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Abstract

Genes and proteins regulate cellular functions through complex circuits of biochem-

ical reactions. Fluctuations in the components of these regulatory networks result in

noise that invariably corrupts the signal, possibly compromising function. Here, we

create a practical formalism based on ideas introduced by Wiener and Kolmogorov

(WK) for filtering noise in engineered communications systems to quantitatively assess

the extent to which noise can be controlled in biological processes involving negative

feedback. Application of the theory, which reproduces the previously proven scaling of

the lower bound for noise suppression in terms of the number of signaling events, shows

that a tetracycline repressor-based negative-regulatory gene circuit behaves as a WK

filter. For the class of Hill-like nonlinear regulatory functions, this type of filter provides

the optimal reduction in noise. Our theoretical approach can be readily combined with

experimental measurements of response functions in a wide variety of genetic circuits,

to elucidate the general principles by which biological networks minimize noise.

The genetic regulatory circuits that control all aspects of life are inherently stochas-

tic. They depend on fluctuating populations of biomolecules interacting across the crowded,

thermally agitated interior of the cell. Noise is also exacerbated by low copy numbers of

particular proteins and mRNAs, as well as variability in the local environment.1–6 Yet the

robust and reproducible functioning of key systems requires mechanisms to filter out fluctua-

tions. For example, regulating noise is relevant in stabilizing cell-fate decisions in embryonic

development,7 prevention of random switching to proliferating states in cancer-regulating

miRNA networks,8 and maximization of the efficiency of bacterial chemotaxis along attrac-

tant gradients.9 Comprehensive analysis of yeast protein expression reveals that proteins

involved in translation initiation, ribosome formation, and protein degradation, have lower

relative noise levels,10 suggesting natural selection could favor noise reduction for certain

essential cellular components.11,12

A common regulatory motif capable of suppressing noise is the negative feedback loop,1,2,13–18

as has been explicitly demonstrated in synthetic gene circuits.1,14,15 Feedback pathways for a
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given chemical species can be mediated by numerous signaling molecules, each with its own

web of interactions and stochastic characteristics that determine the ultimate effectiveness

of the system in damping the fluctuations of the target population and maintaining home-

ostasis. Thus, uncovering generic laws governing the behavior of such control networks is

difficult. A major advance was made by Lestas, Vinnicombe, and Paulsson (LVP),19 who

showed that information theory can set a rigorous lower bound on the magnitude of fluc-

tuations within an arbitrarily complicated homeostatic negative feedback network. Since

the bound scales like the fourth root of the number of signaling events, noise reduction is

extremely expensive. This underscores the pervasiveness of biological noise, even in cases

where there may be evolutionary pressure to minimize it.

The existence of a rigorous bound raises a number of intriguing issues. Can a biochemical

network actually reach this lower bound, and thus optimally suppress fluctuations? What

would be the dynamic behavior of such an optimal system, and how would it depend on the

noise spectrum of the system components? Here we answer these equations using a theory re-

lated to the optimal linear noise-reduction filter, developed by Wiener20 and Kolmogorov.21

Though the original context of Wiener-Kolmogorov (WK) filter theory was removing noise

from corrupted signals in engineered communications systems, it has recently become a

powerful tool for characterizing the constraints on signaling in biochemical networks.22,23

Recently, we showed that the action of kinase and phosphatase enzymes on their protein

substrates, the basic elements of many cellular signaling pathways, can in fact effectively

be represented as an optimal WK filter.22 The WK theory also describes how systems like

E. coli chemotaxis can optimally anticipate future changes in concentrations of extracellular

ligands.23 Although the classic WK theory is strictly defined for linear filtering of contin-

uous signals (a reasonable approximation for certain biochemical networks), it can also be

extended to yield constraints in the more general case of nonlinear production of molecular

species with discrete population values.22

Interestingly, for a broad class of systems the WK linear solution turns out to be the
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global optimum among all nonlinear or linear networks, allowing us to delineate where non-

linearity is potentially advantageous in biochemical noise control. Most importantly, since

the WK theory is formulated in terms of experimentally accessible dynamic response func-

tions, it also provides a design template for realizing optimality in synthetic circuits. As

an illustrative example, we predict that a synthetic autoregulatory TetR loop, engineered

in yeast,24 can be fine-tuned to approximate an optimal WK filter for TetR mRNA levels.

Though a simple design, similar filters could be employed in nature to cope with Poisson

noise arising from small copy numbers of mRNAs, often on the order of 10 per cell.25 Based

on the application of the theory to the synthetic gene network we propose that the extent of

noise reduction in biological circuits is determined by competing factors such as functional

efficiency, adaptation, and robustness.

Results

To make the paper readable and as self-contained as possible many of the details of the

calculation are relegated to four Appendices. The main text contains only the necessary

details needed to follow the results without the distraction of the mathematics.

Linear response theory for a general control network

To motivate the WK approach for a general control network, we start with the simple case

where two species within the network are explicitly singled out:19 a target R with time-

varying population r(t) fluctuating around mean r̄, and one of the mediators in the feedback

signaling pathway P , with population p(t) varying around p̄. We assume a continuum

Langevin description of the dynamics,13,16,26,27 where the rate

α̇(t) = kα(t) + nα(t) (1)
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for α = r or p, can be broken down into deterministic (kα) and stochastic (nα) parts. The

function kα(t) encapsulates the entire web of biochemical reactions underlying synthesis and

degradation of species α, and can be an arbitrary functional of the past history of the system

up to time t. It is typically divided into two parts, kα(t) = k+
α (t) − k−α (t), corresponding

to the production (+) and destruction (-) rates of the species α. The term nα(t) is the

additive noise contribution, which can also be divided into two parts, nα(t) = nintα (t)+nextα (t).

The first is the “intrinsic” or shot noise, arising from the stochastic Poisson nature of α

generation, nintα (t) =
√

2k̄αηα(t), where k̄α is the mean production rate, or equivalently the

mean destruction rate, k̄α = k+
α (t) = k−α (t), and ηα(t) is a Gaussian white noise function with

correlation ηα(t)ηα′(t′) = δαα′δ(t − t′). The second part, nextα (t), is “extrinsic” noise, which

arises due to fluctuations in cellular components affecting the dynamics of R and P that are

not explicitly taken into account in the two-species picture. These could include mediators

in the signaling pathway, or global factors like ribosome and RNA polymerase levels. For

simplicity, our main focus will be the case of no extrinsic noise. However, we will show later

how a straightforward extension of the theory reveals that the same system can behave like

an optimal WK filter under a variety of extrinsic noise conditions.

For small deviations δα(t) = α(t)−ᾱ from the mean populations ᾱ, kα(t) can be linearized

with respect to δα(t),

kα(t) =
∑
α′=r,p

∫ t

−∞
dt′Gαα′(t− t′)δα′(t′), (2)

where Gαα′(t) are linear response functions, which express the dependence of kα(t) on the

past history of δα′(t). The functions Gαα′(t) capture the essential characteristic responses

of the control network to perturbations away from equilibrium (Fig. 1). In the static limit,

Gαα′(t) have appeared in various guises as gains,6 susceptibilities,17 or steady-state Jacobian

matrices,27 and in the frequency-domain as loop transfer functions.13,16 Feedback between

R and P is encoded in the cross-responses Grp(t) and Gpr(t). In the simplest scenario, the
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Figure 1: Schematic of a complex signaling network with the target species R and one
mediator P singled out. In focusing on two species, the action of all the other components is
effectively encoded in four response functions—Grr(t), Gpp(t), Grp(t), Gpr(t)—that describe
how the entire dynamical system responds to perturbations in R and P .

only non-zero self-responses Gαα(t) are decay terms, Gαα(t) = −τ−1
α δ(t), where τα is the

decay time scale for species α. However, the theory works generally for more complicated

self-response mechanisms.

Control network as a noise filter

The connection between the linearized dynamical description and WK filter theory arises

from comparing the original system to the case where feedback is turned off (i.e. setting

Grp(ω) or Gpr(ω) to zero). Let us define a few terms to make the noise filter analogy

clear. Without feedback, the target fluctuations are δr0(t) ≡ s(t), where we denote s(t) the

signal. This is to distinguish it from δr(t) in the original system, which is the output. The

difference between the two, which reflects the impact of the feedback network, we express

as δr(t) = s(t)− s̃(t), where s̃(t) is referred to as the estimate. In this analogy, minimizing

δr(t) requires a feedback loop where the estimate s̃(t) is as close as possible to the signal

s(t). The only thing left to specify is the relationship between s̃(t) and s(t).

The dynamical system in Eqs. (1)-(2) takes a simple form in Fourier space, where the
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fluctuations δα(ω) satisfy:

−iωδα(ω) =
∑
α′=r,p

Gαα′(ω)δα′(ω) + nα(ω). (3)

We solve Eq. (3) for δr(ω) and break up the R fluctuation into two contributions, δr(ω) =

s(ω)− s̃(ω), with the signal s(ω) and estimate s̃(ω) given by:

s(ω) = − nr(ω)

Grr(ω) + iω
, s̃(ω) = H(ω) [s(ω) + n(ω)] . (4)

Here we have introduced a noise function n(ω),

n(ω) =
np(ω)

Gpr(ω)
, (5)

and a filter function H(ω):

H(ω) ≡ Grp(ω)Gpr(ω)

Grp(ω)Gpr(ω)− (Grr(ω) + iω)(Gpp(ω) + iω)
. (6)

Thus in the time domain the estimate s̃(t) is the convolution of the filter function H(t) and

a noise-corrupted signal y(t) ≡ s(t) + n(t),

s̃(t) =

∫ ∞
−∞

dt′H(t− t′)y(t′). (7)

Eqs. (4)-(6) constitute a one-to-one mapping between the linear response and noise filter

descriptions of the system in Fourier space. They relate the four filter quantities, s(ω), s̃(ω),

n(ω), and H(ω), to the four linear response functions Grr(ω), Grp(ω), Gpr(ω), and Gpp(ω).

The entire noise filter system is illustrated schematically in Fig. 2. Note that the

noise function in the filter analogy, n(t), is related to np(t) in Fourier space as n(ω) =

np(ω)/Gpr(ω). Thus, the stochastic nature of the mediator P production makes estimation

non-trivial, since the function H(t) must try to filter out the n(t) component in y(t) in order
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Figure 2: Signal processing diagram illustrating noise suppression in a negative feedback
loop re-interpreted as a linear filter. The fluctuations in the target species δr(t) (lower left)
are expressed as δr(t) = s(t) − s̃(t), where the raw signal s(t) (upper left) equals δr(t) in
the absence of feedback control, and the estimate s̃(t) (lower right) is the contribution of the
feedback loop. This estimate is given by the convolution of a filter function H(t) (center)
and the corrupted signal s(t) + n(t), where n(t) is the noise (upper right). The goal of
Wiener-Kolmogorov theory is to find a causal H(t) such that the standard deviation of δr(t)
is minimized. All sample trajectories shown in the figure are generated from numerically
solving the linearized version of the dynamical system in Eq. (10).

to produce s̃(t) close to s(t). Though we confine ourselves throughout this work to the case

of a dynamical system with a single target and mediator species, one can easily generalize the

entire approach to explicitly include many mediators, which could potentially be involved

in a complex signaling pathway. The linearized dynamical system in Eqs. (1)-(2) would still

have the same form (with index α running over all the species of interest), and the mapping

onto the filter problem for the target species would be analogous. The only difference is that

n(ω) and H(ω) would be more complicated functions of the various individual noise terms

nα(ω) and the response functions Gαα′(ω) of the mediators. In our reduced, two species

description, the action of all the unspecified chemical components is effectively included in

the four response functions described above, with their stochastic effects contributing to the

extrinsic noise. Fig. 1 shows a schematic of such a reduction. The fine-grained details of
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the signaling pathways connecting our target R and mediator P , potentially involving many

interacting species, are encoded in Grr, Gpp, Grp, and Gpr. As an example of how this two-

species reduction would work in practice, in Appendix B we treat an important example of

a feedback loop involving multiple mediators, representing a signaling cascade in series.

Wiener-Kolmogorov theory yields the optimal filter

The WK optimization problem consists of minimizing σ2
r = (δr)2, the variance of target fluc-

tuations, which are related to H(t), s(t), and n(t) through the frequency-domain integral28

(see derivation in Appendix A):

σ2
r =

∫ ∞
−∞

dω

2π

[
|H(ω)|2Pn(ω) + |H(ω)− 1|2Ps(ω)

]
, (8)

where H(ω) is the Fourier transform of H(t), and Pn(ω), Ps(ω) are the power spectral den-

sities (PSD) of n(t) and s(t) respectively, i.e. the Fourier transforms of their autocorrelation

functions. If Pn(ω) and Ps(ω) are given, the task is to minimize σ2
r in Eq. (8) over all pos-

sible H(ω). The main constraint that makes the solution mathematically difficult is that

H(ω) must correspond to a physically realizable control network, which imposes the crucial

restriction that the time-domain convolution function H(t) must be causal, depending only

on the past history of the input, H(t) = 0 for t < 0. The great achievement of Wiener and

Kolmogorov was to derive the form of the optimal causal solution Hopt(ω):

Hopt(ω) =
1

P c
y (ω)

{
Ps(ω)

P c
y (ω)∗

}
c

. (9)

The c super/subscripts refer to two different decompositions in the frequency domain which

enforce causality: (i) Any physical PSD, in this case Py(ω) corresponding to the corrupted

signal y(t) = s(t) + n(t), can be written as Py(ω) = |P c
y (ω)|2. The factor P c

y (ω), if treated

as a function over the complex ω plane, contains no zeros and poles in the upper half-

plane (Imω > 0).29 (ii) We also define an additive decomposition denoted by {F (ω)}c

9
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(see Appendix A) for any function F (ω), which consists of all terms in the partial fraction

expansion of F (ω) with no poles in the upper half-plane. In Appendix A we provide in detail

a new derivation of Eq. (9), the heart of the WK theory.

Optimal noise control in a yeast gene circuit with feedback

To illustrate the nature of the optimal WK solution we choose as a case study the yeast

negative autoregulatory gene circuit designed by Nevozhay et. al.,24 drawn schematically

in Fig. 3(a). The gene encoding for the TetR protein is under the control of the PGAL1−D12

promoter, whose activity can be repressed by binding TetR dimers. The strength of the

feedback can be modulated by changing the extracellular concentration A of the inducer

anhydrotetracycline (ATc), which enters the cell, binds to TetR and prevents its association

with the promoter, thus weakening repression.

In order to analyze the TetR negative feedback gene circuit, we start with the simple

mathematical model introduced in Ref. 24, which provided results that are consistent with

the experimental data. The simplified model, which captures the essence of the synthetic

gene network, features as the main variables the population of free intracellular TetR dimer,

p(t), and free intracellular ATc molecules, a(t). In addition to the regulatory loop, the

experimental gene circuit has a parallel yEGFP reporter portion, which acts as a monitor

of TetR protein levels. Because we focus on the system as a noise filter for the TetR mRNA

population, and the yEGFP part does not influence this analysis,24 we ignore the reporter

circuit.

The production of the TetR dimers occurs in a single step, with the autoregulation of the

rate described by a repressory Hill function. We divide this step into two parts, introducing

as an additional variable the population of TetR mRNA r(t). The feedback loop (Fig. 3(a))

consists of mRNA production at a rate given by the Hill function κr(t) = κ0θ
n/(θn + pn(t)),

followed by TetR dimer generation at a rate given by κpr(t). The degradation/dilution

of the mRNA and dimers is modeled through decay terms γrr(t) and γpp(t). We could
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Figure 3: (a) The synthetic yeast gene circuit designed by Nevozhay et. al.24 The TetR
protein negatively regulates itself by binding to its own promoter. The inducer molecule
ATc associates with TetR, inhibiting its repressor activity. The subsequent panels show
results for this gene circuit using the linear filter theory applied to the dynamical model of
Eq. (10), with experimentally-derived parameters (Table 1). (b) Filter functions H(t) and
Hopt(t), sample signal s(t) and estimate s̃(t) time series for burst ratio B = 10 and three
different values of extracellular ATc concentration A [ng/mL]. H(t) is from Eq. (19), while
Hopt(t) is from Eq. (18). The sample time series trajectories are numerical solutions of the
linearized Eq. (10). On the right are the resulting equilibrium probability distributions P (δr),
where δr(t) = s(t) − s̃(t), which are Gaussians with variance σ2

r . For A ≈ 54 ng/mL, the
circuit approximately functions as an optimal WK filter (H(t) is close to Hopt(t)), maximally
suppressing fluctuations in the population levels of TetR mRNA (minimizing σ2

r/r̄). (c)
Mean populations of free intracellular TetR mRNA, r̄, and TetR protein dimers, p̄. (d)
The decay rates of free mRNA and proteins, τ−1

r and τ−1
p , which are related to the network

self-response functions Grr and Gpp (both are constants in the frequency domain as shown
in Eq.11). (e) The magnitude of the network cross-response, |Grp| (solid lines), plotted
together with the optimal magnitude |Goptrp | = τ−1

p (1 +
√

1 +B)−1 (dashed lines). Filled
circles mark the intersection defining A = Aopt, where the system behaves approximately
like an optimal WK filter. (f) The Fano factor σ2

r/r̄ (solid lines), compared to the optimal
WK value σ2

r,opt/r̄ = 2/(1 +
√

1 +B) (horizontal dashed lines). Filled circles mark the
position A = Aopt. 11
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have modeled additional (comparatively fast) chemical substeps involved in this loop, such

as TetR dimerization, the binding of the repressor to the individual promoter sites, or the

role of RNAP and ribosomes in the transcription and translation processes. Though we limit

ourselves to the two substep description to illustrate the filter theory, the stochastic effects of

additional complexity can be approximately treated through general “extrinsic” noise terms

incorporated into nr(t) and np(t).

The main experimental variable that allows tuning of the yeast gene network behavior is

the external ATc concentration A, which is assumed to be time independent. As illustrated in

Fig. 2(a), there is an influx ΦA of ATc molecules into the cell. Once inside, the ATc molecules

associate with the TetR at a rate βa(t)p(t). Additional loss of intracellular ATc through

degradation, outflux, and dilution is modeled through an effective decay rate γaa(t). We

assume that the dissociation of ATc from TetR occurs on long enough timescales that it can be

ignored. Since the influx/association/outflux of ATc is fast compared to the transcription and

translation processes of the main feedback loop, we further assume that a(t) instantaneously

equilibriates at the current value of p(t). Thus, the dependence of a(t) on p(t) is determined

by equating the influx and total loss rate, which leads to a(p(t)) = ΦA/(γa + βp(t)).

For the model described above, the dynamical equations for r(t) and p(t) are,

ṙ(t) = −γrr(t) +
κ0θ

n

θn + pn(t)
+ nr(t),

ṗ(t) = −γpp(t) + κpr(t)−
βΦAp(t)

γa + βp(t)
+ np(t).

(10)

The parameters, with values derived from experimental fitting,24 are listed in Table 1. The

only quantity that is not independently known from the fit is the rate κp, which we allow

to vary in the range κp/γr ≡ B = 2 − 10, comparable to typical experimentally measured

protein burst sizes.30 Setting the right sides of Eq. (10) to zero, and averaging over nr(t)

and np(t), we numerically solve for the equilibrium values r̄ and p̄ as a function of external

ATc concentration A [Fig. 3(c)]. For A = 0, the promoter is nearly fully repressed, but with
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Table 1: Parameter values for the dynamical model of the yeast synthetic gene
circuit (Eq. (10)). The cell volume V is assumed fixed. Unless otherwise noted,
all values are taken from the experimental fit of Ref. 24.

Parameter Value
n 4
θ 0.44 nMV
γr 3.5 h−1 a

γp 0.12 h−1

γa 1.2 h−1

β 3.6 nM−1h−1V −1

Φ 0.6 h−1V
κ0 50 nM h−1V B−1 b

A 0− 500 ng/mL c

aRef. 31
bThe burst ratio B ≡ κp/γr. Though not independently determined by the experimental fit, we assume

that B is in the range B = 2− 10.30
cFor external ATc concentration A, 1 ng/mL corresponds to 2.25 nM.

increasing A, the mean population p̄ of free TetR dimers is reduced, weakening the repression

and boosting the mean mRNA population r̄. Changing A allows us to explore a wide range

of control network behavior. Note that since p̄ depends on B only through the the product

κ0B, and the value of this product is fixed at a constant value from the experimental fit

(Table 1), p̄ is independent of B. On the other hand, r̄, which is proportional to κ0, is

inversely proportional to B.

Linearizing Eq. (10) around r̄ and p̄, we extract the following frequency-domain response

functions:

Grr(ω) = −τ−1
r = −γr, Grp(ω) = −κ0nθ

np̄n−1

(θn + p̄n)2
,

Gpp(ω) = −τ−1
p = −γp −

βγaΦA

(γa + βp̄)2
, Gpr(ω) = κp.

(11)

All the functions are constants in the frequency domain. Here τr and τp are effective decay

times for the mRNA and proteins, respectively. The value of τr is fixed, and sets the intrinsic

time scale of mRNA fluctuations, but τp and Grp depend on p̄, which is a function of the

external ATc concentration A. In fact, association with intracellular ATc, described by the
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second term in the Gpp expression above, is the dominant form of decay for the free TetR

dimers. Fig. 3(d) plots the effective decay constants τ−1
r and τ−1

p as a function of A. Except

for A . 8 ng/mL we are in the regime where τ−1
p � τ−1

r , which is relevant in simplifying the

optimality condition for Grp(ω) discussed below.

The optimal filter calculation for the TetR gene circuit depends on the linear response

functions of Eq. (11). We obtain the following power spectra for the signal and noise in the

absence of extrinsic noise:

Ps(ω) =
2r̄τr

1 + (ωτr)2
, Pn(ω) =

2r̄τr
B

, (12)

where the burst ratio B ≡ κpτr is the mean number of proteins synthesized per mRNA

during the lifetime τr. The problem is to evaluate Eq. (9) for Hopt(ω). The sum of signal

plus noise, y(ω) = s(ω) +n(ω), has a power spectrum Py(ω) = Ps(ω) +Pn(ω), which we can

rewrite as follows:

Py(ω) = 2r̄τr

[
1

1 + (ωτr)2
+

1

B

]
=

∣∣∣∣∣
(

2r̄τr
B

)1/2 √
1 +B − iωτr

1− iωτr

∣∣∣∣∣
2

.

(13)

The expression within the absolute value brackets is zero only at ω = −iτ−1
r

√
1 +B, and

has a simple pole at ω = −iτ−1
r . Since all the zeros and poles are in the lower complex ω

half-plane, it satisfies the criterion for the causal term in the factorization Py(ω) = |P c
y (ω)|2.

Thus:

P c
y (ω) =

(
2r̄τr
B

)1/2 √
1 +B − iωτr

1− iωτr
. (14)

The other causal term in Eq. (9) involves the additive decomposition
{
Ps(ω)/P c

y (ω)∗
}
c
. This
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is calculated by looking at the partial fraction expansion of Ps(ω)/P c
y (ω)∗:

Ps(ω)

P c
y (ω)∗

=
(2r̄τrB)1/2

(1− iωτr)(
√

1 +B + iωτr)

=
(2r̄τrB)1/2

(1− iωτr)(
√

1 +B + 1)

+
(2r̄τrB)1/2

(1 +
√

1 +B)(
√

1 +B + iωτr)
.

(15)

Of the two terms in the partial fraction expansion, only the first has poles solely in the lower

complex ω half-plane. Hence, it is the only one that contributes to
{
Ps(ω)/P c

y (ω)∗
}
c
:

{
Ps(ω)

P c
y (ω)∗

}
c

=
(2r̄τrB)1/2

(1− iωτr)(
√

1 +B + 1)
. (16)

Inserting Eqs. (14) and (15) into Eq. (9), we finally find that the optimal filter is:

Hopt(ω) =

√
1 +B − 1√

1 +B − iωτr
. (17)

Transforming Hopt(ω) into the time domain, we find

Hopt(t) =
(
τ−1

avg − τ−1
r

)
e−t/τavgΘ(t), (18)

where τavg = τr/
√

1 +B, and Θ(t) is a unit step function ensuring that the filter operates

only on the past history of its input. For B � 1 the prefactor in Eq. (18) is ≈ τ−1
avg, and

Hopt(t) has a straightforward interpretation: it approximately acts as a moving average of

the corrupted signal y(t) = s(t)+n(t) over a time scale τavg. In order to get the best estimate

s̃(t), the averaging interval τavg can neither be too long, since it would blur out the features

of the signal s(t) (which vary on the time scale τr), nor too short, since it would be ineffective

at smoothing out the noise distortion n(t). Hence, there must exist an optimum τavg, which

is naturally proportional to τr, the main time scale for the mRNA.

In Fig. 3(b), we show how the noise filter properties of the system vary with A for a
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burst ratio of B = 10. The filter function H(t) (solid red curve) differs substantially from

Hopt(t) (dotted red curve) for large and small A, but approaches the optimal form near

A = 54 ng/mL. Consequently, at this value of A we get the closest correspondence between

the plotted sample trajectories of signal s(t) (cyan curve) and estimate s̃(t) (blue curve).

Similarly, the equilibrium probability distribution of the output, P (δr), shown to the right

of the trajectories, exhibits the smallest Fano factor σ2
r/r̄. The latter is a measure of noise

magnitude, and has a reference value of unity if mRNA production was a pure Poisson

process, as would be the case without feedback. Optimality is realized in the intermediate A

regime of partial repression, where the R to P responsiveness, as measured by |Grp|, is large.

Effective noise suppression requires that R be sensitive to changes in P , so that information

about R fluctuations can be transmitted through the negative feedback loop.

In order to understand the optimality condition for H(t) in more detail, let us look at

the explicit expression for H(t) in the TetR system, given by the inverse Fourier transform

of Eq. (6) with the response functions of Eq. (11):

H(t) =
Grpκp
ω1 − ω2

(e−ω1t − e−ω2t)Θ(t), (19)

where ω1, ω2 are the two ω roots of the denominator in Eq. (6). Assuming τp � τr (which

holds good except for small values A . 8 ng/mL, as seen in Fig. 3(d)), we can directly

show the approach of H(t) to optimality at a specific intermediate value of Grp. When Grp

equals Goptrp (B, τp) = −1/(τp(1 +
√

1 +B)), the roots ω1 ≈ τ−1
avg, ω2 ≈ τ−1

p + τ−1
r − τ−1

avg, up to

corrections of order τp/τ 2
r . In this case, Eq. (19) becomes

H(t)|Grp=Gopt ≈ Hopt(t)

[
1− e−(τ−1

p +τ−1
r −2τ−1

avg)t

1 + τp(τ−1
r − 2τ−1

avg)

]
, (20)

where the factor in the brackets on the right equals 1 in the limit τp → 0 for all t > 0. Up to

this correction factor, we thus expect the system to behave optimally at A = Aopt, defined by

the condition Grp = Goptrp (B, τp), so long as Aopt is large enough to satisfy τp � τr. Fig. 3(e)
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shows Grp and Goptrp curves for B = 2, 5, 10, with dots marking the intersection points that

define Aopt for each B. As explained above, |Grp| is small at small and large A, and reaches

a maximum in between. At fixed B, |Goptrp (B, τp)| ∝ τ−1
p , so it increases monotonically with

A, as larger concentrations of the inducer increase the effective decay rate of free proteins.

Thus, for each B there is a single intersection point Aopt at an intermediate concentration

of the inducer.

Fig. 3(f) shows the Fano factor σ2
r/r̄ versus A for various B. As the control network

approximates optimality at Aopt for each B, the Fano factor nears its minimum, close to the

theoretical limit marked by the horizontal dashed lines. This limit is the minimal possible

σ2
r/r̄, calculated from Eq. (8) using Hopt(t) from Eq. (18):

σ2
r,opt

r̄
=

2

1 +
√

1 +B
≥ 2

1 +
√

1 + 4B
(21)

A few comments concerning the above equation are in order. (1) The result on the far

right-hand side is the rigorous lower bound derived by LVP.19 In their case, the feedback

mechanism through the rate function kr(t) could be any causal functional of p(t), linear or

nonlinear. The Fano factor of the optimal linear filter differs in form only by the coefficient of

B, and is always within a factor of 2 of the lower bound for any value of B. (2) For Gaussian-

distributed signal s(t) and noise n(t) time series, the linear filter is optimal among all possible

filters.28 If the system fluctuates around a single stable state, and the copy numbers of

the species are large enough that their Poisson distributions converge to Gaussians (mean

populations & 10), the signal and noise are usually approximately Gaussian. This is a wide

class of systems where the rigorous lower bound (the last term in Eq. 21) can never be

achieved. In other words, here the WK filter yields the most efficient feedback mechanism.

Although, as pointed out by LVP, nonlinearity could lead to additional noise reduction,

the benefits are likely to be restricted to those systems where the signal and/or noise are

substantially non-Gaussian. However, since the form of the optimal control network has not
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been found in the general nonlinear case, it remains an interesting open question whether the

LVP bound can actually be reached even within this category of systems. We will return to

this issue in the next section. (3) The parameter B is the key determinant of noise reduction.

For B � 1, there are not enough signaling events to control the mRNA fluctuations, and

as B → 0 we approach σ2
r,opt/r̄ → 1, the no-feedback Poisson result. In the limit B � 1

signaling is effective, and the Fano factor decreases with B as σ2
r,opt/r̄ ≈ 2/

√
B. For large

enough B we approach perfect control, but at extreme expense: the standard deviation of

the mRNA fluctuations σr,opt ∝ B−1/4, the same scaling derived by LVP.

WK theory constrains the performance of a broad class of nonlinear,

discrete regulatory networks

The results in Fig. 3 rely on a linearized, continuum approach to the TetR dynamical system.

To assess if the conclusions based on the WK optimal filter hold if these approximations are

relaxed, we first performed kinetic Monte Carlo simulations of the full nonlinear system

(Eq. (10)) using the Gillespie algorithm.32 We chose a cell volume of V = V0 = 60 fL,

within the observed range for yeast,33 which corresponds to the mean populations r̄ and

p̄ shown in Fig. 4(a) as a function of A. (For example, at A = Aopt = 62.7 ng/mL when

B = 5, r̄ ≈ 84 and p̄ ≈ 11. In addition to the nonlinearity, the discrete nature of the

populations in the simulation might play a role at these low copy numbers.) The numerical

results for the Fano factor σ2
r/r̄ are plotted in Fig. 4(b) at B = 2, 5, 10, for V = V0 (circles)

and also for comparison at a larger volume V = 10V0 (squares). The blue curves show

the linear theory results, and the dashed lines are the optimality predictions for σ2
r,opt/r̄.

Although nonlinearity and discreteness effects do change the results, the linear theory gives

a reasonable approximation, and the minimum is still near Aopt. The feedback mechanism

is nonlinear in the simulations, but it does not do better than the linear predictions for

σ2
r,opt/r̄ for the parameters used to describe the experimental results. Though the intrinsic

population noise is Poisson-distributed in the simulations, the Poisson distribution is very
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Figure 4: Results of simulation and theory for the yeast synthetic gene circuit,24 as a function
of extracellular ATc concentration A. (a) Mean populations of free TetR mRNA r̄ and TetR
dimer p̄, assuming a cell volume V0 = 60 fL. (b) The Fano factor σ2

r/r̄ for burst factor
B = 2, 5, 10, as predicted by the linear filter theory (solid lines), versus stochastic numerical
simulations at two different volumes, V = V0 (circles) and V = 10V0 (squares). The WK
filter theory predicts the minimal Fano factor σ2

opt/r̄ given by Eq. (21) (horizontal dashed
lines). The system can be tuned to approach optimality near a particular Aopt obtained by
the condition Grp = Gopt

rp (filled circles).

close to Gaussian, even for copy numbers as low as ∼ O(10). Since the linear filter is the

true optimum for a Gaussian-distributed signal and noise,28 we do not expect improvements

in noise suppression by employing a nonlinear version. In the opposite limit of large copy

numbers, V →∞, the continuum approximation should be valid, and population fluctuations

increasingly negligible relative to the mean. Thus, the linear theory should directly apply

in this limit, and indeed we see that for V = 10V0 the discrepancies between numerical and

theory results are substantially reduced (Fig. 4(b)). It is worth emphasizing, that even at the

realistically small cell volume V0, the linear theory retains much of its predictive power. More

generally, the conditions for WK optimality do not have to be perfectly satisfied in order

for the filter to perform close to maximum efficiency. There is an inherent adaptability and

robustness in near-optimal networks, as reflected in the broad minima of σ2
r/r̄ as a function
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Figure 5: The Fano factor σ2
r/〈r〉 as a function of burst ratio B. The solid curve is the

optimal result predicted by the WK linear theory, and the dashed curve is the rigorous lower
bound derived by LVP.19 Symbols show numerical optimization for the generalized nonlinear
TetR feedback system (Eq. (22)) at two volumes, V = V0 and V = 0.1V0.

of A (Fig. 4(b)).

The semi-quantitative agreement between the linearized theory and the simulation results

displayed in Fig. 4 still leaves open the possibility that some type of nonlinear, discrete filter,

not described by the experimentally fitted parameters of the TetR gene network, could

perform better than the WK optimum at sufficiently small volumes. Fig. 5 plots both the

WK value for the Fano factor (solid curve) and the rigorous lower bound of LVP (dashed

curve) as a function of B (Eq. (21)). The above question can be posed as follows: is it

possible to achieve a Fano factor that falls between the two curves by taking advantage

of nonlinearity and discreteness? Ideally, one should do an optimization over all possible

nonlinear regulatory functions that could describe feedback between the TetR protein and

mRNA. In full generality, such an optimization appears intractable, but one can tackle a

limited version of the nonlinear optimization. We will confine ourselves to Hill-like regulatory

functions, which describe the experimental behavior of many cellular systems,34 and explore

whether it is possible to find any scenario where this type of nonlinear feedback outperforms
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the linear WK optimum. We consider the following generalized TetR feedback loop:

ṙ(t) = −γrr(t) +Kr(p(t)),

ṗ(t) = −γpp(t)− Γp(p(t)) + κpr(t),

(22)

with two Hill-like regulatory functions,

Kr(p) =
A1θ

n1
1

θn1
1 + pn1

, Γp(p) =
A2p

n2

θn2
2 + pn2

, (23)

involving arbitrary non-negative parameters Ai, ni, θi, i = 1, 2. The original TetR system

(Eq. (10)) is a special case of the equations above with:

A1 = κ0, n1 = n, θ1 = θ, A2 = βΦA, n2 = 1, θ2 = γa. (24)

The production function Kr(p) is a monotonically decreasing function of p, as is expected

for negative feedback, while Γp(p) is monotonically increasing, a generalization of some reg-

ulatory network which effectively removes the TetR protein from the feedback loop (the role

played by ATc binding in the experimental system). With these monotonicity constraints,

there is always only one steady-state solution r̄ and p̄ to Eq. (22).

The optimization consists of searching for Kr(p) and Γp(p) that minimize the Fano factor

σ2
r/〈r〉. The following quantities are fixed during the search: the degradation rates γr, γp,

the P production rate κp (or equivalently the burst ratio B = κp/γr), and the steady state

values r̄, p̄. Note that in the general nonlinear case, the steady state values do not necessarily

coincide with the mean values 〈r〉, 〈p〉, since the equilibrium distributions are generally

asymmetric with respect to the steady state. Fixing r̄ and p̄ during the optimization is one

way to set an overall copy number scale, to investigate the role of discreteness. It turns out

that the optimization results described below end up being independent of r̄ and p̄. In terms

of the Hill function parameters, fixing r̄ and p̄ means setting A1 and A2 to the following
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values,

A1 = θ−n1
1 γrr̄(θ

n1
1 + p̄n1), A2 = p̄−n2(γpp̄− κpr̄)(θn2

2 + p̄n2). (25)

Thus the goal of optimization is to minimize σ2
r/〈r〉 over the four remaining free parameters:

n1, θ1, n2, θ2.

In order to carry out this minimization, one needs an efficient procedure to calculate

σ2
r/〈r〉 from Eq. (22), keeping both the full nonlinearity of the dynamical system, and the

discreteness of the r(t) and p(t) populations. The system can always be simulated through

the Gillespie algorithm,32 and accurate estimates of 〈r〉 and σ2
r determined from sufficiently

long trajectories. However this approach is too slow for searching over the four-dimensional

parameter space, since each distinct set of parameters would require a separate long simula-

tion run. An equivalent, faster alternative is to directly solve the system’s master equation

for the steady state probability distribution, which then yields 〈r〉 and σ2
r . The joint prob-

ability distribution Pr,p(t) of finding r mRNAs and p proteins at time t is governed by the

master equation,

∂

∂t
Pr,p =γr [(r + 1)Pr+1,p − rPr,p] +Kr(p) [Pr−1,p − Pr,p] + γp [(p+ 1)Pr,p+1 − pPr,p]

+ [Γp(p+ 1)Pr,p+1 − Γp(p)Pr,p] + κpr [Pr,p−1 − Pr,p] .
(26)

The steady state distribution P s
r,p is the solution obtained by setting to zero the right-hand

side of the above equation, which we denote Rr,p:

0 = Rr,p ≡γr
[
(r + 1)P s

r+1,p − rP s
r,p

]
+Kr(p)

[
P s
r−1,p − P s

r,p

]
+ γp

[
(p+ 1)P s

r,p+1 − pP s
r,p

]
+
[
Γp(p+ 1)P s

r,p+1 − Γp(p)P
s
r,p

]
+ κpr

[
P s
r,p−1 − P s

r,p

]
.

(27)

The result is linear in the components P s
r,p for various r and p, and thus the set {Rrp = 0}

for r = 0, 1, . . . and p = 0, 1, . . ., constitutes a linear system of equations for P s
r,p. The

master equation can be solved by spectral methods, which are generally more efficient than
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brute force Gillespie simulations.35 However we use a different approach, described below,

to solve Eq. (27), which is sufficiently fast for our numerical optimization purposes. Since

r and p can take on any integer values between 0 and ∞, we truncate the system to focus

only on the non-negligible P s
r,p, in other words (r, p) within several standard deviations

of the mean (〈r〉, 〈p〉). Specifically, we keep only those equations Rrp = 0 which involve

rmin ≤ r ≤ rmax and pmin ≤ p ≤ pmax. The largest truncation range required for accurate

results was rmax − rmin = 100 and pmax − pmin = 50. All P s
r,p outside the range which appear

in the truncated system of equations are set to a positive constant ε > 0. (The precise value

of ε is unimportant since the distribution is subsequently normalized, and the truncation

range is chosen large enough so that the boundary condition does not significantly affect the

outcome.) The resulting finite linear system, which is sparse, can be efficiently solved using

an unsymmetric-pattern multifrontal algorithm.36 Knowing P s
r,p, we then directly calculate

the moments of the distribution to find 〈r〉 and σ2
r . The numerical accuracy of the procedure

is verified by comparison to Gillespie simulation results.

In order to set a starting point for each round of nonlinear optimization, we use the

following initialization procedure: we take the original TetR system at a given volume V

and burst ratio B (fixing the Hill function parameters according to Eq. (24)) and find the ATc

concentration Amin where σ2
r/〈r〉 is smallest, evaluating the Fano factor using the linear solver

described above. The r̄ and p̄ at this concentration are then chosen to be fixed constants

for the nonlinear optimization, where we vary the parameters n1, θ1, n2, θ2 from the initial

values given by Eq. (24) to minimize σ2
r/〈r〉. The minimization is carried out using Brent’s

principal axis method,37 which is feasible due to the fast evaluation of 〈r〉 and σ2
r at each

different parameter set through the linear solver.

Fig. 6 shows results of a typical minimization run, where the initial system is at volume

V = V0 with B = 10, with a corresponding Amin = 50 ng/mL. The dashed lines in Fig. 6(a)

and (b) show the Hill functions Kr(p) and Γp(p) of the original TetR system at these param-

eter values, and the heat map in Fig. 6(c) represents the associated steady-state probability
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Figure 6: Results for numerical optimization of the generalized nonlinear TetR feedback
system of Eq. (22), with starting parameters B = 10 and V = V0. (a) The mRNA production
regulation function Kr(p) in its initial form before optimization (dashed curve), and after
several steps of the minimization algorithm (solid curve). (b) Similar to (a), but showing the
protein degradation function Γp(p). (c) Heat map of the steady-state probability distribution
P s
r,p before optimization, corresponding to regulation governed by the dashed curves in the

top panels. The nullclines ṙ(t) = 0 and ṗ(t) = 0 are superimposed. (d) Similar to (c), but
after several steps of the minimization algorithm, corresponding to regulation governed by
the solid curves in the top panels.
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distribution P s
r,p. The dashed lines superimposed on the heat map are the loci of solutions

to ṙ(t) = 0 and ṗ(t) = 0 (the right-hand sides of Eq. (22) set to zero), which intersect at the

steady state (r̄, p̄). The Fano factor for this distribution, which represents the best the TetR

system can perform given the experimentally fitted parameters, is σ2
r/〈r〉 = 0.525. This is

above the linear WK optimum for B = 10, 2/(1 +
√

1 +B) = 0.463, and significantly larger

than the rigorous LVP lower bound of 2/(1 +
√

1 + 4B) = 0.270. Once we relax the exper-

imental constraints, and carry out the numerical minimization, the Fano factor decreases.

The solid lines in Fig. 6(a) and (b) show Kr(p) and Γp(p) after several steps of the minimiza-

tion algorithm, and Fig. 6(d) shows the corresponding P s
r,p. The Hill functions have become

very steep steps around p̄, while the average of the distribution 〈r〉 has been pushed above

r̄. The probabilities P s
r,p for p < p0 become negligible, where p0 ≡ bp̄c is the largest integer

value below p̄. For p > p0, P s
r,p rapidly decay to zero. The Fano factor, σ2

r/〈r〉 = 0.472,

approaches closer to the linear WK optimum, but is still above it. If we allow the minimiza-

tion to proceed, these trends continue: at each iteration the Hill functions get steeper, 〈r〉

increases, P s
r,p for p < p0 tends to zero, and σ2

r/〈r〉 approaches arbitrarily close to the linear

WK optimum from above.

In fact, the same behavior is seen irrespective of the volume V and burst ratio B used to

define the initial point of the optimization. Fig. 5 shows the results of nonlinear optimization

for B = 2 − 10 at two volumes, V = V0 and V = 0.1V0. Even for the smallest volume, the

nonlinear optimization results can get arbitrarily close to the WK optimum, but never do

better. No generalized nonlinear system based on Hill function regulation brings us close

to the theoretically possible LVP lower bound. This overall conclusion holds even when we

change the functional form for the generalized feedback. We tried two alternatives: (i) using

sigmoidal (logistic) functions instead of Hill functions; (ii) expanding Kr(p) and Γp(p) in a

Taylor series around p̄, truncating after the third order term, and minimizing with respect

to the Taylor coefficients. In both cases numerical minimization of the Fano factor led to

similar step-like behavior for Kr(p) and Γp(p), and the Fano factor tended to WK optimum
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from above.

From the P s
r,p distribution in Fig. 6(d) we see that the step-function limit leads to a

system which is highly nonlinear along the p axis: in fact the gene network spends most of

its time at p = p0, just below the sudden change in regulation due to the steep Hill functions,

and p > p0 just above the sudden regulatory change. The feedback on the TetR mRNA

population is mediated by p fluctuations between the two regimes, resulting in threshold-like

regulatory behavior. Remarkably, despite this discrete, nonlinear character, the network can

still approach the efficiency of an optimal WK linear filter. To gain a deeper understanding of

how the step-like regulation can match WK optimality, we used the numerical optimization

results described above to posit a limiting form of the nonlinear gene network that can

be solved analytically (details in Appendix C). The analytic results explicitly show that

we can asymptotically approach the WK optimum behavior from above, even in systems

where the protein copy numbers are very small. Thus at least for a two-component TetR-

like system regulated by biologically-realistic Hill functions, the constraint derived from the

WK theory has a broader validity than one would guess from the underlying continuum,

linear assumptions. It thus becomes an interesting and a non-trivial problem, left for future

studies, to find an example of a gene network where the rigorous lower bound of LVP could

be directly achieved.

Realizing optimality under the influence of extrinsic noise

Extrinsic noise is ubiquitous and hence must also be considered in any effective description

of the control network. Inevitably, certain cellular components are not explicitly included

in such a description, which in our case study could include RNA polymerase, ribosomes,

and transcription factors that bind to the same promoter. Each of these components have

their own stochastic characteristics and may contribute noise to a smaller or greater extent.

Particularly for eukaryotes like yeast, the extrinsic noise contribution may be significantly

larger than the intrinsic component.38,39 We adopt a simple model for the extrinsic noise
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Figure 7: Comparison of simulation and theory results based on the dynamical model
(Eq. (10)) of the yeast synthetic gene circuit,24 in the presence of extrinsic noise given
by Eq. (73). All quantities are plotted as a function of extracellular ATc concentration A
for the burst ratio B = 5. Each set of curves shows the Fano factor σ2

r/r̄, as predicted by
the linear filter theory (solid lines), versus stochastic numerical simulations at two different
volumes, V = V0 = 60 fL (circles) and V = 10V0 (squares). The two sets correspond to
noise magnitudes cp = 80, cr = 23 and cp = 160, cr = 46. In both cases cr and cp are
related through the condition in Eq. (83), and the minimal Fano factor predicted by WK
filter theory (horizontal dashed lines) is modified as shown in Eq. (84). The system can be
tuned to approach optimality near a particular Aopt obtained by the condition Grp = Gopt

rp

(filled circles).

based on earlier approaches,14,16 which assume that it is band-limited at a low frequency

τ−1
e , where τe is on the order of the cell growth time scale. The justification is that higher

frequency contributions to the extrinsic noise are filtered out by the gene circuits associated

with its sources. This idea is consistent with the experimental observation of extrinsic noise

in protein production in E. coli, which found long autocorrelation times for the extrinsic

noise on the order of the cell cycle period.40

For the TetR system, our theory is extended to the extrinsic noise case in Appendix D,

with the results illustrated in Fig. 7. The outcome is that a given TetR gene circuit, tuned

appropriately such that A = Aopt, can act as a WK filter for an entire family of extrinsic

noise scenarios. A single set of parameters can approximately represent the optimal solution

for a variety of extrinsic inputs. This makes the WK concept a versatile design tool for
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noise suppression in biological systems: the same control network can act with maximum

efficiency in a variety of different contexts. It is possible that the requirement of adaptability

to a wide range of conditions has resulted in the evolution of control networks acting as WK

filters. It remains to be seen whether nature has exploited this feature in vivo.

Conclusion

The TetR feedback loop is a concrete example of how a WK filter can be implemented

in a gene network driven by a complex set of biochemical reaction rates, but the overall

approach outlined here has far reaching implications, thus highlighting the appeal of engi-

neering paradigms in biology.41 With the entire network complexity encoded in a handful of

response functions, we can derive fundamental limits and design principles governing biolog-

ical regulation. The key step is to map the linear response picture onto a signal estimation

problem, whose solution is given by WK theory. This idea allows us to predict the dy-

namic properties of the feedback pathway required to optimally filter noise in a broad class

of negative feedback circuits. As already demonstrated in earlier works,22,23 the mapping,

and the potential utility of the WK approach, is not unique to the negative feedback loop.

Another important byproduct of the theory is that the behavior of gene circuits away from

optimality can also be predicted. In this sense, our practical approach goes beyond just

obtaining rigorous bounds, and allows us to characterize how close or far gene networks are

from optimality for biologically relevant parameters.

We have derived response functions by linearizing a minimal model extracted from ex-

perimental observations, but it is also possible to directly apply small perturbations to a

system, and measure the resulting time-dependent changes in populations of species. Re-

cently, the yeast hyperosmolar signaling pathway has been probed by perturbations in the

form of salt shocks.42–44 Despite the underlying complex nonlinear network, the details of

which are not completely characterized, a linear response description quantitatively cap-
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tures the frequency-dependent behavior of the pathway over a wide range of inputs. E.

Coli chemotaxis signaling also exhibits a linear regime,45 where the fluctuation-dissipation

relationship between the system’s unperturbed behavior and its reaction to external stimuli

has been explicitly verified.

Linear response functions can thus become a fundamental tool in analyzing biochemical

circuits, analogous to their established role in control engineering and signal processing. More

extensive experimental measurements will be critical in this effort, in order to ascertain how

varied the response relationships between regulatory components are in nature. Once we

understand the essential dynamical building blocks out of which complex biological function

is realized, we can map out the hidden constraints that control the behavior of living systems.
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Appendix A: Derivation of the optimal WK filter

In this section we derive Eqs. (8) and (9) in the main text. They describe the output variance

σ2
r = [(δr)2] and the linear filter Hopt(ω) that minimizes σ2

r , which are the main quantities

in the Wiener-Kolmogorov theory.

Output variance σ2r in terms of signal and noise power spectra Ps(ω)

and Pn(ω)

From Eq. (4), which defines the signal s(ω) and estimate s̃(ω) in the frequency domain, the

Fourier transformed output δr(ω) for any H(ω) can be rewritten as,

δr(ω) = s(ω)− s̃(ω) = (1−H(ω))s(ω)−H(ω)n(ω). (28)

In the time domain, s(ω) = −nr(ω)/(Grr(ω)+iω), is a convolution of the noise function nr(t),

and n(ω) = np(ω)/Gpr(ω) is a convolution of np(t). So long as the noise functions nr(t) and

np(t) are uncorrelated, s(t) and n(t) are also uncorrelated, so the frequency domain average

s(ω)n(ω′) = 0. (The theory can also be generalized to correlated noise sources, but for

simplicity we consider only the uncorrelated case.) As a result, the correlation δr(ω)δr(ω′),

related to the output power spectrum Pδr(ω), can be written in terms of Ps(ω) and Pn(ω),

the individual power spectra of the signal and noise:

δr(ω)δr(ω′)

= (1−H(ω))(1−H(ω′))s(ω)s(ω′)

+H(ω)H(ω′)n(ω)n(ω′)

= 2π
[
|H(ω)− 1|2Ps(ω) + |H(ω)|2Pn(ω)

]
δ(ω + ω′)

≡ 2πPδr(ω)δ(ω + ω′),

(29)
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In the above equation we have used the definition of the power spectrum, i.e. s(ω)s(ω′) ≡

2πPs(ω)δ(ω + ω′), and the relation H(−ω) = H∗(ω) since H(ω) is the Fourier transform

of a real function H(t). The power spectrum Pδr(ω) is the Fourier transform of the time

autocorrelation function δr(t)δr(0):

δr(t)δr(0) =

∫ ∞
−∞

dω

2π
Pδr(ω)e−iωt. (30)

At t = 0, the autocorrelation function gives us the variance σ2
r :

σ2
r = (δr(0))2

=

∫ ∞
−∞

dω

2π
Pδr(ω)

=

∫ ∞
−∞

dω

2π

[
|H(ω)|2Pn(ω) + |H(ω)− 1|2Ps(ω)

]
,

(31)

which is Eq. (8) in the main text.

Minimizing σ2r over all causal H(ω) yields the optimal WK filter

Hopt(ω)

The convolution of the filter function H(t) on the corrupted signal s(t) + n(t) must satisfy

causality. The filter can only operate on the past history of s(t) + n(t), so H(t) = 0 for

t < 0. In the frequency domain, enforcing causality restricts H(ω) to have certain general

properties as a function of complex ω:29 it can have no poles or zeros in the upper half-plane

Imω > 0. Equivalently, the real and imaginary parts of H(ω) evaluated at real ω must

satisfy the well-known Kramers-Kronig relation:

ReH(ω) =
1

π
P
∫ ∞
−∞

dω′
ImH(ω′)

ω′ − ω , (32)
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where P is the Cauchy principal value of the integral. The goal of WK optimization is to

minimize σ2
r in Eq. (31) over all possible causal functions H(ω), given the power spectra

Ps(ω) and Pn(ω).

Assume such an optimum Hopt(ω) exists, with the corresponding minimal variance σ2
r,opt.

Let us add a small perturbation, H(ω) = Hopt(ω) + δH(ω), where δH(ω) is also a causal

function of complex ω. From Eq. (31), the resulting variance change δσ2
r = σ2

r − σ2
r,opt, to

lowest order in δH(ω), is:

δσ2
r =

∫ ∞
−∞

dω 2 Re
[
{(Hopt(ω)− 1)Ps(ω)

+ Hopt(ω)Pn(ω)} δH∗(ω)
]

=

∫ ∞
−∞

dω 2 Re
[
Fopt(ω)δH∗(ω)

]
,

(33)

where

Fopt(ω) ≡ (Hopt(ω)− 1)Ps(ω) +Hopt(ω)Pn(ω). (34)

For Hopt(ω) to be the WK optimum, δσ2
r in Eq. (33) must be zero for any causal perturbation

δH(ω).

Out of all possible causal perturbations, we will focus on one with the specific form:

δH(ω) =
A

ε− i(ω − ω0)
, (35)

where Imω0 = 0 and A, ε > 0. It has no zeros, and the only pole, ω = ω0− iε, is in the lower

half-plane, so δH(ω) is causal. We will be interested in the limit as this pole approaches the

real axis, ε→ 0+, where the real and imaginary parts of δH(ω) are,

Re δH(ω) =
Aε

ε2 + (ω − ω0)2
→ Aπδ(ω − ω0),

Im δH(ω) =
A(ω − ω0)

ε2 + (ω − ω0)2
→ A

ω − ω0

.

(36)
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Substituting these into Eq. (33) for δσ2
r , we find that the optimality condition δσ2

r = 0 implies

the following relation between the real and imaginary parts of Fopt(ω):

ReFopt(ω0) = − 1

π
P
∫ ∞
−∞

dω
ImFopt(ω)

ω − ω0

. (37)

This has the same form as the Kramers-Kronig relation in Eq. (32), with the important

difference of a minus sign in front. Consequently, Fopt(ω) must be anticausal, which we

define as a function with no poles or zeros in the lower complex ω half-plane.

In order to use this result to derive a solution for Hopt(ω), we define two types of decom-

positions, described briefly in the main text. In practice, all the frequency domain power

spectral density and filter functions we work with in the linear response formalism are mero-

morphic functions over the complex ω plane. Any meromorphic function F (ω) can be written

as a partial fraction expansion of the form F (ω) =
∑

n,k cik/(ω−ωn)k, where {ωn} is the set

of poles of F (ω), and cik are constants. Most generally, the expansion could include a polyno-

mial term, but the functions F (ω) we encounter have well-defined inverse Fourier transforms,

which require |F (ω)| → 0 as |ω| → ∞ (decay at least as fast as 1/|ω|). Thus, all the terms in

the expansion are of the form cik/(ω−ωn)k, and we can segregate them according to whether

the pole ωn is in the upper half plane. The causal part {F (ω)}c is defined as all those terms

where ωn is not in the upper half plane, and the anticausal part {F (ω)}ac contains the

remaining terms in the expansion. The overall function F (ω) = {F (ω)}c + {F (ω)}ac.

The second type of decomposition, an example of Wiener-Hopf factorization,20 concerns

power spectral density functions like Py(ω), which are meromorphic and also real-valued

on the real ω axis. Let us factor Py(ω) as the product of two meromorphic functions,

Py(ω) = P c
y (ω)Rac

y (ω). The function P c
y (ω) contains all the zeros and poles in Py(ω) which

are not in the upper half plane. Such a decomposition is always possible, since a meromorphic

function can always be written as a ratio of two holomorphic functions. Hence, the numerator

and denominator of Py(ω) can be decomposed individually into a product of elementary
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factors by the Weierstrass factorization theorem, with each factor containing a single zero.

Because Py(ω) is real for real ω, so Py(ω)∗ = Py(ω) when Imω = 0. Thus, P c
y (ω)∗Rac

y (ω)∗ =

P c
y (ω)Rac

y (ω). Since P c
y (ω)∗ for real ω has all its zeros and poles in the upper half plane, we

must have P c
y (ω)∗ ∝ Rac

y (ω), and similarly Rac
y (ω)∗ ∝ P c

y (ω). By appropriately absorbing an

overall constant into P c
y (ω), we can factor Py(ω) as Py(ω) = P c

y (ω)P c
y (ω)∗ = |P c

y (ω)|2.

With these decompositions defined, we return now to the condition in Eq. (37), which

shows that Fopt(ω) is anticausal. Thus, its causal part in the additive decomposition must

be zero, {Fopt(ω)}c = 0. From the definition of Fopt(ω), Eq. (34), it follows that

{Hopt(ω)Py(ω)}c = {Ps(ω)}c, (38)

where Py(ω) = Ps(ω) + Pn(ω) is the power spectrum of the noise-corrupted signal y(t) =

s(t) +n(t). Equivalently, since we can substitute {F (ω)}c = F (ω)−{F (ω)}ac for any F (ω),

the optimality condition can be rewritten as:

Hopt(ω)Py(ω)− {Hopt(ω)Py(ω)}ac

= Ps(ω)− {Ps(ω)}ac.
(39)

Divide both sides of Eq. (39) by P c
y (ω)∗, and then take the causal additive part {·}c of both

sides. The result is:

{Hopt(ω)P c
y (ω)}c −

{{Hopt(ω)Py(ω)}ac
P c
y (ω)∗

}
c

=

{
Ps(ω)

P c
y (ω)∗

}
c

−
{{Ps(ω)}ac

P c
y (ω)∗

}
c

.

(40)

The second terms on both the left and right hand sides are the causal parts of a ratio between

two anticausal functions. Since a ratio of anticausal functions is also anticausal, these terms

are zero. On the left hand side the first term {Hopt(ω)P c
y (ω)}c = Hopt(ω)P c

y (ω), sinceHopt(ω)

and P c
y (ω) are causal, and hence their product is also causal. Making these simplifications,
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we can then solve for Hopt(ω) as:

Hopt(ω) =
1

P c
y (ω)

{
Ps(ω)

P c
y (ω)∗

}
c

, (41)

which is the optimal WK filter result shown as Eq. (9) in the main text.

Appendix B: Linear response and noise filter analysis for

a regulatory cascade

As an example of how our theory generalizes to control networks with multiple mediator

species, we will consider the case where the feedback loop consists of a regulatory cascade.

We will still explicitly single out a target species R and a mediator P , but now the signaling

pathway which communicates changes from R to P will be more complicated, consisting of

a cascade of N species Uj, j = 1, . . . , N , with populations uj. The production of the jth

species will depend on the population of the (j−1)th species (with j = 0 corresponding to R),

and P will depend on the last member of the cascade, UN . In terms of Fourier-transformed

fluctuations δuj, the dynamical equations for the pathway have the form:

−iωδuj(ω) = Gujuj(ω)δuj(ω) +Gujuj−1
(ω)δuj−1(ω)

+ nuj(ω), j = 1, . . . , N.

(42)

Thus the dynamics includes three parts: (i) the self-responses Gujuj which we can assume in

the simplest case to be given by the inverse decay lifetimes of the species, Gujuj = −τ−1
uj

; (ii)

the cross-response terms Gujuj−1
which describe how the jth member of the cascade is related

to the (j − 1)th member; (iii) the stochastic noise terms nuj . To complete the description of
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the feedback loop, we specify the equations for R and P :

−iωδr(ω) = Grr(ω)δr(ω) +Grp(ω)δp(ω) + nr(ω),

−iωδp(ω) = Gpp(ω)δp(ω) +GpuN (ω)δuN(ω) + np(ω).

(43)

Instead of the simple cross-response Gpr from R to P , P is influenced by the final species of

the Uj pathway through GpuN .

The regulatory cascade system described by Eqs. (42)-(43) can in fact be simplified

extensively, by solving for the dynamics of the mediator species Uj and substituting the

results into Eq. (43). This yields equations for R and P which have the same form as in the

two-species case in the main text, but with an effective cross-response function Geff
pr (ω) and

noise term neff
p (ω),

−iωδr(ω) = Grr(ω)δr(ω) +Grp(ω)δp(ω) + nr(ω)

−iωδp(ω) = Gpp(ω)δp(ω) +Geff
pr (ω)δr(ω) + neff

p (ω),

(44)

where:

Geff
pr (ω) = GpuN (ω)

N∏
j=1

Gujuj−1
(ω)τuj

1− iωτuj
,

neff
p (ω) = np(ω)

+GpuN (ω)
N∑
k=1

nuk(ω)

Gukuk−1
(ω)

N∏
j=k

Gujuj−1
(ω)τuj

1− iωτuj
.

(45)

In this effective two-species reduction of the full system, all the stochastic effects of the

mediators in the Ui pathway enter in as “extrinsic” noise contributions to neff
p (ω). This is a

particular example that shows how extrinsic noise encapsulates the stochastic influence of

all the species that are not explicitly specified in the dynamical equations.

The mapping of the two-species system onto the noise filter formalism, and the calculation

of the optimal filter, can be carried out by the methods outlined in the main text. While this
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in general results in a more complicated problem than the simple example analyzed in the

main text, in one scenario the noise filter optimization problem for the cascade is relatively

straightforward: (i) we assume linear production functions k+
uj

(t) = κujuj−1(t) for all Uj,

so the cross-responses are constants in frequency space, Gujuj−1
(ω) ≡ κuj . Similarly, the P

production function is κpuN(t), so GpuN (ω) ≡ κp. (ii) We assume the decay timescales of all

the cascade species are negligible, τuj � τr, so we can take the limits τuj → 0 in Eq. (45).

However, the products κujτuj remain finite for all j, since from the equilibrium conditions

of the cascade (balance of production and destruction), they are related to ratios of the

steady-state populations ūj:

κujτuj =
ūj
ūj−1

. (46)

Hence rapid decay goes hand in hand with fast production. This is the same type of serial

cascade analyzed in Ref. 19, where it was shown to maximize information transfer along the

pathway. (iii) Finally, we assume that each species in the original, full description of the

system is subject only to intrinsic noise, so the noise functions are given by:

nr(ω) =
√

2k̄rηr(ω),

np(ω) =
√

2κpūNηp(ω),

nuj(ω) =
√

2κuj ūj−1ηuj(ω),

(47)

where the ηα(ω) for different α are independent Fourier-transformed Gaussian white noise

functions.

With these assumptions the effective cross-response and noise functions in Eq. (45) be-

come:

Geff
pr (ω) =

B

τr
,

neff
p (ω) = np(ω) +B

N∑
k=1

nuk(ω)

Buk

,

(48)
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where the P burst ratio B ≡ κpūNτr/r̄ is analogous to B in the main text, i.e. the average

number of P molecules produced per R during the time interval τr. Similarly the burst ratio

Buk = κuk ūk−1τr/r̄ is the average number of Uk molecules produced per R during τr.

The resulting signal and noise power spectra within the filter formalism are:

Ps(ω) =
2r̄τr

1 + (ωτr)2
, Pn(ω) =

2r̄τr
Beff

, (49)

where:

Beff =

[
1

B
+

N∑
k=1

1

Buk

]−1

. (50)

Since the power spectra in Eq. (49) have the same form as Eq. (12), with B replaced by Beff ,

all the subsequent optimality results are identical, but expressed in terms of the effective

total burst ratio Beff of the signaling pathway. This agrees with the effective burst ratio for

the cascade derived by the information theory approach in Ref. 19, under the assumptions

of rapid production/decay outlined above. Physically, this result implies that Beff will be

dominated by the smallest values among the B and Buk . Hence, the efficiency of the noise

filtration in the cascade is limited by the weakest links.

Appendix C: Analytic limiting form of the generalized nonlinear

feedback network

We will use the numerical optimization results described in the main text for the generalized

nonlinear TetR feedback network (Eq. (22)) to derive a limiting form of the system that can

be solved analytically. Since the optimization algorithm results in steep step-like functions

Kr(p) and Γp(p) with thresholds at p̄, let us assume that optimal limit for these Hill functions

looks like:

Kr(p) = K0
rΘ(p̄− p), Γp(p) = Γ0

pΘ(p− p̄), (51)
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where the Heaviside step function Θ(x) = 0 for x < 0 and Θ(x) = 1 for x > 0. The plateau

heights K0
r > 0 and Γ0

p > 0 are assumed to be large, with a well defined ratio ξ ≡ K0
r /Γ

0
p as

K0
r ,Γ

0
p →∞. Since Γ0

p � γp and thus Γp(p) acts as the dominant protein degradation term,

we will set γp = 0 for simplicity. (This has negligible effect on the resulting P s
r,p, particularly

since γ−1
p = 8.3 h was already the longest time scale in the system.)

Under these assumptions, we would like to find an analytical steady-state probability

distribution P s
r,p which satisfies Rrp = 0 from Eq. (27) for all r, p ≥ 0. We cannot solve

the system of equations directly, but we will introduce an ansatz for P s
r,p and verify that

it is a solution to Eq. (27). The first part of the ansatz is trivial: we assume P s
r,p = 0 for

p < p0 = bp̄c. This satisfies Rrp = 0 for p < p0 exactly, regardless of the values of P s
r,p at

p ≥ p0. To motivate the second part of the ansatz, which covers the p ≥ p0 region, we need

some more information about the moments of the distribution. This can be gathered by

defining the generating function,

F (z1, z2) =
∞∑
r=0

∞∑
p=p0

zr1z
p−p0
2 P s

r,p. (52)

Summing the steady-state conditions Rrp = 0 in Eq. (27) over all r > 0, p ≥ p0, we obtain

an equation that can be expressed in terms of F :

γr(1− z1)F (1,0)(z1, z2) +K0
r (z1 − 1)F (z1, 0) + Γ0

p(z
−1
2 − 1) [F (z1, z2)− F (z1, 0)]

+ κpz1(z2 − 1)F (1,0)(z1, z2) = 0,

(53)

where F (i,j)(z1, z2) ≡ ∂iz1∂
j
z2
F (z1, z2). Taking the z1 derivative of Eq. (53), and evaluating

the result at z1 = 1, z2 = 1, gives:

−γrF (1,0)(1, 1) +K0
rF (1, 0) = 0. (54)
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Similarly, differentiating Eq. (53) with respect to z2 yields:

−Γ0
p [F (1, 1)− F (1, 0)] + κpF

(1,0)(1, 1) = 0. (55)

Using the fact that F (1, 1) = 1 from the normalization of P s
r,p, and F (1,0)(1, 1) = 〈r〉,

F (1, 0) =
∑∞

r=0 P
s
r,p0

from the definition of the generating function in Eq. (52), we can

use Eqs. (54) and (55) to find:

〈r〉 =
Γ0
pξ

γr + κpξ
,

∞∑
r=0

P s
r,p0

=
γr

γr + κpξ
. (56)

Thus we have an analytical expression for 〈r〉, one of the moments necessary for calculating

the Fano factor. If we proceed to the next order of derivation, applying ∂2
z1
, ∂2

z2
, and ∂z1∂z2

on Eq. (53) and evaluating at z1 = 1, z2 = 1, we can extract from these three equations the

following moment relations:

〈p− p0〉 =
κp((γr + κp)ξ −∆(γr + κpξ))

γr(γr + κpξ)
, σ2

r = (1−∆)〈r〉,

〈r(p− p0)〉 = (1−∆)
Γ0
p

γr
− 〈r〉

ξ
,

(57)

where ∆ is defined as

∆ = 〈r〉 − γr + κpξ

γr

∞∑
r=0

rP s
r,p0
. (58)

Thus the Fano factor σ2
r/〈r〉 = 1−∆, but unfortunately we do not have an explicit solution

for ∆ from the generating function approach. (Higher order partial derivatives of Eq. (53)

do not form a closed system of equations.) However, the moment relations in Eq. (57) will

prove useful below.

From Eq. (56) we note that 〈r〉 → ∞ as Γ0
p → ∞, so the distribution is pushed toward

larger r as the step functions become steeper, just as we saw in the numerical optimization

(Fig. 6). In the large r limit, we can approximate P s
r,p as a continuous function of r (though it
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remains discrete in p). Based on the numerical optimization results, we choose the following

Gaussian ansatz for P s
r,p0

, the first non-negligible p slice of the distribution:

P s
r,p0

= A0e
−(r−λ0)2/(2s20). (59)

The parameters λ0 and s0 are to be determined, while A0 must be chosen to satisfy
∑∞

r=0 P
s
r,p0

from Eq. (56). In the continuum, large r limit we can approximate the sum as
∑∞

r=0 P
s
r,p0
≈∫∞

−∞ dr P
s
r,p0

, which implies that

A0 =
γr√

2πs2
0(γr + κpξ)

. (60)

Similarly, Eq. (58) gives

∆ = 〈r〉 − λ0, (61)

so finding λ0 is equivalent to finding ∆.

Let us now show that the ansatz of Eq. (59) yields a solution P s
r,p for p ≥ p0 that satisfies

Eq. (27) in the large Γ0
p limit. Using Eq. (51) and the continuum approximation along the r

direction, we can rewrite Eq. (27) for p ≥ p0 as

0 = Rr,p ≈γr∂r(rP s
r,p)−K0

r δp,p0∂rP
s
r,p + Γ0

pP
s
r,p+1 − (1− δp,p0)Γ0

pP
s
r,p

+ κpr
[
(1− δp,p0)P s

r,p−1 − P s
r,p

]
.

(62)

Plugging the ansatz for P s
r,p0

from Eq. (59) into Eq. (62) for p = p0, we can solve for P s
r,p0+1,

P s
r,p0+1 = A0e

−(r−λ0)2/(2s20) (γrr −K0
r )(r − λ0) + (κpr − γr)s0

Γ0
ps0

. (63)
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Similarly, once P s
r,p0

and P s
r,p0+1 are known, Eq. (62) for p = p0 + 1 yields P s

r,p0+2,

P s
r,p0+2 =

A0e
−(r−λ0)2/(2s20)

(Γ0
p)

2s2
0

[
s2

0

(
−Γ0

pγr + γ2
r − 3γrκpr + κ2

pr
2
)

+ s0

{
Γ0
p(λ0 − r)(K0

r − γrr) + λ0

(
3γ2

rr − γr
(
2κpr

2 +K0
r

)
+ κpK

0
r r
)

+ r(2γr − κpr)(K0
r − 2γrr)

}
+ γrr(λ0 − r)2(γrr −K0

r )
]
.

(64)

We can iterate this procedure, using Eq. (62) to generate analytical expressions for all P s
r,p0+m,

m > 0, which depend on the unknown parameters λ0 and s0. To solve for these parameters,

let us first enforce the normalization condition,

1 =
∞∑
m=0

∞∑
r=0

P s
r,p0+m ≈

∞∑
m=0

∫ ∞
−∞

dr P s
r,p0+m. (65)

Though tedious, the integrals on the right-hand side of Eq. (65) can be explicitly carried

out for each m, since P s
r,p0+m has the form of a Gaussian exp(−(r − λ0)2/(2s2

0)) times a

polynomial in r. Since we are interested in the large Γ0
p limit, we can Taylor expand the

integrals up to first order in the small variable (Γ0
p)
−1, which gives the following result:

∫ ∞
−∞

dr P s
r,p0+m ≈

γr
γr + κpξ

(
κpξ

γr + κpξ

)m
+
γrm(κpξ)

m(ξ(−2∆− ξm+ ξ) + (m− 1)s̃0(γr + κpξ))

2Γ0
pξ

2(γr + κpξ)m
,

(66)

where s̃0 = s0/Γ
0
p, and we have used Eq. (61) to write λ0 = 〈r〉 − ∆, and Eq. (56) for

〈r〉. Plugging Eq. (66) into Eq. (65) and carrying out the sum over m, the normalization

condition becomes

1 = 1− κp(γr + κpξ) (∆γr − κps0(γr + κpξ) + κpξ
2)

Γ0
pγ

2
r

. (67)

Thus the term of order (Γ0
p)
−1 on the right must be zero, implying the following relation
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between s̃0 and ∆,

s̃0 =
∆γr + κpξ

2

κp(γr + κpξ)
. (68)

In order to complete the derivation and solve for ∆, we need to calculate the moment 〈p−p0〉,

〈p− p0〉 =
∞∑
m=0

∞∑
r=0

mP s
r,p0+m ≈

∞∑
m=0

m

∫ ∞
−∞

dr P s
r,p0+m. (69)

Plugging in Eq. (66) for the integral, we carry out the sum overm and simplify using Eq. (68),

giving

〈p− p0〉 =
κp(Γ

0
pγrξ + ∆(γr + κpξ)

2)

Γ0
pγ

2
r

. (70)

Setting this equal to the 〈p− p0〉 result from Eq. (57), we finally can solve for ∆, or equiva-

lently the Fano factor σ2
r/〈r〉 = 1−∆,

σ2
r

〈r〉 = 1− Γ0
pγrκp(1− ξ)ξ

(γr + κpξ)(Γ0
pγr + (γr + κpξ)2)

≈ 1− (1− ξ)ξκp
γr + κpξ

+O((Γ0
p)
−1),

(71)

keeping the leading terms in the Taylor expansion for small (Γ0
p)
−1. The Fano factor achieves

a minimum value equal to the WK linear optimum,

σ2
r,min

〈r〉 =
2

1 +
√

1 +B
=
σ2
r,WK

〈r〉 (72)

at ξ = ξmin = 1/(1 +
√

1 +B), where B = κp/γr. Thus we see explicitly that nonlinear

threshold regulation with Kr(p) and Γp(p) behaving like step functions can directly match

(but not improve on) the efficiency of the optimal WK linear filter, so long as Γ0
p is large and

the ratio of the step function heights assumes a particular value ξmin. Counterintuitively,

this occurs despite the fact that the p copy numbers can be very small in our system, with

a narrow range of fluctuations in which discreteness plays a major role.
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Appendix D: Optimality for the TetR gene network under

extrinsic noise

In the frequency domain, we will model nextα (ω), the extrinsic part of the noise associated

with species α using,

nextα (ω) =

√
2cαk̄α

1− iωτe
ηextα (ω), (73)

where cα is a coefficient measuring the strength of the noise, and ηext(ω) is a Fourier-space

Gaussian white noise function. Comparing to the definition of the intrinsic noise, nintα (ω) =√
2k̄αηα(ω), we see that cα is the ratio of the extrinsic to intrinsic noise PSD for species α

at ω = 0. The (1 − iωτe)
−1 factor acts as a cutoff that suppresses frequencies ω � τ−1

e .

The total noise function for species α is the sum of intrinsic and extrinsic contributions,

nα(ω) = nintα (ω) + nextα (ω). We will focus on how the addition of extrinsic noise affects the

optimality conditions using the TetR yeast gene circuit example.

The calculation of Hopt(ω) proceeds analogously to the no-extrinsic-noise procedure de-

scribed in the main text. The power spectra of the signal and noise are,

Ps(ω) = 2r̄τr

[
1

1 + (ωτr)2
+

cr
(1 + (ωτr)2)(1 + (ωτe)2)

]
,

Pn(ω) =
2r̄τr
B

[
1 +

cp
1 + (ωτe)2

]
.

(74)

The first and second terms in the square brackets represent the intrinsic and extrinsic con-

tributions respectively. The latter is parameterized by the coefficients cr and cp, and the

timescale τe, which is assumed to be much larger than the dominant timescale, τr, charac-

terizing the R fluctuations. The signal plus noise power spectrum, Py(ω) = Ps(ω) + Pn(ω),
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can be rewritten as a causal decomposition in the following manner:

Py(ω) =

∣∣∣∣∣
(

2r̄τr
B

)1/2
(ρ+ − iωτr)(ε−1ρ− − iωτe)

(1− iωτr)(1− iωτe)

∣∣∣∣∣
2

≡ |P c
y (ω)|2,

(75)

where ε ≡ τr/τe, and

ρ± =

√
µ±

√
µ2 − 4ε2ν

2
,

µ = 1 +B + ε2(1 + cp),

ν = 1 +B(1 + cr) + cp.

(76)

The expression Ps(ω)/P c
y (ω)∗ and its additive causal decomposition {Ps(ω)/P c

y (ω)∗}c is given

by:

Ps(ω)

P c
y (ω)∗

=

(2r̄τrB)1/2(1 + cr + (ωτe)
2)

(1− iωτr)(1− iωτe)(ρ+ + iωτr)(ε−1ρ− + iωτe)
,

(77)

{
Ps(ω)

P c
y (ω)∗

}
c

=

(2r̄τrB)1/2(1 + cr − ε−2)

(1− iωτr)(1− ε−1)(ρ+ + 1)(ε−1ρ− + ε−1)

+
(2r̄τrB)1/2cr

(1− ε)(1− iωτe)(ρ+ + ε)(ε−1ρ− + 1)
.

(78)

Using Eqs. (78) and (75) in Eq. (9), we obtain the form for the optimal filter function:

Hopt(ω) =
BK(ω)

(1− ε)(ρ+ − iωτr)(ε−1ρ− − iωτe)
, (79)
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where

K(ω) =
1− (1 + cr)ε

2

(1 + ρ−)(1 + ρ+)
(1− iωτe)

+
crε

(ε+ ρ−)(ε+ ρ+)
(1− iωτr).

(80)

Since ε is presumed small, we will expand Hopt to lowest order in ε, giving the approximate

expression:

Hopt(ω) ≈
√

1 +B − 1√
1 +B − iωτr

·
1 + cr

1+
√

1+B√
ν+
√

1+B
− iωτe√

ν
1+B
− iωτe

. (81)

The first rational term is just the optimal filter result in the intrinsic-only case, Eq. (17),

while the second term represents the modification needed to accommodate the extrinsic

noise. As expected, the latter term approaches 1 when cr, cp → 0, since ν → 1 + B in this

limit.

There is a different non-trivial scenario where the second term is equal to 1. If the noise

magnitudes cr and cp are related such that,

1 + cr
1 +
√

1 +B√
ν +
√

1 +B
=

√
ν

1 +B
, (82)

then the numerator and denominator exactly cancel each other out, removing the τe depen-

dence from the optimal filter. Using the definition ν = 1 + B(1 + cr) + cp, Eq. (82) can be

simplified to yield the relation:

cr =
1

1 +
√

1 +B
cp. (83)

If this condition is satisfied, Hopt(ω) is identical to the intrinsic-only optimal filter of Eq. (17)

(to lowest order in ε), and hence the approximate optimality is also achieved at the same

feedback value, Gopt
rp ≈ Gopt

rp (B, τp).

Thus, the yeast gene circuit can still be fine-tuned to approach a WK optimal filter even

in the presence of extrinsic noise. However, this tuning requires the relative strengths cr and

cp of the R and P extrinsic noise to be related (at least approximately) by Eq. (83). The
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resulting minimal possible Fano factor σ2
r,opt/r̄ is:

σ2
r,opt

r̄
≈ 2

1 +
√

1 +B
+

τr

τe(1 +B +
√

1 +B)
cp. (84)

This is the intrinsic-only result of Eq. (21) in the main text plus an extrinsic noise con-

tribution in the second term. Not surprisingly, with more total noise in the system, the

standard deviation of the optimally filtered output increases. Since the second term is of

the order τr/τe it follows that the bigger the difference in time scales between the extrinsic

noise (τe) and the mRNA dynamics (τr), the easier it is to filter out the extrinsic influence

on the mRNA fluctuations. For B � 1, the fundamental limit on the noise suppression still

arises from the intrinsic term in σ2
r,opt/r̄, which scales like ∼ B−1/2; the extrinsic contribution

decays more rapidly, ∼ B−1.

The blue curves in Fig. 7 show the linear theory predictions for σ2
r/r̄ as a function of A

in two cases: (i) cp = 80, cr = 23; (ii) cp = 160, cr = 46. The burst ratio B = 5, and τe

is set equal to γ−1
p , the longest time scale among the experimentally fitted parameters. For

both these cases the noise strengths cp and cr satisfy the relation in Eq. (83), and hence

it is possible to tune the system to approximately achieve WK optimality, just as in the

intrinsic-only scenario. The noise magnitudes were chosen so that the system is noticeably

perturbed by the extrinsic contribution. For example, if the signal s(t) is split into intrinsic

and extrinsic parts sint(t) and sext(t), the ratios of their respective standard deviations are

σexts /σints = 0.8 for case (i) and 1.6 for case (ii). The value of σ2
r,opt/r̄ is marked by horizontal

dashed lines, and the point A = Aopt, where Gopt
rp (ω) ≈ Goptrp (B, τp) is satisfied, by a filled

circle. In all cases the system approaches σ2
r,opt/r̄ near A = Aopt, verifying the optimality

prediction.

As in the intrinsic-only scenario discussed in the main text, we can test the usefulness

of the linear theory through Gillespie simulations (results shown as open squares and circles

in Fig. 7), and reach a similar conclusion even in the presence of extrinsic noise. At large

51

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 20, 2016. ; https://doi.org/10.1101/049502doi: bioRxiv preprint 

https://doi.org/10.1101/049502
http://creativecommons.org/licenses/by/4.0/


volumes, V = 10V0, the simulations converge to the linear theory, whereas for the more

realistic volume V = V0 we see discrepancies due to nonlinearity and low copy numbers

(V0 = 60 fL). Nevertheless, the Fano factor still reaches a minimum close to the predicted

Aopt and σ2
r,opt/r̄ values.
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