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The analysis of cell-free DNA (cfDNA) in plasma represents a rapidly advancing field in 

medicine. cfDNA consists predominantly of nucleosome-protected DNA shed into the 

bloodstream by cells undergoing apoptosis. We performed whole-genome sequencing 

(WGS) of plasma DNA and identified two discrete regions at transcription start sites (TSS) 

where the nucleosome occupancy results in different read-depth coverage patterns in 

expressed and silent genes. By employing machine learning for gene classification, we 

found that the plasma DNA read depth patterns from healthy donors reflected the 

expression signature of hematopoietic cells. In cancer patients with metastatic disease, we 

were able to classify expressed cancer driver genes in regions with somatic copy number 

gains with high accuracy. We could even determine the expressed isoform of genes with 

several TSSs as confirmed by RNA-Seq of the matching primary tumor. Our analyses 

provide functional information about the cells releasing their DNA into the circulation. 

 

Cell-free DNA (cfDNA) from plasma is an intensively investigated biomarker. In the field of 

oncology, numerous publications have demonstrated that analyses of cancer cell-derived DNA in 

the circulation, referred to as circulating tumor DNA (ctDNA), can be used to track tumor 

dynamics in real time 1-5. cfDNA fragments have been associated with the release of DNA from 

apoptotic cells after enzymatic processing since the distribution of their lengths has a mode near 

166 bp in most analyses, a size which corresponds approximately to the DNA wrapped around a 

nucleosome (~147 bp) plus a linker fragment (~20 bp) 6-8. Indeed, evidence that cfDNA reflects 

nucleosome footprints was recently reported 9. 

Importantly, micrococcal nuclease (MNase) assays, in which MNase digestion is used to produce 

mononucleosome-bound DNA fragments to define nucleosome positions in genomes, have 

revealed specific nucleosome patterns at promoters, which profoundly influence gene regulation 

10-13. In actively transcribed genes, the promoter region, i.e. the region of about 150 bp upstream 
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of the transcriptional start site (TSS), is a nucleosome-depleted region (NDR) that facilitates 

access to the bulky transcriptional machinery, which is flanked by arrays of well-positioned 

nucleosomes 11-13. Furthermore, a reduction in nucleosome occupancy was found which extended 

up to 1 kb into the gene body, resulting in reduced frequencies of mapping reads 11,13. Inactive 

promoters, by contrast, exhibited neither a pronounced depletion nor strong positioning and 

phasing of nucleosomes 13. 

Our investigation was hence threefold: to determine whether plasma DNA is able to reflect such 

expression-specific nucleosome occupancy at promoters, to assess if plasma DNA possesses the 

sensitivity and accuracy to predict whether genes are expressed or not, and furthermore, to 

determine if blood samples from patients with cancer are informative for expressed cancer driver 

genes. To this end, we conducted WGS of plasma DNA from 50 male and 54 female donors, 179 

paired-end sequenced plasma samples and 2 patients with metastasized breast cancer and we 

generated altogether over ~414 Gbp of raw sequencing data and ~2.6 billion mapped plasma 

sequence reads. We then analyzed 426 additional plasma samples from cancer patients for their 

suitability for nucleosome promoter analysis. 

Analyses of 179 paired-end sequenced plasma DNA samples confirmed the expected unimodal 

size distribution of plasma nuclear DNA fragments with a narrow range and mode at 166 bp, 

which differed from plasma mitochondrial DNA, in which higher-order nucleosome packaging is 

absent, thus leaving it more exposed to enzymatic cleavage 14 (Fig. 1a).  

Sequencing of DNA fragments after MNase digestion has generated nucleosome maps where 

dyads (regions occupied by the center of a nucleosome) of “perfectly positioned” nucleosomes, 

i.e. sites with high nucleosome preferences, resulted in a strong peak of reads, reflecting the 

phasing of nucleosomes, whereas dyads of less preferentially positioned nucleosomes showed 

reduced peaks or none at all 13 (Fig. 1b). Near the centromere of chromosome 12 (12p11.1), there 

is a ~76 kb spanning region which contains over 400 consistently positioned nucleosomes 

independent of tissue type 10 and in this region, we compared the plasma DNA read counts from 
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female and male donors with those derived from high-throughput single-end sequencing of 

MNase-digested chromatin of the cell line GM12878 (lymphoblastoid cell line from a female 

donor) taken from the ENCODE project (Fig. 1c). The plasma DNA read depth maps 

demonstrated wave-like patterns with peaks whose position showed a high correlation to those 

found in the MNase-maps (Fig. 1c). This suggested that our plasma DNA WGS data could be 

used to infer nucleosome positions in the human genome. 

Next, we compared the read depth patterns at TSSs of 3,804 housekeeping genes 15 with 670 

genes unexpressed in all tissues (fantom.gsc.riken.jp/5/) from the 104 controls samples. The 

patterns corresponded to those established by MNase assays 11-13 with depleted coverage at the 

TSS and oscillating periodicity upstream and downstream of the TSS and reduced frequencies of 

mapping reads (Fig. 2a). At promoters of inactive genes, by contrast, the coverage increased, 

reflecting the denser nucleosome packaging of repressed genes 13 (Fig. 2a). We then wanted to 

test genes expressed in blood and as spacing of nucleosomes differs between cell types 13, we 

used the cell line GM12878 for comparison with plasma read depth coverage from samples of 

healthy donors, from which the vast majority (>90%) of DNA fragments are derived from white 

blood cells 16,17. For the 1,000 (representing 1,334 TSS) most highly and the 1,000 (1,109 TSS) 

least expressed genes in blood 18, we observed similar coverage patterns with both publicly 

available GM12878 MNase data sets 19 and our own plasma DNA fragments (Fig. 2b-c). These 

plasma TSS sequence read depth maps differed depending on the expression level of genes (Fig. 

2d). 

To distinguish between expressed and silent genes based on plasma coverage characteristics, we 

conducted multiple tests which resulted in the identification of two discrete regions. The first 

region is based on the aforementioned nucleosome occupancy reduction ±1,000 bp around the 

TSSs 13 [“2K-TSS coverage”], which we had confirmed (Fig. 2). The second region is the most 

frequent position of the NDR, which we mapped to -150 bp to +50 bp with respect to the TSS  

[“NDR coverage”] (Supplementary Fig. 1). The read depth coverage of both regions was 
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normalized by the relative copy number so that copy number alterations, which are frequently 

observed in plasma samples of patients with cancer 20, did not affect the evaluation (Material & 

Methods). 

Kernel density estimation of the read-depth coverage of these two regions for the 1,000 highest 

and least expressed genes resulted in two separate clusters (Fig. 3a). To test whether these two 

clusters correspond to differently expressed genes, we classified them by employing support 

vector machines (SVM) (Material & Methods) which allowed us to predict the expression status 

of the 100 most highly and least expressed genes 18 with a sensitivity and an accuracy of 0.91 

each (Fig. 3b). Even for the 1,000 and 5,000 most highly and least expressed genes, the 

sensitivity was still 0.83 and 0.80, respectively, and the accuracy was 0.84 and 0.77, respectively 

(Fig. 3b; Supplementary Fig. 2). Accordingly, the genes in the two clusters were statistically 

significantly differently expressed (Mann-Whitney U Test, p<2.2e-16) (Fig. 3c). As examples, 

we illustrate the different promoter coverage patterns of the genes NCL and GABRR3 (Fig. 3d). 

We conclude that the nucleosome protection pattern of plasma DNA allows for the distinction of 

expressed and silent genes with high sensitivity and accuracy and, furthermore, that the plasma 

of healthy donors reflects the expression signature of hematopoietic cells. 

We then investigated whether plasma DNA from patients with cancer would allow us to draw 

conclusions regarding the expression of genes in their primary tumor. Due to the inevitable 

heterogeneity of these plasma samples (i.e. mixture of DNA released from tumor and 

hematopoietic cells in various proportions), we conducted in silico dilution simulations to 

establish the resolution limits, which revealed that for this application, ≥75% of all DNA 

fragments of a given TSS need to be released by tumor cells in order to infer the expression 

status (Fig. 4a). For our proof-of-concept studies, we analyzed matching and synchronously 

obtained primary tumors from two metastasized breast cancer cases (B7, B13) in addition to the 

plasma DNA by whole-genome sequencing (Supplementary Fig. 3) and RNA-Seq (Fig. 4b). We 

sequenced the plasma DNA with high coverage (B7: ~411 million reads; ~8.2x; B13: ~455 
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million reads; ~9.1x) and calculated copy number alterations 21-23 (Fig. 4c). As expected, the 

chromosome 12p11.1 nucleosome array (Supplementary Fig. 4) and promoter read-depth 

differences between unexpressed and housekeeping genes (Supplementary Fig. 5) could again be 

established with these samples. We estimated tumor purity directly from observed relative copy 

profiles 24 and found overall ctDNA allele frequencies (AFs) of ∼45% and ∼72% in B7 and in 

B13, respectively (Fig. 4d), which are ctDNA AFs common in metastatic disease 25. However, 

the actual ctDNA AF of a distinct region additionally depends on its copy number, as amplified 

regions are relatively enriched for ctDNA. Therefore, we calculated regional ctDNA AFs based 

on the overall ctDNA AF and the log2-ratio of the respective region (Fig. 4e), which suggested 

that accurate gene expression predictions should at least be possible for chromosome 1q and the 

amplified regions on chromosomes 11q, 16p, and 19p in B7, whereas all over-represented 

regions should be suitable in B13. 

We identified focal amplifications as defined previously 26 which are frequent in breast cancer, 

such as amplifications of 11q13.3 (15 genes including CCND1) in B7 or of 8p11 (31 genes 

including FGFR1) and 17q12 (46 genes including ERBB2) in B13 (Fig. 4c). We compared the 

FPKMs of each gene predicted to be expressed with those predicted to be not expressed in these 

amplicons for B7 and B13 and observed statistically highly significant differences (Fig. 5a). We 

then analyzed the 100 most highly expressed genes as determined by RNA-Seq from the primary 

tumor from chromosome 1q in B7 and from chromosome 8p11-qter in B13 and found that 86.1% 

and 88.1%, respectively, were correctly classified in the expressed cluster (Fig. 5b). When we 

extended these analyses to the 100 most highly expressed genes in all gained regions of B13 (i.e. 

regions with log2-ratio>0.2; corresponding to ∼1 Gbp), 78.0% were correctly classified. 

To provide more detailed examples for single genes, we sought to determine which isoforms 

were expressed in B13 for two highly relevant cancer genes, i.e. ERBB2, which is an important 

biomarker for treatment decisions involving the monoclonal antibody trastuzumab 27, and 

FGFR1, a potential target for fibroblast growth factor receptor (FGFR) inhibitors, which are 
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currently in development 28. ERBB2 had the promoter coverage of an expressed gene (Fig. 5c). 

For its two isoforms (NM_004448 and NM_001005862), we calculated the differences in the 

distances between the 2K-TSS and NDR coverage in blood from cancer patients and those from 

healthy controls (Material & Methods). This calculation predicted NM_004448 as the highly 

expressed isoform in the primary tumor (Fig. 5d), which was indeed confirmed by RNA-Seq 

[NM_004448: 11.4 FPKM; NM_001005862: 4.4 FPKM]. In fact, of 20,816 TSSs, 98.5% had a 

lower Euclidean distance than the second isoform of ERBB2. Using the same approach, we 

analyzed FGFR1, which has 2 TSSs but 9 isoforms, and could show that TSS2 should be more 

highly expressed than TSS1, which correlated again with the RNA-Seq data (TSS1: 3 isoforms: 

chr8:38325363; Sum FPKM: 6.5; TSS2: 6 isoforms: chr8:38326352; Sum FPKM: 3.0) (Fig. 5e). 

This prompted us to analyze every gene in the focal amplifications with several TSSs. Of the 93 

genes, 8 had more than 1 TSS which gave rise to isoforms with at least 2 FPKM difference 

(including ERBB2 and FGFR1). We were able to verify the highest expressed isoform in 7 of 

these again using Euclidean distances from controls to tumor samples of the same TSS (Fig. 5f). 

As our evaluations depend on the ctDNA AF and the log2-ratios of respective regions, we 

wanted to test whether this approach is broadly applicable. To this end, we analyzed 426 plasma 

samples from patients with metastasized cancer (colon=128; prostate=139; breast=125; lung=31; 

other tumor entities=3) and calculated the overall 24 and regional ctDNA AFs, which revealed 

that 220 (51.6%) of these samples had at least 100 bins (>5.6 Mbp) suitable for promoter read 

depth analysis. Certain regions such as high-level amplifications will almost always be amenable 

to our analyses, which is important as they frequently contain important cancer driver genes 

26,29,30. Hence, in more than half of all cancer patients with common AFs of ctDNA in metastatic 

disease 25, we should be able to predict the expression of cancer genes in regions relatively 

enriched with ctDNA. However, our approach will likely not be applicable in minimal residual 

disease scenarios. 
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Our study suggests that read depth analyses of plasma DNA can reveal functional data such as 

the expression status of genes due to the nucleosome occupancy pattern at promoter regions and, 

furthermore, that even the expression status of cancer-related genes can be deduced from the 

blood of patients with cancer. However, despite the high accuracy which was achieved for the 

prediction of expressed genes, there are factors hampering these analyses, such as the inevitable 

heterogeneity of plasma DNA. Furthermore, a nucleosome-deprived, regulatory factor-accessible 

state occurs not only in expressed, but also in paused genes, as genes with elongating Pol II or 

with poised Pol II exhibited a similar pattern of nucleosome phasing as expressed genes 11,31. 

Vice versa, transcription is not always associated with chromatin reorganization 12.  

Recently, nucleosome spacing was used to determine cfDNA tissues-of-origin 9. Using plasma 

samples from 5 individuals with cancer, these authors found correlations to the correct non-

hematopoietic cell sources in three of the five tested cases based on the nucleosome footprints 9. 

This added to a previous publication, in which genome-wide bisulfite sequencing of plasma 

DNA with reference to methylation profiles of different tissues was used to identify the tissue 

contributors of the circulating DNA pool 17. In contrast, to the best of our knowledge, our study 

is the first using plasma DNA nucleosome patterns at promoter regions for the establishment of 

the expression status of genes. Despite the aforementioned caveats, our strategy and approach 

will pave the way for novel biological applications. For example, it would be interesting to test 

our approach in other conditions associated with increased cfDNA levels due to tissue damage, 

such as myocardial infarction, stroke, or autoimmune disorders. In cancer, we demonstrate that 

the majority of metastasized cases are amenable for non-invasive gene expression promoter read 

depth analysis. Due to the increasing application of molecularly driven therapeutics, which rely 

on accurate and timely measurements of critical biomarkers, our results are of utmost 

significance, as they provide a new view on the genomes of the cells which release their DNA 

into the circulation. Furthermore, our approach is applicable during a disease stage at which most 
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clinical studies in oncology are conducted. This significantly expands upon the currently existing 

options for cfDNA analysis. 
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Material & Methods 

 

Patients 

The study was approved by the Ethics Committee of the Medical University of Graz (approval 

numbers 21-227 ex 09/10 and 21-228 ex 09/10), conducted according to the Declaration of Helsinki 

and written informed consent was obtained from all patients. 

 

Plasma DNA preparation 

Plasma DNA was prepared using the QIAamp DNA Blood Mini Kit (Qiagen, Hilden, Germany) 

as previously described. Samples selected for sequencing library construction were analyzed on 

the Bioanalyzer instrument (Agilent Technologies, Santa Clara, CA, USA) to observe the plasma 

DNA size distribution. 

 

Sequencing 

Shotgun libraries of plasma DNA and tumor DNA were prepared using the TruSeq DNA Nano 

library preparation kit by Illumina (Illumina, San Diego, CA, USA) with a starting amount of 5-

10ng according to the protocol. However, due to the low DNA input, we increased the amount of 

PCR cycles to 25. Furthermore, the fragmentation step was omitted due to the degradation of 

plasma DNA. Libraries were sequenced on the Illumina MiSeq and NextSeq sequencers. All 

sequencing raw data were deposited at the European Genome-phenome Archive (EGA, 

http://www.ebi.ac.uk/ega/), which is hosted by the EBI, under the accession number 

EGAS00001001754. 
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Paired-end sequencing data preparation 

Paired-end reads of 179 plasma DNA samples were aligned with bwa 32 backtrack to the human 

hg19 genome. Resulting BAM files were merged using samtools 33 and alignments to the 

mitochondrial genome were extracted. Nuclear alignments were downsampled and insert sizes of 

both BAM files were analyzed using Picard’s InsertSizeMetrics function. 

 

CNA analysis 

Raw reads of the two breast cancer samples and the merged controls were aligned to the human 

hg19 genome using bwa 32 where the pseudo-autosomal region of the Y-chromosome was 

masked. PCR duplicates were removed and reads were counted in 50,000 genome bins, each 

containing the same amount of mappable positions (approximately 56kbp). Raw read counts 

were normalized by the median bin count and GC correction was done using LOWESS 

smoothing. Furthermore, corrected read counts were normalized by mean bin counts of non-

cancer controls and segmented using both CBS and GLAD provided by the CGHweb framework 

34. 

 

Tumor fraction estimation 

The tumor fraction of the two breast cancer samples was estimated by applying ABSOLUTE 24 

to the segmented log2-ratios obtained by the CNA analysis. We used the most plausible 

karyotype model and extracted purity values. 

 

Relative tumor fraction estimation 

In order to estimate the relative tumor fraction of a region depending on the copy number state, 

we derived the following: 
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The undiluted copy number (cpi) of a certain region i depends on the log2-ratio (lri) as measured 

in the CNA analysis step as well as the tumor fraction (tf) 

��� �
2 � 2��� � 2�1 � 	
�

	

 

The relative tumor fraction (rtf,i) for this region can then be computed using the (pure) copy 

number and the tumor fraction again. 

�	
� �  
	
 � ���

	
 � ��� � �1 � 	
� � 2
 

 

Single-end sequencing data preparation 

Raw reads (150bp) of the 104 control samples and the two breast cancer samples were trimmed 

from both ends to contain bases 53 to 113. These 60bp should constitute the central 60bp of a 

typical 166bp cfDNA fragment and should thus be exclusively associated with a nucleosome. 

Reads were then aligned to the human hg19 genome using bwa-mem (version 0.7.4) 32 and PCR 

duplicates were removed using the samtools rmdup 33 function (version 0.1.18). Aligned BAM 

files of controls were merged using the samtools merge function. 

 

Plasma RNA analysis 

Gene expression values of plasma RNA analyses from microarrays were provided by Koh et al. 

RMA values of four healthy (non-pregnant) subjects were averaged and the 1,000 most 

expressed genes (Top1000) and 1,000 least expressed genes (Bottom1000) were extracted. 

Moreover, raw fastq files from the RNA-Seq step were downloaded from the four non-pregnant 

samples (SRA accessions: SRR1296080, SRR1296081, SRR1296082, SRR1296083) and 

analyzed as detailed below. 

 

RNA-Seq 

RNA-Seq expression values were computed from raw data provided from 18 and from tumor 

samples of B7 and B13. Briefly, we aligned RNA-Seq reads to the human hg19 genome using 
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TopHat2 (v2.0.7) and calculated the gene-wide FPKM for each of the four samples using 

Cufflinks2 35. Subsequently, FPKMs of the four samples were averaged for each gene. 

 

TSS profile 

Coverage values around transcription start sites were extracted from aligned BAM files using the 

samtools depth 33 function and every value was normalized by the mean value of the regions: 

TSS-3000 to TSS-1000 and TSS+1000 and TSS+3000, respectively. 

 

Copy number normalized parameter extraction 

Two parameters were used for the identification/prediction of genes into an expressed and 

unexpressed subset. 

1) The coverage between TSS-1000bp and TSS+1000bp (2K-TSS coverage) 

2) The coverage between TSS-150bp and TSS+50bp (NDR coverage) 

For every TSS in RefSeq, parameters were extracted and divided by the relative copy number of 

that region identified in the CNA analysis step. 

 

Prediction by Support Vector Machines 

In order to predict the expression status of individual genes, we used Support Vector Machines. 

As a training set for expressed genes, we used a random subset of 300 housekeeping genes out of 

3,804 housekeeping genes which are expressed uniformly in multiple tissues 15 and for 

unexpressed genes a random subset of 300 genes out of 670 reported to be unexpressed in most 

tissues by the FANTOM5 project (fantom.gsc.riken.jp/5/). The remaining genes in both classes 

were used as the test set and their expression status predicted. Random subset selection and 

prediction was repeated a 1,000 times and prediction status for each TSS was recorded. We 

considered a gene to be expressed when the prediction consent of all the iterations was higher 

than 75%. 
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In-silico dilution 

We performed dilution simulations to test the reliability of the prediction at varying tumor 

fractions. To this end, we modeled the distribution of the 2K-TSS and the NDR coverage 

parameters of the 1000 least expressed genes in Plasma and added random numbers from these 

distributions to the parameters of the Top 1000 expressed genes at varying proportions. 

 

Isoform discrimination 

Expressed isoforms were determined by calculating the distance of the two parameters between 

the TSS in the merged control data and the tumor patient after normalizing both parameters in 

both data sets. TSSs which lead to higher expression in the tumor should decrease in both the 

2K-TSS and the NDR coverage when compared to the same TSS in control data. 

 

Code availability 

Relevant code is available at https://github.com/PeterUlz/Nucleosome_ctDNA. 
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Figures 

 

Figure 1 

Plasma DNA fragment size and patterns of nucleosome positioning. 

(a) Size distribution of nuclear (red, based on ∼110,000 reads) and mitochondrial (blue; based on 

∼53,000 reads) plasma DNA fragments. 

(b) Nuclear chromatin digested by micrococcal nuclease (MNase) is enriched of DNA protected 

by nucleosomes (dark blue) and depleted of linker regions in between (light blue). In MNase 

assays, regions with “perfectly positioned” nucleosomes result in strong peaks of reads reflecting 

the phasing of nucleosomes (left side), which differs from regions with less preferentially 

positioned nucleosomes (right side) [adapted from 13]. 

(c) Ideogram of chromosome 12 with enlargement of 12p11.1, which contains an extreme 

example of sequence-directed nucleosome positioning 10. The read depth analyses of plasma 

DNA fragments from female and male donors are shown in black and the MNase midpoint 

density maps from cell line GM12878 in red. To the right is the comparison between the plasma 

DNA read depth and MNase midpoint density maps demonstrating a strong correlation (Pearson: 

0.709; Spearman: 0.708). 

 

Figure 2 

Nucleosome positioning at transcription start sites. 

(a) Sequencing coverage at promoter sites in housekeeping (red) and unexpressed (blue) genes 

generated with plasma samples from 104 donors. The coverage pattern reflects the nucleosome 

organization: At transcription start, nucleosomes are removed to create a nucleosome-depleted 

region (NDR) over the promoter, allowing transcription factors to bind 11-13. The reduction in 
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nucleosome occupancy of the expressed housekeeping genes also resulted in a decreased 

coverage (x-axis: distance from the TSS; y-axis: relative coverage reflecting nucleosome dyads). 

(b) MNase midpoint density maps of GM12878 for the 1,000 (representing 1,334 TSS) most 

highly (red) and 1,000 least (representing 1,109 TSS) (green) expressed genes in blood based on 

published plasma RNA-Seq data 18. 

(c) Plasma DNA read depth maps of promoter regions of the same genes as in Fig. 2b (red: 1,000 

most highly expressed genes; green: 1,000 least expressed genes). 

(d) Plasma DNA read depth patterns at promoters of differently expressed genes (i.e. FPKM 

[fragments per kilobase of mature transcript per million mapped reads] >8 (purple); FPKM >1 

and ≤8 (red); FPKM >0.1 and ≤1 (green); FPKM ≤0.1 (blue)). 

 

Figure 3 

Classification of expressed and silent genes by plasma DNA read depth analyses. 

(a) Kernel density estimation revealed two separate gene clusters based on the normalized 

coverage patterns at the 2K-TSS and NDR regions. 

(b) Support vector machines (SVM) classification based on normalized 2K-TSS and NDR 

coverages for the 100 (left) and 1,000 (right) most highly and least expressed genes. Red and 

green circles indicate genes correctly predicted to be expressed or unexpressed, respectively, 

whereas blue circles represent incorrectly predicted genes. 

(c) The difference in FPKMs (fragments per kilobase of mature transcript per million mapped 

reads) for genes predicted to be expressed (n=11,345) or unexpressed (n=9,156) is statistically 

highly significant (Mann-Whitney U test; two-sided; medianexpressed: 4.67, sdexpressed: 675.3, 

medianunexpressed: 0.13, sdunexpressed: 97.0, p<2.2e-16). 

(d) Illustration of exemplary promoter coverage patterns of genes NCL (red) and GABRR3 

(green), which are expressed with mean FPKMs of 2,000 and <0.5, respectively. 
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Figure 4 

Procedure for predicting expressed driver cancer genes in blood.  

(a) Simulation of resolution limits with in silico dilution employing the 2K-TSS and the NDR 

coverage mixing the 1,000 most highly expressed genes with random parameters from the 

distribution of the 1,000 least expressed genes in plasma (green: accuracy of >70%; yellow: 

accuracy of 50-70%; red: accuracy below 50%).  

(b) Identification of expressed driver cancer genes in the peripheral blood: Matching primary 

tumor tissue was synchronously obtained with the blood samples. Copy number alterations 

(CNA) from both the primary tumor and plasma DNA were established for comparison. 

Expression patterns in the primary tumor were analyzed by RNA-Seq and correlated with the 

plasma DNA promoter coverage in relation to the respective copy number status. 

(c) Copy number profiles of two patients with breast cancer (B7 and B13) from plasma. The X-

axis shows the chromosomes, the Y-axis indicates log2 copy number ratios. 

(d) Estimation of tumor purity and ploidy by the quantitative ABSOLUTE method, which 

estimates tumor purity and ploidy directly from observed relative copy profiles 24, for B7 (left) 

and B13 (right). 

(e) A heatmap illustrating how the regional ctDNA AFs are established in relation to the overall 

ctDNA AF (y-axis) and copy number (log2-ratio) (x-axis). 

 

Figure 5 

Identification of expressed driver cancer genes in the peripheral blood.  

(a) FPKMs for genes predicted to be expressed or not expressed in focal amplifications of 

11q13.3 (15 TSS in 15 genes including CCND1; nexpressed = 8; nunexpressed=7) in B7 (left) and in 

both 8p11 (39 TSSs in 31 genes including FGFR1) and 17q12 (59 TSSs in 46 genes including 

ERBB2) (right) in B13 (nexpressed = 87; nunexpressed=11). Blue dots represent genes located in the 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 22, 2016. ; https://doi.org/10.1101/049478doi: bioRxiv preprint 

https://doi.org/10.1101/049478
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 
amplicons. Outliers including CCND1 (FPKM of 50 in B7) and ERBB2 (FPKM of 15 in B13) 

are not shown due to scaling. The differences were statistically highly significant (One-sided 

Mann Whitney U tests; B7: meanexpressed: 9.7 FPKM, sdexpressed: 17.0, meanunexpressed: 0.7 FPKM, 

sdunexpressed: 0.8, p=0.003; B13: meanexpressed: 5.7 FPKM, sdexpressed: 9.7, meanunexpressed: 1.5 FPKM; 

sdunexpressed: 1.8, p=0.001) 

(b) Classification accuracy for the 100 most highly expressed genes in chromosomes 1q in B7 

and 8p11-8qter in B13. 

(c) The different promoter coverage of ERBB2 (mean of two isoforms) in B13 and in control 

samples. 

(d) ERBB2 has two isoforms (NM_001005862 and NM_004448) and calculation of the 

differences in the Euclidean distances of the 2K-TSS and NDR coverage in blood from patients 

with cancer to those from healthy controls established that isoform NM_004448 was highly 

expressed in patient’s B13’s tumor. 

(e) Separate distances of the 2K-TSS (left panel) and NDR coverage (right panel) confirms that 

isoform NM_004448 was highly expressed in patient B13’s tumor. 

(f) The TSS giving rise to higher expressed isoforms of genes with several TSSs was identified 

in 7 of 8 genes within focal amplifications in B13 and B7. 
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