1	
2	Novel Eukaryotic Association Module in Phage WO
3	Genomes from Wolbachia
4	
5	
6	
7	Sarah R. Bordenstein ^a and Seth R. Bordenstein* ^{a,b}
8	
9	Affiliations:
10	^a Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA.
11	^b Department of Pathology, Microbiology, and Immunology, Vanderbilt University,
12	Nashville, TN 37232, USA.
13	

14 Viruses are trifurcated into eukaryotic, archaeal and bacterial categories. This 15 domain-specific ecology underscores why eukaryotic viruses typically co-opt 16 eukaryotic genes and bacteriophages commonly harbor bacterial genes. However, 17 the presence of bacteriophages in obligate intracellular bacteria of eukarvotes may 18 promote DNA transfers between eukaryotes and bacteriophages. Here we report the 19 first metagenomic analysis of purified bacteriophage WO particles of Wolbachia and 20 uncover a novel eukaryotic association module. It encodes domains, such as the 21 black widow latrotoxin-CTD, that are uninterrupted in bacteriophage genomes, 22 enriched with eukaryotic protease cleavage sites, and combined with additional 23 domains to forge one of the largest bacteriophage genes to date (14,256 bp). These 24 domains have never before been reported in packaged bacteriophages, and their 25 phylogeny, distribution and sequence diversity imply lateral transfers between 26 animal and bacteriophage genomes. Finally, the WO genome sequences and 27 identification of attachment sites will potentially advance genetic manipulation of 28 Wolbachia.

30	Viruses are the most abundant and diverse biological entities in the biosphere ^{1,2} . Infecting
31	organisms across the tree of life, they associate with every ecosystem on the planet. They
32	are generally classified into polythetic groups according to ecological niche and mode of
33	replication ^{3,4} . While any cellular domain can be infected by a virus, no extant virus is
34	known to traverse more than one domain ^{5,6} . This domain-specific ecology of viruses
35	underpins the current taxonomic paradigm of trifurcating viruses into eukaryotic,
36	archaeal and bacterial categories, along with recent reappraisals of whether viruses
37	constitute a fourth domain of life ^{7,8} . As a result of this domain-specific ecology, viruses
38	often integrate host genes via specific highways of lateral gene transfer. Eukaryotic
39	viruses tend to hijack genes directly from their eukaryotic hosts to evade, manipulate and
40	counter-strike anti-viral immune responses ^{9,10} , with the exception of some giant viruses
41	that appear to acquire genes from all domains of life ¹¹ . Bacterial viruses, or
42	bacteriophages (phages), integrate genetic material from their bacterial hosts including
43	toxin ¹² , photosynthesis ¹³ and pigment biosynthesis genes ¹⁴ that contribute to the fitness
44	of their bacterial host. To date, however, there is no archetypal case of phage particles
45	harboring genomes with eukaryotic DNA.

46

While all viruses are specific to one of the three domains of life, some bacteriophages target obligate intracellular bacteria of eukaryotic cells. For instance, phage WO infects the obligate intracellular alpha-proteobacteria *Wolbachia*, which in turn infect an estimated 40% of the most speciose group of animals worldwide - arthropods (as well as filarial nematodes). They cause a range of host reproductive pathologies^{15,16}, primarily infect the cells of host reproductive tissues, exist in Golgi-derived vesicles within the

53 eukaryotic cytoplasm, and are enclosed by a bacterial cell membrane and one or more eukaryotic-derived membranes^{17,18}. Nearly all sequenced *Wolbachia* genomes, with the 54 exception of those acting as obligate mutualists, harbor prophage WO¹⁹⁻²¹. They encode 55 56 conserved structural modules (e.g., head, tail, baseplate) and exhibit *Caudovirales* morphology in electron micrographs of purified phages ^{20,22-25}. Electron microscopy and 57 58 quantitative analyses indicate that prophages undergo a lytic phase capable of rupturing 59 bacterial and eukaryotic cell membranes, and phage WO occurs in the extracellular matrix of arthropod gonads^{23,26}. Therefore, phage WO appears to uniquely contend with 60 61 the cellular exit, entry and defense mechanisms of two separate domains of life. WO is 62 also a promising tool for genome editing of *Wolbachia* that has thus far been refractory to 63 genetic modification. Here we assemble the first sequenced genomes of phage WO particles, resolve the bacteriophage attachment and bacterial integration sites, report a 64 65 novel eukaryotic association module in bacteriophages, and discuss lateral gene transfers 66 between eukaryotes and bacteriophages.

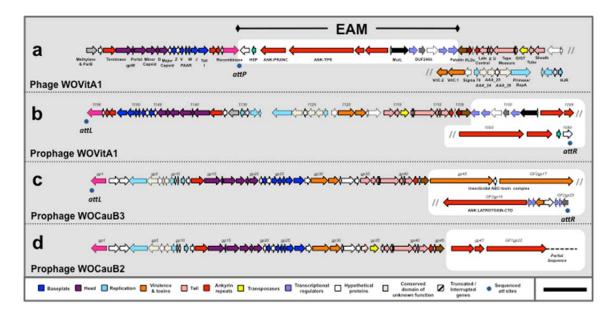
67

68 <u>RESULTS</u>

69 Phage WO Genomes Reveal A Novel Eukaryotic Association Module

70 Here we report the first metagenomic analysis of phage WO particles from wVitA-

71 infected Nasonia giraulti wasps and wCauB-infected Ephestia kuehniella moths (the w-


72 prefix indicates specific Wolbachia strain and WO-prefix indicates phage haplotype; see

73 Supplementary Table 1 for a complete list). We identify the phage attachment sites and

74 insertion regions and show from fully sequenced genomes that WO harbors all formerly

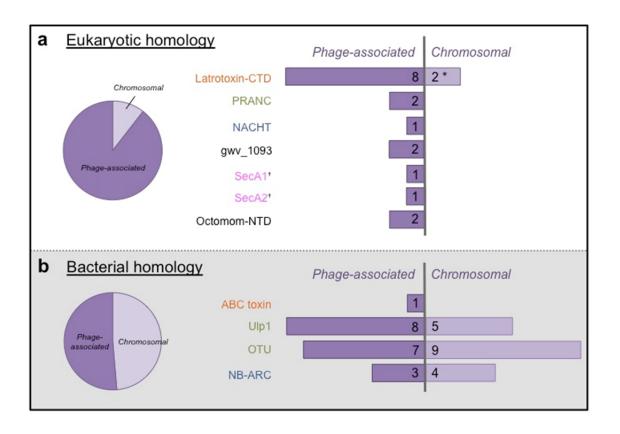
75 described phage genetic modules (lysogeny, baseplate, head, replication, virulence, tail

76	and patatin-like phospholipase ²⁷) as well as a new group of genes with atypical protein
77	domains indicative of eukaryotic interaction. We collectively group these genes, which
78	include the second largest gene in bacteriophages to date, into a novel "Eukaryotic
79	Association Module" (EAM, white box, Fig. 1). The EAM features genes that (i) encode
80	protein domains and cleavage sites central to eukaryotic functions, (ii) occur in phage and
81	metazoan hosts, (iii) are among the largest genes in phage genomes (up to 14,256 bp) and
82	(iv) are absent from mutualistic, phage-free genomes such as the bedbug-infecting wCle
83	and filarial nematode-infecting wBm and wOo. They occur in all complete prophage WO
84	haplotypes (Supplementary Table 2).

86 Figure 1 | Phage WO genomes harbor a novel Eukaryotic Association Module

87 (EAM). The complete phage WO genome for (a) WOVitA1 was sequenced directly

88 from purified viral particles using high throughput, metagenomic sequencing. The


- 89 prophage (b) WOVitA1, (c) WOCauB3 and (d) WOCauB2 genomes were reannotated
- 90 based on sequencing reads obtained from purified particles; complete genomes of
- 91 WOCauB3 and WOCauB2 were not obtained. Each genome consists of a bacteriophage-

92 like region (recombinase to patatin) and EAM highlighted in white. Gray slash marks 93 indicate illustrative continuation of the genome. Dark blue dots indicate the discovery of 94 the *attL* and *attR* sites of the prophage, which adjoin in the packaged WO genome to 95 form *attP*. Numbers above the open reading frames indicate locus tags. 96 Scale bar, 5,000 base pairs. 97 98 To verify the newly discovered EAM in the phage genome, we identified the terminal 99 prophage WO genes and Sanger sequenced amplicons from an independent sample of 100 phage WOVitA1 (Fig. 1a) across the linear phage *attP* site (hypothetical protein 101 gwv 1089 to recombinase, Supplementary Fig. 1). Next, using the newly identified *attR* 102 and *attL* sites, we extrapolated the bacterial *attB* site in WOVitA1, which is a noncoding, 103 repetitive sequence in *Wolbachia* from *Nasonia* wasps (Supplementary Fig. 1e). The full 104 length of the completely assembled, linear WOVitA1 genome is 65,653 bp, which is 105 23,531 bp larger than the previous prophage WO annotation. Similarly, we identified the 106 new terminal ends of the WOCauB3 prophage [23,099 bp (51%) larger than original 107 estimate of 45,078 bp], extending the previous observation that the end of the genome is bevond the patatin gene²⁵, along with internal localization of the EAM genes by Sanger 108 109 sequencing its attP site [Domain of Unknown Function (DUF)2426 to recombinase]. 110 While we were not able to assemble a complete contig for WOCauB2, it is more than 111 6,854 bp larger than the original estimate of 43,016, includes multiple ankyrin repeat 112 genes homologous to those in WOVitA1, and, like many other prophage haplotypes (e.g., 113 WORiC, WOVitA2, WOSuziC), integrates directly into Wolbachia's magnesium 114 chelatase (*chlI*) gene.

115

116 The EAM Is Enriched With Eukaryotic-like Domains

117 We then analyzed each phage WO protein domain for homology and surrounding peptide 118 architecture. Unlike the single domain architecture of phage WO's structural genes, EAM 119 genes are highly polymorphic and encompass fusions of both eukaryotic and bacterial 120 protein domains. By extending the analysis to include homologous prophage regions 121 from all sequenced *Wolbachia* chromosomes, ten types of protein domains with putative 122 eukaryotic functions were uncovered spanning four predicted functions: (i) toxins, (ii) 123 host-microbe interactions, (iii) host cell suicide, and (iv) secretion of proteins through the 124 cell membrane (Fig. 2). Notably, over half of these domain types (6/10; latrotoxin-CTD, 125 PRANC, NACHT, SecA, gwv 1093-NTD, Octomom-NTD) share greater amino acid 126 homology to eukaryotic invertebrates than to bacteria in GenBank. Among this subset 127 with eukaryotic sequence homology, the protein domains are almost exclusively found in 128 the prophage EAM region (N=17) versus the *Wolbachia* chromosome (N=2). In the latter 129 case, the two chromosomal latrotoxin-CTD domains (wNo 10650 and wHa 05390) are 130 flanked by phage-associated genes and transposases, indicating a likely phage WO origin 131 and subsequent genomic rearrangement. This pattern differs from other EAM protein 132 domains with bacterial homology, which are equally dispersed in phage WO (N=19) and 133 the Wolbachia chromosome (N=18) (Fig. 2, Fisher's Exact Test, p = 0.0072). The 134 difference importantly indicates that the eukaryotic-like protein domains are highly 135 enriched in the EAM, suggesting a near exclusive role in phage WO biology.

136

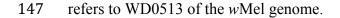
137 Figure 2 | Eukaryotic-like EAM genes are enriched in prophage WO regions in the

138 *Wolbachia* chromosome. EAM genes with (a) eukaryotic homology are most likely to be

associated with prophage WO while those with (b) bacterial homology are both phage-

140 associated and found scattered throughout the Wolbachia chromosome. (*) The two

141 chromosomal latrotoxin-CTD domains (wNo_10650 and wHa_05390) are located within


142 phage-associated genes and transposases, indicating a potential genomic rearrangement.

143 ([†]) SecA represents one "domain type" but is listed separately because phage WO

144 contains two different homologs (i.e., wHa_3920 and wHa_3930). Putative functional

145 categories are: anti-eukaryotic toxins (orange); host-microbe interactions (green); host

146 cell suicide (blue); secretion of virulence factors (pink); and unknown (black). Octomom

148

149 The Black Widow Latrotoxin-CTD

150	Latrotoxin C-terminal domain (CTD) is the most prevalent eukaryotic domain in
151	prophage WO. Originally described for its major role in the venom of widow spiders
152	(Latrodectus species), latrotoxins act extracellularly to cause the formation of ion-
153	permeable membrane pores in their vertebrate or invertebrate victims. The CTD,
154	specifically, is only associated with the latrotoxin precursor molecule (protoxin) and
155	could possibly act intracellularly to facilitate disintegration of the spider's toxin-
156	producing cells ²⁸ . While latrotoxins are generally considered exclusive to spiders, CTD-
157	homologs in Wolbachia, Rickettsiella grylli ²⁸ , and a transcriptome from a Wolbachia-
158	infected stink bug ²⁹ have been reported. Here, phylogenetic analysis implies that the
159	latrotoxin-CTD horizontally transferred between widow spiders and phage WO (Fig. 3).
160	Reciprocal search queries using homologous spider and phage CTDs return the same
161	BLASTP hits shown in Fig. 3. Notably, phage WO CTD sequences have the highest
162	amino acid similarity to black widow spider homologs that target invertebrates, which are
163	the primary hosts of Wolbachia. While convergent evolution could explain amino acid
164	sequence similarities of the latrotoxin-CTD in black widows and Wolbachia, these two
165	taxa occur in overlapping ecological niches (Wolbachia are known to infect spiders of the
166	family <i>Theridiidae</i>) in which gene transfers are likely to happen ³⁰ . We also confirmed the
167	presence of Wolbachia in three independent Latrodectus geometricus samples by
168	amplifying Wolbachia 16S rDNA and wsp membrane protein genes. The transfer event
169	was apparently followed by a relatively more recent transfer from phage WO back to

170	• 1 • 1 • 1		1 /1	• •	1 / 1	1 /	C
170	animals in the Aedes	agavnti genome	where the red	10n 1c	Incated	hetween genes c	١Ť
1/0	ammais in the neues	<i>uegypu</i> genome,	where the reg	51011 15	Incated	between genes c	/1

- 171 mosquito origin [fibrinogen-related protein (AAEL004156) and GalE3 (AAEL004196)].
- 172

173 Toxin Activation by Eukaryotic Furin Cleavage

174 La	otoxin-CTD is universally located at the 3'-terminal ends of both conserved spider
--------	--

175 latrotoxin genes³¹ and enormous, polymorphic, and eukaryotic-like phage WO genes (up

to 14,256 bp). There is a high incidence of eukaryotic furin cleavage sites that

177 immediately precede the latrotoxin-CTD. In spiders, cleavage at these sites by the

178 eukaryotic furin protease in the trans-Golgi network or extracellular matrix is required for

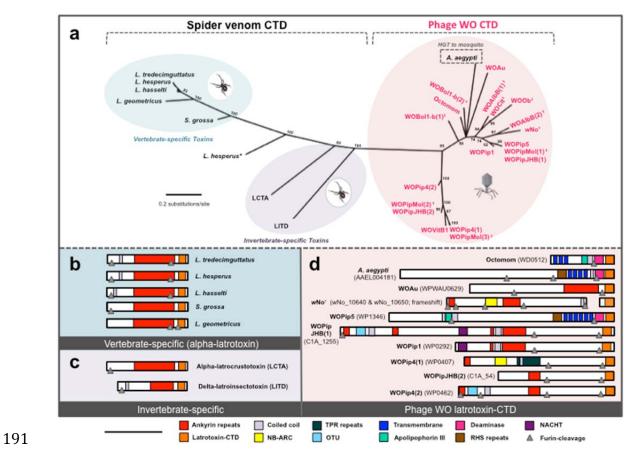
179 latrotoxin activation before the toxin exerts its effects upon the victim. We show that all

180 prophage WO EAMs contain at least one site for eukaryotic furin cleavage

181 (Supplementary Table 3), and the proportion of all EAM genes with predicted furin

182 cleavage sites (25%) is two-fold greater than that of the genes in the core phage genome

183 (11%, Fisher's Exact Test, p < 0.0001), defined as the conserved bacteriophage region


184 from recombinase to patatin. In regards to the phage WO latrotoxin-CTD, its preferential

185 localization in prophage WO genomes versus the rest of the *Wolbachia* chromosome,

186 conservation of eukaryotic furin cleaveage sites, large eukaryotic-like length, homology

- 187 to invertbrate-specific toxins, and reduced divergence relative to the spider venom
- 188 homologs is consistent with a eukaryotic origin and post-translational processing by furin

189 peptidases.

192 Figure 3 | Latrotoxin-CTD phylogeny and protein architecture support lateral

193 genetic transfers. (a) Phylogeny of phage WO latrotoxin-CTD protein domains and their 194 eukaryotic homologs was constructed by Bayesian analysis of 74 amino acids using the 195 JTT model of evolution. Consensus support values are shown at the nodes. Comparative 196 protein architecture shows that spider venom (b) vertebrate-specific alpha-latrotoxins and 197 (c) invertebrate-specific alpha- and delta-latrotoxins are highly conserved, whereas (d) 198 phage WO are not. Bolded nomenclature in (d) denotes the specific phage WO haplotype 199 (listed as WO). Genome locus tags are listed in parentheses. Predicted furin cleavage 200 sites, listed in Supplementary Table 3, are illustrated with gray triangles. (*) A second L. 201 hesperus sequence represents a recently-described downstream paralog with unknown toxin activity³². ([†]) wNo 10650 is located within phage-associated genes and 202

transposases, indicating a potential genomic rearrangement of a phage region.

204 (‡) Architecture is not shown for sequences on incomplete contigs (WOBol1-b,

205 WOAlbB, WOCit, WOPipMol, WOVitB) because complete peptide information and

specific phage association are unknown. Scale bar, 1,000 amino acids.

207

208 <u>P</u>ox protein <u>R</u>epeats of <u>ANkyrin C</u> terminus (PRANC)

209 Domains central to modifying animal proteins are also abundant in the phage WO EAM.

210 The PRANC domain in the WOVitA1 genome (gwv_1092) shares protein sequence

211 homology with corresponding PRANC domains in multiple parasitic wasp hosts

212 (Supplementary Table 4) and their eukaryotic viruses. Reciprocal BLASTP searches

213 retrieve the same best hits and support previous findings that this protein domain

horizontally transferred between eukaryotic viruses, animals, and *Proteobacteria*³³. The

215 discovery here of the eukaryotic-like PRANC domain in phage WO parallels its presence

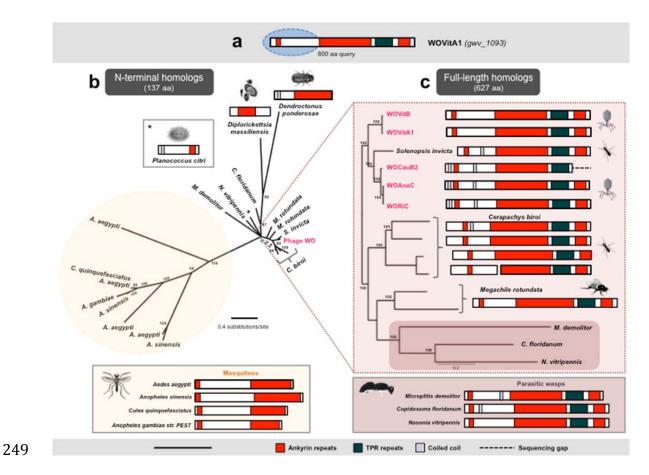
216 in the *Poxviridae* virus family, in which it functions in evasion of eukaryotic immune

217 responses via modification of host ubiquitination. PRANC is related to amino acid

218 sequences in F-box proteins, which are eukaryotic proteins involved in protein

219 degradation. The PRANC domain also occurs in vaccina virus, ectromelia virus, cowpox

220 virus and Orf virus and can regulate NF- κ B signalling pathway to inhibit transcription of 221 inflammatory cytokines³⁴.


222

223 Conserved Ankyrin and <u>T</u>etratrico<u>p</u>eptide <u>R</u>epeat (TPR) Protein

Adjacent to the PRANC-encoding gene in WOVitA1's EAM is an ankyrin and TPR-

225 containing gwv_1093. Ankyrin repeats and TPRs mediate a broad range of protein-

226	protein interactions (apoptosis, cell signaling, inflammatory response, etc.) within
227	eukaryotic cells and are commonly associated with effector proteins of certain
228	intracellular pathogens ^{35,36} . In Wolbachia, ankyrins within the core phage genome have
229	been associated with reproductive manipulation of the insect host ^{37,38} . While generally
230	rare in viral genomes (Supplementary Fig. 2 and 3, respectively), these repeat regions
231	occur in all prophage WO haplotypes from sequenced Wolbachia genomes (N=23).
232	Phylogenetic analysis using reciprocal BLASTP hits (Fig. 4) shows that the N-terminus
233	sequences of the TPR-containing gwv_1093 are embedded within a diverse set of
234	homologs from many athropod lineages (Fig. 4b), with the most recent transfer putatively
235	occurring between phage WO and Solenopsis invicta (Fig. 4c). In this species, the gene is
236	located between ant genes bicaudal D and rho guanine nucleotide exchange factor 11. As
237	S. invicta can naturally harbor Wolbachia ³⁹ , either a gene transfer event occurred between
238	these ecologically-associated taxa or the S. invicta homolog could be an assembly
239	artifact. This assembly was based on samples from a region rarely infected with
240	Wolbachia (Y Wurm, personal communication, April 2016) and there are no other
241	Wolbachia/prophage WO homologs in the S. invicta genome; therefore, the latter
242	explanation seems unlikely. Moreover, other gwv_1093 homologs are from insect
243	genome sequences of uninfected strains, i.e., N. vitripennis, and thus they can not be
244	derived by an assembly artifact. Based on parsimony, the transfer event appears to have
245	occurred from arthopod to phage WO since the arthropod taxa comprise a more diverse
246	set of lineages. However, the reverse is plausible as transfers from Wolbachia to their
247	arthropod hosts are common ⁴⁰⁻⁴² .

250 Figure 4 | Phylogeny and protein architecture of a conserved TPR and anyrin-

251 repeat protein support lateral genetic transfers. (a) A BLASTP query of WOVitA1's

gwv_1093 N-terminus reveals homologs in moquitoes, ants, beetles, a mealybug, a

solitary bee and one obligate intracellular gammaproteobacteria. Bayesian phylogenetic

trees were constructed based on (b) a 137-aa alignment of all homologs with E-value less

than e⁻⁴⁰ using the LG+G model of evolution. (c) To resolve taxa closest to phage WO,

trees were reconstructed based on a 627-aa alignment of all homologs with an E-value of

257 0 using the JTT+I+G model of evolution. Isoforms were removed from each alignment.

- Both trees are unrooted. Consensus support values are shown at the nodes. Chromosomal
- 259 neighborhood analyses of available animal genome sequences indicate that animal

260 homologs to the phage WO protein are on contigs with other animal genes. Scale bar,

- 261 1,000 amino acids.
- 262
- 263 NACHT

264	Another instance of	genetic transfe	er involves the	programmed	cell death ()	PCD) domain.

265 NACHT (Fig. 5). Eukaryotic NACHT-containing proteins are typically engaged in PCD

by acting as pathogen-sensors and signal transduction molecules of the innate immune

system⁴³. The polymorphic prophage WO homolog encodes ankyrin repeats and a

268 latrotoxin-CTD directly downstream from the conserved NTPase domain (Fig. 5a).

269 NACHT domains have been identified in animals, fungi and bacteria⁴⁴ and phylogenetic

270 patterns indicate multiple instances of horizontal transfer⁴⁵. A NACHT-containing

271 peptide was recently discovered in the *Clostridium difficile*-infecting phage phiCDHM1

272 genome⁴⁶ although, in contrast to prophage WO, the phiCDHM1 NACHT domain is

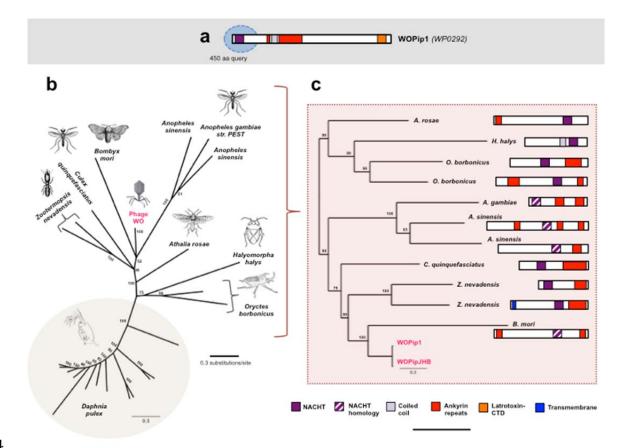
273 bacterial in both amino acid homology and protein architecture. While all BLASTP and

274 reciprocal BLASTP queries of the phiCDHM1 NACHT domain yield only bacterial

275 homologs, BLASTP searches of the prophage WO NACHT domain yield only animals,

and reciprocal BLASTP searches of the animal homologs yield only prophage WO and

277 other animals. Similar to the phylogeny of the N-terminus of the TPR-containing


278 gwv_1093, this single NACHT domain sequence in prophage WO is embedded within a

279 more diverse set of homologs in arthropods (Fig. 5b,c). Phylogenetic analyses place the

280 prophage WO variants adjacent to a divergent Bombyx mori sequence, though these

variants have slightly closer total homology to *Culex quiquefasciatus* mosquitoes that

282 harbor *Wolbachia* with related prophage WO variants.

284

285 Figure 5 | Phylogeny and protein architecture of the programmed cell death 286 domain, NACHT, support lateral genetic transfers. (a) A BLASTP query of prophage 287 WO's NACHT region reveals homologs throughout arthropods and crustaceans. (b) 288 Bayesian phylogenetic trees were constructed based on a 271-aa alignment of all homologs with E-value less than e⁻¹⁵ and coverage greater than 70% using the cpREV+G 289 290 model of evolution. To resolve taxa closest to prophage WO, all Daphnia sequences were 291 removed from the alignment and clusters of highly divergent residues (i.e., 5 or more 292 sequential residues with less than 15% pairwise identity) were trimmed. Trees were 293 reconstructed based on this 262-aa alignment using the LG+G model of evolution. 294 Consensus support values are shown at the nodes. Both trees are unrooted. Chromosomal

295 neighborhood analyses of available animal genome sequences indicate that animal

296 homologs to the prophage WO protein are on contigs with other animal genes. Scale bar,

297 1,000 amino acids.

298

299 **DISCUSSION**

300 The inaugural metagenomic analysis of the complete genome from phage WO particles

301 reveals all formerly described phage genetic modules (lysogeny, baseplate, head,

replication, virulence, tail and patatin-like phospholipase²⁷) as well as a new group of

303 genes that we collectively group into a eukaryotic associatoin module (EAM). Some of

304 these genes (i) encode protein domains and cleavage sites central to eukaryotic functions,

305 (ii) occur in both phage and metazoan hosts, (iii) comprise the second largest phage gene

to date (14,256 bp) and (iv) are absent from mutualistic, phage-free genomes of

307 Wolbachia. Together, these genes increase the phage WO genome size by roughly 50%

308 and include ten types of protein domains with four predicted eukaryotic functions: toxins,

309 host-microbe interactions, host cell suicide, and secretion of proteins through the cell

310 membrane. Notably, over half of these domain types share greater amino acid homology

311 to eukaryotic invertebrates than to bacteria in GenBank. Among this subset with

312 eukaryotic sequence homology, the protein domains are almost exclusively found in the

313 phage EAM. An EAM has never before been reported in bacteriophage genomes,

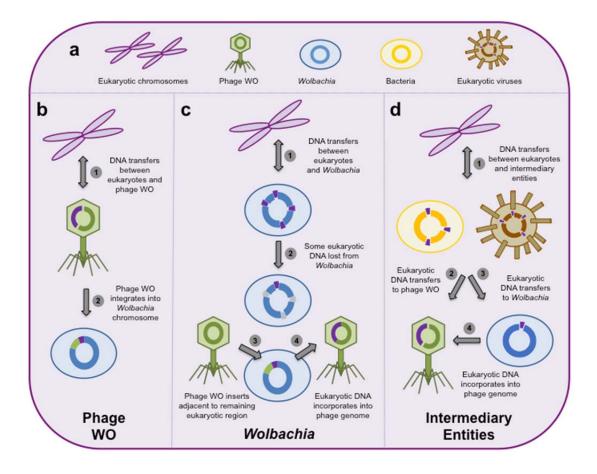
314 possibly because phages of obligate intracellular bacteria occupy a unique eukaryotic-

315 enclosed niche and are relatively understudied.

316

317	The presence of eukaryotic protein domains in bacteriophage genomes is of special note
318	as they curiously mirror eukaryotic genes in large eukaryotic viruses that aid in viral
319	mimicry and manipulation of host processes ^{47,48} . In phage WO, these animal protein
320	domains are central to anti-eukaryotic functions including the black widow latrotoxin,
321	programmed cell death (NACHT), immune evasion (PRANC), and protein-protein
322	interactions.

323


324	Bacteriophage WO frequently transfer between Wolbachia coinfections in the same
325	animal host ^{49,50} and to the host genome as part of large transfers of the Wolbachia
326	chromosome ^{40,41} . We previously reported that phage WO in <i>Wolbachia</i> of <i>Nasonia</i>
327	vitripennis were also capable of transferring adjacent flanking non-phage genes in the
328	process of exchange between coinfections ⁵¹ . For two of these flanking genes, sequence
329	evidence indicated that Wolbachia genomes may be able to receive eukaryotic
330	DNA ^{42,52,53} . However, the nature of these lateral genetic transfers remained to be
331	elucidated as these regions were not previously known to be part of the packaged phage
332	genome until now. Here, we demonstrate that genes with eukaryotic homology are
333	constituents of phage WO and its EAM, and they either retain conservation of eukaryotic
334	furin cleaveage sites and a large eukaryotic-like length (i.e., latrotoxin-CTD), or they
335	exhibit markedly reduced or no diversity relative to the arthropod homologs as the WO
336	sequences exist as single or a few representatives (NACHT and TPR-containing
337	proteins). Moreover, WO protein domains with eukaryotic homology are highly enriched
338	in the EAM over WO protein domains with bacterial homology. Based on this work, we
339	suspect that systematic surveys of phage genomes in intimate host-associated bacteria

may uncover a broad range of eukaryotic-like protein domains involved in phage
lifecycle adaptations and phage-eukaryote interactions. Of particular note is the reported
association between phage WO genes, specifically ankyrins, transcriptional regulators
and the Ulp1 operon, and *Wolbachia*'s ability to manipulate host reproduction^{37,38,54-56}.

344

345 The mechanisms by which eukaryotic protein domains are exchanged with phage WO are 346 unknown and could follow at least three models (Fig. 6). First, animal genetic material 347 could directly transfer to and from WO genomes during phage particle propagation in the 348 cytoplasm of animal cells (Fig. 6b) or during packaging inside Wolbachia cells that are 349 lysing and exposed to the eukaryotic cytoplasmic environment. Packaging of eukaryotic host RNAs, for instance, occur in the virions of herpesvirus⁵⁷ and cytomegalovirus⁵⁸. 350 351 Second, genes may transfer between animal genomes and the Wolbachia chromosome 352 and then to prophage WO. For this scenario to be plausible, animal genetic material 353 transferred in random locations in the *Wolbachia* genome would have to be preferentially 354 lost in non-phage associated locations from the *Wolbachia* chromosome (Fig. 6c) because 355 domains with eukaryotic homology are highly enriched in the phage/prophage WO EAM 356 versus the rest of the chromosome (Fig. 2). Third, DNA may transfer first between 357 animal genomes and intermediary entities, such as eukaryotic viruses or other obligate 358 intracellular bacteria, and then to phage WO and/or Wolbachia (Fib. 6d). In fact, the 359 PRANC-domain (described in gwv 1092) was named for its discovery in and association 360 with eukaryotic Pox viruses. Finally, once DNA is incorporated into a prophage genome, 361 it is susceptible to recombination with other phage WO haplotypes located in the same 362 Wolbachia chromosome and can transfer from one haplotype to another.

364	Alternatively, these protein domains could originate in the phage and be particularly
365	prone to transfer, maintenance, and spread in their recipient arthropod genomes (Fig. 6b).
366	For this scenario to be plausible, it would have to imply that phage genetic material
367	independently and repeatedly transfers to athropods and spreads through the host
368	population, which would subsequently be followed by loss of these phage genes or
369	recombination with other non-transferred phage genetic material so that the eukaryotic
370	sequence varation clusters seperately from the phage WO sequence(s). While each mode
371	of transfer is possible, the eukaryotic length of these genes, presence of furin protease
372	domains, and enrichment in the phage WO EAM provides evidence for their eukaryotic
373	origin.

375

376 Figure 6 | Models of lateral DNA transfer between eukaryotes and bacteriophages. 377 (a) The eukaryotic cell can harbor multiple microbes capable of horizontal gene transfer. 378 Genetic transfers between eukaryotes and bacteriophages, in particular, can in theory 379 occur (b) directly via incorporation into the phage genome followed by subsequent 380 inclusion in the chromosomal prophage region; (c) indirectly via the transfer of 381 eukaryotic DNA to the Wolbachia chromosome or vice versa; and (d) indirectly via the 382 transfer of DNA between eukaryotic chromosomes and intermediary entities, such as 383 eukaryotic viruses and other intracellular bacteria, followed by the transfer to Wolbachia 384 and/or phage WO. Since phage EAM genes carrying protein domains central to 385 eukaryotic functions primarily occur in phage/prophage genomes (see Fig. 2), transferred 386 DNA from eukaryotes to non-phage regions in Wolbachia is likely eliminated from the

bacterial genome under this model (c). Prophage genomes adjacent to these EAM genes
then incorporate the DNA into their packaged genomes and pass it on to new copies of
the phage.

390

391	Why are these protein domains present in the EAM of bacteriophage WO? Some phages
392	of obligate intracellular bacteria may have to overcome two major challenges not
393	encountered by the well-studied phages of free-living bacteria. First, they are contained
394	within both bacterial and eukaryotic membranes, posing an enigmatic "two-fold cell
395	challenge". They may not only have to breach peptidoglycan and permeabilize bacterial
396	membranes, but they may also have to exit (and enter) across the eukaryotic membrane(s)
397	that directly encapsulates the bacteria. Second, like their bacterial hosts, they must
398	survive the internal cellular environment of the animal host, including the innate immune
399	response and autophagy, while searching for phage-susceptible bacteria. Phage WO can
400	dwell in the eukaryotic cytoplasm and extracellular matrix that they encounter upon
401	bacterial lysis ²⁶ , raising the likelihood of direct interaction with host membranes and
402	intracellular biology. In this context, EAM protein domains are prime candidates to aid in
403	functions including cell lysis (latrotoxin-CTD), manipulation of programmed cell death
404	(NACHT and NB-ARC), host ubiquitination (OTU and Ulp1), insecticidal toxicity (ABC
405	toxin) and interaction with host proteins (ankryin repeats and TPRs). Rather than simply
406	act as virulence factors to benefit their bacterial host, their massive proportion of genomic
407	real estate (up to 60% of the prophage genome, Supplementary Fig. 4) implies that they
408	may be necessary to phage biology and likely have a direct impact on phage propagation.
409	The concept of phage-mediated ecosystem modification as an alternative to bacterial

410 virulence is not new⁵⁹ but, much like the biology of phage WO, is relatively

- 411 understudied.
- 412

413	Phage WO is not the only virus described within obligate intracellular bacteria.
414	Chlamydiomicroviridae infect obligate intracellular bacteria, yet still do not directly
415	contend with the eukaryotic membrane. Rather, they attach to dormant chlamydial cells
416	(i.e., reticulate bodies) and enter via phagocytosis or endocytosis of the bacteria ⁶⁰ . The
417	phages then alter development of their bacterial host, which leads to disintegration of the
418	chlamydial inclusion and subsequent lysis of the eukaryotic host cell ^{61,62} . The nature of
419	phage WO's lifestyle, on the other hand, may require a distinct interaction with multiple
420	membranes and immune responses because lytic activity of phage WO has been
421	associated with typical bacterial cell defects including degraded bacterial DNA, a
422	detached inner membrane, and exit of the phage particles from inside Wolbachia and its
423	host cell into the extracellular matrix of the reproductive tissues ²⁶ . Bacteriophages of
424	free-living bacteria also regularly colonize eukaryotic environments, particularly those
425	associated with mucosal surfaces ⁶³ . They, however, do not infect or traverse the
426	eukaryotic membrane and are still within the genomic boundaries of the bacterial
427	virosphere.
428	

428

429 Temperate dsDNA phages also occur in facultative symbionts of aphids⁶⁴ and tsetse

430 flies⁶⁵. While *Wolbachia* has never successfully been cultured outside of host cells⁶⁶,

431 these facultative symbionts can replicate both intra- and extracellularly (JW Brandt,

432 personal communication, July 2015) suggesting that their phages are not constrained by

433	the same two-fold cell challenge. In addition, their phages encode a traditional lytic
434	cassette (holin and lysozyme) that correlates with the need to deal only with bacterial
435	membranes. In some cases, the phages harbor bacterial-derived toxins that target
436	eukaryotic cells ⁶⁷ , and these function mutualistically in aphids by arresting development
437	of parasitoid wasp larvae ⁶⁴ . Furthermore, unlike phage WO that is stably maintained in
438	the lab, these phages are readily lost in the absence of parasitoids during laboratory
439	rearing, presumably due to the cost of their toxins ⁶⁸ .
440	
441	In addition to providing new insights into the evolution of bacteriophages and showing
442	phage WO genomes to be far more complex than previously described, the findings here
443	reveal evidence for gene sharing between metazoan hosts and phages of obligate
444	intracellular bacteria. We suggest that the putative acquistion and retooling of intact
445	eukaryotic domains in phage WO is analgous to the commandeering of host genes by
446	eukaryotic viruses. Whether lateral genetic transfers between metazoans and
447	bacteriophages are common in the symbiotic virosphere remains to be determined.
448	

449 METHODS

450 Insect and Bacterial Strains

- 451 The transfected line of the Mediterranean flour moth *Ephestia kuehniella* harboring
- 452 Wolbachia strain wCauB was obtained with the help of Takema Fukatsu and Tetsuhiko
- 453 Sasaki²². Moths were maintained at 24°C and 70% humidity on a diet consisting of wheat
- 454 bran, glycerol and dried yeast (20:2:1 w/w). The introgressed line of the parasitoid wasp
- 455 Nasonia giraulti harboring Wolbachia strain wVitA, termed IntG12.1, was previously
- derived by repeatedly backcrossing N. vitripennis (strain 12.1) females to N. giraulti
- 457 males for nine generations⁶⁹. The strain was incubated at 25° C using the flesh fly
- 458 Sarcophaga bullata as host.
- 459

460 Phage Particle Purification

461 Phage particles were isolated according to Fujii et al^{22} with modifications. Approximately

462 4 g of adult insects were homogenized in 29.6 ml cold SM buffer (50mM Tris-HCl, pH

463 7.5, 0.1 M NaCl, 10mM MgSO₄ $^{-}$ 7H₂0, and 0.1% (w/v) gelatin). NaCl and RNase A

464 were added to a final concentration of 1M and $1\mu g/ml$, respectively. The homogenate was

- 465 incubated on a shaker at 4° C for 1 h and then centrifuged at 13,000g for 10 min at 4° C.
- 466 Polyethylene glycol (PEG) 6000 was added to a final concentration of 10% to precipitate

467 phage particles, incubated at 4°C for 1 hr with gentle shaking and centrifuged at 13,000g

- for 10 min. The pellet was resuspended in 5 ml TM buffer (50 mM Tris-HCl, pH 7.5, 10
- 469 mM MgCl₂ $^{\circ}$ 6H₂O) and mixed with an equal volume chloroform. The suspension was
- 470 centrifuged at 3,000g to remove PEG and the aqueous phase was filtered through a 0.22

- 471 μm filter to remove bacterial cells. The suspension was centrifuged at 60,000g for 1 h at
- 472 4°C to collect phage particles. The pellet was suspended in 10 μ l TM buffer.
- 473
- 474 Phage DNA Extraction & Metagenomic Sequencing
- 475 The phage suspension was treated with RQ1 RNase-Free DNase (Promega) for 30 min at
- 476 37°C, followed by heat inactivation for 10 min at 65°C, to remove host DNA
- 477 contamination. Phage DNA was extracted from the suspension using the QIAamp
- 478 MinElute Virus Spin Kit (Qiagen) and amplified using the REPLI-g Mini Kit (Qiagen).
- 479 Following amplification, paired-end DNA libraries were prepared according to
- 480 manufacturer's (Illumina) instructions and samples were sequenced with an Illumina
- 481 HiSeq 2000 (2×100-nt read length).
- 482
- 483 Bioinformatics & Statistics
- 484 Metagenomic sequences (reads) were trimmed, paired and assembled into contigs using
- the CLC Assembler (CLC bio) with bubble size = 50, insertion and deletion cost = 3,
- 486 mismatch cost = 2, length fraction = 0.6, minimum contig size = 130, similarity = 0.5,
- 487 minimum distance = 90 and maximum distance = 200. Contigs were compared to the
- 488 GenBank non-redundant database using NCBI's BLASTN
- 489 (http://blast.ncbi.nlm.nih.gov/Blast.cgi) and those with similarity to phage WO and/or
- 490 *Wolbachia* (E-value $<10^{-10}$) were manually annotated using Geneious (Biomatters Ltd.).
- 491 Individual reads were mapped to reference sequences using Geneious. Open reading
- 492 frame (ORF) homology searches were performed to determine putative function using
- 493 NCBI's BLASTP (http://blast.ncbi.nlm.nih.gov/Blast.cgi) and Wellcome Trust Sanger

- 494 Institute's pfam database (http://pfam.sanger.ac.uk). Coiled coil domains were predicted
- 495 with EMBL's Simple Modular Architecture Research Tool (SMART, http://smart.embl-
- 496 heidelberg.de). Furin cleavage sites were identified using PiTou
- 497 (http://www.nuolan.net/reference.html). The number of genes with and without furin
- 498 cleavage sites was analyzed with respect to phage-region using Fisher's Exact Test
- 499 (GraphPad Software). Phylogenetic trees were built using the Bayes plugin in Geneious
- and model selection for each Bayes analysis was estimated using $ProtTest^{70}$.
- 501
- 502 Confirmation of Phage WO Terminal Genes
- 503 Genomic DNA was extracted from wVitA-infected N. vitripennis (strain 12.1) and
- 504 wCauB-infected E. kuehniella individuals using the Gentra Puregene Tissue Kit (Qiagen).
- 505 Primers were designed for both WOVitA1 and WOCauB3 *attP* sites, respectively:
- 506 VitA1_attF (5'- CGA AGA ACC AGC ACA GGG TGG-3'), VitA1_attR (5'- GCT GGA
- 507 AGA GGG CAT CTG CAT C-3'), CauB3_attF (5'- TCG TGA CTG CCC TAT TGC
- 508 TGC T 3') and CauB3_attR (5'- ATG CGG CCA AAG CTG GGT GT 3').
- 509 Amplification was performed in a Veriti thermal cycler (Applied Biosystems) using
- 510 GoTaq green master mix (Promega) under the following conditions: 94°C for 2 min; 35
- 511 cycles of 94°C for 30 s, 53°C for 30 s, 72°C for 1 min; and a final elongation cycle of
- 512 72°C for 10 min. PCR products were sequenced via Sanger sequencing (Genewiz, Inc).

514 **<u>REFERENCES</u>**

- 515 1. Edwards, R.A. & Rohwer, F. Viral metagenomics. *Nat Rev Microbiol* **3**, 504-10 (2005).
- 517 2. Hendrix, R.W., Smith, M.C., Burns, R.N., Ford, M.E. & Hatfull, G.F.
- 518 Evolutionary relationships among diverse bacteriophages and prophages: all the 519 world's a phage. *Proc Natl Acad Sci U S A* **96**, 2192-7 (1999).
- Brussow, H. The not so universal tree of life or the place of viruses in the living
 world. *Philos Trans R Soc Lond B Biol Sci* 364, 2263-74 (2009).
- 522 4. King, A.M.Q., Adams, M.J., Lefkowitz, E.J. & Carstens, E.B. *Virus taxonomy:*523 *classification and nomenclature of viruses: Ninth Report of the International*524 *Committee on Taxonomy of Viruses.*, 1327 (Elsevier, San Diego, 2012).
- 525 5. Nasir, A., Forterre, P., Kim, K.M. & Caetano-Anolles, G. The distribution and impact of viral lineages in domains of life. *Front Microbiol* **5**, 194 (2014).
- 527 6. Prangishvili, D., Forterre, P. & Garrett, R.A. Viruses of the Archaea: a unifying
 528 view. *Nat Rev Microbiol* 4, 837-48 (2006).
- 529 7. Forterre, P. Giant viruses: conflicts in revisiting the virus concept. *Intervirology*530 53, 362-78 (2010).
- 8. Raoult, D. TRUC or the need for a new microbial classification. *Intervirology* 56, 349-53 (2013).
- 533 9. Elde, N.C. & Malik, H.S. The evolutionary conundrum of pathogen mimicry. *Nat Rev Microbiol* 7, 787-97 (2009).
- 53510.Rappoport, N. & Linial, M. Viral proteins acquired from a host converge to536simplified domain architectures. *PLoS Comput Biol* 8, e1002364 (2012).
- 537 11. Colson, P. & Raoult, D. Gene repertoire of amoeba-associated giant viruses.
 538 *Intervirology* 53, 330-43 (2010).
- 539 12. Canchaya, C., Fournous, G. & Brussow, H. The impact of prophages on bacterial
 chromosomes. *Mol Microbiol* 53, 9-18 (2004).
- 541 13. Lindell, D. *et al.* Transfer of photosynthesis genes to and from Prochlorococcus viruses. *Proc Natl Acad Sci U S A* 101, 11013-8 (2004).
- 543 14. Dammeyer, T., Bagby, S.C., Sullivan, M.B., Chisholm, S.W. & Frankenberg544 Dinkel, N. Efficient phage-mediated pigment biosynthesis in oceanic
 545 cyanobacteria. *Curr Biol* 18, 442-8 (2008).
- 546 15. Werren, J.H., Baldo, L. & Clark, M.E. Wolbachia: master manipulators of invertebrate biology. *Nat Rev Microbiol* 6, 741-51 (2008).
- 548 16. Zug, R. & Hammerstein, P. Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected. *PLoS One* 7, e38544 (2012).
- 551 17. Cho, K.O., Kim, G.W. & Lee, O.K. Wolbachia bacteria reside in host Golgi552 related vesicles whose position is regulated by polarity proteins. *PLoS One* 6, e22703 (2011).
- Louis, C. & Nigro, L. Ultrastructual evidence of Wolbachia Rickettsiales in
 Drosophila simulans and their relationships with unidirectional crossincompatibility. *Journal of Invertebrate Pathology* 54, 39-44 (1989).
- 557 19. Gavotte, L. *et al.* A Survey of the bacteriophage WO in the endosymbiotic 558 bacteria Wolbachia. *Mol Biol Evol* **24**, 427-35 (2007).

559	20.	Kent, B.N. & Bordenstein, S.R. Phage WO of Wolbachia: lambda of the
560	21	endosymbiont world. <i>Trends Microbiol</i> 18 , 173-81 (2010).
561	21.	Metcalf, J.A. & Bordenstein, S.R. The complexity of virus systems: the case of and anything to $C_{1} = 0$ in $M_{1} = 115$ 54(52)(2012)
562	22	endosymbionts. <i>Curr Opin Microbiol</i> 15 , 546-52 (2012).
563	22.	Fujii, Y., Kubo, T., Ishikawa, H. & Sasaki, T. Isolation and characterization of the
564		bacteriophage WO from Wolbachia, an arthropod endosymbiont. <i>Biochem</i>
565	a a	Biophys Res Commun 317 , 1183-8 (2004).
566	23.	Masui, S. <i>et al.</i> Bacteriophage WO and virus-like particles in Wolbachia, an
567		endosymbiont of arthropods. <i>Biochem Biophys Res Commun</i> 283, 1099-104
568	24	(2001).
569	24.	Sanogo, Y.O. & Dobson, S.L. WO bacteriophage transcription in Wolbachia-
570		infected Culex pipiens. Insect Biochem Mol Biol 36, 80-5 (2006).
571	25.	Tanaka, K., Furukawa, S., Nikoh, N., Sasaki, T. & Fukatsu, T. Complete WO
572		phage sequences reveal their dynamic evolutionary trajectories and putative
573		functional elements required for integration into the Wolbachia genome. Appl
574		Environ Microbiol 75 , 5676-86 (2009).
575	26.	Bordenstein, S.R., Marshall, M.L., Fry, A.J., Kim, U. & Wernegreen, J.J. The
576		tripartite associations between bacteriophage, Wolbachia, and arthropods. PLoS
577		Pathog 2, e43 (2006).
578	27.	Kent, B.N., Funkhouser, L.J., Setia, S. & Bordenstein, S.R. Evolutionary
579		genomics of a temperate bacteriophage in an obligate intracellular bacteria
580		(Wolbachia). <i>PLoS One</i> 6 , e24984 (2011).
581	28.	Zhang, D., de Souza, R.F., Anantharaman, V., Iyer, L.M. & Aravind, L.
582		Polymorphic toxin systems: Comprehensive characterization of trafficking modes,
583		processing, mechanisms of action, immunity and ecology using comparative
584		genomics. <i>Biol Direct</i> 7, 18 (2012).
585	29.	Ioannidis, P. et al. Rapid transcriptome sequencing of an invasive pest, the brown
586		marmorated stink bug Halyomorpha halys. BMC Genomics 15, 738 (2014).
587	30.	Goodacre, S.L., Martin, O.Y., Thomas, C.F. & Hewitt, G.M. Wolbachia and other
588		endosymbiont infections in spiders. Mol Ecol 15, 517-27 (2006).
589	31.	Garb, J.E. & Hayashi, C.Y. Molecular evolution of alpha-latrotoxin, the
590		exceptionally potent vertebrate neurotoxin in black widow spider venom. Mol
591		<i>Biol Evol</i> 30 , 999-1014 (2013).
592	32.	Bhere, K.V., Haney, R.A., Ayoub, N.A. & Garb, J.E. Gene structure, regulatory
593		control, and evolution of black widow venom latrotoxins. FEBS Lett 588, 3891-7
594		(2014).
595	33.	Werren, J.H. et al. Functional and evolutionary insights from the genomes of
596		three parasitoid Nasonia species. Science 327 , 343-8 (2010).
597	34.	Chang, S.J. et al. Poxvirus host range protein CP77 contains an F-box-like
598		domain that is necessary to suppress NF-kappaB activation by tumor necrosis
599		factor alpha but is independent of its host range function. J Virol 83, 4140-52
600		(2009).
601	35.	Cerveny, L. et al. Tetratricopeptide repeat motifs in the world of bacterial
602		pathogens: role in virulence mechanisms. <i>Infect Immun</i> 81 , 629-35 (2013).

603	36.	Pan, X., Luhrmann, A., Satoh, A., Laskowski-Arce, M.A. & Roy, C.R. Ankyrin
604		repeat proteins comprise a diverse family of bacterial type IV effectors. <i>Science</i>
605	27	320 , 1651-4 (2008).
606	37.	Pichon, S. <i>et al.</i> The expression of one ankyrin pk2 allele of the WO prophage is
607		correlated with the Wolbachia feminizing effect in isopods. <i>BMC Microbiol</i> 12 ,
608	•	55 (2012).
609	38.	Walker, T. et al. Ankyrin repeat domain-encoding genes in the wPip strain of
610		Wolbachia from the Culex pipiens group. BMC Biol 5, 39 (2007).
611	39.	Shoemaker, D.D., Ross, K.G., Keller, L., Vargo, E.L. & Werren, J.H. Wolbachia
612		infections in native and introduced populations of fire ants (Solenopsis spp.).
613		Insect Mol Biol 9, 661-73 (2000).
614	40.	Dunning Hotopp, J.C. et al. Widespread lateral gene transfer from intracellular
615		bacteria to multicellular eukaryotes. Science 317, 1753-6 (2007).
616	41.	Funkhouser-Jones, L.J. et al. Wolbachia co-infection in a hybrid zone: discovery
617		of horizontal gene transfers from two Wolbachia supergroups into an animal
618		genome. PeerJ 3, e1479 (2015).
619	42.	Klasson, L., Kambris, Z., Cook, P.E., Walker, T. & Sinkins, S.P. Horizontal gene
620		transfer between Wolbachia and the mosquito Aedes aegypti. BMC Genomics 10,
621		33 (2009).
622	43.	Koonin, E.V. & Aravind, L. Origin and evolution of eukaryotic apoptosis: the
623		bacterial connection. Cell Death Differ 9, 394-404 (2002).
624	44.	Koonin, E.V. & Aravind, L. The NACHT family - a new group of predicted
625		NTPases implicated in apoptosis and MHC transcription activation. Trends
626		Biochem Sci 25, 223-4 (2000).
627	45.	Leipe, D.D., Koonin, E.V. & Aravind, L. STAND, a class of P-loop NTPases
628		including animal and plant regulators of programmed cell death: multiple,
629		complex domain architectures, unusual phyletic patterns, and evolution by
630		horizontal gene transfer. J Mol Biol 343, 1-28 (2004).
631	46.	Hargreaves, K.R., Kropinski, A.M. & Clokie, M.R. What does the talking?:
632		quorum sensing signalling genes discovered in a bacteriophage genome. <i>PLoS</i>
633		<i>One</i> 9 , e85131 (2014).
634	47.	Alcami, A. & Koszinowski, U.H. Viral mechanisms of immune evasion. <i>Immunol</i>
635		<i>Today</i> 21 , 447-55 (2000).
636	48.	Seet, B.T. <i>et al.</i> Poxviruses and immune evasion. <i>Annu Rev Immunol</i> 21 , 377-423
637	10.	(2003).
638	49.	Bordenstein, S.R. & Wernegreen, J.J. Bacteriophage flux in endosymbionts
639		(Wolbachia): infection frequency, lateral transfer, and recombination rates. <i>Mol</i>
640		<i>Biol Evol</i> 21 , 1981-91 (2004).
641	50.	Masui, S., Kamoda, S., Sasaki, T. & Ishikawa, H. Distribution and evolution of
642	50.	bacteriophage WO in Wolbachia, the endosymbiont causing sexual alterations in
643		arthropods. J Mol Evol 51, 491-7 (2000).
644	51.	Kent, B.N. <i>et al.</i> Complete bacteriophage transfer in a bacterial endosymbiont
645	51.	(Wolbachia) determined by targeted genome capture. <i>Genome Biol Evol</i> 3 , 209-18
646		(worbachia) determined by targeted genome capture. Genome Biol Evol 5, 209-18 (2011).
0-10		(2 011).

647 648	52.	Duplouy, A. <i>et al.</i> Draft genome sequence of the male-killing Wolbachia strain wBol1 reveals recent horizontal gene transfers from diverse sources. <i>BMC</i>
649		Genomics 14, 20 (2013).
650	53.	Woolfit, M., Iturbe-Ormaetxe, I., McGraw, E.A. & O'Neill, S.L. An ancient
651	001	horizontal gene transfer between mosquito and the endosymbiotic bacterium
652		Wolbachia pipientis. <i>Mol Biol Evol</i> 26 , 367-74 (2009).
653	54.	Beckmann, J.F. & Fallon, A.M. Detection of the Wolbachia protein WPIP0282 in
654		mosquito spermathecae: implications for cytoplasmic incompatibility. <i>Insect</i>
655		<i>Biochem Mol Biol</i> 43 , 867-78 (2013).
656	55.	Pinto, S.B. et al. Transcriptional regulation of Culex pipiens mosquitoes by
657		Wolbachia influences cytoplasmic incompatibility. PLoS Pathog 9, e1003647
658		(2013).
659	56.	Sutton, E.R., Harris, S.R., Parkhill, J. & Sinkins, S.P. Comparative genome
660		analysis of Wolbachia strain wAu. BMC Genomics 15, 928 (2014).
661	57.	Amen, M.A. & Griffiths, A. Packaging of Non-Coding RNAs into Herpesvirus
662		Virions: Comparisons to Coding RNAs. Front Genet 2, 81 (2011).
663	58.	Terhune, S.S., Schroer, J. & Shenk, T. RNAs are packaged into human
664		cytomegalovirus virions in proportion to their intracellular concentration. J Virol
665		78 , 10390-8 (2004).
666	59.	Abedon, S.T. & Lejeune, J.T. Why bacteriophage encode exotoxins and other
667		virulence factors. Evol Bioinform Online 1, 97-110 (2005).
668	60.	Sliwa-Dominiak, J., Suszynska, E., Pawlikowska, M. & Deptula, W. Chlamydia
669		bacteriophages. Arch Microbiol 195, 765-71 (2013).
670	61.	Hsia, R., Ohayon, H., Gounon, P., Dautry-Varsat, A. & Bavoil, P.M. Phage
671		infection of the obligate intracellular bacterium, Chlamydia psittaci strain guinea
672		pig inclusion conjunctivitis. Microbes Infect 2, 761-72 (2000).
673	62.	Salim, O., Skilton, R.J., Lambden, P.R., Fane, B.A. & Clarke, I.N. Behind the
674		chlamydial cloak: the replication cycle of chlamydiaphage Chp2, revealed.
675		<i>Virology</i> 377 , 440-5 (2008).
676	63.	Barr, J.J. et al. Bacteriophage adhering to mucus provide a non-host-derived
677	<i>.</i> .	immunity. Proc Natl Acad Sci U S A 110 , 10771-6 (2013).
678	64.	Moran, N.A., Degnan, P.H., Santos, S.R., Dunbar, H.E. & Ochman, H. The
679		players in a mutualistic symbiosis: insects, bacteria, viruses, and virulence genes.
680	(5	<i>Proc Natl Acad Sci U S A</i> 102 , 16919-26 (2005).
681	65.	Belda, E., Moya, A., Bentley, S. & Silva, F.J. Mobile genetic element
682		proliferation and gene inactivation impact over the genome structure and
683		metabolic capabilities of Sodalis glossinidius, the secondary endosymbiont of
684	66	tsetse flies. BMC Genomics 11, 449 (2010).
685 686	66.	Rasgon, J.L., Gamston, C.E. & Ren, X. Survival of Wolbachia pipientis in cell- free medium. <i>Appl Environ Microbiol</i> 72 , 6934-7 (2006).
687	67.	Degnan, P.H. & Moran, N.A. Diverse phage-encoded toxins in a protective insect
688	07.	endosymbiont. Appl Environ Microbiol 74 , 6782-91 (2008).
689	68.	Oliver, K.M., Degnan, P.H., Hunter, M.S. & Moran, N.A. Bacteriophages encode
690	00.	factors required for protection in a symbiotic mutualism. <i>Science</i> 325 , 992-4
691		(2009).
071		

- 692 69. Chafee, M.E. et al. Decoupling of host-symbiont-phage coadaptations following
- transfer between insect species. *Genetics* **187**, 203-15 (2011).
- 694 70. Abascal, F., Zardoya, R. & Posada, D. ProtTest: selection of best-fit models of 695 protein evolution. *Bioinformatics* **21**, 2104-5 (2005).

696

698 SUPPLEMENTARY INFORMATION

- 700 Supplementary Figure 1 | Sequencing reveals the phage, prophage and bacterial *att* sites
- for WOVitA1.

699

- 702 **Supplementary Figure 2** | Ankyrin repeat domain.
- 703 Supplementary Figure 3 | TPR domain.
- 704 Supplementary Figure 4 | Prophage WO dedicates nearly half of its genome to
- 705 eukaryotic host association.
- 706 **Supplementary Table 1** | *Wolbachia* and phage WO nomenclature.
- 707 **Supplementary Table 2** | Comparative genomics of prophage WO.
- 708 Supplementary Table 3 | Phage WO EAM furin cleavage sites.
- 709 Supplementary Table 4 | The phage WO PRANC domain shares amino acid homology
- 710 with multiple eukaryotic host peptides.
- 711

712 DATA AVAILABILITY

- 713 The phage WOVitA1 genome assembly reported in this paper has been deposited in
- 714 NCBI under accession number KX522565.
- 715
- 716 The N. vitripennis viral metagenome sequences have been deposited in the SRA under
- accession number SRR3560636 and BioProject PRJNA321548. The wCauB-infected E.
- 718 kuehniella viral metagenome sequences have been deposited in the SRA under accession
- number SRR3536639 and BioProject PRJNA321549.
- 720

721 ACKNOWLEDGEMENTS

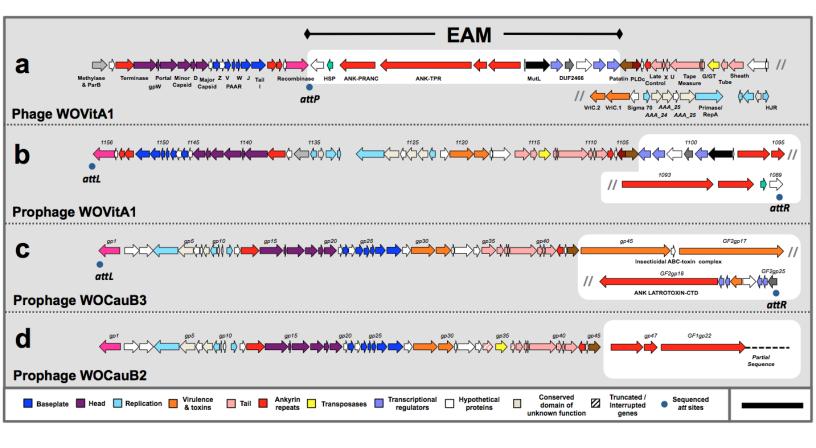
722	We thank Tetsu	hiko Sasaki and	Takema Fukatsı	u for assistance	ce with providing the
-----	----------------	-----------------	----------------	------------------	-----------------------

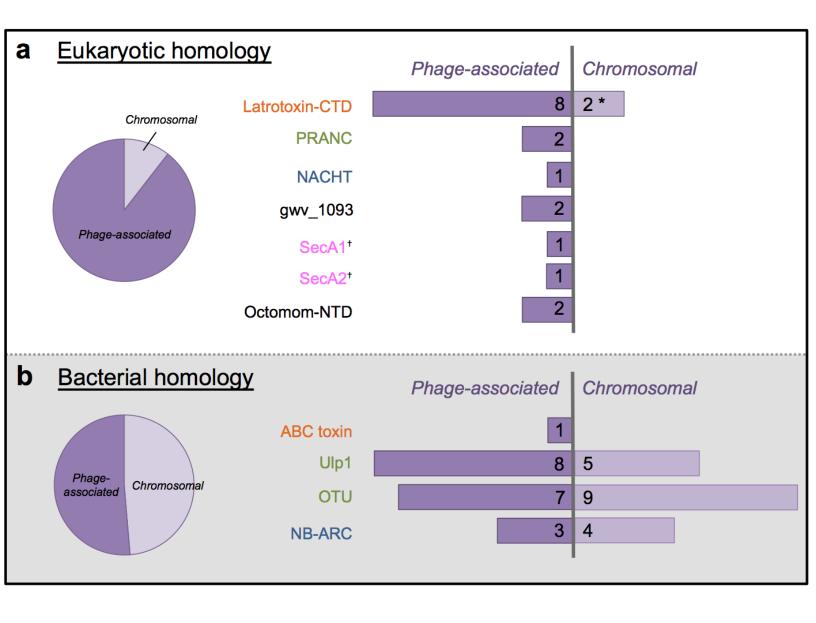
- 723 wCauB-infected moths; Rini Pauly for computational assistance; Merri Lynn Casem for
- 724 providing widow spiders; Kerry Oliver for information on *Hamiltonella*; Yannick Wurm
- for information on *Solenopsis*; and Michael Gerth, Julie Dunning Hotopp, Kevin Kohl,
- Jason Metcalf for feedback on the manuscript. We apologize to our colleagues for not
- being able to include all possible references due to citation restrictions. This research was
- funded by NIH Awards R01 GM085163 and R21 HD086833 and NSF Awards DEB
- 1046149 and IOS 1456778 to SRB. The funders had no role in study design, data
- collection and interpretation or the decision to submit the work for publication.
- 731

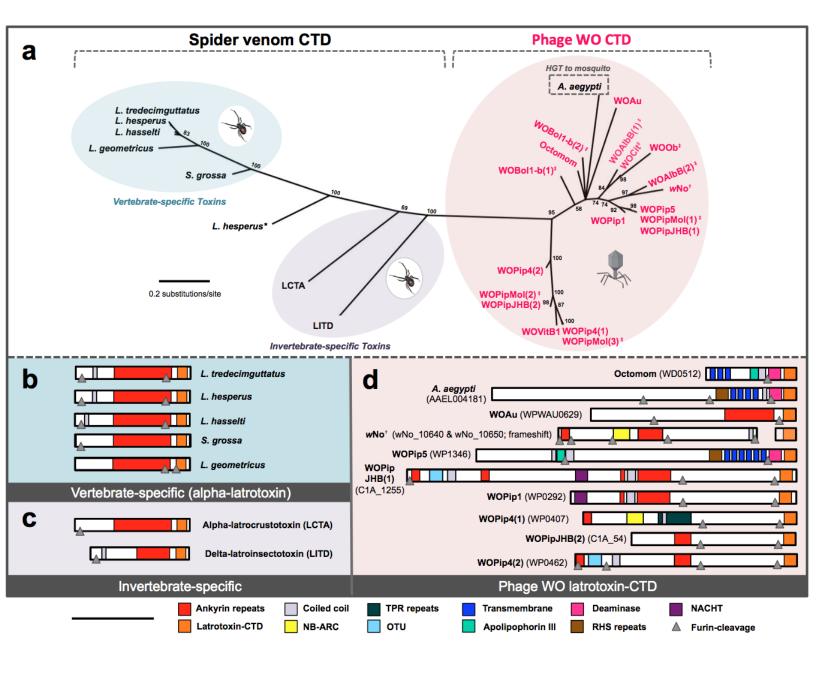
732 AUTHOR CONTRIBUTION

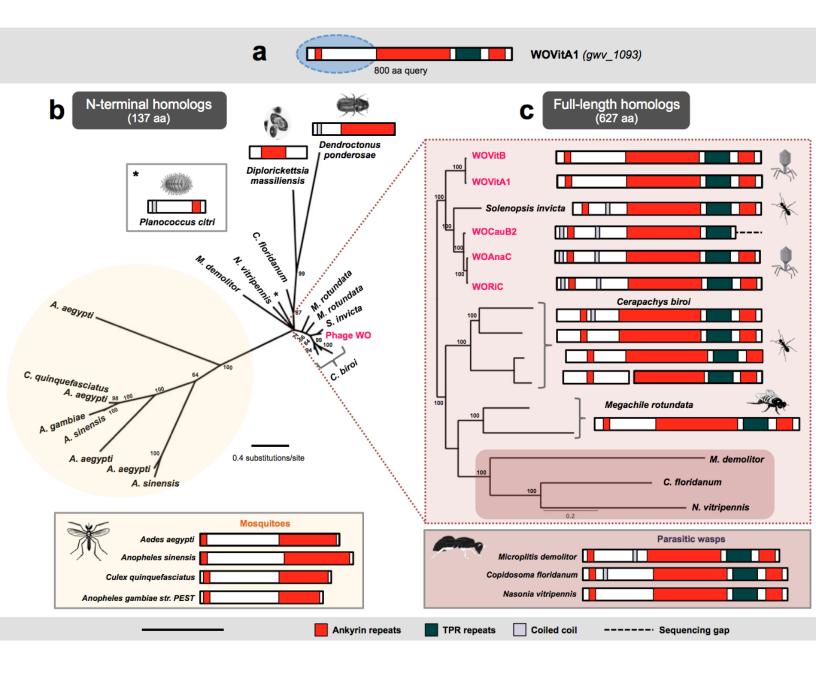
- 733 Sarah Bordenstein designed and performed the experiments, analyzed the data, prepared
- figures and tables, wrote and reviewed drafts of the paper.
- 735
- 736 Seth Bordenstein conceived and helped design the experiments, analyzed the data, wrote

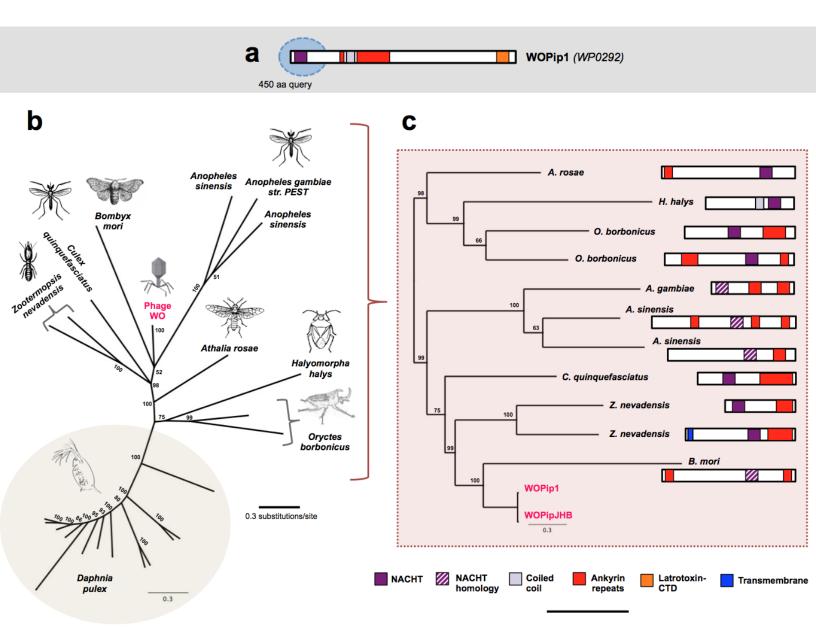
and reviewed drafts of the paper.


738


739 <u>COMPETING FINANCIAL INTERESTS</u>


- 740 The authors declare no competing financial interests.
- 741


742 AUTHOR INFORMATION


- 743 Correspondence and requests for materials should be addressed to
- s.bordenstein@vanderbilt.edu or sarah.bordenstein@vanderbilt.edu.

