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Abstract 21	

 22	

Many features of virus populations make them excellent candidates for 23	

population genetic study, including a very high rate of mutation, high levels of 24	

nucleotide diversity, exceptionally large census population sizes, and frequent 25	

positive selection. However, these attributes also mean that special care must 26	

be taken in population genetic inference.  For example, highly skewed 27	

offspring distributions, frequent and severe population bottleneck events 28	

associated with infection and compartmentalization, and strong purifying 29	

selection all affect the distribution of genetic variation but are often not taken 30	

into account. Here, we draw particular attention to multiple-merger coalescent 31	

events and background selection, discuss potential mis-inference associated 32	

with these processes, and highlight potential avenues for better incorporating 33	

them in to future population genetic analyses. 34	

  35	

36	
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Introduction 37	

 38	

Viruses appear to be excellent candidates for studying evolution in real time; 39	

they have short generation times, high levels of diversity often driven by very 40	

large mutation rates and population sizes (both census and effective), and 41	

they experience frequent positive selection in response to host immunity or 42	

antiviral treatment. However, despite these desired attributes, standard 43	

population genetic models must be used with caution when making 44	

evolutionary inference.  45	

 46	

Firstly, population genetic inference is usually based on a coalescence model 47	

of the Kingman type, under the assumption of Poisson-shaped offspring 48	

distributions where the variance equals the mean and is always small relative 49	

to the population size; consequently, only two lineages may coalesce at a 50	

time. In contrast, viruses have highly variable reproductive rates, taken as 51	

rates of replication; these may vary based on cell or tissue type, level of 52	

cellular differentiation, or stage in the lytic/lysogenic cycle (Knipe and Howley, 53	

2007), resulting in highly skewed offspring distributions. This model violation 54	

is further intensified by the strong bottlenecks associated with infection and by 55	

strong positive selection (Neher and Hallatschek, 2013). Therefore, virus 56	

genealogies may be best characterized by multiple merger coalescent (MMC) 57	

models (e.g, Pitman, 1999; Sagitov, 1999; Donnelly and Kurtz, 1999; 58	

Schweinsberg, 2000; Möhle and Sagitov, 2001; Eldon and Wakeley, 2008), 59	

instead of the Kingman coalescent. 60	

 61	

Secondly, the mutation rates of many viruses, particularly RNA viruses, are 62	

among the highest observed across taxa (Lauring et al., 2013; Cuevas et al., 63	

2015). Though these high rates of mutation are what enable new beneficial 64	

mutations to arise, potentially allowing for rapid resistance to host immunity or 65	

antiviral drugs, they also render high mutational loads (Sanjuán, 2010; Lauring 66	

et al., 2013). Specifically, the distribution of fitness effects (DFE) has now 67	

been described across taxa – demonstrating that the input of deleterious 68	
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mutations far outnumbers the input of beneficial mutations (Acevedo et al., 69	

2014; Bank et al., 2014; Bernet and Elena, 2015; Jiang et al., 2016). The 70	

purging of these deleterious mutants through purifying selection can affect 71	

other areas in the genome through a process known as background selection 72	

(BGS) (Charlesworth et al., 1993). Accounting for these effects is important for 73	

accurate evolutionary inference in general (Ewing and Jensen, 2016), but 74	

essential for the study of viruses due to their particularly high rates of mutation 75	

and compact genomes (Renzette et al., 2016). 76	

 77	

Given these distinctive features of virus populations and the increasing use of 78	

population genetic inference in this area (e.g., Renzette et al, 2013; Foll et al, 79	

2014; Pennings et al, 2014; Renzette et al, 2016), it is crucial to account for 80	

these processes that are shaping the amount and distribution of variation 81	

across their genomes. We aim here to draw particular attention to multiple-82	

merger coalescent events and background selection, and the repercussions 83	

of ignoring them in population genetic inference, highlighting particular 84	

applications to viruses. We conclude with general recommendations for how 85	

best to address these topics in the future. 86	

87	

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 24, 2016. ; https://doi.org/10.1101/048975doi: bioRxiv preprint 

https://doi.org/10.1101/048975
http://creativecommons.org/licenses/by-nc-nd/4.0/


Skewed Offspring Distributions and the Multiple Merger Coalescent 88	

 89	

Inferring evolutionary history using the Wright-Fisher model: benefits and 90	

shortcomings 91	

 92	

Many population genetic statistics and subsequent inference are based on the 93	

Kingman coalescent and the Wright-Fisher (WF) model (Wright, 1931; 94	

Kingman, 1982). With increasing computational power, the WF model has 95	

also been implemented in forward-time methods, which allows for the 96	

modeling of more complex evolutionary scenarios versus backward-time 97	

methods. This also allows for the inference of population genetic parameters, 98	

including selection coefficients and effective population sizes (Ne), even from 99	

time-sampled data (i.e., data collected at successive time points) (Ewens, 100	

1979; Williamson and Slatkin, 1999; Malaspinas et al., 2012; Foll et al., 2014; 101	

Foll et al., 2015; Ferrer-Admetlla et al., 2016; Malaspinas, 2016). These 102	

methods are robust to some violations of WF model assumptions, such as 103	

constant population size, random mating, and non-overlapping generations, 104	

and also have been extended to accommodate selection, migration and 105	

population structure (Neuhauser and Krone, 1997; Nordborg, 1997; Wilkinson-106	

Herbots, 1998).  107	

 108	

However, it has been suggested that violations of the assumption of a small 109	

variance in offspring number in the WF model, and in other models that result 110	

in the Kingman coalescent in the limit of large population size, lead to 111	

erroneous inference of population genetic parameters (Eldon and Wakeley, 112	

2006). Biological factors such as sweepstake reproductive events, population 113	

bottlenecks, and recurrent positive selection may lead to skewed distributions 114	

in offspring number (Eldon and Wakeley, 2006; Li et al., 2014); examples 115	

include various prokaryotes (plague), fungi (Z. tritici, P. striiformis, rusts, 116	

mildew, oomycetes), plants (A. thaliana), marine organisms (sardines, cods, 117	

salmon, oysters), crustaceans (Daphnia), and insects (aphids) (reviewed in 118	

Tellier and Lemaire, 2014). The resulting skewed offspring distributions can 119	
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also result in elevated linkage disequilibrium (LD) despite frequent 120	

recombination, as linkage depends not only on recombination rate, but also 121	

on the degree of skewness in offspring distributions (Eldon and Wakeley, 122	

2008; Birkner et al., 2013). Such events may also skew estimates of FST 123	

relative to those expected under WF models, as there is a high probability of 124	

alleles being identical by descent in subpopulations, where the expectation of 125	

coalescent times within subpopulations is less than that between 126	

subpopulations regardless of the timescale or magnitude of gene flow (Eldon 127	

and Wakeley, 2009).  128	

 129	

The assumption of small variance in offspring number may often be violated in 130	

virus populations as well. For example, progeny RNA virus particles from 131	

infected cells can vary up to 100 fold (Zhu et al., 2009). Second, features such 132	

as diploidy, recombination, and latent stages are expected to increase the 133	

probability of multiple merger events (Davies et al., 2007; Taylor and Véber, 134	

2009; Birkner et al., 2013). Third, within their life cycle, viruses experience 135	

bottleneck events during transmission and compartmentalization, followed by 136	

strong selective pressure from both the immune system and drug treatments. 137	

Finally, at the epidemic level, extinction-colonization dynamics drive 138	

population expansion (Anderson and May, 1991).  139	

 140	

All of these aspects characterize HIV for example, a diploid virus with 141	

extraordinary rates of recombination (Schlub et al., 2014). Transmitted and 142	

founder viruses undergo at least two distinct genetic bottlenecks (one of 143	

physical transmission and one of infection, respectively; Joseph and 144	

Swanstrom, 2015), followed by strong selection imposed by the immune 145	

system (Moore et al., 2002). At the epidemic scale, besides multiple events of 146	

colonization (Tebit and Arts, 2011), strong heterogeneity in the virus 147	

transmission chain has also been observed (e.g., Service and Blower, 1995). 148	

 149	

 150	

 151	
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Beyond WF assumptions: the Multiple Merger Coalescent  152	

 153	

A more general coalescent class of models, summarized as the MMC class, 154	

can account for these violations, particularly for (non-Poisson) skewed 155	

offspring distributions, by allowing more than two lineages to coalesce at a 156	

time (Table 1). These are often derived from Moran models, (Moran, 1958), 157	

generalized to allow multiple offspring per individual. In contrast to the 158	

Kingman coalescent (for which P(k > 2) = 0, where k is the number of 159	

lineages coalescing simultaneously), a probability distribution for k-merger 160	

events determines coalescence.  161	

 162	

The parameters inferred under the MMC differ from those inferred under the 163	

Kingman coalescent in several notable respects. In a Kingman coalescent, 164	

effective size Ne scales linearly with census size N, whereas for the MMC it 165	

does not (Huillet and Möhle, 2011). Thus genetic diversity is a non-linear 166	

function of population size. Coalescent trees under the MMC also have more 167	

pronounced star-like genealogies with longer branches (Figure 1), and their 168	

site frequency spectra (SFSs) are skewed toward an excess of low frequency 169	

and high frequency variants because of these branch lengths (Eldon and 170	

Wakeley, 2006; Blath et al., 2016), generating a more negative Tajima’s D 171	

(Birkner et al., 2013). With similar migration and population size, alleles fix at 172	

a higher rate per population in the MMC than under the Kingman coalescent, 173	

and thus higher FST is expected between subpopulations (Eldon and Wakeley, 174	

2009). Further, the efficacy of selection increases, as selection acts almost 175	

deterministically between multiple merger events; in the Wright-Fisher model, 176	

genetic drift counteracts selection fairly strongly (Der et al. 2011), but in 177	

generalized models where offspring distributions are wide, beneficial 178	

mutations may be more likely to escape stochastic loss and thus continue to 179	

fixation. Furthermore, the fixation probability of a new mutant with a positive 180	

selection coefficient approaches 1 as the population size increases, in stark 181	

contrast with traditional expectations under the standard Wright-Fisher model 182	

(Der et al., 2011). 183	
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 184	

Not accounting for skewed offspring distributions can lead to mis-inference. 185	

For instance, Eldon and Wakeley (2006) showed that for Pacific oysters, 186	

which have been argued to undergo sweepstake-like reproductive events 187	

(Hedgecock, 1994a), the estimated population-wide mutation rate θ inferred 188	

under the Kingman coalescent is two orders of magnitude larger than that 189	

obtained from the ψ-coalescent (see below) - 9 vs 0.0308, respectively - and, 190	

indeed, provides a poor fit to the data.  191	

192	
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 193	

Figure 1: Multiple-Merger and Kingman Coalescent Realizations 194	

 195	

(A) 196	

 197	
 198	

(B) 199	

 200	

 201	
 202	

 203	

Figure 1: Example genealogies and samples from (A) the Kingman coalescent 204	

and (B) a multiple-merger coalescent. Panels on the left show the evolutionary 205	

process of the whole population, whereas those on the right show a possible 206	

sampling and its resulting genealogy. Colors correspond to different (neutral) 207	

derived allelic states, where black denotes the wild type.  208	

 209	

210	
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Table 1: Hierarchy of coalescent models, in decreasing order of generality 211	

 212	

Coalescent model Allows 
MMs? 

Allows 
simult-
aneous 
MMs? 

Distribution and 
parameters 

References 

 Ξ-coalescent Yes Yes MMC events occur at rate 
λ, with a specific measure 
Ξ on the infinite simplex 
and which allows an 
arbitrary number of 
simultaneous mergers. 
 

Schweinsberg (2000); 
Möhle and Sagitov 
(2001) 
 

        Λ-coalescent Yes No MMC events occur at rate 
λ (but ≤1 event/time) 

Donnelly and Kurtz 
(1999); Pitman (1999); 
Sagitov (1999) 
 

               ψ-coalescent Yes No λ follows a distribution 
which depends on ψ, i.e., 
the fraction of the 
population replaced by the 
offspring of a single 
individual  

Eldon and Wakeley 
(2006); Eldon and 
Wakeley (2008); Eldon 
and Wakeley (2009); 
Eldon and Degnan 
(2012) 
 

              Beta-coalescent Yes No λ follows Beta-distribution: 
beta(α, 2-α) with 1 ≤ α < 2 

Schweinsberg (2003); 
Berestycki et al. (2007); 
Berestycki et al. (2008); 
Birkner and Blath 
(2008); Birkner et al. 
(2013); Steinrücken et 
al. (2013) 
                

              Bolthausen-Sznitman Yes No λ follows Beta-distribution 
with α=1: beta(1,1) = 
uniform on [0,1] 

Bolthausen and 
Snznitman (1998); 
Basdevant and 
Goldschmidt (2008); 
Neher and Hallatschek 
(2013) 
 

               

               Kingman coalescent 
 

No 
 

No λ follows Beta-distribution 
with α=2; Λ has unit mass 
at 0 (Λ(dx) = δ0(x)dx)  

Kingman (1982) 

Table 1: Coalescent models listed in decreasing order with respect to 213	

generality; arrows indicate coalescents that are considered subtypes of those 214	

above.215	
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The ψ-coalescent  216	

 217	

Introduced by Eldon and Wakeley (2006), the ψ-coalescent (also called the 218	

'Dirac-coalescent') differentiates two possible reproductive events in the 219	

underlying forward process (Figure 2). Either a standard Moran model 220	

reproduction event occurs (with probability 1-ε), where a single individual is 221	

randomly chosen to reproduce and the (single) offspring replaces one 222	

randomly chosen non-parental individual; all other individuals, including the 223	

parent, persist. Alternatively, a 'sweepstake' reproductive event occurs (with 224	

probability ε) (Hedgecock, 1994b), where a single parent replaces ψ*N 225	

individuals. If these sweepstake events happen frequently enough, the rate of 226	

ψ*N-reproduction events will be much greater than that of 2-reproduction 227	

events, and the underlying coalescent process will consequently be 228	

characterized by MM events; if two or more parents were to replace ψ*N 229	

individuals, simultaneous MM events may occur in a single generation 230	

resulting in a Ξ-coalescent. However, in contrast to other MMC models (e.g., 231	

Ξ-coalescent or other λ-coalescents), the parameter ψ has a clear biological 232	

interpretation as the fraction of the population that is replaced in each 233	

sweepstake reproductive event. Though the assumption of a fixed ψ (as in the 234	

normal ψ-coalescent) seems biologically unrealistic, it can be avoided by 235	

treating ψ as a Poisson parameter. Finally, despite its appealing connection to 236	

biologically relevant measures, the appropriateness of making inferences 237	

based on the ψ-coalescent still depends on the biology of the specific virus 238	

being studied. Thus, model choice is still essential, and the best-fit coalescent 239	

should be assessed on a case-by-case basis.  240	

 241	

 242	

243	
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Figure 2: Depiction of the modified Moran model underlying the ψ coalescent 244	

 245	

 246	

 247	

Figure 2: Lineages between the present and the next generation, where N is 248	

the population size, ε is the probability of a sweepstake event, and ψ is the 249	

fraction of the population that is replaced in each such event. Labels in the top 250	

row give the number of parental individuals reproducing in a given manner 251	

(represented by color), whereas labels in the bottom row give the number of 252	

corresponding offspring per parent. 253	

 254	

 255	

Application to Viruses 256	

 257	

There are several reasons why a modified Moran model may better capture 258	

virus evolution than models converging to the Kingman coalescent, although it 259	

does not account for fitness differences between individuals. First, virus 260	

evolution is driven by strong bottlenecks during host transmission and 261	

intrahost selection processes, which likely result in skewed offspring 262	

distributions (Figure 3) (Gutiérrez et al., 2012; Tellier and Lemaire, 2014). 263	

Further, viruses display the MMC-typical low Ne/N ratio (Pennings et al., 2014; 264	

Tellier and Lemaire, 2014), can adapt rapidly (Neher and Hallatschek, 2013), 265	

and may have sweepstake-like reproductive events in which a single virion 266	

can propagate a large fraction of the entire population (Grenfell et al., 2004; 267	

Pybus and Rambaut, 2009). For example, the influenza virus hemagglutinin 268	

(HA) segment appears to be under strong directional selection imposed by 269	

host immunity (and sometimes drug treatment), resulting in a ladder-like 270	
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genealogy, (as depicted in Figure 3A), suggesting that only a few viruses 271	

seed the entire next generation (Grenfell et al, 2004). That being said, some 272	

challenges remain, such as rigorously defining the term ‘generation’ for virus 273	

populations, and subsequently confirming that the per generation mutation 274	

rate is on the order of the coalescent timescale cN, which is a prerequisite for 275	

the use of any coalescent approach. Finally, viruses with little or no 276	

recombination may be prone to clonal interference, which should be explicitly 277	

accounted for in population models and resulting coalescents (e.g., Strelkowa 278	

and Lässig, 2012).  279	

 280	

Those processes that make viruses ideal candidates for MMCs can differ by 281	

scale (see Figure 3); for example, following transmission events, there are 282	

severe founder events and potentially high recombination within the host (e.g., 283	

HIV, HCMV). Subsequent compartmentalization may introduce intra-host 284	

population structure through bottlenecks, colonization events, and extinction 285	

events (Renzette et al., 2013). To date, it remains unclear how often MMCs fit 286	

the patterns of variation observed in intra-host relative to inter-host virus 287	

populations – but such comparisons are increasingly feasible. Finally, periods 288	

of latency - temporary virus inactivation with cessation of reproduction - 289	

should be incorporated in such modeling, potentially as recurring mass 290	

extinction events (Taylor and Véber, 2009). Thus, multiple MMC models are a 291	

necessary but not final step towards addressing the various patterns observed 292	

at different scales of virus evolution (Table 1). 293	

 294	

The large data sets often generated from viruses may also prove impractical 295	

for the likelihood-based methods commonly employed for MMCs. This 296	

limitation has partially been overcome by Eldon et al. (2015), who proposed 297	

an approximate likelihood method along with an Approximate Bayesian 298	

Computation (ABC) approach based on the SFS to distinguish between the 299	

MMC and exponential population growth. Although both effects are expected 300	

to result in very similar SFSs, characterized by an excess of singletons as 301	

compared to the Kingman coalescent, the bulk and tail of the SFS (i.e., the 302	
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higher-order frequency classes) typically differ, which can be assessed by 303	

approximate likelihood-ratio tests and Approximate Bayes Factors (Eldon et 304	

al., 2015). 305	

306	
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Figure 3: Example Processes Spurring MM Events in Virus Populations 307	

 308	

Figure 3: Examples include (A) intra-host adaptation (a selective process) and 309	

(B) inter-host transmission (a demographic process). The tree in (A) 310	

characterizes, for example, NA or HA evolution in the influenza A virus, driven 311	

by positive selection; selection by host immunity is ongoing, while that from 312	

drug treatment may be intermittent. The tree in (B) represents inter-host 313	

transmission and its associated bottleneck; for viruses that compartmentalize 314	

(such as HCMV and HIV), similar patterns follow transmission to new 315	

compartments. The colored squares below the trees roughly indicate the 316	

diversity of the population through time. Intra-host adaptation may temporally 317	

decrease diversity owing to genetic hitchhiking, though single snapshots may 318	

not reflect varying temporal levels of diversity. During inter-host transmission, 319	

diversity decreases owing to the associated bottleneck but then may quickly 320	

recover in the new host. 321	

322	
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[ BOX 1: Future challenges in MMC models ] 323	

 324	

In order to make MMC models biologically relevant for viruses, a number of 325	

important tasks remain:  326	

 327	

1. Describe summary statistics that capture demographic features and 328	

processes when offspring distributions are highly skewed; such 329	

patterns will be required for large-scale inference in a computationally 330	

efficient (e.g., Approximate Bayesian) framework. 331	

2. Better understand the behavior of commonly used summary statistics 332	

under such models, as done for FST by Eldon and Wakeley (2009), for 333	

commonly used divergence, SFS, and LD-based statistics. 334	

3. Determine which MMCs are best suited for different scales of virus 335	

evolution (i.e., intra-host, inter-host, global); develop novel models if 336	

necessary. 337	

4. Investigate the effect of violations of MMC assumptions (e.g., 338	

overlapping generations, number of multiple merger events) on 339	

inference. 340	

 341	

[ END BOX 1 ] 342	

343	
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Purifying Selection and Linkage in Virus Populations 344	

 345	

Modeling Background Selection 346	

 347	

The joint modeling of the effects of genetic drift and positive selection, 348	

including in experimental evolution studies of virus populations, has improved 349	

our ability to distinguish adaptive from neutral mutations by minimizing the 350	

chance that the rapid fixation of a neutral allele is incorrectly interpreted as 351	

strong positive selection (Li et al., 2012; Foll et al., 2014). However, there is 352	

another process that must be incorporated if we are to fully understand 353	

mutation trajectories in virus populations: background selection (BGS).  354	

 355	

BGS was originally proposed to explain patterns of reduced diversity in 356	

regions of low recombination – patterns that were previously suggested to be 357	

the signature of genetic hitchhiking (HH) around strongly beneficial mutations 358	

(see Begun and Aquadro, 1992 and Charlesworth et al., 1993).  It was argued 359	

that only neutral mutations present on the “least-loaded” chromosomes – that 360	

is, those with the fewest deleterious mutations – have appreciable 361	

probabilities of reaching high frequencies or fixation. Kimura and Maruyama 362	

(1966) showed that the proportion of chromosomes belonging to the least-363	

loaded class is  364	

  365	

𝑓! =  exp (− !
!"!
)  ,                               (1) 366	

 367	

 where U is the rate of mutation to a deleterious state, s is the selection 368	

coefficient against homozygous mutations, and h is the dominance coefficient. 369	

For simplicity of modeling, h is usually set to 1 for viruses that carry a single 370	

copy of their genome in each virion, although polyploid effects could arise in 371	

the case of multiple virions infecting the same cell. 372	

 373	

The least-loaded class, and thus genetic diversity in the presence of BGS, is 374	

dependent on the balance between the influx of deleterious mutations 375	
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(occurring at rate U) and their removal by natural selection (according to the 376	

product hs). Assuming that offspring exclusively originate from the least-377	

loaded class of individuals, Charlesworth et al. (1993) expressed the expected 378	

neutral diversity due to background selection as 379	

 380	

        𝜋 = 4 𝑓!𝑁!  𝜇 ,              (2) 381	

 382	

where Ne is the effective population size and μ is the mutation rate. As BGS 383	

reduces the number of reproducing individuals, genetic drift increases, thus 384	

reducing genetic diversity and increasing stochasticity in allele trajectories. 385	

Further, since only the genetic diversity segregating in the least-loaded class 386	

can be observed, population size inferred from measures of genetic diversity 387	

may be underestimated if BGS is not properly taken into account (Ewing and 388	

Jensen, 2016). 389	

 390	

In the BGS model described above, strongly deleterious mutations are 391	

maintained in mutation-selection balance such that no skew in the SFS is 392	

expected, as rare variants are rapidly purged. Thus, a simple re-scaling of Ne 393	

is often used as a proxy for the effects of BGS (e.g., Hudson and Kaplan, 394	

1995; Zeng and Charlesworth, 2011; Prüfer et al, 2012; Zeng, 2013).  395	

However, recent work has demonstrated that, while this re-scaling is 396	

appropriate for strongly deleterious mutations, it is largely inappropriate for 397	

weakly deleterious mutations that may segregate in the population. Figure 4 398	

shows the skew in estimates of population size and migration rates obtained 399	

using an ABC approach when BGS is prevalent for two populations A and B 400	

that have split at time τ=2Ne generations (reproduced from Ewing and Jensen, 401	

2016). Further, experimental work on the shape of the distribution of fitness 402	

effects (DFE) in many organisms indicates that weakly deleterious mutations 403	

represent an important class (e.g., Eyre-Walker and Keightley, 2007; Bank et 404	

al, 2014).  These mutations may act to skew the SFS towards rare alleles as 405	

they decrease the expected frequency of linked neutral mutations relative to 406	

neutral expectations. As subsequent demographic inference is based on the 407	
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shape of this SFS, this effect should be properly accounted for by directly 408	

simulating weakly deleterious mutations rather than implementing a simple 409	

rescaling, as is common practice. Though important analytical progress has 410	

been made in this area (e.g., McVean and Charlesworth, 2000), simulations 411	

remain the best option for the non-equilibrium demographic models and 412	

alternative coalescents recommended here for inference in virus populations. 413	

 414	

Figure 4: Bias in parameter inference at intermediate levels of BGS 415	

 416	

Figure 4: Bias in parameter inference for different levels of BGS, redrawn from 417	

Ewing & Jensen (2016). Posterior densities from ABC inference for population 418	

size are shown. The strength of purifying selection is given as γ, where γ = 419	

2Nes. Population A has a true scaled size of 1 (blue line), and population B a 420	

true scaled size of 5 (red line). Both population sizes are scaled relative to the 421	

size of the ancestral population. As shown, the greatest mis-inference occurs 422	
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in the presence of weakly deleterious mutations and subsequent strong BGS 423	

effects. 424	

 425	

 426	

 427	

The Effects of Background Selection on Inference in Virus Populations 428	

 429	

Efforts to estimate the impact of BGS in non-viral organisms have been well 430	

reported. One of the most notable examples is that of Comeron (2014), who 431	

estimated levels of BGS in Drosophila melanogaster based on the results of 432	

Hudson and Kaplan (1995) and Nordborg et al. (1996) using a high-definition 433	

recombination map, with results indicating strong effects across the genome. 434	

For viruses, similar efforts are in their infancy, with the first attempt at such 435	

estimation in a virus reported recently by Renzette et al. (2016), utilizing the 436	

theoretical predictions of Innan and Stephan (2003). Interestingly, the full 437	

spectrum of recombination frequencies is available in viruses – from non-438	

recombining (e.g., most negative-sense RNA viruses), to re-assorting (e.g., 439	

Influenza virus), to rarely recombining (e.g., Hepatitis C and West Nile 440	

viruses), to frequently recombining (e.g., HIV), offering a highly promising 441	

framework for comparative analyses investigating the pervasiveness of BGS 442	

effects (Chare et al., 2003; Simon-Loriere and Holmes, 2011). Further, given 443	

the high mutation rates and compact genomes of many viruses, evolutionary 444	

theory suggests effects at least equal to those seen in Drosophila.  445	

 446	

In order to accomplish such inference, improved recombination maps for virus 447	

genomes will be important. With such maps in hand, and given the 448	

amenability of viruses to experimental perturbation, it may indeed be feasible 449	

to understand and account for BGS in models of virus evolution.  450	

451	
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[ BOX 2: Future challenges in identifying the effects of BGS ]  452	

 453	

As BGS almost certainly impacts inference in virus populations, accounting for 454	

its effects is critical. Future challenges include: 455	

 456	

1. Account for BGS effects on the SFS by directly simulating weakly 457	

deleterious mutations, rather than by rescaling Ne. 458	

2. Improve recombination maps for virus genomes. 459	

3. Develop models combining the effects of non-equilibrium demography, 460	

positive selection, and BGS, ideally to allow for the joint estimation of 461	

all associated parameters.  462	

4. Extend methods applied to other taxa to virus populations; for example, 463	

establishing a baseline of variation for use as a null expectation to 464	

estimate BGS levels across the genome, as done for Drosophila. 465	

 466	

[ END BOX 2 ] 467	

 468	

 469	

 470	

 471	

 472	

Future Directions 473	

 474	

Given that skewed offspring distributions and pervasive linked selection are 475	

likely important factors influencing the inference of virus population 476	

parameters, it is important to note that multiple backward and forward 477	

simulation programs have recently been developed which make the modeling 478	

of these processes feasible (Hernandez, 2008; Messer, 2013; Thornton, 479	

2014; Eldon et al., 2015; Zhu et al., 2015). This will allow researchers to 480	

directly simulate from parameter ranges that may be relevant for their 481	

population of interest, developing a better intuition for the importance of these 482	

processes in shaping the observed genomic diversity.  More concretely, the 483	
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ability to now simulate in a computationally efficient framework opens the 484	

possibility of directly implementing ABC inference approaches under these 485	

models. Thus, by drawing mutations from a biologically realistic distribution of 486	

fitness effects and allowing offspring distributions to appropriately vary, it is 487	

now possible to re-implement common demographic estimation or genome 488	

scan approaches; these modified approaches would be based on more 489	

appropriate null expectations of the shape of the SFS, the extent of linkage 490	

disequilibrium, and the degree of population divergence.491	
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