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Abstract 

The coupling of ecology and evolution during range expansions enables mutations to 

establish at expanding range margins and reach high frequencies. This phenomenon, 

called allele surfing, is thought to have caused revolutions in the gene pool of many 

species, most evidently in microbial communities. It has remained unclear, however, 

under which conditions allele surfing promotes or hinders adaptation. Here, using 

microbial experiments and simulations, we show that, starting with standing adaptive 

variation, range expansions generate a larger increase in mean fitness than spatially 

uniform population expansions. The adaptation gain results from ‘soft’ selective 

sweeps emerging from surfing beneficial mutations. The rate of these surfing events 

is shown to sensitively depend on the strength of genetic drift, which varies among 

strains and environmental conditions. More generally, allele surfing promotes the rate 

of adaptation per biomass produced, which could help developing biofilms and other 

resource-limited populations to cope with environmental challenges.  
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Introduction  

The dynamics of adaptation has been intensely studied both theoretically and 

experimentally in situations where the time scales for demographic and adaptive 

change are vastly separated. Populations can then be treated as either stable or as 

having an effective population size summarizing the effect of demographic variations 

on time scales much faster than the adaptive dynamics considered (Muller 1932; Crow 

and Kimura 1965; Crow and Kimura 1970). 

However, demographic equilibrium is frequently disrupted by, for instance, 

environmental changes, population growth, competition among species and local 

adaptation (Excoffier et al. 2009). The fate of a genetic variant then both depends on 

and influences the demography of a dynamically changing population. Consequently, 

demographic and evolutionary changes can become tightly coupled (Ferriere and 

Legendre 2012).  

Such coupling between ecology and evolution is a particularly salient feature 

of range expansions (Excoffier and Ray 2008). Many mutations occur in the bulk of a 

population where they have to compete for resources with their neighboring 

conspecifics. Mutations that, by chance, arise in a region of growing population 

densities have a two-fold advantage: They enjoy a growth rate advantage compared 

to their conspecifics in the slow-growing bulk regions, and their offspring will have a 

good chance to benefit from future net-growth if parent-offspring locations are 

correlated. These correlated founder effects, summarized by the term “allele surfing”, 

lead to complex spatio-temporal patterns of neutral mutations and can rapidly drive 

mutations to high frequency by chance alone (Edmonds et al. 2004; Klopfstein et al. 

2006; Travis et al. 2007; Hallatschek and Nelson 2008). 

The importance of allele surfing has been increasingly recognized over the last 

10 years (Excoffier et al. 2008; Excoffier et al. 2009; Waters et al. 2013). Allele surfing 

is believed to be a ubiquitous process in populations that constantly turn over, for 
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instance, by range expansions and contractions, local extinction or expulsion and re-

colonization (Hanski 1998; Freckleton and Watkinson 2002; Haag et al. 2005; Taylor 

and Keller 2007; Arenas et al. 2011). While these features are shared by many 

populations, they are most evident in microbial communities that frequently expand to 

colonize new surface regions in the environment or during infections (Cho and Blaser 

2012; Costello et al. 2012).  

Microbial experiments have shown that in the absence of selection allele 

surfing creates large mutant clones that are extremely unlikely to arise via neutral 

evolution of well-mixed populations. Characteristically, these clones take the shape of 

sectors with boundaries that exhibit characteristic fractal properties (Hallatschek et al. 

2007). The random wandering of sector boundaries is a manifestation of genetic drift, 

as has been demonstrated experimentally in various micro-organisms, including 

bacteria, single-celled fungi and social slime molds, and under various demographic 

scenarios (Hallatschek et al. 2007; Korolev et al. 2011; Drescher et al. 2013; Freese 

et al. 2014; van Gestel et al. 2014). 

While allele surfing is well understood in the neutral case, we do not have a 

comprehensive picture of its adaptive potential. In particular, it is unclear how efficiently 

pre-existing adaptive variation (Barrett and Schluter 2008) is selected for during range-

expansions:  Since allele surfing relies on enhanced genetic drift, it reduces the 

efficacy of selection per generation (Hallatschek and Nelson 2010; Peischl et al. 2013; 

Peischl and Excoffier 2015). On the other hand, for populations of the same final size, 

selection has more time to act at the front of a range expansion than in a comparable 

well-mixed expansion, which could promote adaptation (Hallatschek and Nelson 2010; 

Zhang et al. 2011; Greulich et al. 2012; Hermsen et al. 2012).  

Here, we test whether allele surfing helps or hinders adaptation using microbial 

competition experiments to measure the efficiency of selection during growth 

processes. To get a sense of the range of possible evolutionary outcomes, we focus 

on two extreme cases: spatial range expansions and pure demographic growth of 
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panmictic populations. We find increased adaptation during range expansions and 

rationalize our quantitative results using theory and simulations. 

 

Materials and Methods 

Strains and Conditions: Each experiment was performed using a pair of 

microbial strains that are distinguished by fluorescence and a selectable marker. The 

fluorescent color difference allows measuring the relative abundance of each strain in 

competition experiments by fluorescence microscopy as well as flow cytometry. The 

selectable marker was used to tune the selective difference between the strains in the 

following way: One strain of the pair, the sensitive strain (called ‘wild type’), grows 

slower in the presence of a drug, while the other strain, the resistant strain (called 

‘mutant’), is largely unaffected. Tuning the concentration of the drug in the medium 

thus allowed us to adjust the selective difference between both strains. Selective 

advantages on plates and in liquid culture were measured separately for a range of 

drug concentrations using the colliding colony assay (Korolev et al. 2012) and flow 

cytometry (for S. cerevisiae), respectively (see Appendix C in Supporting Information), 

which give consistent results (see supplementary Fig. B1a). Selective differences 

reported throughout were obtained from linear fits.  

Strains. We used S. cerevisiae strains with W303 backgrounds, where 

selective advantages were adjusted using cycloheximide. For experiments with E. coli, 

we used both DH5α and MG1655 strains, tuning fitness differences using tetracycline 

and chloramphenicol, respectively. Additionally, pairs of strains differing only in the 

fluorescent marker allowed us to perform truly neutral competition experiments (S. 

cerevisiae, S. pombe, E. coli). S. cerevisiae and E. coli strains with constitutively 

expressed fluorescent proteins were used to study the dynamics of cells at the front. 

A detailed description of all strains and growth conditions is found in Appendix 

C. 
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Main Experiment: Adaptation from standing variation during two types of 

population expansions (see Fig. 1a): For each pair of mutant and wild type, a mixed 

starting population of size 𝑁i was prepared that contained an initial frequency 𝑃i of 

mutants having a selective advantage s, defined as the relative difference between 

mutant and wild-type growth rate (Korolev et al. 2012). The population was then grown 

to final size 𝑁f in two ways, through a range expansion and, for comparison, through 

uniform growth, and the final mutant frequency 𝑃f was determined. The associated 

increase in mean fitness 𝑊̅ follows as ∆𝑊̅ = (𝑃f − 𝑃i)𝑠. 

Uniform Growth: Mixtures of cells were grown in well-shaken liquid medium to 

the desired final population size and the final fraction of mutant cells was determined 

using flow cytometry. 

Range Expansion: Colony growth was initiated by placing 2µl of the mixtures 

onto plates (2% w/v agar) and incubated until the desired final population size was 

reached. The number 𝑁sec of sectors was determined by eye; the final fraction 𝑃f was 

measured using image analysis (see Appendix C for details).  

 

Cell-Tracking Experiments: To investigate the dynamics of cells at advancing 

colony fronts, we continually imaged the first few layers of most advanced cells in 

growing S. cerevisiae and E. coli colonies between a coverslip and an agar pad for 

about four hours using a Zeiss LSM700 confocal microscope. The resulting stack of 

images were segmented and cells were tracked as described in Appendix C. 

 

Meta-Population Model: To simulate evolutionary change during the different 

modes of growth, we adapted a classic meta-population model for growing microbial 

colonies, the Eden model (Eden 1960) (Fig. 2a, Appendix A).   

Range Expansion: The population spreads on a lattice and each lattice point is 

in one of three states: empty, wild type or mutant. Growth of the populations occurs by 
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randomly selecting an occupied “source” site with empty neighbors and copying it into 

a randomly chosen empty neighbor site. A mutant is more likely to be picked than a 

wild-type site by a factor of 1 + 𝑠. This process is repeated until the colony has reached 

the final average radius 𝑅𝑓 and the final mutant fraction 𝑃𝑓 is determined.  

Uniform Growth: The range expansion simulation was modified such that a 

target site was an empty site randomly drawn from the entire lattice, rather than from 

the sites neighboring a given source site.  

 

Individual-Based Simulations: To study the relevance of microscopic details 

on the adaptation process, we simulated a growing colony as a two-dimensional 

collection of sphero-cylinders (rods with hemispherical caps) of various lengths 

interacting mechanically (see (Farrell et al. 2013) and Appendix A for details). The cells 

continuously grew (and divided) by consuming nutrients, whose concentration was 

explicitly computed.  

 

Results 

The Adaptive Potential of Range Expansions 

Our competition experiments in yeast show that when a population grows from 

a mixture of wild-type cells and faster growing mutant cells by a range expansion (Fig. 

1a), it exhibits on average a larger final mutant frequency 𝑃f  than a well-mixed 

population grown to the same final population size 𝑁𝑓 ≈ 2 × 108  (Fig. 1h). The 

difference in final mutant frequency between range expansion and uniform growth 

increases strongly with increasing selective advantage 𝑠 of the mutants. For instance, 

for 𝑠 = 0.15, mutants make up nearly 50% of the final population (Fig. 1d), in contrast 

to less than 10% mutant frequency in the well-mixed population. The discrepancy 

between both growth modes is even more pronounced when we plot the change ∆𝑊̅ =
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(𝑃f − 𝑃i)𝑠 in mean fitness (Fig. B2). Hence, adaptation from pre-existing mutations 

leads to a much stronger increase in mean fitness in our experiments when a given 

population increase occurs via the expansion of range margins rather than by a 

homogeneous density increase.  

The spatial distribution of the mutant alleles visible in Fig. 1b-d indicates that 

the observed adaptation gain of range expansions hinges on the formation and growth 

of “sectors”. These clonal regions are the footprints of surfing mutants that have locally 

established at the edge of the range expansion (Hallatschek et al. 2007; Hallatschek 

and Nelson 2010; Korolev et al. 2012). Sectors contain the vast majority of mutants in 

the population: If one removes the mutants that reside in sectors from the analysis, or 

chooses initial frequencies so low that sectors do not occur, the adaptation gain is 

essentially absent. 

 Selection has a strong impact on the shape and size of sectors: While a single 

mutant sector in yeast is stripe-like in the neutral case, it has a trumpet-like shape and 

can represent a substantial fraction of the total population when the mutants have a 

selective advantage (compare Figs. 1b-d). The rapid increase of sector size with 

selective advantage of the mutant strain is quantified in Fig. 1j. For instance, a single 

mutant sector with selective advantage 𝑠 = 0.15  contains roughly 5%  of the total 

population in our experiments. Under these conditions, a single clonal sector is like an 

adaptive “jackpot” event that can cause a substantial increase in the mean fitness of 

the population.  

However, the early stages of surfing are a highly stochastic process, and 

therefore these jackpot events are rare. This is reflected in the rather small number of 

sectors (proportional to the initial frequency of mutants, see Fig. B3) detected in our 

experiments. The colonies shown in Fig. 1b-d, for instance, were started with about 

103 founder mutants in the inoculum, but only exhibit a handful of sectors (Fig. 1i). The 

number of sectors varies strongly between replicates (Fig. 1i, inset) and, if the mutants 

are very infrequent initially, there is a substantial chance that no sectors form (Fig. B4). 
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Importantly, while the number of sectors is generally small, it increases with selective 

advantage, further contributing to the adaptation gain in range expansions.  

Towards a Minimal Model for Adaptation by Gene Surfing 

The population dynamics of our colonies differs from uniform growth in 

numerous aspects: Cells are delivered to the plate in a droplet, which forms a ring of 

cells after evaporation (Deegan et al. 1997). The cells start to grow and push each 

other across the surface of the agar. The population grows at first exponentially, until 

the growth of the core of the colony slows down due to nutrient depletion behind the 

front. The further advancement of the front is driven by a layer of proliferating cells (the 

“growth layer” (Hallatschek et al. 2007; Mitri et al. 2015)) at the edge of the colony (Fig. 

B5).  

While some of these complexities are specific to microbial colonies and biofilms 

(Nadell et al. 2010), elevated growth rates at range margins combined with local 

dispersal are the characteristic features of range expansions. To see whether these 

features alone could reproduce the observed pattern of adaptation, we created a 

simple meta-population model (Methods), in which the frontier advances by random 

draws from the demes within the range margins. This simple model has been shown 

to exhibit universal fractal properties of advancing interfaces (Kardar et al. 1986), 

which have also been measured in bacterial range expansions (Hallatschek et al. 

2007).  

As can be seen in Fig. 2, a simulation analog of Fig. 1, the model mirrors our 

experimental findings: Beneficial mutations have a higher frequency in populations that 

have undergone a range expansion than uniform expansion. The simulations also 

reproduce the stochastic formation of sectors and the qualitative dependence of sector 

number and size on the selective advantage. Thus, the patterns of adaptation seen in 

our colony experiments seem to originate from the few general features of range 

expansions that are incorporated in our minimal simulations.  
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Indeed, we now provide mathematical arguments and individual-based 

simulations to show how the key features of range expansions conspire to generate 

the observed adaptation gain; detailed mathematical derivations are provided in 

Appendix A. 

Qualitative Explanation for Adaptation Gain 

We shall begin with a simple, qualitative argument that demonstrates an 

important difference between range expansions and uniform growth. In a well-mixed 

population, the mutant frequency grows exponentially with time, 𝑃f ∝ 𝑒𝑠𝑇. The number 

𝑇 of generations, however, increases only logarithmically with the final population size, 

𝑇 ∝ ln 𝑁f , such that the mutant frequency changes by 𝑃f/𝑃i = (𝑁f/𝑁i)
𝑠 . In our 

experiments, this leads to a modest relative change in mutant frequency, e.g., by a 

factor of 2 for a 6% beneficial mutation over the course of the growth process, which 

corresponds to about 12 generations. Importantly, the absolute frequency remains well 

below 1 when the initial frequency is small. Moreover, the final mutant frequency varies 

relatively little among different replicates, as quantified by the coefficient of variation 

(Fig. 1h inset). This is because nearly all initially present cells give rise to clones, with 

similar clone sizes, each corresponding to only a minute fraction of the total population. 

In contrast to uniform growth, more generations need to pass to reach the same 

final population size 𝑁f  in a radially expanding population (𝑇 ∝ 𝑁f
1/2

 in a radially 

expanding population, in contrast to 𝑇 ∝ log(𝑁f) in the well-mixed case). This implies 

that selection has more time to act during a range expansion, so that one might expect 

an increased final mutant frequency.  

Adaptation Gain Depends on Sector Shape and Number 

The above run-time argument captures the main reason for the adaptation 

gain, but it ignores two important counterforces: (i) The efficacy of selection is reduced 

during a range expansion, because the frequency of a selected mutation increases 
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only algebraically with time, in contrast to exponential sweeps in uniformly growing 

populations. (ii) Only few of the initially present cells give rise to expanding clones. 

Therefore, to fully understand the adaptive potential of range expansion we must 

examine the mechanism of sector expansion and formation, the latter being an 

inherently stochastic process caused by enhanced genetic drift at the front 

(Hallatschek et al. 2007). Ignoring any interaction between sectors and the small 

fraction of mutants in non-surfing clones, we can estimate the final frequency 𝑃f of 

mutants by multiplying the number 𝑁sec of sectors with their relative frequency 𝑃f
∗ in 

the population, 

𝑃f = 𝑃f
∗ × 𝑁sec. 

While simple deterministic arguments exist to predict the frequency 𝑃f
∗  of 

individual clones, new population genetic theory is required to predict the number 𝑁sec 

of sectors. Remarkably, we shall see that the number of sectors is sensitive to 

microscopic details of the population growth process.   

 Final Frequency 𝑷f
∗ of Expanding Clones. The two boundaries of sectors in 

radial range expansions are logarithmic spirals (Korolev et al. 2012). These spirals 

emerge from the origin of the sector at a characteristic opening angle 𝜑(𝑠) ≈ 2√2𝑠 that 

is set by the selective advantage s of the mutant (Hallatschek and Nelson 2010). Up 

to logarithmic corrections, one therefore expects a final frequency of mutant cells from 

a single sector to be 𝑃f
∗ ≈ 𝜑(𝑠)/2𝜋 ∼ √𝑠 in large colonies (see Eq. (A11) for the full 

result). This means that a single initial mutant can give rise to a macroscopically large 

clone of order √𝑠. The fractional size of mutant sectors grows even faster in range 

expansions with straight rather than curved fronts. 

 Sector Number 𝑵sec. The establishment of beneficial mutations is generally a 

result of the competition between random genetic drift and the deterministic force of 

selection. At the coarse-grained description of clones in terms of sectors, genetic drift 

manifests itself in the random wandering of sector boundaries, ultimately a result of 
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randomness in the reproduction process (Hallatschek et al. 2007).  Balancing the 

random sector boundary motion with the deterministic sector expansion due to 

selection, we show in Appendix A (see Eq. (A15)) that the number of sectors is 

proportional to s in two dimensions. Note that although the 𝑠 -dependence of the 

number of sectors in two-dimensions is identical to Haldane’s classical result “2𝑠” for 

the establishment probability of beneficial mutations (Maruyama 1970; Patwa and 

Wahl 2008), the proportionality changes in the three-dimensional case to a predicted 

s3.45 (Appendix A), which may be relevant to the evolution of solid tumors.  

Modeling the Onset of Surfing   

While our minimal model reproduces aspects of the experimental data 

reasonably well (see Fig. A2), it cannot predict how microscopic details influence the 

adaptation dynamics. Microscopic details are summarized by a fit parameter, the 

effective deme size, which enters our expression for the number of sectors 𝑁sec (Eq. 

(A19)). 

To study directly how these microscopic factors influence the number of 

sectors, we developed an individual-based off-lattice simulation framework for 

microbial range expansions, where each cell is modeled explicitly as a growing elastic 

body of variable aspect ratio (see Methods and Appendix A). These computer 

simulations reveal that surfing events result from a complex competition between 

selection and genetic drift: The probability for an individual cell to form a sector (the 

surfing probability) increases with selective advantage 𝑠  but the increase is much 

faster for colonies with a smooth front line than for colonies with strongly undulating 

fronts (Fig. 3i). The observed difference between the rough and smooth fronts can be 

explained intuitively as follows: If a mutant resides in a front region that is lagging 

behind neighboring wild-type regions, it will likely be overtaken and enclosed by the 

neighboring wild-type regions, despite its higher growth rate (Fig. 3g). Such “occlusion” 

events are more likely for rougher fronts, thus increasing the probability that beneficial 
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mutations are lost by chance. In line with this explanation, we find that colonies with 

rougher fronts also exhibit higher levels of genetic drift, as quantified (Hallatschek et 

al. 2007) by the lateral (perpendicular to the expansion direction) displacement of 

lineages from their origin (Fig. 3j). Importantly, we find that front roughness can be 

strongly influenced by several parameters that can vary among strains and conditions 

(Fig. A11, Tables A1, A2). 

Moreover, we find that only mutations that occur very close to the front line 

have any chance of long-term surfing (Fig. 3h). For our experiments, this implies that 

only those ancestral mutants have a chance to surf that, by chance, are in the first few 

cell layers of the dried inoculated droplet. The narrowness of the layer from which 

surfers are recruited, moreover, makes an important prediction about surfing of de 

novo mutations: Since the width 𝜆 of the growth layer where mutations occur can be 

much wider than the average width 𝑑 of the cells in the front line, the effective mutation 

rate 𝜇eff of mutations occurring in the growth layer is the bare mutation rate 𝜇 reduced 

by a factor of 𝑑/𝜆, which is on the order of a few percent in most microbial colonies. 

Hence, the vast majority of beneficial mutations are effectively wasted in expanding 

populations because they occur behind the front line. Therefore, during range 

expansions with de novo mutations, a lot fewer surfing events should be observed than 

expected for a given mutation rate (as measured by, e.g., fluctuation analysis) and 

surfing probability (as measured by, e.g., the number of sectors), especially for a thick 

growth layer. This may contribute to the accumulation of deleterious mutations during 

range expansions. 

Experimentally Probing the Onset of Surfing  

Our individual-based model made two crucial predictions about the early 

stages of surfing, which we tested in a series of experiments described below. 

 (i) Surfing occurs only directly at the front. Control measurements show that 

the number of surfing events is proportional to the initial frequency (Fig. B3) and not 
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significantly sensitive to the total number of cells, as long as they form a contiguous 

perimeter around the initial droplet (Fig. B6). These observations are consistent with 

the hypothesis that surfing events originate in the front region of the colony. To test 

whether surfers arise in the very first cell layer only, we took time-lapse movies (SI 

movies 1 and 2) of an advancing front at a resolution that allows us to track lineages 

backward in time. The resulting genealogies show that only cells at the very front 

remain as ancestor of future populations. We can extract histograms of ancestor 

distances from the front (Fig. 3b, d; see also Fig. B10), showing that cells have to be 

within about one cell diameter to have any chance of giving rise to a successful lineage.  

(ii) The strength of genetic drift influences surfing rates, and is highly variable. 

We repeated our competition experiments using pairs of E. coli (Methods) strains and 

found up to an order of magnitude differences in surfing probability, i.e., proportion of 

surfing mutants 𝑁sec/𝑁mut,  for a given selective advantage (Fig. 4). This underscores 

that the selective advantage of a mutation alone has little predictive power over the 

probability of surfing. The reason is that allele surfing also depends on the strength of 

genetic drift, which can be estimated from the number of sectors emerging in neutral 

competition experiments (Fig. 4a, c, e). Fig. 4g shows a clear correlation between the 

number of surfing beneficial mutations and the number of surfing neutral mutations, 

for four conditions and different fitness effects. This suggests that measuring the 

strength of random genetic drift is necessary to predict the efficacy of adaptation.  

The difference between strains can partly be understood from time-lapse 

movies of the colony growth at single-cell resolution (SI movies 1 and 2). While cell 

motion perpendicular to the front direction is limited in yeast colonies, there is strong 

dynamics within the E. coli front. Tracking the cells through 3 hours of growth 

elucidates the difference in cellular dynamics, as shown in Fig. 3a and c. We quantify 

this observation by measuring the cells’ lateral displacement (Fig. 3e-f, Appendix C), 

which is about an order of magnitude stronger in E. coli compared to budding yeast, 

explaining (at least part) of the difference in genetic drift. The same effect can be 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 19, 2016. ; https://doi.org/10.1101/049353doi: bioRxiv preprint 

https://doi.org/10.1101/049353
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 1
5
 

observed in computer simulations of the individual-based model (Fig. 3i, j). 

While it may not seem surprising that genetic drift varies somewhat (though not 

an order of magnitude) between taxa due to differences in the reproductive process, 

we also found that the level of genetic drift varies among different growth conditions 

for the same species. Fig. 4c-f show the results of competition experiments between 

two differently labeled but otherwise identical E. coli strains (DH5α background) at two 

different incubation temperatures. Notice that the neutral sectoring pattern undergoes 

a striking change: While only few sectors can be observed at 37°C, many spoke-like 

sectors arise at 21°C. Importantly, surfing probabilities varied, as predicted, with 

observed variations in the strength of genetic drift: repeating the establishment 

experiments at lower temperatures shows that the number of established clones 

indeed increased for smaller amounts of genetic drift (Fig. 4g, h). 

 

Discussion 

Laboratory evolution experiments usually investigate the rate of adaptation per 

unit time. This is the relevant quantity when resources are abundant or replenish faster 

than they are consumed, as for example in a chemostat (Kawecki et al. 2012).  

By contrast, in our experiments we have compared the adaptive outcome of 

two types of population expansions, range expansion and uniform growth, under the 

condition that both types lead to the same final population size, no matter how long it 

may take. Thus, we have effectively measured the rate of adaptation per cell division 

or, equivalently, per biomass produced. We believe this is the crucial comparison when 

population growth is resource-limited, which may arguably apply not only to microbial 

biofilms (Stewart and Franklin 2008; Mitri et al. 2015), but also to various other types 

of natural populations, including tumors, and spreading pathogens (Lee 2002; Ling et 

al. 2015).  

Our experiments show that, starting from standing adaptive variation, range 
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expansions generate a larger, often much larger, mean fitness increase in microbial 

communities than equivalent uniform population expansions. In essence, this results 

from the effective serial dilution of the pioneer population, generated by the fact that 

the offspring of pioneers tend to be the pioneers of the next generation. As a 

consequence of these spatio-temporal correlations, selection can act over more 

generations at the front of a range expansion than in a uniform expansion.  

However, because the relevant pioneer population is small, sampling effects 

(genetic drift) are important: The gain in adaptation comes in partial sweeps, visible in 

our experiments as large “sectors”, which represent successfully surfing alleles. The 

total adaptation gain during a range expansion depends on both the number of sectors 

and the size of sectors. While the shape of sectors simply reflects the selective 

advantage of the mutants, the stochastic number of sectors is a result of the 

competition between selection and (strong) genetic drift in the pioneer population. 

Thus, predicting the number of sectors, and ultimately the rate of adaptation in 

population expansions, requires a measurement of both the strength of selection and 

genetic drift. In microbial experiments, the strength of genetic drift, which is related to 

the front roughness, can be measured by neutral mixing experiments with fluorescently 

labeled strains. Such measurements show that the strength of genetic drift varies by 

orders of magnitude among strains and conditions like growth medium or temperature, 

affecting surface roughness, growth layer width, or cell shape, as illustrated in Fig. 5. 

Thus, changes in the microbial growth processes can strongly influence the adaptive 

potential of range expansions via their impact on the strength of genetic drift. This may 

be important, for instance, for adaptation in developing biofilms with their complex 

surface properties (Xavier and Foster 2007; Drescher et al. 2013), and could be tested 

in flow chamber experiments. 

Our results underscore the adaptive potential of allele surfing: Although, as was 

found previously in the neutral case, allele surfing is a rare event that depends on 

enhanced genetic drift at the frontier (Hallatschek et al. 2007), it becomes more likely 
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as the selective advantage of the mutation increases. Nevertheless, out of the pre-

existing mutant population only few mutants manage to establish and surf at the 

frontier. The ones that do, however, leave a strong mark on the population as a whole; 

driven by selection, their descendants sweep to high frequencies in the population. 

In other words, allele surfing turns a population expansion into a high-paying 

evolutionary slot machine (Luria and Delbrück 1943): The expected gain in fitness is 

high on average but it relies on rare surfing events controlled by the competition of 

genetic drift and selection. Range expansions can thus lead to large evolutionary 

change if these jackpots events do occur. By contrast, well-mixed populations lead to 

a homogeneous growth of all cells, resulting in less overall change in frequencies. 

As our experiments have focused on standing genetic variation, they have ignored the 

impact of spontaneous mutations occurring during the population expansion. 

Enhanced genetic drift at expanding frontiers is expected to promote the genetic load 

due to new deleterious mutations (Travis et al. 2007; Hallatschek and Nelson 2010; 

Peischl et al. 2013; Lavrentovich et al. 2015), which may lead in extreme cases to a 

slowdown of the population expansion, for instance when “mutator” strains are 

involved. Thus, enjoying an adaptation increase from a range expansion may require 

a sufficiently low rate of deleterious mutations. 

Strikingly, our expanding colonies shifted from a predominantly wild-type to a 

largely resistant population under quite weak selective pressures. We hypothesize that 

adaptation by allele surfing could be a general mechanism for efficiently shifting the 

balance between pre-existing types after an environmental change. Moreover, a 

proposed connection (Lambert et al. 2011) between drug resistance in bacterial 

communities and malignant tissues suggests that similar effects could be at play in 

solid tumors that harbor standing variation prior to drug treatment.  

Allele surfing may also help explain the efficient adaptation seen in some cases 

of species invasions, such as in cane toads, which developed longer legs in the course 

of the invasion of Australia (Phillips et al. 2006). Although we do expect our results to 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 19, 2016. ; https://doi.org/10.1101/049353doi: bioRxiv preprint 

https://doi.org/10.1101/049353
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 1
8
 

carry over to more complex scenarios, sex, death, recombination, dominance, and 

heterogeneities in resources and selection pressures may significantly complicate the 

dynamics. Key differences could arise, for instance, if mutants do not have an 

expansion velocity advantage, but are instead merely outcompeting the wild-type 

individuals within already occupied regions. In this case, we expect sectors to reach 

substantially lower frequencies than in our experiments.  

Adaptation by gene surfing matches the pattern of a “soft” selective sweep  

(Hermisson and Pennings 2005; Barrett and Schluter 2008), in which multiple adaptive 

alleles sweep through the population at the same time, however with a unique spatial 

structure. Although these sweeps can be strong, as seen in our experiments, they may 

be hard to identify in population genomic studies when they carry along different 

genomic backgrounds. However, as sequencing costs drop further and spatial 

sampling resolution increases, the genomic signal of these localized soft sweeps may 

become directly discernable. 
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Figures 

 

Fig. 1: Adaptation from standing variation during a population size increase. 

Adaptation during the growth of a budding yeast population from an initial size 𝑁i to 𝑁f is 

studied for two demographic scenarios, Range Expansion and Uniform Growth. (a) 

Schematic of the experimental assay: Cultures of a wild-type and a faster-growing mutant 

strain are mixed at an initial mutant frequency 𝑃i = 0.02. Subsequently, a mixed population 

of initially 𝑁i = 5 × 104 cells is grown to a final population size of 𝑁f = 2 × 108. The growth 

process occurred either on agar plates (“Range Expansion”) over the course of 5 days, or 

overnight under uniform growth conditions (“Uniform Growth”). The selective advantage 𝑠 

of the mutants is controlled by the concentration of cycloheximide, which inhibits the growth 

of the wild-type cells. The fluorescent microscopy images (b-d) show the distribution of both 

mutant (yellow) and wild-type (blue) cells at the end of range expansion experiments with 

selective advantage of 𝑠 = −0.01, 0.08, and 0.15, respectively. Scale bars are 2mm. (e-g) 

After plating the final populations of the uniform growth experiments, one obtains a 

distribution of single colonies with a color ratio representing the ratio of mutants to wild type. 

(h) Final mutant frequency and corresponding coefficient of variation (inset) as a function of 

selective advantage determined in range expansions (blue, 35 replicates) and under 

uniform growth (gray, 2 replicates).  Notice that the final mutant frequency is larger for range 

expansions and increasingly so for larger selective differences. (i) Number of sectors 𝑁sec 

at the end of range expansions as a function of selective advantage. The inset illustrates 

the spread of data points as a box plot. (j) Final frequency 𝑃f
∗ per sector, defined as the area 

of a single sector normalized by the area of the entire colony, as a function of selective 

advantage 𝑠. The inset displays the same data using a logarithmic axis for the frequency 

per sector. Only sectors without contact to other sectors were selected for analysis. Error 

bars are standard error of the mean throughout. The measurements for (h, i, j) were all done 

on the same 35 replicates per data point. 
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Fig. 2: Adaptation from standing variation emerging in a meta-population model of 

population growth. (a) Illustration of the algorithm underlying our coarse-grained 

simulations (Methods). A lattice site at the population frontier is chosen and copied into an 

empty neighboring lattice site. The newly occupied site inherits the state of the parent site. 

(b-d) State of the lattice at the end of three simulations. To mimic our experiments in Fig. 1, 

we initiated the expanding population as an occupied disk (dashed line) of radius 𝑅i ≈ 550 

such that a random fraction 𝑃i = 0.02 of lattice sites is of the mutant type, and simulated 

until the final radius 𝑅f ≈ 3𝑅i was reached. (e) Final mutant frequency 𝑃f and corresponding 

coefficient of variation 𝐶v (inset) as a function of selective advantage 𝑠 determined in range 

expansions (blue, 500 simulations per condition) and corresponding simulations of uniform 

growth (gray, 3 simulations per condition, see Methods for algorithm) for the same 

parameters. Both final frequency and variation are larger for range expansions. (f) Number 

and standard error of mean of sectors at the end of range expansions as a function of 

selective advantage for the same simulations. Inset illustrates the spread of data points as 

a box plot. (g) Frequency per sector 𝑃f
∗, calculated from colonies with only a single sector, 

which were simulated using a low initial mutant fraction 𝑃i = 0.005. 

 
 

 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 19, 2016. ; https://doi.org/10.1101/049353doi: bioRxiv preprint 

https://doi.org/10.1101/049353
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 2
7
 

  

 
Fig. 3. Surfing depends sensitively on location and the strength of genetic drift. Time-

lapse microscopy (top row) and individual-based simulations (bottom row) reveal cell-scale 

dynamics at the front of expanding colonies. (a, c) Segmented micrographs of the initial front 

(bottom cells) and the front after three hours of growth (top cells) in S. cerevisiae (a) and E. 

coli (c) colonies, respectively. Colored lines track lineages backward in time (see also Figs. 

B8-B10). The histograms in (b, d, h) quantify how surfing success depends on position: The 

probability density 𝑝(∆) that the lineages tracked for 3 hours back in time lead to an ancestor 

that had a distance ∆ (in unit of cell diameters) to the front. Note the pronounced peak in 

both experiments (b, c) and simulations (h). (e) Illustration and measurement of the random 

meandering of tracked lineages. We measure the lateral displacement 𝛿𝑦 (in units of cell 

diameters) a lineage has undergone while moving a distance 𝛿𝑥 along the direction of the 

front propagation, and average 〈𝛿𝑦2〉 over all lineages. (f) Average (root mean square) 

lateral displacement of lineages in expanding colonies, showing that E. coli lineages are 

fluctuating substantially more strongly than S. cerevisiae lineages (absolute value at a given 

𝛿𝑥). The lateral displacement in both cases follows a characteristic scaling (slope), as 

expected for a spatially unbiased growth process with a rough front (Appendix A). These 

experimental observations can be reproduced in simulations (j) of expanding rough and 

smooth fronts, respectively. (g) In simulations with rough fronts, surfing beneficial mutations 

(light green) are frequently occluded by neighboring wild-type domains (dark green). (i) As 

a consequence, the number of sectors are much lower for rough than smooth fronts, for 

identical initial mutant frequency 𝑃𝑖 and front length 𝐿. 
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Fig. 4: Adaptation during range expansions for different strains and conditions. (a-f) 

Top row: Images of colonies after neutral range expansions (Methods) with an initial 

mutation frequency of 𝑃i = 0.5. The number of sectors formed (panel g) and their shape 

(see Fig. B7) varies between S. cerevisiae and E. coli and temperature at which colonies 

are grown. The bottom row shows corresponding range expansions when mutants have a 

selective advantage of 𝑠 ≈ 0.15, at low initial mutation fraction of 𝑃i = 0.005. Scale bars are 

2mm in each image. (g) The number 𝑁sec  of sectors normalized by the number 𝑁mut  of 

mutant cells in the outside rim of the inoculum as a function of the selective advantage of 

the mutants for different species, strains, and growth conditions (about 35 replicates per 

data point). The asterisk (*) denotes the use of the neutral strain pairing as opposed to the 

mutant-wild-type pair. (h) The number of sectors 𝑁sec normalized by the initial fraction 𝑃𝑖 

against the normalized number of sectors in the neutral case shows a clear correlation 

between neutral dynamics and the surfing probability of advantageous mutant clones: 

weaker genetic drift (more sectors in neutral competitions) is indicative of a higher surfing 

probability. Panel (h) is obtained by interpolating data from panel (g) for the selected values 

of 𝑠. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 19, 2016. ; https://doi.org/10.1101/049353doi: bioRxiv preprint 

https://doi.org/10.1101/049353
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 2
9
 

 

 

Fig. 5: Variability of genetic drift across species, strains, and environmental 

conditions. Each image shows a colony of two neutral strains grown with a starting 

frequency 𝑃i = 0.5. Colored frames indicate the main differences between images. E. coli 

colonies (a-e) exhibit fewer sectors and are less regular than yeast colonies (f-g), which 

produce many sectors. Environmental factors, in particular temperature (a-b) or composition 

of media (c-d) also influence the strength of genetic drift. Even for identical conditions, 

different E. coli strains exhibit varying morphologies and sector numbers: For example, 

mutations influencing cell shape (e) may leads to straighter sectors boundaries and more 

sectors, although cell shape alone does not accurately predict the strength of genetic drift 

(compare E. coli (a-d) and S. pombe (g), which are both rod-shaped). All scale bars are 

2mm. 

 

 

 
 

 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 19, 2016. ; https://doi.org/10.1101/049353doi: bioRxiv preprint 

https://doi.org/10.1101/049353
http://creativecommons.org/licenses/by-nc-nd/4.0/


Allele surfing promotes microbial adaptation from standing variation
Appendix A: Theory and Simulations
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1 Coarse-grained simulations and analytical results

1.1 Simulation algorithm

We simulate range expansions using a metapopulation model on a lattice, similar to the Eden model. Initially,
the central site of an empty lattice is filled with a single cell. In each time step, a cell with at least one empty
neighboring lattice site is randomly chosen to divide into one of the empty sites in its 4-site neighborhood. If
there are mutants in the colony with a selective advantage s, the algorithm first randomly chooses whether to
forward the wildtype or mutant population, where the mutants are chosen with probability

p(MT) =
(1+ s)NMT

(1+ s)NMT +NWT
= 1− p(WT), (A1)

where NMT and NWT are the number of mutant and wild type site having empty neighbors.
Standing variation. The colony is first grown to a radius Ri (by running the simulation T = πR2

i steps;
for Fig. 2, T = 106) of only wild types. Then, filled lattice sites are randomly populated with wild types and
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Figure A1: Sketch of the expansion of a sector in a linear (left) and a radial range expansion (right). While
sectors have a constant opening angle ϕ in a linear expansion, their boundaries form logarithmic spirals in the
radial expansion case, enclosing an angle ϕ that increases logarithmically with the radius Rf (cf. Eq. (A9)).

mutants at a specified ratio Pi. The colony is grown a total of 8πR2
i time steps, i.e., to a final radius of about

2.8×Ri. This corresponds roughly to the radial increase in our experiments.
For the scaling function below, Pi was varied between 0.02 and 0.005 to minimize interaction between

sectors. Sectors were counted by identifying all mutant clones that have at least one member with at least one
empty neighboring lattice site at the end of the simulation.

De novo mutations. Instead of starting from a mixture of wild type and mutant sites, we can allow for
spontaneous mutations. Populations are grown from a single individual, and every new individual has a chance
µ of converting to the mutant type, having an advantage s. Here, we do not consider back mutations.

Long range jumps. To interpolate between the well-mixed and the colony case, we simulate long range
jumps by following Ref. [1]. A random number Y between 0 and 1 is drawn and transformed to a jump length
r by computing

r = (Y [Lµ −Cµ ]−Cµ)−1/µ . (A2)

Here, L and C specify the maximum and minimum jump length. The new variable r is distributed as a truncated
power-law with a power-law tail, i.e., p(r)∼ r−µ . To allow for long range jumps, we employ periodic boundary
conditions. In addition, an angle ϕ is drawn between 0 and 2π . In every step, a random lattice site (xi,yi) is
chosen and the jump attempted to the lattice site located closest to (xi+ r cosϕ,yi+ r sinϕ); if the site is empty,
it is filled, otherwise a new site is chosen. Only successful jumps forward the time variable, such that exactly
one jump happens in each time step. After Ti steps, mutants are introduced by randomly mutating each filled
lattice with a probability equal to the desired ratio of wild type to mutant cells. Thus, the initial frequency of
mutants is stochastic, mimicking the situation in real experiments.

1.2 Final mutant frequency

In the following, we refine the scaling arguments given in the main text to explain the increased adaptation
gain in range expansions. To reach the same final population size, a larger number of generations at the front
of a range expansion is necessary, allowing selection to act for longer, compared to exponentially growing
populations. Yet, selection is weaker at the advancing front in the sense that a selective advantage s does not
lead to an exponential increase in frequency like it does in well-mixed populations. Nevertheless, we argue
below that the former effect is in general stronger than the latter, leading to a net increase in adaptation gain.
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Well-mixed population

Starting from Ni initial cells, of which a fraction Pi are mutants, the number of mutant cells M(t) at time t
(in generations) is M(t) = PiNi2(1+s)t . To reach final population size Nf, it takes t = log2(Nf/Ni) generations,
hence, M(t) = PiNi(Nf/Ni)

1+s. The final mutant frequency thus becomes

Pf =
M(t)

Nf
= Pi

(
Nf

Ni

)s

= Pi(1+η)s, (A3)

where we have defined the fold change η = Nf/Ni− 1 of the total population size. The adaptation gain in a
well-mixed population can be quantified through the fold change RWM of the mutant frequency

RWM =
Pf

Pi
−1 = (1+η)s−1≈ s log(1+η) (A4)

for s� 1. For small η , this reduces to RWM ≈ ηs.

Flat front range expansion

Start from a region of (constant) height L and width w0, containing Ni = Lw0 individuals (see sketch in Fig. A1,
left). We assume that the width grows at speed v, and sector size increases with perpendicular velocity v⊥ =√

s(s+2)v [5]. The final mutant population size is composed of the size of (roughly triangular) beneficial
sectors times their number, plus the neutral contribution, i.e.,

M(t) = vv⊥t2Nsec +PiNf, (A5)

where we have ignored fluctuations of the sector boundaries as well as the typically small number of mutants
in non-surfing clones. The number of generations to reach final size Nf is t = (Nf−Ni)/vL = ηNi/vL. Plugging
this into M(t) and dividing by Nf to find the final mutant frequency, we get

Pf =
v⊥η2Ni

(1+η)vL2 Nsec +Pi. (A6)

The number of sectors can be estimated as Nsec = LPiu(s), where u(s) is the (unknown) probability to form a
sector per individual at the front, i.e., the surfing probability. Hence, we obtain the fold change RFF = Pf/Pi−1
in the flat front case as

RFF =
v⊥η2Niu(s)
(1+η)vL

=

√
s(2+ s)η2Nfu(s)
(1+η)2L

≈
√

s(2+ s)Nfu(s)
L

(A7)

for η � 1. Thus, for a final population size much larger than the initial population size (as is the case in our
experiments), the size of the adaptation gain RFF depends critically on the surfing probability u(s). This indi-
cates that a purely deterministic treatment is not appropriate to understand adaptation during range expansions.
Adaptation crucially hinges on sector formation. Nevertheless, for some fixed s, Eq. (A7) shows that in the long
run, range expansions will always produce a larger adaptive outcome than exponentially growing populations
as the linear scaling of RFF with Nf will eventually overtake the logarithmic scaling of RWM.
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Radial expansions

The situation is less straightforward in a radial expansion, as the shape of sectors is influenced by both inflation
and selection. Their shape and size can be understood from simple geometrical arguments [5, 6], which we
replicate and extend here.

Mutants grow faster into the expanding territory by a factor of 1+s (see sketch in Fig. A1, right). This speed
difference together with the requirement of continuity of the colonial edge enforces a fixed speed at which
mutants expand (wild-types retract) along the colony edge. The transverse expansion speed v⊥ =

√
s(s+2) (in

units of the wild-type front speed) follows from equating the speed of radial growth in both compartments (1
vs. 1+ s). As a consequence of the transverse expansion of the two sector boundaries, the opening angle ϕ of
the sector increases with radial distance according to

dϕ = 2v⊥ dr/r = 2
√

s(2+ s)dr/r. (A8)

Integration yields a logarithmic increase with radius,

ϕ(Rf|Ri) =

Rf∫
Ri

dϕ = 2
√

s(2+ s) log(Rf/Ri), (A9)

as was already shown in Ref. [6]. Assuming large sectors such that the initial period of sector formation is
negligible, the final frequency of the sector is obtained by integration,

P∗f ≈ (πR2
f )
−1

Rf∫
Ri

drrϕ(r) =

√
s(2+ s)
2πR2

f

(
R2

i −R2
f +2R2

f log
(

Rf

Ri

))
. (A10)

Defining the fold change in the population size η through Nf = πR2
f = (1+η)πR2

i = (1+η)Ni, we get

P∗f ≈
√

s(2+ s)
2π

(
log(1+η)− η

1+η

)
≈
√

s(2+ s)
2π

log(1+η), (A11)

where we have assumed η � 1 in the final step. We again define Nsec ≡ LPiu(s), where here L = 2πRi, and
obtain the fold change in mutant frequency for radial expansions as

RRE = (P∗f /Pi)Nsec = P∗f 2πRiu(s)≈
√

s(2+ s) log(1+η)Riu(s). (A12)

Comparing this to the well-mixed result we obtain

RRE

RWM
≈
√

2
s

Riu(s) (A13)

for 0 < s � 1. As in the flat front case, the surfing probability enters in determining the adaptation gain
increase of the range expansion compared to well-mixed population. The crucial difference to the flat front
case lies in the fact that RRE/RWM is independent of Nf. It is thus ultimately the number of sectors that elevates
the adaptation gain in the radial range expansion over the well-mixed one. Therefore, a detailed understanding
of the establishment of sectors is necessary. Previous calculations of the surfing probability in boundary-limited
radial range expansions have predicted u(s)∼

√
s [5], which would remove the dependence of RRE/RWM on s.

As we have seen in Fig. 1I, this is not the case in our experiments, where we find instead u(s)∼ s. This linear
dependence is reminiscent of the classical Haldane result, but we show below that this similarity is fortuitous
and can in reality be traced back to surface growth properties of colonies.
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Figure A2: Validating the minimal model with experimental results. (a) Final mutant frequency Pf in S. cere-
visiae colonies, as a function of Nsec

√
s(2+ s), which exhibits the predicted linear scaling (see eq. (A12),

dashed line). Each dot corresponds to a colony with mutant selective advantage given by the color legend.
Black dots are average values over mutant frequency bins of width 0.04. (b) The ratio between RRE and RWM,
normalized by the surfing probability of a single clone, as a function of s is consistent with the predicted

√
s

scaling (Eq. (A13), dashed line). (c) Final mutant frequency Pf in E. coli DH5α colonies, as a function of
Nsec

√
s(2+ s). Black dots are average values over mutant frequency bins of width 0.1.

Validating the minimal model

Our result thus far neglects the fact that the mutant sectors have a larger area than a wild-type sector of the same
opening angle because it bulges outward at the colony rim. Numerical estimates of the correction show that
this contribution is not always negligible, especially for large s. To improve the calculation, one could account
for the fractional area of the circular cap associated with a mutant sector of given opening angle and selective
effect. In addition, the sector shape computed above is only valid far from the inoculum, where initial stochastic
effects of sector formation no longer impact the shape of the sector. Lastly, in some of our experiments, sectors
collide and hence cover a slightly smaller area than if they had grown undisturbed.

Nevertheless, we can compare our experimental data to the theoretical prediction. Fig. A2 (left) shows the
final mutant frequency P∗f as a function of the number of sectors, for each colony, multiplied by the

√
s(2+ s).

The averaged data (black dots), fall on a line, as predicted by Eq. (A12).
In addition, our results predict that the ratio RRE/RWM of the adaptation gain from a range expansion and

uniform growth should scale as u(s)/
√

s. Normalizing by the experimentally measured surfing probability
u(s)≈ Nsec/2πRi, we recover the predicted scaling

√
s, see Eq. (A13) and Fig. A2 (right).

1.3 Number of surfing clones

The deterministic calculations for the adaptation gain in range expansions hinge on the likelihood of the forma-
tion of sectors. Computing the number of sectors, or ”surfing clones”, is a stochastic problem that involves the
fluctuation statistics of growing microbial colonies. While these fluctuations are complicated to derive micro-
scopically, their overall scaling behavior is well understood, allowing us to derive the relationship between the
number of sectors, the selective advantage and the initial conditions of the population.

Linear fronts, standing variation

Consider first the case of a linear front with a small initial fraction Pi� 1 of mutant sites. As the population
edge advances, the extinction and growth of a mutant sector will be dominated by genetic drift as long as the
lateral size l⊥ of the sector is smaller than some characteristic size lsel.

⊥ . Once a sector has reached this size
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Figure A3: Number of sectors in Eden simulations with standing variation follows a scaling form. Left: Scaling
function starting from a droplet of radius r0. Here, we chose the initial mutant frequency as Pi = 0.02 like in
the experiments. Lines are guide to the eye, showing the predicted constant and linear regimes. At large s,
deviations from a linear scaling become visible, because sectors inevitably begin to interact. Right: Scaling
function for Pi = 0.005, this time grown from a single cell to a population of (average) radius r0, then inserting
mutants at ratio Pi, for a wide range of r0. The scaling function is virtually indistinguishable from that for flat
initial conditions. The plot legend explains the color code for the selective differences.

lsel.
⊥ , selection takes over and it is unlikely that the sector goes extinct (at the front). Thus, we may call lsel.

⊥
the establishment size for surfing. If we knew lsel.

⊥ we could estimate the surfing probability by a martingale
argument, as follows. Since the dynamics of a sector below size lsel.

⊥ is neutral, all of the lsel.
⊥ front ancestors have

the same chance to generate a clone that drifts up to size lsel.
⊥ or larger. Thus, we can estimate the probability

u(s) of a mutant clone to surf as

u(s)∼ 1
lsel.
⊥

. (A14)

Since we begin with a fraction of Pi initially mutated sites, we expect a number Nmutu(s)∼PiL/lsel.
⊥ of successful

surfing events, where L is the length of the front. Note that one has a simple linear dependence on Pi only for
small Pilsel.

⊥ � 1. For larger Pi, sectors may overlap when they are still smaller then their establishment length,
leading to (predictable) deviations from the observed scaling: The actual number of surfing events will be
smaller than estimated.

The establishment length lsel.
⊥ , and consequently the number of surfers, is controlled by a competition be-

tween selection and genetic drift. The smaller s, the larger the sector needs to become, by chance, for selection
to take over genetic drift. Genetic drift in our colonies depends on the roughness properties of the colony edge:
The rougher the front, the larger the stochastic evolutionary outcomes are. To estimate the establishment length
lsel.
⊥ , we need to invoke the universal fractal properties of Eden fronts which are in the Kardar-Parisi-Zhang

(KPZ) universality class [7]. Conditional on survival, a neutral sector reaches size l⊥, roughly, after a time of
order l3/2

⊥ , a KPZ prediction that was confirmed in Ref. [8]. Thus, the magnitude of the speed of growth of the
width of a sector due to random genetic drift scales as vdrift

⊥ ∼ l⊥/l3/2
⊥ = l−1/2

⊥ (again in units of the wild-type
front speed). Selection on the other hand increases a sector width linearly in time according to a constant speed
vsel.
⊥ =

√
s(s+2) [5]. Both speeds balance at a length scale of lsel.

⊥ ∼ (s(s+ 2))−1. Genetic drift dominates
(vdrift
⊥ � vsel.

⊥ ) when l⊥� lsel.
⊥ and selection dominates (vdrift

⊥ � vsel.
⊥ ) for l⊥� lsel.

⊥ . Knowing the establishment
length now allows us to predict the scaling of the number of sectors Nsec ∼ PiL/lsel.

⊥ ∼ PiLs(s+2).
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Figure A4: Number of sectors for colonies with de novo mutations obeys a scaling relation, for a wide range of
selective advantages s and final radius Rf (see color legend). The number of sectors Nsec was computed by only
counting mutant clones that were both still present at the front at the end of the simulation and that were born
before Rf/2. Because sectors inevitably have large areas for large s, we record the actual number of mutations
Nmut in Rf/2 for simulations, which was set to an average of 5 to limit interactions between clones. The scaling
function saturates for ξ → 0 and scales as ξ for ξ → ∞ (dashed lines are guides to the eye). The inset shows
the same data on linear scale.

Radial expansion

To model a circular colony, one has to take into account the effect of ”inflation” [5]: As the colony expands, the
circumference increases in size. As a consequence, domain boundaries tend to move away from one another at
a speed proportional to their current (front) distance, keeping the opening angle of the sector constant. Inflation
enables mutations to fix even if they are neutral because, on long times, inflation is a stronger driving force than
genetic drift. The speed vinfl.

⊥ of inflation of a sector of front size l⊥ is such that it keeps the sector angle l⊥/R
constant. Thus, we have vinfl.

⊥ ∼ l⊥/R. Balancing this speed of inflation with the speed vdrift
⊥ of genetic drift

yields another characteristic length linfl.
⊥ ∼ R2/3. This is the establishment length for a neutral sector: If a neutral

sector reaches size larger than linfl.
⊥ , it will be protected by inflation from going extinct through genetic drift.

For the case with selection, we expect that if linfl.
⊥ � lsel.

⊥ , establishment will be effectively neutral as a result
of the competition of drift and inflation. If on the other hand we have linfl.

⊥ � lsel.
⊥ then surfing is controlled by

the competition of drift and selection. This expectation can be summarized by the scaling form

Nsec = PiR/linfl.
⊥ FSV

(
linfl.
⊥ /lsel.

⊥
)
= PiR1/3FSV

(
sR2/3

)
, (A15)

which depends on the initial radius R of the colony and the selective advantage s of the mutations. The scaling
function FSV(ξ ) satisfies

FSV(ξ )∼

{
const. for ξ → 0,
ξ for ξ → ∞.

(A16)

Our analysis thus predicts that when the selection coefficient is small, the number of sectors will be roughly
equal to the neutral number of sectors, scaling as the third root of the initial radius. For larger selection coeffi-
cients, on the other hand, the number of sectors will scale like the radius times the selection coefficient s. This
analysis is supported by simulations, see Fig. A3.
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Figure A5: By fitting the experimental data to the scaling relation from Fig. A3, we obtain estimates for the
appropriate value of a in our experiments. We find a = 0.8µm for budding yeast and a = 12µm for E. coli.
Note that since the number of sectors in E. coli experiments depends roughly exponentially on s, we only fit the
constant as s→ 0. For the E. coli data points, we interpolated from the experimental results to obtain values for
small s.

3D range expansions

The preceding discussion can be extended to the important case of three-dimensional radial range expansions,
pertaining to, e.g., growing solid tumors. In 3D, a neutral surviving sector has lateral size l⊥ after a time of
order l1.56

⊥ (another KPZ prediction [7]). We can estimate the surfing probability of a clone of size lc by the
probability u(s) ∼ (R/lc)−2 that a clone from a neutral mutation reaches a solid angle l−2

c . The length scale lc
again arises from the competition between drift, vdrift

⊥ ∼ l⊥/l1.56
⊥ , and selection, vsel.

⊥ ∼
√

s(2+ s) and is given by
lc∼ (s(2+s))−1.79. The surfing probability of a mutant with selective advantage s thus scales u(s)∼ s3.45. Thus,
weakly beneficial mutations have a particularly small changes of surfing in three-dimensional populations.

De novo mutations

So far, we have focused on the number of sectors emerging from a standing variation experiment. One may
alternatively consider the situation of a colony growing from a single cell. Mutations occur at a constant rate
µ per lattice site. Then, we can follow very similar scaling arguments as for standing variation to arrive at the
same scaling form,

Nsec = µRf
Rf

linfl.
⊥

FDN
(
linfl.
⊥ /lsel.

⊥
)
= µR4/3

f FDN

(
sR2/3

f

)
, (A17)

however, with a different scaling function FDN(ξ ) satisfying the same asymptotic limits,

FDN(ξ )∼

{
const. for ξ → 0,
ξ for ξ → ∞.

(A18)

Note that the length scale Rf appearing in these equations defines the final radius of the colony.

1.4 Mapping the Eden model to colonies

The Eden model is, ultimately, a simplified lattice model that aims to capture the coarse behavior of a colony.
To map Eden model predictions to an actual colony, one needs to fit the relevant phenomenological parameters.

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 19, 2016. ; https://doi.org/10.1101/049353doi: bioRxiv preprint 

https://doi.org/10.1101/049353
http://creativecommons.org/licenses/by-nc-nd/4.0/


Nf/Ni=103

Nf/Ni=104

Nf/Ni=105

Nf/Ni=103

Nf/Ni=104

Nf/Ni=105

0.05 0.10 0.50 1

101

10-1

103

105

s

RRE

RWM

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.5

1

5
10

50

s

R
R

E
, R

W
M

R
R

E
 /R

W
M

a b

Figure A6: Adaptation gain in range expansions (RRE, Eq. (A12)) and uniformly grown (RWM, Eq. (A4))
populations. The number of sector was computed from Eq. (A19) with a = 0.8µm. A prefactor of 0.05 was
introduced to match the experimentally measured sector size. We find that, for a wide range of parameters, the
range expansion gives rise to a higher adaptation gain. In our experimental set-up, we expect the uniformly
grown population to become more efficient than the range expansion around s = 0.7 (dashed line in (b)).

As we will see, the values of these parameters will also tell us to what extent the Eden model may be applicable.
A lattice site has a width and a length. By the rotational symmetry of a colony, we expect that we have to

choose, in general different length a‖ and a⊥ for the radial and transverse width of a lattice site, respectively. The
choice of these lengths leaves selection and inflation unaffected but it influences the strength of genetic drift:
Conditional on survival, a neutral sector reaches size l⊥, roughly, after a radial distance of order a‖(l⊥/a⊥)3/2,
as was measured in Ref. [8]. Thus, the magnitude of the speed of growth of the width of a sector due to
random genetic drift scales as vdrift

⊥ ∼ l⊥/[a‖(l⊥/a⊥)3/2] = (a3/2
⊥ /a‖)l

−1/2
⊥ . The competition between genetic

drift, selection and inflation then leads to the establishment lengths lsel.
⊥ ∼ (a3

⊥/a2
‖)(s(s + 2))−1 and linfl.

⊥ ∼
(a⊥/a2/3

‖ )R2/3, respectively. Applied to an actual colony, the Eden model prediction thus takes the form

Nsec = PiR/linfl.
⊥ FSV

(
linfl.
⊥ /lsel.

⊥
)
= Pi(R/a)1/3FSV

[
s(R/a)2/3

]
. (A19)

This result shows that we have effectively one parameter a = a3
⊥/a2

‖, a ”microscopic” length scale, to fit the
predictions of the Eden model in the case of standing variation. Nevertheless, it is useful to think of this one
length scale as the ratio a3

⊥/a2
‖ of two length scales, because there are natural candidates for the radial and

transverse length scales a‖ and a⊥. For instance, in the case of yeast, it is natural to choose the radial length
to be the thickness of the growth layer and the transverse length simply as a cell diameter – there is no other
transverse length scale in this problem. Then one expects a3

⊥/a2
‖ < 5µm. This explains then why the fitted

microscopic length scale a = 0.8µm (see Fig. A5) is smaller than a single yeast cell diameter.
In the case of E. coli on the other hand, we do have another transverse length scale. Time lapse movies reveal

that E. coli colonies buckle on length scales of order a⊥ ≈ 20µm. Indeed, the fitted microscopic length scale
a = 12µm is much larger than a single E. coli cell.

Once the value of a is known, we can compare the adaptation gain in uniformly grown population and range
expansions and find the parameter range for which range expansions are more efficient. Our model predicts for
the case of S. cerevisiae (Fig. A6) and our experimental parameter range (a = 0.8µm, Nf/Ni ≈ 104) that range
expansions are more efficient up to values of s < 0.7, although we do not expect our model to be accurate at
such high values of s. Hence, for most experimentally accessible parameters, we expect range expansions to
exhibit a higher adaptation gain than well-mixed growth.
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In the case of de novo mutations, we obtain the growth layer width λ as an additional parameter, since only
mutations arising at the front are able to surf. Hence,

Nsec =
µRf

λ
(Rf/a)1/3FDN

[
s(Rf/a)2/3

]
. (A20)

Note that, in the de novo mutation case, one has to measure both the mutation rate, growth layer width and
roughness length scale to obtain predictions from the Eden model.

Limits of the coarse-grained Eden model

Our coarse-grained lattice model is a meta-population model, meaning that each lattice site represents a sub-
population of cells. The size Ne of those subpopulations can be estimated once we have determined the linear
dimensions a‖ and a⊥ of a lattice site (see previous paragraph). Thus, we may estimate Ne ≈ a‖a⊥/Acell, which
amounts to 2.5 and 200 in the cases of budding yeast and E. coli, respectively.

The parameter Ne allows scrutinizing a precondition for the applicability of our coarse-grained model. If,
for a given selective advantage, Ne is too large, we cannot assume that mutants will fix in a subpopulation
with probability equal to their current ratio. This is assumed when we set the mutation rate in the Eden model
equal to the mutation rate of single cells. The same assumption is made in the case of standing variation,
when we assume that the initial fraction of mutant lattice sites is equal to the initial frequency of mutant cells.
If subpopulations behaved like well-mixed sub-populations, for instance, we would have to require Nes� 1.
Note that this condition is strongly violated in our E. coli experiments. For Nes� 1, the effective mutation
rates as well as the initial frequencies would have to be multiplied by Nes. Since, however, our populations are
manifestly spatial, it is not clear how a more microscopic model would behave. Therefore, we also implemented
more explicit simulations that take into account the shape and steric interaction between cells (described in
detail below).

1.5 Analysis of long-range jumps

We extend our meta-population by allowing for long-range jumps in each step. The rationale behind introducing
long-range dispersal is that well-mixed growth and colonies are natural opposites in that they feature no and
strong spatial correlations and mixing. Long-range jumps allow for a breaking of spatial correlations and thus
lie in between these two cases. We then also expect the adaptation efficacy to interpolate between the colony
and the well-mixed case as the likelihood of long-range jumps increases.

As described in the Methods section above, we can vary the likelihood of large jumps by tuning the parameter
µ . Hallatschek and Fisher [1] showed that the expansion speed of a growing population, in terms of its range,
depends on the parameter δ = µ − d, where d is the spatial dimension. If δ > 0, the range of the population
grows as a power-law, while for δ < 0, long-range jumps are frequent and the range of the population grows as
a stretched exponential.

Introducing mutants with selective advantage s at initial frequency Pi = 0.02, we studied the influence of
dispersion range on the efficiency of adaptation. The naive expectation would be that in the limit of short-ranged
jumps, adaptation should be as efficient as in the classical Eden model, whereas long-range jumps increase the
mixing of the population such that adaptation becomes less efficient, asymptotically becoming well-mixed.

Fig. A7 shows examples of populations grown from Ni = 103 to Nf = 106 for different values of µ and s. We
observe that the final frequency of the mutants increases with s, as expected, but does so much more strongly
when µ is large. As µ increases, the populations become increasingly patchy, with mutants primarily residing in
confined spatial regions. For µ = 5, we even observe sectors very much like in Eden simulations. Fig. A8 shows
the results of 750 simulations for each set of parameters (µ,s). We see indeed that the average final frequency of
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Figure A7: Examples of populations undergoing range expansions with long-range dispersal. Different selec-
tive advantages s of the mutants (shown in red) over the wild type (gray) are shown as the columns. Varying
the ”spread” coefficient µ (rows), we obtain almost well-mixed populations for small µ (when large jumps are
common), while sectors emerge for very large µ (when practically no large jumps occur). For intermediate µ ,
mutants accumulate in patches that resemble sectors more and more as µ increases. The larger µ , the higher
the mean final mutant frequency, as shown in Fig. A8.
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Figure A8: Final mutant frequency in populations grown with varying degrees of dispersal. All populations
grown from Ni = 103 to Nf = 106 with a starting fraction of Pi = 0.02. Populations with long-range jumps
show adaptation efficiency intermediate between well-mixed and strictly short-ranged range expansions (Eden
model). For µ � δ , the final mutant frequency becomes indistinguishable from the well-mixed case. Results
obtained by averaging over 750 simulations.

mutants increases as long-range jumps become increasingly rare. Thus, long-range jumps can hinder adaptation
from standing variation even in spatially structured growing population because they effectively induce mixing
which allows previously trapped clones to continue to grow, allowing for fewer generation to happen at the very
front (for fixed final population size).
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Parameter E. coli-like (long) cells Yeast-like(short) cells

Diffusion constant D
[
µm2/h

]
500 500

Initial nutrient concentration [a.u.] 1 1

Nutrient uptake rate κ [a.u./h] 1.5 or 1.8 4

Young modulus E [kPa] 100 500

Minimal division time T [min] 40 120

Cell diameter [µm] 1 4

Minimal length [µm] 2.5 0

Damping coefficient ζ [1016 h−1] 65 65

Friction coefficients k⊥ = 4, k‖ = 0.25 k⊥ = k‖ = 1

Width of simulation box L [µm] 340, 640 320, 640, 1280

Table A1: Parameters of the off-lattice model.

2 Individual-based simulations: method and results

2.1 Model description

In order to develop a microscopic understanding of the surfing process, we used a model based on that used in
Ref. [2], with a few modifications. Our model strikes a balance between computational cost, limited knowledge
of the nature of mechanical interactions between cells in microbial colonies, and the reproduction of experi-
mental observations made in this work.

All cells are modeled as sphero-cylinders of variable length l and identical radius r0. Cells interact mechan-
ically through Hertzian repulsion: F = 4

3 Er1/2
0 h3/2 where F is the repulsive force, E is the effective Young

modulus of the cell, r0 is the radius and h is the overlap between interacting cells. The dynamics of the cells is
described by the overdamped Newton equations of motion:

d
dt
~r =

K−1~F
m

, (A21)

d
dt

ϕ =
τ

ζ J
. (A22)

Here,~r is the position of the cell’s center of mass, ϕ is the angle the cell with the x-axis, ~F is the total force, τ

is the total torque acting on the cell, m is the mass, J is the momentum of inertia of the sphero-cylinder, and ζ

is the damping (friction) coefficient. The matrix K

K = ζ

[
k‖n2

x + k⊥n2
y (k‖− k⊥)nxny

(k‖− k⊥)nxny k⊥n2
x + k‖n2

y

]
(A23)

takes into account the possible anisotropy of friction between the cell and the surface: k⊥ is the damping coef-
ficient in the direction perpendicular to cell’s major axis, k‖ is the damping coefficient in the parallel direction,
and~n = (cosϕ,sinϕ). For isotropic friction, k⊥ = k‖, and the matrix K reduces to the identity matrix times the
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Quantity E. coli-like (long) cells Yeast-like(short) cells
κ = 1.5 κ = 1.8 κ = 4

Thickness of the growing layer λ [µm] 31 25 95
Roughness of the growing layer σ [µm] 12 15 3.6
Speed of the growing layer [µm/h] 26 23 31
Average area 〈A〉 per cell [µm2] 1.7 2.0 15.6
Average linear size a of cell [µm] 1.3 1.4 4.5
Thickness of the growing layer λ/a [cells] 24 18 24

Table A2: Steady-state properties of the growing layer.

friction coefficient. To model cells which prefer to roll rather than to slide we set k⊥ < k‖, whereas for cells
that prefer to slide along the major axis it holds that k⊥ > k‖. In particular, for ”yeast-like” cells we assume
isotropic friction, whereas for ”E. coli-like” cells we set k⊥ > k‖. This replicates experimentally observed long
”chains” of aligned cells and high surface roughness of E. coli colonies.

Cells consume nutrients diffusing in the 2D substrate beneath the colony of cells. The concentration c(~r, t)
of the nutrient evolves in time as

∂c
∂ t

= D
(

∂ 2c
∂x2 +

∂ 2c
∂y2

)
−κ ∑

i
δ (~ri−~r) , (A24)

where D is the diffusion constant, κ is the nutrient uptake rate and {~ri} are the positions of the cells. We assume
that cells elongate at a constant rate as long as the local nutrient concentration is larger than 2% of the initial
concentration, and divide when they double in length. The length of individual cells thus increases linearly in
time in our model. Although this is not true for real microorganisms [3, 4], deviations from linear growth are
not important for the population level we are concerned with.

We model faster-growing mutants by increasing both the elongation rate and the nutrient uptake rate by 1+s,
where s is the selective advantage of the mutant over the wild type.

To reduce computation time we simulate only a narrow strip of width L at the front of the colony, with
periodic boundary conditions in the direction perpendicular to the direction of growth, and fix cells which lag
behind the growth layer.

All parameters are listed in Table A1. The assumed values have been chosen to make simulations computa-
tionally feasible while at the same time to approximately reproduce experimental observables: the average cell
size, the velocity of the moving front, and the thickness of the growth layer. For example, the trade-off between
speed and realism required the diffusion constant to take an unrealistically small value.

2.2 Characterization of the properties of simulated colonies

We define the growth layer as the layer at the colony front in which cells were replicating. We calculated the
thickness λ of the growth layer as the average of the shortest distances between cells at the very front of the
growth layer (first line of cells) and the last layer of cells towards the bulk still exhibiting growth.

The roughness σ was defined as the square root of the mean square deviation of the front height y(x), where
y(x) corresponds to the envelope of the front, with resolution 1µm. The speed of the front was obtained by
fitting a straight line to the average position of the front y(t).

Fig. A9 shows that the thickness and the roughness of the growing layer stabilize after some time. The
steady-state values are given in Table A2. The table also shows the average cell size determined as the area
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Figure A9: Run-in period of off-lattice simulations. Thickness λ and roughness σ of the growing layer for
”yeast-like” cells, for 10 simulation runs (different colors).
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Figure A10: Average speed of cells at a given distance from the colony front for simulated ”yeast-like” cells.

of the growing layer divided by the number of cells. This is the actual size taken by the average cell; me-
chanical compression due to growth causes this area to be slightly lower than the average area of an isolated
spherocylinder as determined by the parameters from Table A1.

We also computed the average linear cell size a as the square root of the average area, a = 〈A〉1/2. This
enabled us to express the thickness of the growing layer in cell lengths as λ/a. We adjusted the parameters of
the model for ”yeast-like” and ”E. coli-like” cells such that λ/a was approximately the same for both types of
cells.

The speed of the cells in the growing layer is a linear function of the distance from the front (Fig. A10).
This replicates well the experimentally observed behavior (Fig. SIE 8). We note that in our experiments
cessation of growth in the center of the colony and the emergence of the growing layer may be due to the
accumulation of waste rather than nutrient exhaustion. However, as demonstrated in Ref. [2], the behavior of
the model is similar regardless of whether growth is limited by nutrients or waste products, and that in both
cases growth becomes confined to a thin layer after an initial period of exponential growth, in agreement with
what is observed experimentally.
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Figure A11: The probability density that a lineage originated at distance ∆ from the front (cell lengths) given
that it fixed in the growing layer, for different selective advantages (s = 1%, 2%, 4%, 8% and 12%). Left:
”yeast-like” cells. The probability is concentrated at the very first line of cells, almost independently of selective
advantage. Right: ”E. coli-like” cells. The distribution is slightly broader but still concentrated around ∆ = 0.

2.3 Surfing probability at the front and distribution of ancestor location

To determine the surfing probability Psurf of mutants with different selective advantages we first ran simulations
in which mutant cells were randomly inserted into a steady-state growing layer. We ran between 1000 and
10000 simulations and calculated Psurf as the proportion of runs in which the mutant fixed in the growing layer.
We also determined Psurf for mutants appearing at different distances from the front.

Our results show that Psurf is very small even for quite large selective advantage s = 0.12: Psurf = 0.004 for
”E. coli-like” cells and Psurf = 0.015 for ”yeasts-like” cells for parameters as in Table A1. Fig. A11 shows that
the surfing probability quickly decreases with the distance ∆ from the front of the first (founder) mutant cell.

We then ran simulations with mutants inserted only in the first line of cells. Fig. A12 shows that ”yeast-like”
cells have a much larger Psurf than ”E. coli”-like cells. Since the two cases differ in the roughness of the growing
layer (c.f. Table A2), we hypothesized that roughness is the main factor affecting the amount of genetic drift.
To test this, we simulated ”E. coli”-like populations with reduced roughness – this was achieved by decreasing
the nutrient uptake rate (Table A2). We indeed observed an increase in Psurf, in accordance with our hypothesis.

3 Supplementary discussion: Dynamics behind the front

In our experiments, change in local allele frequencies occurs only directly at the front, and our analysis above
reflects this fact. While true for non-motile microbes, our arguments arguably extend to other cases where
spatial arrangements are mostly conserved, e.g., biofilms and to some extent, solid tumors. However, our
results are valid more generally, independently of whether sectoring is neutral or beneficial, as long as the front
advances faster than the blurring of the sectors occurs. However, if there is mixing behind the front, any spatial
inhomogeneity in local allele frequencies will eventually be blurred out.

Blurring of neutral sectors

If individuals can move randomly behind the front, existing sector boundaries will undergo diffusion and thus
have a characteristic width w scaling as w(t) ∼

√
t. The front, however, advances at constant speed and hence
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Figure A12: Left: Surfing probability Psurf versus selective advantage s for ”yeast-like” cells (”smooth front”,
orange) and ”E. coli”-like cells (”rough front”, blue. Here, κ = 1.8). Smooth fronts deviate from a line only
by about 1 cell diameter, while rough fronts exhibit a roughness of about 10 cell diameters. Parameters and
measured characteristics of the populations are given in Tables A1 and A2. Mutants were introduced only into
the first layer of cells. The surfing probability Psurf decreases with increasing roughness, but increases with
selective advantage. Right: the same plot with a logarithmic scale.

the front position r(t) ∼ t. Hence, on long time-scales, the advancement of the front is much faster than the
blurring of sectors, and sector boundaries will remain sharp near the advancing front.

Beneficial sectors behind the front

After the front has passed, beneficial sector will slowly blur due to diffusion, but may also widen or shrink as the
beneficial mutants compete with the wild type in the bulk. Even if the mutants exhibit a growth rate advantage
at the front, there is not a priori reason to assume that the same is true in the bulk, where other characteristics
than maximum growth rate may be more important. For example, a more efficient use of nutrients in poor
growth environments (like the bulk of a colony) may prove to be more advantageous than the ability to outgrow
one’s competitors when nutrients are abundant.
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Figure B1: Selective advantages s between resistant and sensitive strains as function of drug concentration for
S. cerevisiae and E. coli for different assays and conditions. (a) Budding yeast strains with W303 background
(yMM9 and yJHK111) used in Fig. 1. Best linear fit is shown and used throughout the paper. Liquid culture
fitness measurements (3 replicates from the same initial culture per data point, gray dots) over 60 generations
agree with the colliding colony result (blue dots) for a range of cycloheximide concentrations. (b) E. coli DH5α

competition (strains eOH2 and eOH3) on plates with different concentrations of tetracycline at 37◦C (blue data
points) and 21◦C (yellow data points) using the colliding colony assay. Temperature had no significant impact
on the relative fitness of the two strains. Best fit is shown through combined data and used throughout the
paper. (c) E. coli strain MG1655 competed against strain SJ102 at different concentrations of chloramphenicol,
measured using the colliding colony assay, with linear best fit. All error bars are standard error of the mean
(about 20 replicates per data condition, except for well-mixed competition).
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Figure B2: Increase in mean fitness, defined as ∆W = (Pf −Pi)s, computed from the final mutant frequency Pf
measured in Fig. 1h, with linear (a) and logarithmic axis (b). Range expansions leads to a higher increase in
mean fitness than uniform growth to the same final population size.
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Figure B3: Number of sectors Nsec counted in yeast colonies at different initial mutant frequencies Pi and
selective advantages s. The proportionality of sector number and initial mutant frequency implies that sectors
arise independently for small enough fractions. Points are averages from 30 colonies per condition, error bars
correspond to the standard error of the mean.
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Figure B4: Probability of extinction, defined as the probability of having zero sectors at the front, in yeast
colonies for a variety of initial mutant frequencies Pi and selective advantages s (35 colonies from same initial
culture per data point).
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Figure B5: Two regimes of yeast colony radius growth. Colony radii extracted from a time lapse movie of
a growing yeast colony. Single yeast cells were inoculated onto an agar plate and grown for about 12 hours.
Once microcolonies were detectable, the agar plate was transferred to a stage-top incubator and the colony was
imaged in bright-field and fluorescence light every 30 minutes. Initially, the colony radius growth exponentially,
indicating that the radius of the colony is not yet larger than the eventual growth layer thickness of the colony.
For late times, the colony radius grows linearly in time, which can be interpreted as a growth layer of constant
final thickness.
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Figure B6: Number of sectors for different number of cells in inoculum. Top: Example images show the
change of population patterning with increasing cell number in the inoculum. Here, we mixed two selectively
neutral S. cerevisiae strains (yJHK111 and yJHK112) at an initial ratio of Pi = 0.5. For large cell number N0
the population pattern does not change when increasing N0 further. (Bottom) Number of sectors measured in
standing variation assays for different inocula, for the same strains. We assayed 50 neutral colonies with an
initial ratio of Pi = 0.01 per dilution, allowing us to count individual sectors. We found no significant difference
in sector numbers when diluting a typical culture (OD=2 in the figure, corresponding to about 30000 cells in a
2µl droplet) by a factor of 10 (p > 0.05, Mann-Whitney U-test). Dilution by another factor of 10 showed again
no significant difference to the intermediate case (first 10-fold dilution), but did show a significant difference
(p < 0.05) to the original case . Taken together we conclude that the number of sectors is not sensitive to
density of the initial culture, given that the inoculum contains at least about 1000 cells in a 2µl droplet. This
means that typical pipetting errors or a small change in cell densities of the culture mixtures, which we estimate
to be in the range of at most 10 per cent, should have no impact on the number of sectors. The observations
can be understood from Fig. 3: Only cells at the front have a chance to surf, and in our experiments, the front
is imposed as an initial condition by the drying inoculum. Hence, as long as the cells in the droplet form a
continuous ring of cells (such that at every point of the ring there is a defined front), the number of cells in the
bulk of the inoculum plays no role in the future fate of the colony.
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Figure B7: Frequency per sector for E. coli DH5α grown at 37◦C (blue dots, see also Fig. 4f) together with
corresponding data for S. cerevisiae (data as in Fig. 1j). Only individual, non-interacting sectors were selected
for analysis. Each individual sector is much larger in (relative) size in E. coli than in S. cerevisiae colonies. In
fact, a yeast sector at the highest assayed selective advantage has a relative size comparable to a neutral E. coli
sector. Error bars are standard errors of the mean, from about 20 sectors per selective advantage s.
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Figure B8: Tracking of individual cell dynamics in S. cerevisiae and E. coli front reveal microscopic motion patterns. S. cerevisiae and E. coli
fronts tracked for 3 hours (full images from Fig. 3). Shown are the front of each colony at the start of the experiment (t=0) and after 3 hours. All
tracked lineages and cells are colored. White cells at the top could not be tracked, while white cells at the bottom have no tracked descendants
at the front after 3 hours.
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Figure B9: Overall front speed and speed of individual cells at and behind the front for S. cerevisiae. A.
Instantaneous front speed, defined as the difference in mean front position in each frame, and time average
(solid line). The front speed in a S. cerevisiae colony is constant over at least three hours (from SI movie 1, see
also Fig. B5). B. Speed of individual cells as a function of distance from the front. Speed was measured by
visually following 16 individual cells, initially a distance ∆ behind the front, and recording their position every
30 minutes for 90 minutes. Instantaneous speed was computed by dividing the relative change in position by
30 minutes. Here, ∆ is the distance from the front at the beginning of each 30 minute interval. For the mean
speed, data were binned in 25µm intervals. An approximately linear decrease in speed implies near-constant
growth rate at least 200µm into the bulk of the colony.
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Figure B10: Dynamics of lineages at and behind the front, extracted from SI movies 1 and 2, for S. cerevisiae
and E. coli. Front position was recorded at every time point, and the distance to the front computed for all cells.
For (a) & (b), cell trajectories were pooled together depending on their final distance ∆f from the front at the
end of the movies (see color legends). Over time, all cells falls behind the front on average, except those that
remain directly at the front until the end (for these cells, ∆f >−1).
To understand the dynamics of cells falling behind the front, we assumed that exterior parameters did not change
over the course of the experiment and that therefore, only time differences should matter. This would imply
that at any given time, the distance from the front should determine future dynamics (except for cells directly
at the front). In (c) and (d), we show the distance ∆ from the front of each cells (color scheme as in (a) and
(b), respectively), shifted such that the final distances ∆f from the front of each cell’s trajectory overlapped with
the cell trajectory with the largest ∆f (shown in red). Binning over intervals of 20 minutes reveals the average
dynamics of cells falling behind the front (black dots): the distance ∆ to the front increases exponentially (fit,
dashed line) in time, independently of position, except for cell that ”surf”, i.e., stay at the front for the full
duration of the experiment, shown in magenta.
From the shifted cell trajectories, we extracted the histograms of initial distance to the front of cells, conditional
on surfing. For the histograms in Fig. 3, we pooled cell trajectories with t + ti < 10min and t + ti < 75min for
S. cerevisiae and E. coli.
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1 Strains

S. cerevisiae – competition experiments

To perform population growth experiments, we used strains yJHK111 (’wild type yellow strain’, [1]), yJHK112
(’wild type red strain’, [1]), and yMM9 (’red mutant strain’, unpublished, courtesy of Melanie J. I. Müller).
All three strains have a W303 background (common genotype MATa bud4∆::BUD4(S288C) can1-100, see
Table C2 for details). yJHK111 expresses the yellow fluorescent protein ymCitrine, yJHK112 expresses the
red fluorescent protein ymCherry. yMM9 expresses ymCherry, but is also resistant to cycloheximide (CHX)
via mutation Q37E in gene CYH2 (while yJHK111 and yJHK112 are sensitive). Experiments with tunable
selection were performed using the pair yJHK111 and yMM9 with a variable concentration of cycloheximide
in the medium. Experiments with neutral standing variation were performed using the pair yJHK111 and
yJHK112. Note that, throughout this work, signal in the channel for the fluorescent color of the ”mutant”
(yMM9 and yJHK112) is pseudo-colored as yellow, while the fluorescent signal of the wild type (yJHK111) is
pseudo-colored as blue.

S. cerevisiae – cell tracking at front

To track cells at the front, we used strain yMG10c, a convertant of yMG10, which in turn is based on strain
yDM117 (W303 background, HO::cre-EBD, courtesy of Jasper Rine), transformed with a cassette (pMG4)
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based on pMEW90 (courtesy of Mary Wahl [2]). pMG4 contains a loxP cassette followed by ymCitrine, linked
with cyh2r via ubiquitin. yMG10 was incubated with estradiol to induce auto-recombination, and streaked onto
plates containing selective amounts of cycloheximide to select for the convertant yMG10c used for the time
lapse movie in Fig. 3, which has genotype W303 HO::cre-EBD SUC2::loxP-ymCitrine-ubq-cyh2r.

S. pombe

To investigate genetic demixing from neutral standing variation in S. pombe, we used two variants of strain
MJ95 (genotype leu1-, ura4-, h-) [3], which were obtained by replacing mCherry with the coding region for
YFP and CFP from plasmids pOH1 and pOH2 at the atb2 locus.

Plasmids with fluorescent markers cyan and yellow

pOH1 and pOH2 are based on the vector pTrc99A, with sequences for eCFP and Venus YFP inserted between
the SacI and XbaI sites, respectively. These plasmid are inducible by IPTG but we found the base level of
expression of the fluorescent proteins to be sufficient without inducer. For a more detailed description see
Ref. [4].

E. coli – competition experiments

Population growth experiments were performed using three different backgrounds:

1. DH5α transformed with pOH1 and pOH2, resulting in eOH1 and eOH2. These strains are identical to
those used in Ref. [4]. For the competition experiments, we transformed eOH2 with the plasmid pA-
CYC184 (New England Biolabs), conferring resistance to tetracycline, resulting in eOH3. Experiments
with tunable selection were performed using the pair eOH1 and eOH3 (Fig. 4), adding low concentrations
of tetracycline to the growth medium (in addition to ampicillin for plasmid maintenance). Experiments
with neutral standing variation were performed using the pair eOH1 and eOH2 (Figs. 4 & 5).

2. Strain MG1655 (not fluorescent) and its derivative SJ102 (genotype MG 1655 intC::λpR-YFP-Cmr, cour-
tesy of Ivan Matic), which constitutively expresses YFP and is resistant to chloramphenicol, allowing us
to perform experiments with tunable selection (Figs. 4 & 5) by adding low concentrations of chloram-
phenicol to the growth medium. SJ102 was also used to study the dynamics of E. coli cells at the front
(Fig. 3, SI movie 2).

3. A pair of JE 5713 [5] (cross between B6 [6] and KL228 [7, 8]), transformed with plasmids pOH1 and
pOH2, giving rise to eOH4 and eOH5, were used for competition experiments with neutral standing
variation (Fig. 5). These strains have been reported as rodA mutants but also carry a point mutation in
the gene mrdA (Waldemar Vollmer, private communication), causing a round cell shape.
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Name Composition Used for. . . Temperature [◦C]

YPD 20g/L peptone, 10g/L yeast extract, 20g/L dextrose S. cerevisiae 30

YES 5g/L yeast extract, 30g/L glucose, 225mg/L adenine, histi-
dine, leucine, uracil, lysine hydrochloride

S. pombe 30

LB 10g/L tryptone, 5g/L yeast extract, 10g/L NaCl E. coli 21, 37

M9 200mL/L 5× M9 salts [9], 5g/L dextrose, 2mM MgSO4, 0.1
mM CaCl2

E. coli (Fig. 5) 37

Table C1: Media and growth conditions used in this study. For plates, 2% w/v bacto agar was added to the
media before autoclaving. Antibiotics were added after autoclaving to cooled media.
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Strain Description Genotype Fluor. Resistance Reference Fig(s).

S. cerevisiae

yJHK111 YFP WT W303 MATa bud4∆::BUD4(S288C) can1-100
his3::prACT1-ymCitrine-tADH1:His3MX6

yellow - [1] 1,4,5

yJHK112 RFP WT W303 MATa bud4∆::BUD4(S288C) can1-100
his3::prACT1-ymCherry-tADH1:His3MX6

red - [1] 1,4,5

yMM9 RFP MT W303 MATa bud4∆::BUD4(S288C) can1-100
his3::prACT1-ymCherry-tADH1:His3MX6 CYH2::cyh2-
Q37E

red CHX unpublished 1,4,5

yMG10 converter (RFP) W303 HO::cre-EBD SUC2::loxP-RFP-loxP-YFP-ubq-
cyh2r

red G418, Nat This study -

yMG10c converted (YFP) W303 HO::cre-EBD SUC2::loxP-YFP-ubq-cyh2r yellow CHX, Nat This study 3

S. pombe

MJ95 RFP WT mCherry-atb2::hph, leu1-, ura4-, h- red Hyg [3] -

MJ95-CFP CFP WT CFP-atb2::hph, leu1-, ura4-, h- cyan Hyg This study 5

MJ95-YFP YFP WT YFP-atb2::hph, leu1-, ura4-, h- yellow Hyg This study 5

E. coli

eOH1 CFP WT NEB DH5α eCFP (pTrc99A) cyan Amp [4] 4, 5

eOH2 YFP WT NEB DH5α YFP (pTrc99A) yellow Amp [4] 4, 5

eOH3 YFP MT NEB DH5α YFP (pTrc99A) + pACYC184 yellow Amp, Tet This study 4, 5

MG1655 WT - - - Laboratory stock 4, 5

SJ102 YFP MT MG 1655 intC::λPR-YFP-CmR yellow Cm unpublished 3, 4, 5

JE5713 Round cell shape mrdA-mut - - [5] -

eOH4 CFP round cells JE5713 eCFP (pTrc99A) cyan Amp This study 5

eOH5 YFP round cells JE5713 YFP (pTrc99A) yellow Amp This study 5

Table C2: Strains used in this study.
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2 Determining fitness differences as function of drug concentration

Liquid culture (S. cerevisiae only)

Single colonies were picked and grown overnight, then diluted 1:10 in fresh media, and grown for another 3
generations to ensure growth in log phase. The resulting cultures were mixed at ratio Pi = 0.5 (measured by
OD) and about 10000 cells inoculated into the wells of a 96 well plates with fresh YPD containing a range of
antibiotics concentrations (3 replicates from the same initial culture per concentration). The plates were sealed
and grown at 30◦C overnight, then shaken vigorously for at least 1 minute. 10µl of the culture were diluted
into PBS for analysis in the flow cytometer (Beckman-Coulter Fortessa X2). Every day, about 10000 cells were
re-inoculated into fresh YPD to passage the cells for a total of 5 days, corresponding to about 60 generations.
The cultures diluted in PBS were stored at 4◦C until they were analyzed using the flow cytometer at a rate of
at most 10000 events per second. The resulting ratio of mutants to wild type increased exponentially with the
number of generations elapsed, whence the fitness difference could be calculated from the slope of the curve in
a semi-logarithmic plot.

On plates

Fitness differences were measured in separate experiments using the colliding colony assay, described briefly
in the following, see also Ref. [1]. Two 1µl droplets, each containing one of the two strains in log phase, are
placed on agar plates about 5mm apart and incubated for at least 72 hours, until a sizable interface between the
resulting colonies is formed. A circle of radius R is manually fitted to the collision interface using the Zeiss
ZEN software and the distance l between the inoculation centers is measured. The selection coefficient s can
be calculated via

s =
1−2z+

√
1+4z2

2z
, (C1)

where z = R/l. The resulting values of s were found to exhibit an approximately linear dependence on drug
concentration (Fig. B1a). We used the values of s given by the linear regression in the figures in the main text
(Fig. 1h, i, j, Fig. 4g, h). Following the results from Ref. [1], we assumed the same regression for fitness
differences on plates and in liquid culture.

3 Adaptation from standing variation during two types of population expan-
sions

Experiment and quantification

The experimental procedure for competition experiments from standing variation is described briefly in the
main text and methods therein, see also Fig. 1a for a cartoon of the experiments. Here, we provide additional
details on the experimental procedures.
All competition experiments were performed on one batch of media/plates (per experimental series) and using
the same overnight cultures. For each competition experiment on plates we also carried out fitness measure-
ments (via colliding colonies) on the same batch of plates. Final population sizes of the budding yeast colonies
were measured by resuspending colonies into PBS, diluting and replating to count colony forming units, or
measuring optical density and comparing with a previously obtained calibration.
To measure the frequency of yeast mutants in well-mixed liquid culture, we grew and mixed the strains as
described above and grew the mixture overnight in aerated culture tubes at 30◦C (2 replicates from the same
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[CHX] 0 40 80 120 160 200

Sectors 46 101 178 102 69 35

Table C3: Number of sectors analyzed per cycloheximide concentration.

initial culture per concentration). We separately checked that the competed strains had the same carrying
capacity to avoid error due to the cultures entering stationary phase. The next morning, we sampled 20µl
from each tube into 180µl of PBS. The mixture was then measured in a Beckman-Coulter Fortessa X20 flow
cytometer at a rate of at most 10000 events per second.
To determine the number of cells in the outer rim of the inoculum, Nmut, in Fig. 4h, we measured the radius r0
of the evaporated droplet (5 colonies from the same initial culture), which was easily visible under brightfield
illumination. Nmut was then calculated as Nmut = 2πr0Pi. The variable Nsec/Nmut in Fig. 4g hence corresponds
to the probability of surfing of an individual mutant cells in the very first cell layer, assuming that the droplet
rim is perfectly flat. Nsec/Nmut differs from the true surfing probability (of an individual cell in the front) by a
numerical factor of order 1 taking into account the irregularities of the droplet perimeter.

Image analysis

To measure the frequency of mutants in colonies, images of the colonies were taken with a Zeiss AxioZoom
v16 fluorescence microscope at 3.5x zoom and analyzed using custom routines written in Mathematica (Wol-
fram Research, Inc., Mathematica, Version 10.1, Champaign, IL (2015)). Because the colonies’ fluorescence
typically becomes weaker near the colony boundary, we employed a local adaptive binarization scheme. Since
individual images varied in intensity distribution, it was necessary to set the binarization thresholds by hand for
each image such that the binarized shape corresponded well to the observed sector shapes. We expect the error
from this ”subjective” choice of thresholds to be small. During binarization, the outer radius of the colony, its
center, and the radius of the inner ring, stemming from the inoculation droplet, were also measured. The fre-
quency of mutants was then calculated by measuring the area of mutants and dividing by the area of the annulus
between the outer and inner radius, i.e., the fraction inside the homeland was neglected, but the emerging bulge
(for larger s) was taken into account.
For the frequency per sector in Figs. 1 and B7, we selected only colonies that either only had a single sector, or
colonies with few sectors that did not touch. Since the colonies used for Fig. 1 had many sectors at large s, we
also used colonies from experiments with smaller Pi (0.0025, 0.005, 0.01) to acquire enough ”free-standing”
sectors. The frequency was then computed as described above. Table C3 gives the number of sectors analyzed
for each concentration of cycloheximide.

4 Growth of S. cerevisiae colony from single cell

Using a Zeiss AxioZoom v16 upright microscope, we tracked the growth of a colony (strain yMG10c) by taking
time-lapse movies of the fluorescence signal detected in a stage-mounted Okolab UNO-PLUS incubator at 30◦C
and at constant relative humidity. An agar plate in a Petri dish was inoculated with single cells and grown in the
stage-top incubator until colonies were visible at the desired magnification. Then, one colony was randomly
chosen and the time lapse movie was recorded for 48 hours, taking an image every 30 min. The colony radius
was determined by fitting a circle to the circumference of the colony.

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 19, 2016. ; https://doi.org/10.1101/049353doi: bioRxiv preprint 

https://doi.org/10.1101/049353
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 Cell tracking at the front

Experiment

For single-cell resolution time lapse movies (SI movies 1 and 2) of growing SJ102 and yMG10c, we used a
Zeiss LSM700 in confocal mode with a 488nm laser. Agar plates were inoculated with fresh culture droplets
(2µl), that were left to dry for several minutes. The agar around the droplet was then cut into a 2cm×2cm pad
and inverted onto a clean coverslip, such that the cells touched the coverslip. The coverslip with the cells was
then incubated for a day to reach steady-state growth of the colony. After mounting the coverslip in a stage-top
incubator, we mounted the incubator on the microscope and let it equilibrate for about 2h. Humidity in the
chamber was controlled by the addition of a water reservoir. E. coli cells were imaged with a 40x oil objective,
S. cerevisiae cells with a 20x air objective. Images were taken at 1 frame per minute with a dwelling time of
about 6µs/px (31s exposure per frame) for 274/228 minutes, respectively.

Analysis

For cell tracking, all frames were cleaned automatically using a median filter and contrast-adjusted. In SI
movie 2, some frames were manually retouched to remove brightness fluctuations. All frames were segmented
with a local adaptive binarization algorithm (same parameters for all frames) and objects touching the image
boundaries were removed. Because cells far behind the front could usually not be tracked accurately, we only
analyzed the first few cells layers by automatically finding the position of the front and removing segmented
objects far from it.
To determine the ancestry of cells at the front, we proceeded backwards in time. An individual cell was tracked
by creating a mask from its outline, dilating it, and computing the overlap with the previous frame. The cell’s
position in the previous frame was then determined by finding the cell with maximal overlap.
For Fig. 3, we tracked a total of 692 and 407 cells for 180 minutes in E. coli and S. cerevisiae, respectively, i.e.,
we shortened the original time lapse movies to 180 minutes. This was done to maximize the number of tracked
cells while still maintaining information over sufficiently long time scales.
To obtain the mean square displacement in Fig. 3f, we proceeded as follows. Each tracked cell in the final
frame was traced back to its ancestor 180 minutes ago. Since the front had a defined direction of motion
(which we defined as the x-axis), we measured, in each time step, the position of the cell relative to its original
position and computed the displacement y from the x-axis, and take the square. These operations are performed
for all tracked cells, and averaging is performed over bins of x-displacements to account for cells moving
by different amounts in the x-direction per frame. After averaging, the square root was taken in each x-bin,
and the curves were fitted using Mathematica. In order to compare values for S. cerevisiae and E. coli, we
divided the displacements in x and y by the effective cell sizes d, given by d = 4.5µm for S.cerevisiae and
d =
√

3.5µm×0.7µm for E.coli. The effective cell size for E. coli was determined by the harmonic mean of its
semi-axes, which were both measured directly from the time-lapse movie, as was the cell size of S. cerevisiae.

Figures

Figures of the cell tracking (Figs. 3a, c and Fig. B8) were created using Adobe Photoshop by overlaying images
of the segmented cells at t = 0 and t = 3h with the computed lineages. For Figs. 3a & c, an outline was added
to the tracked lineages and the cells in the lineage to increase visibility.
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