meta-data tak-
ing note of their dietary intake, which for us be-
comes the external perturbation for the gut micro-
biome. Thus, this datasets fulfils the basic data-
requirements of our approach. The input OTU
table with absolute abundances was kindly shared
by the authors in a personal communication. The
other required input for our MDP model was the
nutritional meta-data, taken from the additional
file 18 in the original publication (David et al.,
2014). Additional information about the study in-
dicated that there were short periods of dysbiosis:
in donor A because of travel abroad and in donor
B due to a gut illness, with a posterior microbiome
recovery.

The MDP model for the human gut domain is
MDPhg=〈S,A, T ,R〉, where:
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� S = {clus1, clus7}

� Ai = {low, medium, high} x {calcium, calorie,
carbohydrates, cholesterol, fat, fiber, protein,
saturated fat, sodium, sugar}

� Ti: Transition probability tables, with 132
transitions each, available online.

� R: Goal state= {clus7}, if(goal state) then
R=1; else R=0

With all the 493 gut samples with 4746 taxa, in-
cluding both subjects, we obtained 7 clusters (see
supplementary Figure S1(a)) using the clustering
procedure described in section 2.3.2, which requires
that we reach, at least, an SI of 0.25. Unfortu-
nately, after removing samples without available
perturbations (i.e., those that lack metadata about
the nutritional intake of the day preceding that
sample) only 136 samples remained. These sam-
ples populated only 2 clusters (see Figure S1(b)),
all of them belonging to donor A. As such, we could
determine influences only for this donor. We have
2 MDP states, where most samples belong to the
same state (86.76% in cluster 1). 15 samples from
cluster 7 correspond to days 15, 19, 26, 41, 42, 59,
136, 163, 192, 197, 198, 199, 200, 201 and 202, 60%
of them falling in the period after dysbiosis (travel
from day 71 to day 122). As such, the distinct clus-
ters could be due largely to this period of travel,
and have little greater biological significance.

Regarding the perturbations Ai, since the nutri-
tional intakes of different elements are simultane-
ous, we defined an MDP for each of the 10 nutri-
tional elements available in the meta-data. In this
domain, we decided to discretize in three different
bins, split by 0.33 and 0.66 thresholds, resulting in
3 different actions: low, medium, high.

To define the reward R, we need to know the
goal state/s. Unfortunately, after the filtering steps
above, the days which the original study describes
with diseases or microbiome dysbiosis are not in-
cluded in the remaining samples. Thus, for the
purposes of our study, we define as goal state the
cluster 7, that one within more samples after dys-
biosis than before, since the ‘goal’and/or ‘avoid-
ance’states can be defined arbitrarily (with respect
to creating the road-map).

2.4.2 Chick gut microbiome

This dataset was generated by the recent study of
Ballou et al. (2016). It analyses the response of dif-
ferent treatments (salmonella vaccine and/or pro-
biotics) in the chick gut, during their first month of
life. It includes 119 samples with 1583 taxa. The
samples include six time points (days 0, 1, 3, 7, 14
and 28), with approximately 4 or 5 subjects per 4
treatments.

The MDP model for the chick gut is
MDPcg=〈S,A, T ,R〉, where:

� S = {Q1, Q2}

� A = {cc, cp, sc, sp}, where c=control
(not salmonella and/or not probiotics),
p=probiotics, s=salmonella

� T : Transition probability tables, with 94 tran-
sitions, available online.

� R: Goal states= {Q1}, if(goal state) then
R=1; else R=0

For states S, we were able to follow Gajer et al.
(2012)’s criteria to determine the clusters, resulting
in 2 final MDP states.

The actions A are 4 different treatments, cor-
responding to the 4 combinations of 2 external
perturbations: Salmonella vaccine and/or probi-
otic supplement (0.1% Primalac). The action is
the same for the same subject in each time series.
Salmonella vaccine was given at the beginning, be-
fore the day 0 sampling, to chicks in the group
‘sc’and ‘sp’. Probiotic was mixed with the food,
on every day of the experiment, only to the groups
‘cp’and ‘sp’.

The reward R was determined, first, by asking
the study authors if they had defined ”healthy”
versus ”non-healthy” chicks. They indicated that
this was not a factor in their experiment (that all
chicks were healthy), and as such, we defined the
goal states using the default criterion: the highest
mean alpha diversity, before normalizing, according
to the Shannon metric, because higher diversity is
generally correlated with healthier states.

The data was downloaded from the Qiita repos-
itory (http://qiita.ucsd.edu), with study no.10291.
The OTU table is in biom format (McDonald et al.,
2012), and the mapping data is contained in a text
file.
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2.4.3 Vaginal microbiome

The MDP model for vaginal microflora is
MDPv=〈S,A, T ,R〉, where:

� S = {I, II, III, IV-A, IV-B}

� Ai = {Yes, No} x {anal sex, digital penetra-
tion, douching, lubricant, oral sex, sex toy,
tampon, vaginal intercourse}

� Ti: Transition probability tables, with 905
transitions each, available online.

� R: Non-desired state= {IV-B}, if(non-desired
state) then R=0; else R=1

This dataset come from Gajer et al. (2012). The
OTU table and the clusters come from supplemen-
tary table S2 (Gajer et al., 2012), which consists
of 937 samples and 330 OTUs, corresponding to
32 women collecting samples twice per week for 16
weeks. The data counts are already pre-processed,
and normalized to a sum of 100 per sample, being
relative abundances.

State type ‘communities’were defined by the orig-
inal study authors, and they also label our clus-
ters/MDP states, S (available in the supplementary
Table S2 (Gajer et al., 2012)). Gajer et al. ob-
tained the clusters by hierarchical clustering, with
Jensen-Shannon distance, with Ward linkage, cut-
ting the dendogram with a k between 2 and 10, with
the maximum silhouette inside this range. The
maximum silhouette was at k=5, and thus they ob-
tained 5 states.

We computed the JSD with this matrix to check
the SI value of these clusters, and to plot some
graphs to determine where the samples with bacte-
rial vaginosis are located, this being defined as the
‘avoidance’state.

The actions set A was composed by the avail-
able meta-data related to the hygienic and sex ac-
tivities that could perturb the vaginal microbiome.
These actions were collected by a curated visual in-
spection of the individual profiles of the dynamics
of vaginal bacterial communities, from the 32 D-
panels (one profile per woman) of supplementary
material in Figure S5 (Gajer et al., 2012) avail-
able on-line. We associated the external pertur-
bation to the next sample taken, or the same day
if it coincides, and this is then considered the ‘ac-
tion’between the two samples.

This MDP analysis differs from the previous two
in that the reward R is defined differently, being
based on a non-desired state rather than a goal
state. In this scenario, we want to avoid Bacte-
rial Vaginosis, so this is the state with the low-
est reward. The Nugent score, from microscopic
bacterial observation, is typically used as the diag-
nostic for bacterial vaginosis (when it takes a high
value) (Nugent et al., 1991). The quantitative Nu-
gent score has previously been discretized into low
(0-3), int(ermediate) (4-6), high (7-10). Therefore,
these values were used to assign the rewards in our
MDP. The non-desired state - the state to avoid -
is IV-B, which concentrates most of the high and
intermediate Nugent categories (see supplementary
Figure S2), which indicates the greatest risk for the
Bacterial Vaginosis disease. The remaining states
are considered equivalent (non-diseased), and as-
signed a reward of 1.

3 Results

3.1 Human gut microbiome

Despite the sparsity of meta-data about external
perturbations, as proof of concept, we could solve
the MDPhg defined in the section 2.4.1, obtaining
a transition diagram and a policy for each different
perturbation (fat, protein, fiber, and so on), that
show how the different nutritional intakes could
have influence on the human gut microbiome dy-
namics. According to Hekstra and Leibler (2012),
temporal relations can be inferred from: a) many
replicates from the same time point, or b) one repli-
cate at many time points. So, even with only one
subject with many sequential observations, as re-
mained after the filtering of David et al. (2014), we
could nevertheless retrieve biologically informative
patterns.

We notice a high degree of stability in the hu-
man gut microbiome for donor A. We could con-
sider that the most populated state (cluster 1) in-
cludes the days of normal diet, and cluster 7 the
days after the change in diet and recovery resulting
from travel to a developing Southeast Asian coun-
try. Cluster 7 is, however, very similar to cluster
1, despite constituting more samples from the re-
covery period than the pre-travel period. By mod-
elling the problem with an MDP, where nutritional
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intakes are the perturbations or actions to choose in
order to reach microbiome state 7 (the goal state),
we could interpret the optimal policy suggested by
the MDP solver in state 1 (see supplementary Table
S2) as being equivalent to the nutritional qualities
of the foods eaten while abroad.

Though there are several noteworthy observa-
tions from this analysis, we will comment only on
one exemplar - that is, with fiber intake as pertur-
bation (see Figure 2(a)). The objective is to reach
our selected goal state, clus7, with a majority of
samples from the recovery process. Starting from
clus1, the MDP policy indicates that the optimal
action (among low, medium or high fiber intake)
is to ingest significant amounts of fiber (greater
than 21.43gr/day, representing the upper 33% of
the range), and it would be successful 14% prob-
ability (86% probability of remaining in clus1 ) as
the diagram in Figure 2(a) shows. However, if the
microbiome is already in the goal state, clus7, the
optimal action suggested by the MDP policy to
maintain that state is to consume a low quantity
of fiber, which preserves the goal state with 67%
probability. Conversely, with a high quantity of
fiber intake, there is an equal likelihood of remain-
ing in clus7 versus moving to clus1.

3.2 Chick gut microbiome

The manuscript describing the Ballou et al. (2016)
dataset indicates that there are no differences in
the health of the chicks at the end of the study. In
this section, we examine the possibility of confirm-
ing this by discovering transitions between chick
microbiome states.

First, we observed that the clusters/states pri-
marily mirror the chicks’ age (i.e. sampling day):
there is one state (called Q2 ) with samples from
chicks in their first days of life (day 0, 1, 3 and
some chicks from day 7), and another MDP state
(Q1 ) with microbiomes of all the chicks aged 2
or more weeks (day 14 and 28) and some sam-
ples from chicks aged only 1 week (sampling of
day 7). This split according to age is in agree-
ment with the Ballou et al. analysis (Ballou et al.,
2016), where samples do not differ by any other
criteria, such as salmonella vaccine administered,
or diet including/excluding probiotics. Both states
include samples from the four different treatments.
Consequently, both states have a similar number

clus1

high:0.86
medium:0.93
low:0.98

clus7

high:0.14
medium:0.07

low:0.02

high:0.5
medium:1
low:0.33

high:0.5
low:0.67

(a) Fiber in Human Gut

Q1 cc:1, cp:1,
sc:1, sp:1

Q2

cc:0.29 cp:0.30 sc:0.55 sp:0.46

cc:0.71, cp:0.70,
sc:0.45, sp:0.54

(b) Chick Gut

Figure 2: MDP diagrams and solutions to Hu-
man and Chick gut microbiomes. Red arrows
represent the MDP solution, i.e. the policy re-
turned by the MDP solver. The goal state is that
highlighted in red: (a) Fiber-intake as perturba-
tion in human gut microbiome ‘road-map’; (b) The
chick gut microbiome ‘road-map’.

of samples (Q1 with almost the 45% and Q2 with
the remainder 55%), although Q1 is much more
diverse than Q2 with respect to microbial compo-
sition (mean alpha diversity: 3.34 (Q1 ) � 1.48
(Q2 )).

When we analyse the sample distribution after
clustering and divided by treatment, we identified
a pattern in the state of the samples from day
7. All chicks without any treatments (cc) or with
only probiotics (cp) after their first week (day 7)
are grouped with newborn/baby chicks (state Q2 ).
However, chicks of the same age but only treated
with salmonella vaccine and no probiotics (sc) are
all in state Q1, more similar to the microbiome of
adult chicks.

This pattern is also identified by our MDP so-
lution, which reveals the shortest path from the
current state to the goal state (see Figure 2(b)).
On the one hand, sc is the optimal perturbation
plan to arrive to the goal state Q1 from Q2. On
the other hand, the probabilities in the transition
diagram confirm that with cc or cp there is more
than a 70% likelihood of remaining in an ‘imma-
ture’microbiome state. Therefore, we could con-
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clude that an adult microbiome, with more diver-
sity, is reached earlier with the salmonella vaccine
treatment without probiotics.

Thus, MDP models can reveal interesting,
biologically-relevant, and quantitative patterns of
microbiome evolution under varying environmental
conditions. Moreover, setting diversity as our goal
brings our Chick MDP model into agreement with
child microbiome evolution studies (Dominguez-
Bello et al., 2011; Oakley et al., 2014), which begin
with an empty or very low-diversity microbiome
(such as our Q2 state with the youngest chicks),
while achieving maximum diversity in adulthood
(reached in one or two weeks for chicks).

3.3 Vaginal microbiome

This dataset provides more diversely annotated ob-
servations than the previous two gut datasets, and
we are therefore able to apply our MDP to interpret
the rapid fluctuations in the vaginal microbiome. In
addition, this scenario differs from the previous two
in that most states are goal states; the objective is
to avoid arriving at the disease state. For this ex-
periment, sample clusters were adopted exactly as
published in the original study (Gajer et al., 2012),
and we assigned each MDP state the same label (I,
II, III, IV-A, IV-B) as the author-defined commu-
nity state type for that cluster.

As a general overview, all states, except to IV-
A, have more than 85% likelihood of remaining in
the same state, regardless of action (see Table S1
with global relative transition probabilities). In ad-
dition, there are almost as many output links as
input links per state (comparing sums of rows and
columns in absolute abundance table).

“Some of the taxa in communities of state type
IV-B have previously been shown to be associ-
ated with bacterial vaginosis”(Gajer et al., 2012).
Therefore, we considered state IV-B as the ‘dis-
eased’, non-desired state, and the MDP was de-
signed to avoid reaching it, or to move from it to
a healthy state (state I to IV-A). Therefore, the
successful path is the action or series of actions
that minimize the risk of reaching state IV-B; ef-
fectively, not selecting the action that has the high-
est transition-frequency that arrives at the diseased
state.

Table 3.3 represents a combined behaviour policy
to preserve the health in the vaginal microbiome,

Table 1: Combined recommendations to
avoid bacterial vaginosis. Rows represent exter-
nal perturbations that could influence the vaginal
microbiome. Columns represent the microbiome
states. In each cell, the policy (yes/no) derived
from all Markov systems, one per external pertur-
bation.

Perturbation\State I II III IV-A IV-B

Anal sex No No Yes Yes No
Digital penetration Yes No Yes Yes Yes
Douching Yes No Yes Yes Yes
Lubricant Yes No Yes Yes No
Oral sex No Yes Yes Yes Yes
Sex toy Yes No Yes Yes No
Tampon Yes Yes Yes Yes No
Vaginal intercourse Yes No Yes Yes Yes

avoiding bacterial vaginosis. Each column in Table
3.3 represents the policy about how to act, depend-
ing on the vaginal microbiome state type that each
woman has. Table 3.3 shows that the recommended
perturbations are entirely dependent on the current
microbiome state, as there are no perturbations for
which the recommended value is the same for all
the states. However, with a microbiome in state
III or IV-A any perturbation is a valid MDP policy
to preserve health.

Figure 3 shows that the most common model-
behaviour is to maintain the same state, regardless
of perturbation, and state-to-state transitions are
less common (thiner ribbons). For example, when
perturbations take a value ‘No’(bottom row), the
profile of transitions is almost the same, regard-
less which perturbation was avoided; and very sim-
ilar when all transitions are represented together
(see Figure S4 from Gajer et al. (2012)). However,
state-to-state transitions differ depending on the
perturbation applied (see top row in Figure 3), and
also differ from the corresponding pair with pertur-
bation=‘No’(pairs in the same column). Take, for
example, the data for anal sex and lubricant-use.
The near-absence of transitions (very thin lines)
going out state IV-B (diseased) when either anal
sex or lubricant take a value ‘Yes’, shows the dif-
ficulty to exit the state associated with bacterial
vaginosis; alternately, we note the high probability
of transition from state IV-A to state I or state III
when digital penetration takes value ‘Yes’.
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Digital.Penetration: Yes
IV−B

IV−A

III

II

I

Lubricant: Yes

IV−B

IV−A

III
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III
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I
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Figure 3: Graph representation of vaginal microbiome state transitions, sorted by external
perturbation. The ribbon-arrow points out the directionality of the transitions, and ribbon width
represents the frequency of transition. Top row circles show the transition probabilities when the per-
turbation is applied, and bottom row when it is not. The colors representing each state are I:red, II:light
green, III:orange, IV-A:dark green and IV-B:blue. This selection of visualization is adopted from Gajer
et al. (2012).

Brotman et al. (2010) has identified several ‘risk
factors’ for bacterial vaginosis, including the use of
a lubricant and rectal sex. Our temporal metage-
nomics MDP approach could perhaps explain this
result. When the perturbation is Anal Sex, the
most common policy is I: No, II: No, III:Yes, IV-
A:Yes, IV-B:No (see diagram in Figure S3). Start-
ing from state I and II this policy is clear because
there are no examples of ‘Yes’ transitions (mean-
ing probability=0 (i.e. Pr=0 ). From state III, the
probabilities are yes:0.9 and no:0.86. This highly
counter-intuitive result appears to suggest that it is
(marginally) better to engage in anal sex in order to
preserve this healthy state. Such counter-intuitive
results arise in part due to lack of sufficient exam-
ples in the dataset, and also because this analysis
looked at each action in isolation, thus we do not
know what other actions were being taken simul-
taneously. A similarly counter-intuitive rule arises
from state IV-A because action=Yes keeps the sys-
tem in the same state, while with action=no there
is a slightly higher possibility to move to the dis-
ease state. Finally, from the disease state IV-B,

with action=yes (Pr=1), the system will persist in
the same (diseased) state indefinitely, so the last
option is action=no, in order to have some possi-
bility to move to another (healthy) state. These
results mirror the results from the original paper -
Pr(IV-B,yes,IV-B)=1 indicates that persistent anal
sex is not recommended for recovery from bacterial
vaginosis.

Biologically, it may also be possible to interpret
our temporal metagenomics MDP results as a pos-
sible prediction of perturbation inducing patterns
of interaction between specific microbes present in
two states. For example, when the vaginal micro-
biome is perturbed with the use of lubricant, the
MDP shows a transition between state I and state
III happens 20% of the time, versus the only ∼7%
of the time that this happens by default (i.e. with
no lubricant or globally with any combination of
actions). Figure 3 shows large differences in the
frequency of transition from state I (red) to state
III (orange) (see the width of the red ribbon): the
frequency is high for the policies ‘lubricant:yes’ and
‘anal sex:yes’, but low in the bottom row (‘anal
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sex:no’, ‘digital penetration:no’ and ‘lubricant:no’)
and also with ‘digital penetration:yes’. Thus, com-
paring the abundance of microbes in the two states
I and III involved in the interaction, it could mean
that lubricants and anal sex might facilitate the in-
crease of the predominant bacteria in state III to
the detriment of the predominant bacteria in state
I.

Overall, from our MDP analyses, we provide a
quantitative explanation for why anal sex and lu-
bricant often lead to bacterial vaginosis, and/or
maintain it. In fact, when they are used, there
are a 100% probability of persisting in that disease
state. We also note that the use of a sex toy results
in a 100% probability of maintaining the disease
state. Other perturbations also show a high degree
of maintenance of this disease state, suggesting that
this state is clearly difficult to escape from without
specific medical intervention.

4 Discussion

The main contributions of this manuscript are: the
inclusion of actions in the state transition diagrams
and the prediction of the sequence of external per-
turbations (i.e. intakes or actions) to preserve or
to reach a healthy or desired microbiome state.

Our proposed MDP approach has several positive
features. It can be applied to very different datasets
(human gut, chick gut, vaginal microbiota), with
different qualitative or quantitative external per-
turbations. In addition, if we interpret each tran-
sition between MDP states as a set of interaction
patterns, as was shown in the section 3.3, this new
approach also could contribute an additional objec-
tive of identifying interaction patterns between two
OTU matrices.

MDPs allow different representa-
tions/interpretations, depending on experimental
question, even given the same dataset. For ex-
ample, you can modify the MDP to optimize for
microbial diversity, or you can modify the MDP to
optimize for recovery from a vaccination, depend-
ing on your requirements. In the chick dataset, an
alternative study design to that described above
would be to consider salmonella vaccine as criteria
to define the states (with/without vaccine), given
that it is administered only at the beginning.
Similarly, in the vaginal flora microbiome, an

alternative representation could model the reward
R as being associated to the transition instead
of the state, using the Nugent category available
for each sample. Some samples with high Nugent
category (i.e. the sick ones) do not belong to
the state IV-B, and numerous samples with low
or intermediate Nugent category, are grouped in
this denominated non-healthy state IV-B (see
supplementary Figure S2).

There is, perhaps, an oversimplification of our
study design in the case where the tampon is the
external perturbation. This case takes into account
the use of tampon just during the menses. Given
that menstrual cycles are the primary driver of
vaginal microbial dynamics in women (David et al.,
2014) referring to in Gajer et al. (2012), a bet-
ter MDP design for this scenario might be to in-
clude other variables (such as menses/no menses)
in the state definition. For example, duplicating
the MDP states for each of the current states (I to
IV-B), representing state X with menses and state
X no-menses. Doing this, however, would make the
problem larger and more data would be required to
cover all cases with sufficient frequency.

There are other approaches, that we did not pur-
sue, to describe the MDP states. One could define
as many states as combinations of the possible val-
ues of a selected subset of OTUs. For example, if
we select 3 OTUs, with 2 possibles values (pres-
ence/absence), we will have 32=9 states, or with
10 OTUs with 2 values, 102=100 states. Alterna-
tively, the selection of OTUs could be determined
by a variety of criteria: a) by highest frequency;
b)by goal states: OTUs expected to be in the dis-
criminant states; c) based on literature, e.g., OTUs
known as the most relevant in a modelled disease;
d) based on the most relevant/characteristic OTU,
e.g., OTUs which are output from a feature selec-
tion algorithm from Machine Learning; or e) based
on microbial associations, e.g., OTUs with micro-
bial associations to each-other.

Selection of appropriate states requires careful
consideration, in particular because the Markov
property requires that the next state depends only
on the current state and the current action, regard-
less of previous states and actions. In our temporal
microbiome scenario, this might not be completely
true (since interventions, such as food or drug in-
take, can have delayed effects that last over many
observational cycles). Nevertheless, on this study
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we consider this simplification to be quite minimal,
and that in general the predictive power gained by
the MDP principles is worth this potential limit or
noise in its sensitivity.

One drawback of our approach is there is not a
deterministic state/cluster definition that provides
a reliable split of metagenomics samples into multi-
ple states, as would be desirable for our MDP. The
main reasons for this could be the scarcity or lack
of variability in the data, as was the case with gut
microbiota composition of which two of our three
datasets are comprised. With more diversity in the
data, as seen in the vaginal samples, this becomes
less problematic and several states of interest can
be identified. In quantitative terms, we take the
Silhouette coefficient (SI) as assessment measure
of clustering results, where the minimum thresh-
old of acceptable clusters is 0.25. Thus, the human
gut dataset has a SI value very low, even more-
so after regrouping isolated samples in bigClusters
(mean=0.33 with 7 states, and mean=0.22 limited
to 2 states with samples with available action data).
The SI of chick gut data is better (mean=0.42),
and the SI of the vaginal microbiota data is good
(mean=0.63).

We also cannot be sure that the different external
perturbations that compose a macro-policy need to
be applied all together to preserve the health, nor
can we can assert that the individual application
of only some of the suggested external perturba-
tions be enough to preserve the health. We obtain a
policy independently for every perturbations, how-
ever in the real data multiple perturbations could
be (and were) applied concurrently. Therefore, the
predicted policy by the MDP of a particular pertur-
bation A, could be affected by additional perturba-
tions B, C and/or D, and therefore might not have
the expected result. To take into-account the effect
of all the possible perturbations simultaneously, we
would need to build an MDP where the actions rep-
resent combined perturbations, and we would need
dramatically more data to cover all such combina-
tions.

As with most population-based studies, the qual-
ity of the transition diagrams are highly depen-
dent on the quality and quantity of the avail-
able data. Some pair 〈transition,action〉 could be
built based on only a few, or certain important
〈transition,action〉 could be missed entirely. This
lack of sufficient examples leads, for example, to

the highly counter-intuitive plans recommended for
anal sex in the vaginal flora study.

Despite these drawbacks, there is a clear and
pressing need to predict the effects of interventions
on microbiomes, both within medicine and for en-
vironmental engineering. This paper provides, to
our knowledge, the first example of a MDP being
used to explain (and in principle, predict) how a
microbial community will respond to any given in-
tervention. We believe this provides the basis for a
wide range of directed research, in particular with
respect to microbiome-engineering for health in the
medical domain.

5 Conclusion and Further
Work

The proposed method builds a model that suggests
external perturbations that should be applied to a
given microbiome state, resulting in its navigation
through a subset of healthy or acceptable states,
avoiding disease or other non-desirable microbiome
states. This manuscript confirms that, given suf-
ficient data, this method can be applied to a di-
versity of temporal metagenomics datasets, such as
the three distinct domains (human gut, chick gut
and vaginal microbiota) whose solution in terms of
microbiome dynamic was found using the proposed
MDP strategy.

Integrating the external perturbations together
into a single transition diagram is a clear and ob-
vious next-step. In that case, a transition between
states could be labelled with more than one pertur-
bation, which more closely represents ‘reality’; for
example, most patients are both taking drugs, and
eating foods that include fats, proteins, and fibers,
so considering them independently will surely miss
important effects. To achieve this requires both a
dramatic increase in the amount of data collected,
which should include subjects spanning all combi-
nations of treatments or behaviours, and a strict
adherence to a meta-data collection policy by the
researchers.

When the quantity of publicly-available, richly
annotated microbiome time series increase, many
different future works will be enabled. For example,
expanding into plants and soil microbiomes, where
temporal data is very limited despite a myriad of
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interesting external perturbations such as natural
and artificial fertilization, crop-rotation, pollution,
water toxicity, and so on, that could affect the
microbiome composition of soils, root and leaves.
With increasing data, new types of actions could
be considered, with the most exciting being to con-
sider microbial interactions themselves as transient
perturbations, as Faust et al. (2015) suggested.
Further to this, we might take into account more
than one microbiome source, such as different body
cavities, where the distinct populations affect each
other indirectly, but otherwise behave (we assume)
relatively independently.

Finally, one additional future work would be to
generate new simulated datasets using the MDP
transition model, generating random numbers and
applying in each case the corresponding action from
each state. If we could computationally synthe-
size ‘realistic’microbiome time series in a massive
way, and parametrically change the properties of
the dataset in terms of, for example, the num-
ber of samples, taxa, time slots, frequency in the
time slots, etc., it would be possible to gener-
ate microbiome temporal datasets that reflected
a scientifically-hypothesized ‘reality’. This would
then allow us to determine, for example, the min-
imum cohort-size for a proposed study to investi-
gate that hypothesis, where the researcher has a
general idea of the number of parameters, and the
strength of their effects. In an age where many
studies prove to be non-reproducible largely as a
result of insufficient data, determining cohort size
a priori will become an increasingly important un-
dertaking, particularly for complex studies such as
the ones proposed here.
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