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Abstract 

The evolutionary origins of viruses according to marker gene phylogenies, as well as their 

relationships to the ancestors of host cells remains unclear. In a recent article Nasir 

and Caetano-Anollés reported that their genome-scale phylogenetic analyses identify an 

ancient origin of the “viral supergroup” (Nasir et al (2015) A phylogenomic data-driven 

exploration of viral origins and evolution. Science Advances, 1(8):e1500527). It suggests that 

viruses and host cells evolved independently from a universal common ancestor. 

Examination of their data and phylogenetic methods indicates that systematic errors likely 

affected the results. Reanalysis of the data with additional tests shows that small-genome 

attraction artifacts distort their phylogenomic analyses. These new results indicate that their 

suggestion of a distinct ancestry of the viral supergroup is not well supported by the 

evidence. 

 

Introduction 

The debate on the ancestry of viruses is still undecided:  In particular, it is still unclear 

whether viruses evolved before their host cells or if they evolved more recently from the host 
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cells. The virus-early hypothesis posits that viruses predate or coevolved with their cellular 

hosts [1]. Two alternatives describe the virus-late scenario: (i) the progressive evolution also 

known as the escape hypothesis and (ii) regressive evolution or reduction hypothesis. Both 

propose that viruses evolved from their host cells [1]. According to the first of these two 

virus-late models, viruses evolved from their host cells through gradual acquisition of genetic 

structures. The other alternative suggests that viruses, like host-dependent endoparasitic 

bacteria, evolved from free-living ancestors by reductive evolution. The recent discovery of 

the so-called giant viruses with double-stranded DNA genomes that parallel endoparasitic 

bacteria with regards to genome size, gene content and particle size revived the reductive 

evolution hypothesis. However, there are so far no identifiable ‘universal’ viral genes that are 

common to viruses such as the ubiquitous cellular genes. In other words, examples of 

common viral components that are analogous to the ribosomal RNA and ribosomal protein 

genes, which are common to cellular genomes, are not found. This is one compelling reason 

that phylogenetic tests of the “common viral ancestor” hypotheses seem so far inconclusive.   

 Recently, Nasir and Caetano-Anollés [2] employed phylogenetic analysis of whole-

genomes and gene contents of thousands of viruses and cellular organisms to test the 

alternative hypotheses. The authors conclude that viruses are an ancient lineage that diverged 

independently and in parallel with their cellular hosts from a universal common ancestor 

(UCA). They reiterate their earlier claim [3] that viruses are a unique lineage, which predated 

or coevolved with the last UCA of cellular lineages (LUCA) through reductive evolution 

rather than through more recent multiple origins. Their claims are based on analyses of 

statistical- and phyletic distribution patterns of protein domains, classified as superfamilies 

(SFs) in Structural Classification of Proteins (SCOP) [4]. 

Detailed re-examination of Nasir and Caetano-Anollés' phylogenomic approach [2, 3] 

suggests that small genomes systematically distort their phylogenetic reconstructions of the 
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tree of life (ToL), especially the rooting of trees. Here the ToL is described as the 

evolutionary history of contemporary genomes: as a tree of genomes or a tree of proteomes 

(ToP) [5-8]. The bias due to highly reduced genomes of parasites and endosymbionts in 

genome-scale phylogenies has been known for over a decade [5, 6]. In fact, prior to the recent 

proposal [2] these authors recognized the anomalous effects of including small genomes in 

reconstructing the ToL in analyses that were limited to cellular organisms [9] or which 

included giant viruses [3]: As they say “In order to improve ToP reconstructions, we 

manually studied the lifestyles of cellular organisms in the total dataset and excluded 

organisms exhibiting parasitic (P) and obligate parasitic (OP) lifestyles, as their inclusion is 

known to affect the topology of the phylogenetic tree” [3]. But, they may not have adequately 

addressed this problem, particularly when the samplings include viral genomes that are likely 

to further exacerbate bias due to small genomes [2, 3]. For this reason we systematically 

tested the reliability of the phylogenetic trees, especially the rooting approach favored by 

Nasir and Caetano-Anollés [2]. This approach depends critically on a pseudo-outgroup to 

root the ToP (ToL), but that pseudo-outgroup is not identified empirically. Rather, it is 

assumed a priori to be an empty set [2]. 

We show here in several independent phylogenetic reconstructions that a rooting 

based on a hypothetical “all-zero” outgroup—an ancestor that is assumed to be an empty set 

of protein domains—creates specific phylogenetic artifacts:  In this particular approach [2, 3] 

implementing the all-zero outgroup artifactually draws the taxa with the smallest genomes 

(proteomes) into a false rooting very much like the classical distortions due to long-branch 

attractions (LBA) in gene trees [10]. 

 

Results and Discussion 

We emphasize at the outset of this study that virtually all the evolutionary 
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interpretations based on phylogenetic reconstructions depend on a reliable identification of 

the root of a tree [11, 12]. In particular, the rooting of a tree will determine the branching 

order of species, and define the ancestor-descendant relationships between taxa as well as the 

derived features of characters (character states).  In effect, the root polarizes the order of 

evolutionary changes along the tree with respect to time. By the same token, the rooting of a 

tree distinguishes ancestral states from derived states among the different observed states of a 

character. If ancestral states are identified directly, for example from fossils, characters can 

be polarized a priori with regard to determining the tree topology. A priori polarization 

provides for intrinsic rooting. However, direct identification of ancestral states, particularly 

for extant genetic data is rarely possible. Consequently conventional phylogenetic methods 

use time-reversible (undirected) models of character evolution and they only compute 

unrooted trees. For example, the root of the iconic ribosomal RNA ToL or any other gene-

tree has not been determined directly [13, 14]. 

Accordingly, conventional approaches to character polarization are indirect and the 

rooting of trees is normally a two-stage process. The most common rooting method is the 

outgroup comparison method, which is based on the premise that character-states common to 

the ingroup (study group) and a closely related sister-group (the outgroup) are likely to be 

ancestral to both. Therefore, in an unrooted tree the root is expected to be positioned on the 

branch that connects the outgroup to the ingroup. In this way, the tree (and characters) may 

be polarized a posteriori [12, 14]. However, there are no known outgroups for the ToL. In the 

absence of natural outgroups, pseudo-outgroups are used to root the ToL [14]. The best-

known case is the root grafted onto the unrooted ribosomal RNA ToL based on presumed 

ancient (pre-LUCA) gene duplications [15, 16]. Here the paralogous proteins act as 

reciprocal outgroups that root each other. Unlike gene duplications used to root gene trees, 

the challenge of identifying suitable outgroups becomes more acute for genome trees.  
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To meet this challenge Nasir and Caetano-Anollés use a hypothetical pseudo-

outgroup: an artificial taxon constructed from presumed ancestral states. For each character 

(SF), the state '0' or 'absence' of a SF is assumed to be “ancestral” a priori. This artificial “all-

zero” taxon is used as outgroup to root the ToL. Further, they use the Lundberg rooting 

method, in which outgroups are not included in the initial tree reconstruction. The Lundberg 

method involves estimating an unrooted tree for the ingroup taxa only, and then attaching 

outgroup(s) (when available) or a hypothesized ancestor to the tree a posteriori to determine 

the position of the root [17]. Unrooted trees describe relatedness of taxa based on graded 

compositional similarities of characters (and states). Accordingly, we can expect the “all-

zero” pseudo-outgroup to cluster with genomes (proteomes) in which the smallest number of 

SFs is present. The latter are the proteomes described by the largest number of ‘0s’ in the 

data matrix. 

The instability of rooting with an all-zero pseudo-outgroup becomes clear when the 

smallest proteome in a given taxon sampling varies in the rooting experiments (Figs. 1 and 

2).  Rooting experiments were preformed both for SF occurrence (presence/absence) patterns 

and for SF abundance (copy number) patterns. However, we present results for the SF 

abundance patterns, as in [2]. Throughout, we refer to genomic protein repertoires as 

proteomes. Proteome size related as the number of distinct SFs in a proteome (SF occurrence) 

is depicted next to each taxon for easy comparison in Figs. 1 and 2. Phylogenetic analyses 

were carried out as described in [2, 3] (see methods). SFs that are shared between proteomes 

of viruses and cellular organisms were used as the characters (Fig. 1a) as in [2]. Initially no 

viruses are included in tree reconstructions and here the root was placed within the Archaea, 

which has the smallest proteome (503 SFs) among the supergroups (Fig 1b). When a still 

smaller bacterial proteome (420 SFs) was included, the position of the root as well as the 

branching order changed. In this case, the bacteria were split into two groups and the root 
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was placed within one of the bacterial groups (Fig. 1c). Further, when a much smaller 

archaeal proteome was included (228 SFs), the root was relocated to a branch leading to the 

now smallest proteome (Fig. 1d). Note that the newly included taxa, both bacteria and 

archaea are host-dependent symbionts with reduced genomes. 

Similarly including viruses in the analyses draws the root towards the smaller viral 

proteomes (Fig. 2). As in the rooting experiments in Fig. 1, a group of DNA viruses (107-175 

SFs) was introduced. These DNA viruses have larger proteomes than do the RNA viruses, 

but they are much smaller than most known endosymbiotic bacteria (Fig. 2d). Again, the root 

was repositioned within the DNA viruses group (Fig. 2a). Following this experiment, two 

extremely reduced (107 SFs each) endosymbiotic bacteria classified as Betaproteobacteria 

were included. These further displaced the root closer to the smallest set of proteomes (Fig. 

2b). Finally, a set of four RNA viruses (4-17 SFs) in their genomes was introduced and they 

rooted the tree within the RNA viruses (Fig. 2c). These results challenge the conclusion 

drawn previously that the proteomes of RNA viruses are more ancient than proteomes of 

DNA viruses [2]. In addition, the results contradict the purported antiquity of viral proteomes 

as such. Rather, the data suggest that there are severe artifacts generated by genome size-bias 

due to the inclusion of the viral proteomes in the analysis.  These artifacts are expressed as 

grossly erroneous rootings caused by small-genome attraction (SGA) in the Lundberg rooting 

using the hypothetical all-zero outgroup. 

Including the all-zero pseudo-outgroup in the analysis either implicitly (defined by the 

ANCSTATES option in PAUP*) or explicitly (as a taxon in the data matrix) does not make a 

difference to the tree topology and rooting. We note that including the hypothetical ancestor 

during tree estimation amounts to a priori character polarization and pre-specification of the 

root. In addition, the position of the root was the same in the different rooting experiments 

when the all-zero pseudo-ancestor was explicitly specified as the outgroup for root trees 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 18, 2016. ; https://doi.org/10.1101/049171doi: bioRxiv preprint 

https://doi.org/10.1101/049171


 7 

using the outgroup method (see supplementary Figs S1 & S2). These rooting experiments 

reveal a strong bias in rooting that favors small genomes irrespective of the different rooting 

methods—outgroup rooting, Lundberg rooting and intrinsic rooting—used to root the ToL 

with the “all-zero” hypothetical ancestor. This SGA artifact is comparable to the better-

known LBA artifact that is associated with compositional bias of nucleotides or of amino 

acids that distort gene trees [10]. 

The use of artificial outgroups is not uncommon in rooting experiments when rooting 

is ambiguous [11]. Artificial taxa are either an all-zero outgroup or an outgroup constructed 

by randomizing characters and/or character-states of real taxa. Although rooting experiments 

with multiple real outgroups, or randomized artificial outgroups that simulate loss of 

phylogenetic signal can minimize the ambiguity in rooting the all-zero outgroup has proved 

to be of little use [11, 14]. Conclusions based on an all-zero outgroup are often refuted when 

empirically grounded analysis with real taxa are carried out [14]. Indeed, the present rooting 

experiments (Figs. 1 and 2) clearly show that the position of the root depends on the smallest 

genome in the sample when a hypothetical all-zero ancestor/outgroup is used. In effect, the 

rooting approach favored by Nasir and Caetano-Anolles [2] is not reliable. 

Nevertheless, small proteome size is not an irreconcilable feature of genome-tree 

reconstructions [5, 6, 18]. Small genome attraction artifacts may be observed when highly 

reduced proteomes of obligate endosymbionts are included in analyses with common 

samplings [3, 5, 6, 18]. However, their untoward effects are only observed in the shallow end 

of the tree where the endosymbionts might be clustered with unrelated groups. In such cases 

the deep divergences or clustering of major branches are unperturbed [6, 18]. Such size-

biases are readily corrected by normalizations that account for genome size (actually specific 

SF content in this case) [5, 6, 18].  

Though size-bias correction for SF content phylogeny is known to be reliable, both 
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for measures based on distance [6] and those based on frequencies of character distribution 

[18], Nasir and Caetano-Anollés do not apply such corrections. They only attend to the 

proteome size variations associated with SF abundances [2, 3]. Instead of accounting for 

novel taxon-specific SFs in their model of evolution, the authors choose to exclude 

potentially problematic small proteomes of parasitic bacteria and to include only the 

proteomes of ‘free-living’ cellular organisms in their analyses [2, 3]. But all viruses are 

parasites and obviously even more extreme examples of minimal proteomes.  

This problem is further exacerbated by the uneven and largely incomplete annotation 

of SF domains in viral proteins [19, 20]. In fact, many viral ‘proteomes’ that were sampled in 

[2] are as small as a single SF. It is not clear why the inclusion of small viral proteomes was 

not recognized as even more problematic than the inclusion of small parasitic bacterial 

proteomes, in spite of the previous assertion of these authors that small proteomes should be 

excluded [9]. Nevertheless, including small viral proteomes is inconsistent with specifically 

excluding small cellular proteomes in the ToL, especially when hypotheses of reductive 

evolution are considered. Screening taxa based on ‘lifestyle’ (free-living or parasitic) seems 

unwarranted since extreme reductive genome evolution, sometimes called genome 

streamlining, is not limited to host adapted parasitic bacteria but is common in free-living 

bacteria as well as eukaryotes [21-23]. 

In addition to the ToP, the authors use a so-called tree of domains (ToD) to support 

their conclusion that proteomes of viruses are ancient and that proteomes of RNA viruses are 

particuarly ancient. The ToD is projected as the evolutionary trajectory of individual SFs. 

Such projections are used as proxies to determine the relative antiquity or novelty of SFs [2]. 

The ToD like the ToP is also rooted with a presumed pseudo-outgroup and that rooting may 

be an artifact as for the ToP. Much more serious than potential artifacts in ToD is an 

egregiously bad assumption from the perspective of the SCOP hierarchal classification: the 
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very notion that the ToD describes evolutionary relationships between SFs in the same way 

the ToL describes genealogy of species. Evolutionary relationships between SFs with 

different folds in SCOP classification are not established [4, 24]. Physicochemical protein 

folding experiments and corresponding statistical analyses of sequence evolution patterns, 

including simulations of protein folding are all consistent with the observations that the 

sequence-structure space of SFs is discontinuous [25, 26]. Empirical data indicate that the 

evolutionary transition from one SF to another through gradual changes implied in the ToD is 

unlikely, if at all feasible. This makes the ToD hypothesis, which assumes that all SFs are 

related to one another by common ancestry untenable. Thus the ToD contradicts the very 

basis upon which SFs are classified in the SCOP hierarchy [4, 24]. The ToD is therefore 

uninterpretable as an evolutionary history of individual SFs.  Accordingly, the ToD cannot 

reflect the ‘relative ages’ of SFs nor can it support the inferred antiquity of viruses in the 

ToP.  

Unlike phylogenetic trees that describe the evolution of individual proteomes, Venn 

diagrams, SF sharing patterns and summary statistics of SF frequencies among groups of 

proteomes only depict generalized trends. Multiple evolutionary scenarios can be invoked a 

priori to explain the general trends without any phylogenetic analyses. Although such 

patterns may be suggestive, they do not by themselves support reliable phylogenetic 

inferences [19, 20]. Thus the authors’ inferences in [2] based on statistical distributions of 

SFs alone are speculative, at best. 

In summary, the authors’ [2, 3] proposed rooting for the ToL seems to be influenced 

by clearly identifiable artifacts. The conceptual issue of proteome evolution may be traced to 

a very widely held view: namely that “ToP were rooted by the minimum character state, 

assuming that modern proteomes evolved from a relatively simpler urancestral organism that 

harbored only few FSFs” [2, 9]. Thus, a common prejudice is that the origins of modern 
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proteomes ought to reflect a monotonic evolutionary progression that is embodied in 

something like Aristotle’s Great Chain of Being [10]. The “all-zero” or “all-absent” 

hypothetical ancestor is neither empirically grounded nor biologically meaningful, but it does 

indeed reflect a common prejudice [10, 14]. Indeed, we bring into question the inferred 

relative antiquity of viruses and Archaea in the ToL and the notion that viruses make up an 

independent fourth supergroup [2]. In effect, we suggest that the phylogenetic approach of 

Nasir and Caetano-Anolles’ [2, 3] provides neither a test nor a confirmation of any one of the 

hypotheses for the origins of viruses [1]. Despite its importance, reconciling the extensive 

genetic and morphological diversity of viruses as well as their evolutionary origins remains 

murky [1, 27]. Better methods and empirical models are required to test whether a 

multiplicity of scenarios or a single over-arching hypothesis is applicable to understand the 

origins of viruses. 

 

Methods 

Here, genomic protein repertoires are referred to as proteomes. We re-analyzed a 

subset of the 368 proteomes sampled in [2] for phylogenetic rooting of diverse cells and their 

viruses. Here, we sampled 102 cellular proteomes containing 34 each from Archaea, Bacteria 

and Eukaryotes, respectively as well as 16 viral proteomes from [2].  For the latter, we note 

that the DNA virus proteomes were substantially larger than those of RNA viruses in terms of 

the number of identified SFs. In addition we included for comparison some of the smallest 

known proteomes of Archaea and Bacteria not included in [2]. Roughly, half of the sampled 

proteomes were analyzed (Figs 1 and 2) for computational simplicity. Results did not vary 

when all the sampled taxa were included (see supplementary Figs S3 & S4).  Rooting 

experiments were preformed both with SF occurrence (presence/absence) patterns and SF 

abundance (copy number) patterns; however, we present results for the SF abundance 
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patterns as in [2]. In addition to the Lundberg rooting procedures carried out as in [2, 3], 

rooting experiments were repeated by including the all-zero taxon in the tree reconstruction 

process implicitly (using the ANCSTATES option in PAUP*) and explicitly as taxon in the 

data matrix. Further, when the all-zero taxon was explicitly included, rooting experiments 

were also repeated with the outgroup rooting method. Phylogenetic reconstructions were 

carried out using maximum parsimony criteria implemented in PAUP* ver. 4.0b10 [28] with 

heuristic tree searches using 1,000 replicates of random taxon addition and tree bisection 

reconnection (TBR) branch swapping. Trees were rooted by Lundberg method, outgroup 

method or intrinsically rooted by including the hypothetical all-zero ancestor in tree searches.  
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Figure 1 
 

 
 
 Figure 1. Implementing an “all-zero” pseudo-outgroup [2] severely distorts rooting of the ToL. Rooted 

trees were reconstructed from a subset of 368 taxa (proteomes) sampled in [2], which included 17 taxa each 

from Archaea, Bacteria, Eukarya (ABE) and 9 taxa from the virus groups (V). (a) Venn diagram shows the 455 

SFs shared between viruses and cells (ABEV), which were used to reconstruct trees. (b) Single most 

parsimonious tree of ABE taxa rooted within Archaea. (c, d) New taxa, which represent the smallest proteome 

after inclusion, were progressively included in size order. The position of the root node changed accordingly to 

the branch corresponding to a group (or taxon) with the smallest proteome, which is Bacteria (c), Archaea (d); 

the Eukarya section is collapsed since tree topology is unaffected. Taxa are described by their NCBI taxonomy 

ID, taxonomic affiliation (A, B, E or V) and proteome size in terms of the number of distinct SFs present in the 

genome. To compare the position of the root node trees are drawn to show branching patterns only, branch 

lengths are not proportional to the quantity of evolutionary change. 
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Figure 2 
 

 
 
Figure 2. Rooting experiments (continued from Fig. 1) show rooting bias of “all-zero” pseudo-outgroup 

towards small proteomes. (a-c) New taxa, which represent the smallest proteome after inclusion, were 

progressively included in size order, where the smallest proteome was from mega DNA viruses (a), Bacteria (b) 

and RNA viruses (c). Details in trees are same as in Fig. 1. (d) Comparison of proteome sizes of sampled taxa in 

terms of SF occurrence used to estimate trees in this study and in [2]. Numbers in parentheses above each group 

indicate the number of proteomes. 
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Figure S1. Rooting experiments (continued from Fig 1) where trees were either intrinsically rooted by including the hypothetical ancestor in tree search (a-c) or by
including and explicit all-zero ancestor taxon and specifying it to be the outgroup.
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Figure S2. Rooting experiments (continued from Fig 2) where trees were either intrinsically rooted by including the hypothetical ancestor in tree search (a-c) or by
including and explicit all-zero ancestor taxon and specifying it to be the outgroup.
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Figure S3. Rooting experiments (corresponding to Fig 1) with a larger taxon sampling
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Figure S4. Rooting experiments (corresponding to Fig 2) with a larger taxon sampling
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