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Abstract 

Family and twin studies suggest that up to 50% of individual differences in human fertility 

within a population might be heritable. However, it remains unclear whether the genes 

associated with fertility outcomes such as number of children ever born (NEB) or age at first 

birth (AFB) are the same across geographical and historical environments. By not taking this 

into account, previous genetic studies implicitly assumed that the genetic effects are constant 

across time and space. We conduct a mega-analysis applying whole genome methods on 

31,396 unrelated men and women from six Western countries. Across all individuals and 

environments, common single-nucleotide polymorphisms (SNPs) explained only  ~4% of the 

variance in NEB and AFB. We then extend these models to test whether genetic effects are 

shared across different environments or unique to them. For individuals belonging to the same 

population and demographic cohort (born before or after the 20th century fertility decline), 

SNP-based heritability was almost five times higher at 22% for NEB and 19% for AFB. We 

also found no evidence suggesting that genetic effects on fertility are shared across time and 

space. Our findings imply that the environment strongly modifies genetic effects on the tempo 

and quantum of fertility, that currently ongoing natural selection is heterogeneous across 

environments, and that gene-environment interactions may partly account for missing 

heritability in fertility. Future research needs to combine efforts from genetic research and from 

the social sciences to better understand human fertility. 
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Authors Summary 

Fertility behavior – such as age at first birth and number of children – varies strongly 

across historical time and geographical space. Yet, family and twin studies, which suggest that 

up to 50% of individual differences in fertility are heritable, implicitly assume that the genes 

important for fertility are the same across both time and space. Using molecular genetic data 

(SNPs) from over 30,000 unrelated individuals from six different countries, we show that 

different genes influence fertility in different time periods and different countries, and that the 

genetic effects consistently related to fertility are presumably small. The fact that genetic 

effects on fertility appear not to be universal could have tremendous implications for research 

in the area of reproductive medicine, social science and evolutionary biology alike. 
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Introduction 

Twin and family studies from Western countries show that genetic factors may explain up to 

50% of the differences in human fertility outcomes such as number of children ever born 

(NEB) or age at first birth (AFB) within a population [1–8]. It remains unknown, however, 

whether the same genes are important for fertility across different environments or whether 

gene-environment interaction modifies genetic effects on fertility. This is a vital question for at 

least three reasons. First, the most successful and widely-used design to detect the approximate 

location of genetic variants associated with complex traits is a meta-analysis of genome-wide 

association studies (GWAS) from multiple populations [9]. This approach assumes genetic 

effects on a trait to be universal across environments. However, concerning fertility, this 

requires investigation given that environmental upheavals such as the introduction of the pill or 

educational expansion have substantially changed fertility behavior in the recent past [10,11]. A 

second and interrelated point is that studies resorting to molecular genetic data to quantify 

heritability as the variance in a trait explained by genetic variance result in lower estimates than 

family studies [12] – and this is true also in fertility research [1,2,7,13,14]. This discrepancy 

might, amongst other reasons, be a consequence of the interaction between environment and 

genes. Family studies are conducted amongst members of the same populations, whereas for 

example GWAS use data from individuals across populations. If genes can explain variance in 

fertility within but not between populations, heritability estimates based on different 

populations will be smaller than within populations [12,15]. Third, Fisher’s fundamental 

theorem of natural selection predicts at environmental equilibrium (close to) zero additive 

genetic effects on fitness-related traits such as fertility, because genes that reduce fitness are 

expected to have been passed on to the next generation to a lesser extent [16]. Nevertheless, 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 2, 2016. ; https://doi.org/10.1101/049163doi: bioRxiv preprint 

https://doi.org/10.1101/049163
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5

additive genetic influences on fertility are well established and a potential explanation is that 

the genes that are important for fertility differ across environments [17]. 

Twin and family designs cannot be used to answer the question as to whether different 

genes are important for fertility across populations or birth cohorts since relatives usually live 

in the same country and twins always have the same age. However, with the advent of 

molecular genetic data and complementary analytical techniques and software, it has become 

possible to examine the genetic material of unrelated individuals across different (historical) 

populations and therefore the unique possibility exists to test whether the same genes influence 

a trait across diverse environments [18–22]. In this study, we exploit these advances for the 

first time, by empirically assessing whether genetic effects on fertility differ across 

geographical and historical environments.  

We pooled a series of large datasets consisting of 31,396 unrelated (~ second cousin, 

IBS<0.05, see Material and Methods) genotyped men (n = 10,489) and women (n = 20,907) 

from six countries and seven study populations for analysis (for the US: HRS, ARIC; for the 

Netherlands: LifeLines; For Sweden: STR/SALT; for Australia: QIMR; for Estonia: EGCUT; 

for the UK: TwinsUK) who are assumed to have completed their reproductive period 

(������ � 50; �������� � 45 ). We first conducted a mega-analysis, which is based on 

individual information from different populations in contrast to a meta-analysis that uses 

summary statistics of analyses conducted within populations, and applied whole genome 

methods [20,21] using GCTA software [18] to estimate SNP-heritability ( 
���
	 ). SNP-

heritability is the proportion of total phenotypic variance that is explained by common genome-

wide SNPs. Based on a previous study using data from women from the Netherlands and the 

UK, we expect 
���
	  to be around 0.10 for number of children ever born and around 0.15 for 

AFB [23].  
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Second, to investigate gene-environment interaction, we follow two strategies: the first 

one consists in fitting multiple genetic relatedness matrices in our model, one global matrix for 

all individuals and more matrices indicating whether individuals lived in the same population 

and/or were part of the same birth cohort. The global matrix estimates the effects genes have 

across all environments, whereas the population/birth cohort specific matrices estimate context 

specific genetic effects [see 18 and Material and Methods for our specifications]. The second 

strategy consists in fitting bivariate genetic models to investigate the moderating effect of the 

postponement transition on genetic effects on fertility [see 22,24 and Material and Methods for 

our specifications]. This model allows us to estimate 
���
	  separately for different birth cohorts 

as well as the genetic correlation across them. To maximize power in these models, we divided 

all populations into two demographic birth cohorts. A central turning point in the reproductive 

environment of the 20th century occurred when AFB experienced a massive postponement of 

up to 4-5 years in nearly all advanced societies, the so-called ‘postponement transition’ [25], or 

Second Demographic Transition [10,11,26,27]. The primary reasons proposed for fertility 

postponement have been women’s increased educational attainment and their employment in 

the labour force, triggered by factors such as the availability of effective contraception [10,11]. 

Cultural transformations in terms of sexual freedom, family planning and the timing and role of 

children are also central [26,27]. To investigate the moderating effect of fertility postponement 

we divide individuals into birth cohorts born either before or after this massive postponement in 

AFB in the past century [10,11,25,28].  

Results 

Descriptive findings 

The descriptive statistics for NEB and AFB for all populations under study (LifeLines, 

TwinsUK, STR, Estonia, HRS, ARIC and QIMR) as well as the pooled data separate for men 
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and women can be found in S1 Table. The participants were born between 1903 and 1967. The 

mean number of children per woman is 2.0 in Estonia, Sweden and the UK and 3.3 in 

Australia. For men, the lowest reported number of children is in Sweden and Estonia with 

around 1.9 children per man and is the highest in Australia at around 3.4. AFB was available 

for the Netherlands, UK, Sweden, Estonia and Australia. For both men and women, it was 

lowest in Estonia with an average of 24.6 for women and 27.7 for men and highest in Australia 

with 26.7 and 29.8 for men. Individuals who start reproducing at a later age have fewer 

children, with correlations between NEB and AFB ranging between -0.24 (Netherlands) and -

0.38 (Australia; S2 Table). This pattern is less consistent across countries; for example in 

Australia, the highest fertility levels are observed, despite having the highest AFB. This reflects 

heterogeneity in fertility levels across countries with Australia having traditionally higher 

fertility levels than other Western countries (for a trend comparison of the total fertility rate 

across countries see S1 Fig). 

Demographic Trends 

Fig 1 shows the trends in AFB during the 20th century for the countries in our study 

based on population data if available (see Material and Methods for details). We observe the 

well-established U-shaped pattern of AFB of a falling AFB in the first half of the 20th century 

followed by a turning point and upturn in the trend of AFB towards older ages. This 

postponement transition in fertility timing was accompanied by a strong drop in completed 

fertility in most countries [29].  
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Figure 1. Trends in age at first birth in cohorts from the US, UK, Sweden, the 

Netherlands, Estonia and Australia (1903-1970). 

 

Note: Trends in the mean age at first birth are moving averages based on aggregated data 

obtained from Human Fertility Database and the Human Fertility Collection (for details see 

Material and Methods). For Australia, no official data has been available and the trends have 

been estimated from the QIMR dataset. See Supplementary Fig. S2 for the birth cohort specific  

average in the QIMR data. 

 

 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 2, 2016. ; https://doi.org/10.1101/049163doi: bioRxiv preprint 

https://doi.org/10.1101/049163
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9

Sociocultural and technological changes, such as the introduction of effective 

contraception, educational expansion or changing norms in reference to sexuality and family 

planning, have largely driven these trends [10,11]. These environmental changes occurred in 

specific time periods in each country. In order to test for gene-environment interaction in our 

analyses, we split the data into birth cohorts born before and after the turning point of fertility 

postponement to reduce environmental heterogeneity amongst the individuals who are 

members of the same birth cohort. This turning point differs across countries (Fig 1) with 

Australia having the earliest start of postponing (1939) and Estonia the latest (1962; see S3 

Table for all turning points and details). Differences in the onset of the postponement transition 

are well established and can be due to, for example, political reasons. This is the case of 

Estonia, for example, where early AFB had been strongly promoted by political incentives 

when it still was part of the Soviet Union in time periods prior to 1990 [30]. 

Genetic effects on fertility from the whole genome 

Model 1: SNP heritability of AFB and NEB across environments  

Not taking environmental differences into account, SNP based heritability (h2
SNP) is 

significant and low for number of children ever born and age at first birth (Table 1). For NEB, 

h2
SNP is 0.038 (SE = 0.0097, p-value = 2.0x10-5) and for AFB it is 0.053 (SE = 0.019 p-value = 

0.0020; these estimates are based on the full genetic relatedness matrix - see Material and 

Methods). These findings mean that around four per cent of the variance in NEB and around 

five per cent in AFB can be attributed to common, additive genetic effects in the pooled data. 

These estimates are much lower than those reported in other studies [23]. 

Model 2: Genes x population interaction (g x p) 

A potential reason to explain why estimates are lower than expected is that the SNPs 

important for fertility have different effects across environments. Model 2 therefore adds an 
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interaction term to Model 1 that captures the influence of genetic variance on fertility only 

within populations. The gene-population interaction models for NEB and AFB show that 

shared genetic effects across populations are much lower than genetic effects within 

populations. With respect to NEB, the shared genetic effects across populations are negligible  

(0.0070, SE = 0.011, p-value = 0.26), whereas within populations additional additive effects are 

estimated to be 0.15 (SE = 0.024, p-value = 6.0 x10-12). The same applies to AFB, where shared 

genetic effects are estimated to be only 0.024 (SE = 0.022, p-value = 0.14), whereas the within 

population effect is 0.10 (SE = 0.039, p-value=0.0037; Table 1; Model 2). These results show 

that there is little overlap in SNPs that influence fertility across populations, and that most of 

the SNPs influencing fertility are population specific.  

 

Model 3: Genes x demographic birth cohort (g x d) 

Similar to the Model 2, in which we modeled population specific effects, we also examined 

whether there were genetic influences on fertility that were specific to birth cohorts. We find 

that there is additional genetic variance explanation for individuals who live in the same 

demographic cohort. While h2
SNP for all birth cohorts is estimated at zero for both NEB (SE = 

0.013, p-value = 0.50) and AFB (SE = 0.03, p-value = 0.35), for individuals living in the same 

demographic cohort there is a significant additional genetic variance component of 0.097 (SE = 

0.017, p-value = 3.3x10-16) for NEB and 0.084 (SE = 0.031, p-value = 4.6 x10-4) for AFB 

(Table 1; Model 3). Thus, similar to what we observed for the different populations, we find 

that SNPs influencing fertility traits are specific to cohort.  
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Table 1.  Heritability estimates of the full GREML model and gene environment interaction models for number of children ever born 
(NEB) and age at first birth (AFB) 

 
Note: ��

�/��
� = proportion of observed variance in the outcome associated with genetic variance across all environments,  ����

� /��
� = proportion of 

observed variance in the outcomes associated with additional genetic variance within populations, ����
� /��

� = proportion of observed variance associated 
with additional genetic variance within demographic birth cohorts, ������

� /��
� = proportion of observed variance associated with additional genetic 

variance within populations and demographic birth cohorts, p-values are based on likelihood-ratio test comparing the full model with the model with one 
constraining the particular effect to be zero, all analyses include the first 20 Principal Components, outcomes are standardized for sex, birth year and 
country. 

 Number of children ever born 
Model 1  2  3  4 
 Estimate 

(SE) 
p-value  Estimate  

(SE) 
p-value  Estimate 

(SE) 
p-value  Estimate 

(SE) 
p-value 

��
�/��

� 0.038 
(0.0097) 

2.0 x10-5  0.0070  
(0.011) 

0.26 
 

 0.00  
(0.013) 

0.50  0.00  
(0.015) 

0.50 

����
� /��

� -- --  0.15  
(0.024) 

6.0x10-12  -- --  0.073  
(0.036) 

0.18 

����
� /��

� -- --  -- --  0.097  
(0.017) 

3.3x10-16  0.064  
(0.020) 

5.9x10-4 

������
� /��

� -- --  -- --  -- --  0.085  
(0.045) 

0.0030 

N 31396 
  
 Age at first birth 
Model 1  2  3  4 
 Estimate (SE) p-value  Estimate  

(SE) 
p-value  Estimate  

(SE) 
p-value  Estimate 

(SE) 
p-value 

��
�/��

� 0.053  
(0.019) 

0.0020  0.024  
(0.022) 

0.14  0.00  
(0.030) 

0.35  0.011  
(0.028) 

0.32 

����
� /��

� -- --  0.10 
(0.039) 

0.0037  -- --  0.00  
(0.062) 

0.50 

����
� /��

� -- --  -- --  0.084  
(0.031) 

4.6 x10-4  0.00  
(0.040) 

0.50 

������
� /��

� -- --  -- --  -- --  0.18  
(0.077) 

0.0032 

N 16109 
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Model 4: Genes x population x demographic birth cohort (g x p x d) 

Including a gene-environment interaction term that takes into account both the 

population and the demographic cohort simultaneously (Model 4), we observe that for NEB the 

interaction with demographic cohort (0.064, SE = 0.020, p-value = 5.9x10-4) and the interaction 

with population and demographic cohorts (0.085, SE = 0.045, p-value = 0.0030) are significant. 

This suggests that living in the same demographic cohort increases h2
SNP independent of 

whether individuals live in the same population, but rather living in the same population and 

the same demographic period additionally increases h2
SNP. For AFB h2

SNP is only significantly 

different from zero for individuals living in the same population and demographic cohort (0.18, 

SE = 0.077, p-value = 0.0032). 

Overall SNP based heritability for each model  

Subsequently, overall heritability estimates were calculated as the sum of the different 

components of each model to examine the increase in heritability estimates when including the 

different interaction terms (See Fig 2 corresponding to S4 Table). The overall h2
SNP for NEB 

increases almost fivefold, from 0.04 (SE = 0.01; Model 1) to 0.22 (SE = 0.026), when 

population and demographic cohort are taken into account. For AFB, the trend is very similar, 

with h2
SNP of 0.053 (SE = 0.019) in the baseline Model 1 and 0.19 (SE = 0.039) in the genes x 

population x demographic cohort interaction model, when population and demographic cohort 

are taken into account. 
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Figure 2. Bar Charts of the SNP-heritability estimates in number of children ever born 

(NEB) and age at first birth (AFB) for the different model specifications from Table 

1 

 

Note: SNP-heritability as the sum of genetic variance over the total variance in Model 
specification 1 = amongst all individuals, 2 = amongst individuals living within the same 
population, 3 = amongst individuals living within the same demographic birth cohort born 
either before or after fertility postponement, 4 = amongst individuals living in the same 
population and demographic birth cohort, dots = estimate, lines = estimate ± 1 SE, The 
corresponding table to Figure 2 an be found in Supporting Table S4. 
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Sensitivity analysis: Genes x Sex  

The analyses presented are based on pooled datasets of men and women. However, two 

data sources contain (almost) only women (TwinsUK and ARIC). To the extent that different 

genes influence fertility across sexes, this might drive the observed differences across 

populations. We therefore conducted a sensitivity analysis extending Model 3 to a genes x 

population x sex interaction model. We find that considering sex-differences does not 

significantly improve the model fit (p-value for AFB 0.5, for NEB 0.093) and therefore are 

confident that our findings do not result from sex-differences (S6 Table).  

Bivariate analysis 

We complementarily estimated a bivariate model based on Model 2 and splitting data 

for demographic cohort (see Material and Methods), which allows us to estimate genetic effects 

across (��
�) and within �����

� ) populations separately for different demographic birth cohorts 

and investigate whether genetic effects are correlated across demographic birth cohorts. Table 2 

shows that ����
�  estimates for NEB within populations are significant for both demographic 

cohorts before (����
� /��

� = 0.15, SE = 0.039, p-value = 9.6x10-6) and after (����
� /��

� = 0.13, SE 

= 0.048, p-value = 0.0010) fertility postponement. It furthermore shows a positive correlation 

of genetic effects on NEB across demographic cohorts within populations (1.00, SE = 0.35, p-

value = 1.3x10-5). In Model 4 of Table 1, this remained suggestive, since the genetic effects 

within populations but shared across demographic cohorts (����
� /��

� ) were non-significant 

(0.073, SE = 0.036, p-value = 0.18). The bivariate model for the AFB finds some evidence that 

in both demographic cohorts genetic effects are observed (before fertility postponement 0.099, 

SE = 0.073, p-value = 0.083; after fertility postponement 0.13, SE = 0.074, p-value = 0.070), 

although these effects were marginally significant. However, there is no evidence that genetic 
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effects correlate across demographic birth cohorts (0.11, SE = 0.59, p-value = 0.27), which is 

well in line with the null-estimate ����
� /��

� (0.00, SE = 0.062, p-value = 0.50). 

Table 2. Bivariate analysis of Model 2 to estimate genetic correlations for gxp (genes x 

population) or global g (gene) component before and after fertility postponement 

 

 

 

 

 

 

 

 

 

Note: ��
�/��

� = proportion of observed variance in the outcome associated with genetic variance 
across all environments,  ����

� /��
� = proportion of observed variance in the outcomes associated with 

additional genetic variance within populations, ����
� /��

� = proportion of observed variance associated 
with additional genetic variance within demographic birth cohorts, r(G) = genetic correlation, p-values 
are based on likelihood-ratio test comparing the full model with the model with one constraining the 
particular effect to be zero, all analyses include the first 20 Principal Components, outcomes are 
standardized for sex, birth year and country. 

 

 

 Number of children ever born 

 Before postponement After postponement r(G)   

 Estimate 

(SE) 

p-value Estimate 

(SE) 

p-value Estimate 

(SE) 

p-value 

 

N 

����
� /��

� 0.15   

(0.039) 

9.6x10-6 

 

0.13 

(0.048) 

0.0010 

 

1.00 

(0.35) 

1.3x10-5 

 

17,969 

��
�/��

� 0.031  

(0.018) 

0.042 

 

0.0017  

(0.026) 

0.50 

 

-1.00 

(8.04) 

0.50 13,427 

 Age at first birth 

 Before postponement After postponement r(G)   

 Estimate 

(SE) 

p-value Estimate 

(SE) 

p-value Estimate 

(SE) 

p-value N 

����
� /��

� 0.099  

(0.073) 

0.083 

 

0.13  

(0.074) 

0.070 

 

0.11  

(0.59) 

0.27 

 

8,049 

��
�/��

� 0.023  

(0.04) 

 

0.20 

 

0.011   

(0.048) 

 

0.50 

 

1.00  

(2.89) 

 

0.50 8,060 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 2, 2016. ; https://doi.org/10.1101/049163doi: bioRxiv preprint 

https://doi.org/10.1101/049163
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16

Genetic effects shared across all populations (��
�) are only significant for NEB and birth 

cohorts born before fertility postponement (��
�/��

� = 0.031, SE = 0.018, p-value 0.042) while 

non-significant for younger cohorts and for AFB. Genetic correlations are therefore not 

interpreted. 

Discussion 

Using data from seven populations and six countries, we demonstrate that genetic 

effects on fertility outcomes –number of children ever born (NEB) and age at first birth (AFB) 

– differ across temporal and spatial environments. For NEB, genetic effects within populations 

are stronger than across populations, but correlate between individuals who were born before or 

after the turning point in fertility postponement of the 20th century. For AFB, genetic effects are 

only significant if individuals live in the same demographic cohort and the same population. 

The full gene-environment interaction model (Model 4) as well as the bivariate analyses 

provide no evidence for shared genetic effects for each phenotype across populations and 

demographic birth cohorts. Our results show that different SNPs are associated with fertility 

traits in different populations and birth cohorts, and there are hardly any genetic effects that are 

consistently related to these traits across populations and cohorts. Our results uncover a strong 

interplay of genetic and environmental factors influencing human fertility.  

Quantitative geneticists have been puzzled by low heritability estimates based on 

GWAS findings or even whole-genome estimates such as GREML model as we apply it in the 

current study, describing the phenomenon of ‘missing heritability’ [12]. Previous attempts to 

explain missing heritability partly by non-additive genetic effects remain empirically untested 

[31] or find only little support [32]. Our findings of strong gene-environment interaction imply 

first that the detection of genetic variants associated with fertility traits is a major challenge 

using meta-analyses of GWAS on individuals from different populations. Likewise, predictions 
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out of the discovery sample might be difficult, because discovered SNPs might have different 

effects in different samples. Second, they imply that lower heritability estimates from GWAS 

studies compared to GREML approaches or family studies might be due to the fact that genetic 

effects are (to some extent) not universal but context specific. In the model considering gene-

environment interaction across population and demographic cohort, we report heritability 

findings of 0.22 for NEB and 0.19 for AFB (see Fig 2 and S4 Table), which are fourfold higher 

than across all contexts and approach heritability estimates from family models [2,14]. It is 

therefore central to understand the cultural and environmental factors that interact with human 

fertility as well as their origins across (family) environments in order, for example, to define 

missing heritability or validate the findings from twin studies. It is to be noted that our findings 

are probably fostered by the strong behavioural and social nature of fertility, which might be 

more sensitive to cultural and societal heterogeneity than for example morphological traits. A 

recent investigation by Yang et al. [33] shows that missing heritability for the anthropometric 

traits height and body mass index is negligible when using whole genomic sequencing data in a 

new GREML model and assuming that family models overestimate heritability. 

Demonstrating that genetic effects on fertility outcomes differ across environments, our 

study substantially contributes to the current knowledge on the genetic architecture of human 

reproduction. Previous twin studies show for several countries and birth cohorts that fertility 

outcomes such as NEB and AFB are genetically influenced [1,2]. However, it remained unclear 

whether the same genes are associated with fertility across environments. Using molecular 

genetic data and GREML methods [18,20,21], we were able to relate the genetic material of 

individuals across environments and found that common SNPs explain substantially more 

variance within than between countries and birth cohorts for fertility traits. 

Previous twin and family studies furthermore suggest that the level of heritability of 

fertility traits can change across time and space [5,7,34,35]. However, these differences could 
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not be statistically validated. In the current study, we proposed a multi-matrix approach to test 

for gene-environment interaction but also applied bivariate GREML models across birth 

cohorts [22,24]. Bivariate GREML models allow estimating SNP-heritability within two 

independent samples was well as the genetic correlation across them. We cannot confirm the 

suggestion that the level of heritability changed over time, but find that heritability levels are 

comparable before and after the strong fertility postponement in the past century.  

Different levels of heritability have also been reported across countries [2]. Our multi-

matrix GREML approach distinguishes between pairs of individuals who are living in the same 

or in different populations. The resulting within population estimate is therefore an average 

across all populations and we cannot compare different levels of heritability across populations. 

A more desirable study design would be a multivariate genetic modelling approach as we 

presented it in a bivariate design to investigate differences across demographic birth cohorts. 

However, this approach was not possible in our study due to small sample sizes in each 

population and a consequent lack of statistical power [22], but might become feasible in the 

future with better data availability. 

Our findings are of interest to scientists within the medical, biological and social 

sciences alike [1,2,36,37]. Research has successfully identified genetic variants associated with 

reproductive diseases and traits [37]. However, it remains unknown how these affect realized 

fertility. We find no evidence that genetic effects underlying fertility in one country predict 

fertility outcomes in another one. Genetic effects on fertility outcomes are rather strongly 

dependent on an individual’s environment. Recently, social scientists have made large efforts to 

integrate molecular genetics into their research [1,2,23,34,38–42]. However, when it comes to 

reproductive health, environmental factors are also likely to be critical in understanding how 

genetic factors are modified in relation to fecundity and infertility.   
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For evolutionary biologists, our findings have at least two important implications. First, 

the number of children ever born has been used as a proxy for fitness, given the diminishing 

child mortality rate in contemporary societies [4,23,36]. Additive genetic variance therefore 

indicates currently ongoing natural selection under environmental equilibrium within 

populations: if all else equal, genes that lead to a higher number of offspring will have a higher 

frequency in future generations. Due to natural selection, Fisher predicted additive genetic 

variance in fertility to be (close to) zero in the absence of gene environment interaction, since 

genes that reduce fitness are passed on to the next generation to a lesser extent thereby reducing 

their frequencies [16]. Nevertheless, we find significant additive genetic influences on fitness 

traits such as NEB and AFB – substantial yet lower than heritabilities observed for 

morphological traits such as height [14,15,23,43]. Finding significant genetic influences on this 

these proxies of fitness suggests that, along with sociocultural changes surrounding fertility, 

genetic variants under selection have also changed [for review see 1,for review see 

2,5,7,17,34,for comment see 44–46]. Gene-environment interaction can explain why we find 

additive genetic variance in fitness related traits despite natural selection. 

Second, previous research has uncovered an ongoing natural selection in contemporary 

societies [3,4,23,47,48] and even attempted to forecast changes in for example height and blood 

pressure across generations [4]. For valid evolutionary predictions about observable changes in 

traits across generations due to currently ongoing natural selection, fertility needs to be 

consistently heritable, the same genes need to be under selection across generations and the 

direction of the selection needs be similar. Our results demonstrate moderate genetic influences 

on fertility within populations indicating potentially ongoing human evolution. However, this 

potential is delimited in at least two ways: First, genetic effects on fertility strongly differ 

across countries and therefore may lead to heterogeneity across human populations rather than 

to universal changes in humans. Second, the finding that genetic effects underlying proxies of 
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fitness vary so markedly across time periods suggests that substantial caution is needed when 

inferring long-term evolutionary predictions. 

For social scientists, genetic influences had been originally thought of as biological 

constraints on human reproductive behavior [42]. Yet some previous studies showed that 

genetic predispositions may underlie decision making processes on fertility timing and 

motivation [6,7,49,50]. It has been suspected that genetically based behavioural and 

psychological traits have become more important than physiological ones in the recent past 

[6,8,34,51]. This hypothesis remains to be tested, but our results confirm that genetic influences 

on fertility have evolved with social changes in the reproductive environment and therefore 

underscore the necessity to integrate social factors into genetic research on fertility.  

Overall, our study uncovers great challenges for investigations into the genetic 

architecture of fertility, which can only be overcome by interdisciplinary work between both 

social scientists and geneticists using ever larger datasets, with combined information from 

genetics and social sciences [36]. 

 

Material & Methods 

Cohorts 

In this study we combined data from seven cohorts and six countries. For the US, we 

use data from ARIC, HRS, for Estonia from EGCUT, for Australia QIMR data from the 

Australia Twin and Family Register, for the Netherlands the LifeLines Cohort Study, for the 

United Kingdom TwinsUK and for Sweden the STR. All studies have received ethical 

approval. 

ARIC 

ARIC (Atherosclerosis Risk in Communities Study) is a community-based prospective cohort 

study of 15,792 adults, ages 45–64. Participants were identified by probability sampling from 
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four U.S. communities (Forsyth County, North Carolina; Jackson, Mississippi; suburban 

Minneapolis, Minnesota; and Washington County, Maryland) and were enrolled between 1987 

and 1989 [52–54].  

HRS 

The Health and Retirement Study (HRS) is an ongoing cohort study of Americans, with 

interview data collected biennially on demographics, health behavior, health status, 

employment, income and wealth, and insurance status. The first cohort was interviewed in 1992 

and subsequently every two years, with 5 additional cohorts added between 1994 and 2010. 

The full details of the study are described in [55]. 

EGCUT  

Estonian data come from of the Estonian Genome Center Biobank, University of Tartu 

(EGCUT, www.biobank.ee), a population-based database which comprises the health, 

genealogical and genome data of currently more than 51,530 individuals [56]. Each participant 

filled out a Computer Assisted Personal Interview including personal data (place of birth, 

place(s) of living, nationality etc.), genealogical data (family history, three generations), 

educational and occupational history and lifestyle data (physical activity, dietary habits, 

smoking, alcohol consumption, and quality of life).  

QIMR 

Data for Australia was received from the Queensland Institute for Medical Research 

(QIMR). The participants were drawn from cohorts of adult twin families that have taken part 

in a wide range of studies of health and well-being via questionnaire and telephone interview 

studies, and recruitment was extended to their relatives (parents, siblings, adult children and 

spouses).  

LifeLines Cohort Study  
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The LifeLines Cohort Study [57] is a multi-disciplinary prospective population-based 

cohort study from the Netherlands, examining in a unique three-generation design the health 

and health-related behaviours of 167,729 persons living in the North of The Netherlands 

including genotype information from more than 13,000 unrelated individuals.  It employs a 

broad range of investigative procedures in assessing the biomedical, socio-demographic, 

behavioural, physical and psychological factors which contribute to the health and disease of 

the general population, with a special focus on multi-morbidity and complex genetics. 

TwinsUK 

For the UK, we use data from TwinsUK, the largest adult twin registry in the country 

with more than 12,000 respondents [58]. The TwinsUK Study recruited white monozygotic 

(MZ) and dizygotic (DZ) twin pairs from the TwinsUK adult twin registry, a group designed to 

study the heritability and genetics of age-related diseases (www.twinsuk.ac.uk). These twins 

were recruited from the general population through national media campaigns in the UK and 

shown to be comparable to age-matched population singletons in terms of clinical phenotype 

and lifestyle characteristics.  

STR 

The Swedish Twin Registry (STR) was first established in the late 1950s to study the 

importance of smoking and alcohol consumption on cancer and cardiovascular diseases whilst 

controlling for genetic propensity to disease. Between 1998 and 2002, the STR conducted 

telephone interview screening of all twins born in 1958 or earlier regardless of gender 

composition or vital status of the pair. This effort is known as Screening Across the Lifespan 

Twin study (SALT). A subsample of SALT (≈10,000) was genotyped as part of the TwinGene 

project [59] and we use the this information in the current study. 

Fertility trends 
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Aggregate data to describe country specific fertility trends have been obtained from the 

Human Fertility Database (HFD, http://www.humanfertility.org/cgi-bin/main.php) and the 

Human Fertility Collection (HFC, http://www.fertilitydata.org/cgi-bin/index.php) if available. 

Both data collections are joint projects of the Max Planck Institute for Demographic Research 

(MPIDR) in Rostock, Germany and the Vienna Institute of Demography (VID) in Vienna, 

Austria. The projects provide access to detailed and high-quality data on period and cohort 

fertility. The HFD is entirely based on official vital statistics. The HFC incorporates a variety 

of valuable fertility data from diverse, not necessarily official, data sources. All data are freely 

available after registration. We focused on fertility information for cohorts that was aggregated 

for individuals older than 45. 

For the UK, official data on birth order have only been collected within marriage, and 

might be biased. We therefore relied on estimates from the Office for National Statistics, 

Cohort fertility, Table 2. Available at: http://www.ons.gov.uk/ons/publications/re-reference-

tables.html?edition=tcm%3A77–2631333. For Estonia, data on completed reproduction by age 

45 was only available until the year 1962. For subsequent cohorts, however, there was an 

estimate of AFB available based on official statistics at the age of 40. For Australia, no official 

data on a time series of cohort specific AFB was available and the trends are based on the data 

used for analysis in this study. 

Genotypes 

We received genotype data from all cohorts, which we imputed according to the 1000 

genome panel – except for TwinsUK from which we already received the imputed data.  

Genetic-relatedness-matrix (GRM) 

To estimate the genetic relatedness-matrix (GRM) the HapMap3 imputation panel was 

used as a reference set as it was optimized to capture common genetic variation in the human 

genome [60].We selected HapMap3 SNPs with an imputation score larger than 0.6. For quality 
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control (QC), we excluded the SNPs with a larger missing rate than 5% after merging, lower 

minor allele frequency than 1% and which failed the Hardy-Weinberg equilibrium test for a 

threshold of 10��. We merged the datasets subsequently applying QC again after merging each 

data set. 847,278 SNPs could be utilized to estimate the GRM between individuals. We used 

the software Plink [19] for the quality control and merging of the datasets and GCTA [18] to 

estimate the genetic relatedness matrix 

The GRM ��	 is estimated for each pair of individuals j and k:  

�
	 � 1
� 	 �
�
 � 2
���
�	 � 2
��2
��1 � 
��

�

��


 

where 
�
  and 
�	 is the number of copies of the reference allele for the ith SNP of the jth  or kth 

individual and 
� is the frequency of the reference allele and N the number of SNPs. If two 

individuals had a higher genetic relatedness than 0.05, one was excluded from the analyses to 

avoid bias due to environmental confounders amongst close relatives.  

 

Phenotypes 

Number of children ever born was available for all cohorts, but in ARIC and TwinsUK, 

however, only for women. NEB measures number of children a woman has given birth to or a 

man has fathered. It was either directly asked or we constructed it from questions on the date of 

birth of each child. 

 The measure is not perfectly harmonized across cohorts because some questionnaires 

explicitly exclude still-births (HRS, ARIC) while others remain undefined (TwinsUK asked in 

some waves: “How many children have you given birth to?”; EGCUT asked: “Do you have any 

biological children?”, and subsequently: “Fill in their names, gender and date of birth). In STR, 

LifeLines, QIMR as well as most of the waves of the TwinsUK, information on both the date of 

birth and death of the child was asked. In LifeLines and TwinsUK, we compared the live birth 
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measure with number of children ever born and, as expected, given the diminishing mortality 

rate in both datasets, less than 0.2% of the children had not reached reproductive age and the 

correlation of number of children ever born and number of children reaching reproductive age 

was >0.98. We therefore expect no large bias due to the fact that in some countries still-births 

are excluded. 

The questionnaires were furthermore heterogeneous in the maximum number of 

children that could be named. However, within each cohort, the maximum number of children 

has never been named more often than in 0.5 per cent of the cases and we do not anticipate that 

our results are influenced by this. 

Information on AFB was available in all cohorts except for ARIC and the HRS. It was 

asked directly ( in TwinsUK) or was constructed using the date of birth of the oldest child and 

the year of birth of the respondent. 

Since fertility is strongly age dependent, we focus on women only with completed 

fertility history in reference to the phenotype. In general, the end of women’s reproductive 

lifespan occurs around the age of 45 and for men at the age of 50, thus, we only included 

individuals beyond those ages in our analyses. Furthermore, in vitro fertilization (IVF) – often 

related to twinning and multiple births – can bias results if IVF compensates genetically based 

infertility. However, in our TwinsUK sample, only 60 women reported using IVF, who we did 

not include in the final analyses. 

For all models, both phenotypes were standardized (Z-transformed) by cohort, year of 

birth and sex. 

GREML Models 

Common SNP heritability estimates (Model 1) 
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The genetic component underlying a trait is commonly quantified in terms of SNP-

heritability (����
� ) as the proportion of the additive genetic variance explained by common 

SNPs across the genome over the overall phenotypic variance (��
�) of the trait: 

����
� � ��

�

��
�.   

The phenotypic variance is the sum of additive genetic and environmental variance, i.e. 

��
� � ��

� � ��
�  where ��

�  is the additive genetic variance explained by all SNPs across the 

genome and ��
� is the residual variance.   

The methods we applied have been detailed elsewhere [18,20–22,24]. Briefly, we 

applied a linear mixed model  

 � �  �� � � � �  
 

where y is an Nx1 vector of dependent variables, N is the sample size, β is a vector for fixed 

effects of the overall mean (intercept), g is the Nx1 vector with each of its elements being the 

total genetic effect of all SNPs for an individual, and e is an Nx1 vector of residuals. The 

variance covariance matrix of the observed phenotypes is: 

� � ���
� � ���

� 
 
 

We have g~  N(0, ���
�) and e~ N(0, ���

�), � is the genetic relationship matrix (GRM) 

estimated from SNPs and � is an identity matrix. The variance components are estimated using 

the restricted maximum likelihood (REML) approach.  
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Genes x Population (Model 2) 

The genes x demographic birth cohort interaction model is a joint model estimating global 

genetic effects for the fertility traits, effective between and within samples (��
� ) and the 

averaged additional genetic effects within cohorts (����
� ): 

� � ���
� � ��������

� � ���
� 

where A is the genetic relatedness matrix and ���� is a matrix only with values for pairs of 

individuals within populations 1-7: 
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Genes x Demographic birth cohort (Model 3)  

The genes x demographic birth cohort interaction model is a joint model estimating the 

universal genetic effects for the traits, effective between and within samples (��
�) and the 

averaged additional genetic effects within defined birth cohorts (����
� ): 

� � ���
� � ��������

� � ���
� 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 2, 2016. ; https://doi.org/10.1101/049163doi: bioRxiv preprint 

https://doi.org/10.1101/049163
http://creativecommons.org/licenses/by-nc-nd/4.0/


 28

whereas A is the genetic relatedness matrix and ���� is a matrix only with values for pairs of 

individuals within the same demographic birth cohorts b1-2: 

���� � ��
1
1
0

0

�
2
2
   

 

Genes x Population x Demographic birth cohorts (Model 4) 

Finally, we applied a model including both interaction terms from above and an additional 

interaction term ������ which is 0 for all pairs of individuals living in different time periods or 

in different cohorts 

� � ���
� � ��������

� � ��������
� �  ������������

� � ���
� 

whereas A is the genetic relatedness matrix,  ���� is a matrix only with values for pairs of 

individuals within populations 1-7 (Model 2), ���� is a matrix only with values for pairs of 

individuals within the same demographic periods b1-2 (Model 3) and ������  is a matrix only 

with values for pairs of individuals with both the same demographic periods and the same 

populations. 

Bivariate Model 

For bivariate analyses [22,24], we split the data into individuals born before and after 

the turning point in fertility postponement in AFB (see also S5 Table). Based on Model 2, we 

estimate a bivariate model with two GRMs: 

! �"�"�
  = # $���_�

� � ���_�
�

$�_���_�_�
� � ����_ _�����_�_�

�

        $�_���_�_�
� � ����_ _�����_�_�

�

          $���_�
� � ����_ ����_�

� � ���_�
�

% 

where as "� and "�  are vectors of length �� &'( �� of fertility phenotypes (NEB or 

AFB) of individuals born before or after the postponement transition started, with N being the 

respective sample size of the subsets. Variance components refer to those from Model 2, 

whereas the lower index _b indicates that they are estimated in the subset of individuals born 
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before and index _a born after the start of the postponement transition. The index _b_a 

denominates the covariance of variances components across subsets. The correlation of the 

genetic factors are estimated as:  

�!���_�_	
2 = ����_�_�

� /)����_�
� * ����_�

�  

and 

�!�_�_	
2 = ��_�_�

� /)��_�
� * ��_�

�  
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Supporting Information (on request: fctropf@gmail.com) 

Table S1. Summary statistics for women and men for all datasets separately and pooled  
 

LifeLines (Netherlands) Women Men 

 
mean sd min max n mean sd min max n 

Year subject born 1954 8.16 1920 1966 4022 1950 7.83 1922 1961 1988 

Age at first birth 25.87 4.23 16 43 3600 27.89 4.59 11 53 1777 

Number of children 2.29 1.2 0 7 3996 2.34 1.24 0 7 1988 

           

TwinsUK (The UK)           

 mean sd min max n mean sd min max n 

Year born 1945 8.42 1919 1962 2099 1943 8.28 1923 1957 144 

Age at first birth 25.63 4.57 15 43 1441 28.81 5.76 18 46 48 

Number of children 2.03 1.19 0 10 2066 2.01 1.07 0 5 144 

           

STR/SALT (Sweden)           

 mean sd min max n mean sd min max n 

Year born 1942 8.73 1912 1957 3122 1939 7.69 1911 1952 2918 

Age at first birth 24.97 4.6 12 44 2720 27.57 4.79 13 49 2481 

Number of children 2.02 1.19 0 9 3122 1.93 1.17 0 16 2918 

           
EGCUT (Estonia) 
 mean sd min max n mean sd min max n 

Year born 1941 12.97 1905 1965 2217 1941 10.35 1910 1959 1503 

Age at first birth 24.55 4.46 15 46 1840 27.5 4.94 16 54 1275 

Number of children 2.01 1.24 0 11 2217 1.88 1.17 0 8 1503 

           
QIMR (Australia) 
 mean sd min max n mean sd min max n 

Year born 1947 13.12 1903 1967 691 1946 10.96 1916 1962 477 

Age at first birth 26.65 4.77 17 41 527 29.75 5.58 18 49 400 

Number of children 3.3 1.68 0 11 691 3.37 1.67 0 11 476 

           

HRS (USA)           

 mean sd min max n mean sd min max n 

Year born 1938 10.74 1905 1967 4873 1937 9.65 1907 1962 3462 

Number of children 2.6 1.65 0 13 4873 2.55 1.64 0 14 3460 

           
ARIC (USA) 
 mean sd min max n mean sd min max n 

Year born      1933.68 5.77 1922 1944 3942 
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Number of children      2.75 1.68 0 13 3942 

           
Pooled 
 mean sd min max n mean sd min max n 

Year born 1942 11.62 1903 1967 20966 1941 10.13 1907 1962 10492 

Age at first birth 25.4 4.49 12 46 10128 27.81 4.86 11 54 5981 

Number of children 2.39 1.47 0 13 20907 2.27 1.42 0 16 10489 
 
           

Note: The dataset descriptions can be found in the main text under Material & Methods. 
 
 
 
 
 
Table S2. Pearson’s correlation between AFB and NEB for each dataset containing both 
phenotypes 
 
 Correlation 

 
Number of individuals 

LifeLines  -0.24 5351 
TwinsUK -0.28 1456 
STR  -0.30 5201 
QIMR -0.38 926 
EGCUT -0.26 3115 
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Fig. S1. Comparison of total fertility rates across countries under study 
 
 

 
 
Note: Aggregated data have been obtained from the Human Fertility Database and the 
Human Fertility Collection (for Australia; for details see Material and Methods in the main 
text). The Total Fertility rate refers to the expected average number of children born to a 
woman. 
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Fig. S2. Observed mean age at first birth in QIMR data for Australia 
 
 
 
 
 

 
 
Note: For a description of the data source QIMR see Material & Methods in the main text. 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 2, 2016. ; https://doi.org/10.1101/049163doi: bioRxiv preprint 

https://doi.org/10.1101/049163
http://creativecommons.org/licenses/by-nc-nd/4.0/


 38

 
 
 
 
 
 
 
Table S3. Observed low point in the age at first birth on the population level by country 
– indicating the turning point in the fertility postponement trend 
 
 
Country Turning point Year of turning 

point 
Data source a 

 

Netherlands 26.39 1944 HFD 
United Kingdom 25.75 1944 Official Statistics 
Sweden 26.39 1943 HFD 
Australia 24.78 1939 QIMR 
Estonia 25.05 1962 HFD/HFC 
United States 24.63 1940 HFD  
Notes: a See Material and Methods for details on data sources 

 

 

 

Table S4. Overall SNP heritability estimated for Model specifications 1-4 for number of 
children ever born (NEB) and the age at first birth (AFB) as depicted in the main text 
Fig. 2. 

 

Note: SUM (��)/��
�  refers to the total variance explanations from model specifications 1-4 (see 

Material and Methods) 

 

 

 

 NEB  AFB 

Model 1 2 3 4  1 2 3 4 

SUM (��)/��
� 0.038 0.15 0.097 0.22  0.05 0.13 0.094 0.19 

SE (0.0097) (0.022) (0.012) (0.026)  (0.02) 
 

(0.034) 
 

(0.024) (0.039) 
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Table S5. Sample sizes of datasets divided by demographic birth cohorts born before 

and after the onset of fertility postponement 

 
Cohort Before postponement After postponement Number of 

individuals 

LifeLines 1,039       4,971 6,010  
TwinsUK 992   1,251 2,243  
ARIC 3,373      569 3,942 
HRS 4,972    3,361 8,333 
STR 3,561         2,479 6,040 
QIMR 343           825 1,168 
EGCUT 3,699             21 3,720 
Notes: See Material and Methods for details on data sources
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Table S6.  Heritability estimates of the gene environment interaction models for 
population and sex by number of children ever born (NEB) and age at first birth (AFB) 
 

 

 

 

 

 

 

 

 

 

 

 

 

Note: NEB = number of children ever born, AFB = age at first birth, ��
�/��

� = proportion of 
observed variance in the outcome associated with genetic variance across populations and 
sexes,  ����

� /��
� = proportion of observed variance in the outcomes associated with additional 

genetic variance within populations, ���"
� /��

� = proportion of observed variance associated with 
additional genetic variance within sexes, �����"

� /��
� = proportion of observed variance 

associated with additional genetic variance within populations and sexes, p-values are based on 
likelihood-ratio test comparing the full model with the model with one constraining the 
particular effect to be zero. All analyses include the first 20 Principal Components, and 
outcomes are standardized for sex, birth year and country. The model extends Model 
specification 2 (see Material & Methods) with ���$ ,which is a matrix only with values for 
pairs of individuals within the same sex and �����$ ,which is a matrix only with values for pairs 
of individuals with both the same sex and from the same population (following the same 
systematic as the extension of Model 3 to Model 4) 

 

 

 

 

Model  g x population x sex 

  NEB AFB 

  Estimate 

(SE) 

p-value Estimate 

(SE) 

p-value 

��
�/��

�  0.000001   
(0.015) 

 

0.5 0.012      
(0.032) 

 

0.35 

����
� /��

�  0.11      
(0.036) 

 

0.0010 0.12       
(0.059) 

 

0.013 

���"
� /��

�  0.019      
(0.020) 

 

0.18 0.021      
(0.043) 

 

0.31 

�����"
� /��

�  0.051      
(0.046) 

 

0.093 0.000001   
(0.079) 

 

0.5 

N  3,1396 16,109 
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Our genotyping was conducted by the NIH Center for Inherited Disease Research (CIDR) at 
Johns Hopkins University. Genotyping quality control and final preparation of the data were 
performed by the Genetics Coordinating Center at the University of Washington. Genotype 
data can be accessed via the database of Genotypes and Phenotypes (dbGaP, 
http://www.ncbi.nlm.nih.gov/gap, accession number phs000428.v1.p1). Researchers who wish 
to link genetic data with other HRS measures that are not in dbGaP, such as educational 
attainment, must apply for access from HRS. See the HRS website 
(http://hrsonline.isr.umich.edu/gwas) for details.  

 

The LifeLines Cohort Study, and generation and management of GWAS genotype data for the 
LifeLines Cohort Study is supported by the Netherlands Organization of Scientific Research 
NWO (grant 175.010.2007.006), the Economic Structure Enhancing Fund (FES) of the Dutch 
government, the Ministry of Economic Affairs, the Ministry of Education, Culture and Science, 
the Ministry for Health, Welfare and Sports, the Northern Netherlands Collaboration of 
Provinces (SNN), the Province of Groningen, University Medical Center Groningen, the 
University of Groningen, Dutch Kidney Foundation and Dutch Diabetes Research Foundation. 
We thank Behrooz Z. Alizadeh, Annemieke Boesjes, Marcel Bruinenberg, Noortje Festen, Pim 
van der Harst, Ilja Nolte, Lude Franke, Mitra Valimohammadi for their help in creating the 
GWAS database, and Rob Bieringa, Joost Keers, René Oostergo, Rosalie Visser, Judith Vonk 
for their work related to data-collection and validation. The authors are grateful to the study 
participants, the staff from the LifeLines Cohort Study and the contributing research centers 
delivering data to LifeLines and the participating general practitioners and pharmacists. All 
data and samples collected by LifeLines are available to scientific researchers worldwide. It is 
also possible to prospectively collect additional data and samples in a selected group of 
LifeLines participants in an add-in study. Researchers can apply for data, samples or an add- on 
study by filling in the application form for research and submitting the completed form through 
our data catalogue, together with a selection of the requested data. Please contact dr. Salome 
Scholtens at s.scholtens@umcg.nl, when you may need more specific information.  

 

QIMR - Funding was provided by the Australian National Health and Medical Research 
Council (241944, 339462, 389927, 389875, 389891, 389892, 389938, 442915, 442981, 
496739, 552485, 552498), the Australian Research Council (A7960034, A79906588, 
A79801419, DP0770096, DP0212016, DP0343921), the FP- 5 GenomEUtwin Project (QLG2-
CT-2002-01254), and the U.S. National Institutes of Health (NIH grants AA07535, AA10248, 
AA13320, AA13321, AA13326, AA14041, DA12854, MH66206). A portion of the genotyping 
on which the QIMR study was based (Illumina 370K scans) was carried out at the Center for 
Inherited Disease Research, Baltimore (CIDR), through an access award to the authors’ late 
colleague Dr. Richard Todd (Psychiatry, Washington University School of Medicine, St Louis). 
Imputation was carried out on the Genetic Cluster Computer, which is financially supported by 
the Netherlands Scientific Organization (NWO 480-05-003). N.W.H.M was supported by a 
PhD scholarship from the ANZ trust. S.E.M., is supported by the Australian Research Council 
(ARC) Fellowship Scheme. Dale R. Nyholt is supported by the Australian Research Council 
(ARC) Future Fellowship (FT0991022) and National Health and Medical Research Council 
(NHMRC) Research Fellowship (APP0613674) Schemes. The funders had no role in study 
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design, data collection and analysis, decision to publish, or preparation of the manuscript. 
Researchers interested in using QIMR data can contact Nick Martin 
(Nick.Martin@qimrberghofer.edu.au) and Sarah Medland (medlandse@gmail.com).  

 

STR (Swedish Twin Registry) – The Jan Wallander and Tom Hedelius Foundation (P2012- 
0002:1), the Ragnar Söderberg Foundation (E9/11), The Swedish Research Council (421-2013- 
1061), the Ministry for Higher Education, The Swedish Research Council (M-2205-1112), 
GenomEUtwin (EU/QLRT-2001-01254; QLG2-CT-2002-01254), NIH DK U01-066134, The 
Swedish Foundation for Strategic Research (SSF). Researchers interested in using STR data 
must obtain approval from the Swedish Ethical Review Board and from the Steering 
Committee of the Swedish Twin Registry. Researchers using the data are required to follow the 
terms of an Assistance Agreement containing a number of clauses designed to ensure 
protection of privacy and compliance with relevant laws. For Further information, contact 
Patrik Magnusson (Patrik.magnusson@ki.se).  

 
The TwinsUK study was funded by the Wellcome Trust; European Community’s Seventh 
Framework Programme (FP7/2007–2013). The study also received support from the National 
Institute for Health Research (NIHR)- funded BioResource, Clinical Research Facility and 
Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust in 
partnership with King's College London. SNP Genotyping was performed by The Wellcome 
Trust Sanger Institute and National Eye Institute via NIH/CIDR.  
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