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ABSTRACT	

	

The	rapid	evolution	of	drug	resistance	remains	a	critical	public	health	concern.	

The	treatment	of	influenza	A	virus	(IAV)	has	proven	particularly	challenging,	due	

to	the	ability	of	the	virus	to	develop	resistance	against	current	antivirals	and	

vaccines.	Here	we	evaluate	a	novel	antiviral	drug	therapy,	favipiravir,	for	which	

the	mechanism	of	action	in	IAV	involves	an	interaction	with	the	viral	RNA-

dependent	RNA	polymerase	resulting	in	an	effective	increase	in	the	viral	

mutation	rate.	We	utilized	an	experimental	evolution	framework,	combined	with	

novel	population	genetic	method	development	for	inference	from	time-sampled	

data,	in	order	to	evaluate	the	effectiveness	of	favipiravir	against	IAV.	Evaluating	

whole	genome	polymorphism	data	across	fifteen	time	points	under	multiple	

drug	concentrations	and	in	controls,	we	present	the	first	evidence	for	the	ability	

of	viral	populations	to	effectively	adapt	to	low	concentrations	of	favipiravir.	In	

contrast,	under	high	concentrations,	we	observe	population	extinction,	indicative	

of	mutational	meltdown.	We	discuss	the	observed	dynamics	with	respect	to	the	

evolutionary	forces	at	play	and	emphasize	the	utility	of	evolutionary	theory	to	

inform	drug	development.	
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INTRODUCTION	

	

	 The	increasing	availability	of	time-sampled	data,	and	of	statistical	

inference	approaches	based	on	such	data,	is	considerably	expanding	the	

repertoire	of	population	genetics	(reviewed	in	Bank	et	al.	2014).	Time-sampled	

data	are	often	considered	in	association	with	the	growing	field	of	ancient	DNA	

and	have	long	been	a	key	feature	in	the	analysis	of	both	experimental	and	clinical	

data.	Indeed,	one	of	the	most	important	applications	and	challenges	today	is	how	

to	best	utilize	such	data	in	order	to	characterize	the	evolution	of	human	

pathogens,	perhaps	most	specifically,	how	to	quantify	(and	ultimately	combat)	

the	ability	of	viral	populations	to	develop	resistance	to	given	treatment	

strategies.	

	 Influenza	A	virus	(IAV)	is	of	long-term	public	health	interest	given	its	

scope	(with	approximately	36,000	deaths	annually	in	the	United	States	alone;	

Thompson	et	al.	2003)	and	the	rapid	evolution	of	resistance	against	common	

therapeutics.	The	evolution	of	resistance	is	ultimately	a	process	dictated	by	the	

nature	of	the	interaction	between	drug,	virus,	and	host.	For	example,	the	most	

widely	administered	drug	for	combating	IAV,	oseltamivir,	was	initially	designed	

as	a	competitive	inhibitor	of	neuraminidase	based	on	structural	information	of	

the	active	site	(Moscona	2005;	Colins	et	al.	2008).	Though	it	was	widely	believed	

that	resistance	to	oseltamivir	would	be	clinically	unimportant	given	the	

associated	high	fitness	cost	(Ives	et	al.	2002),	a	particular	resistance	mutation	

neuraminidase	H275Y	nonetheless	spread	rapidly	(Gubareva	et	al.	2001;	

Moscona	2009;	Ghedin	et	al.	2012)	-	likely	due	to	the	presence	of	accompanying	

compensatory	mutations	(Bloom	et	al.	2010;	Bouvier	et	al.	2012;	Ginting	et	al.	
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2012).		Hence,	in	the	case	of	oseltamivir,	a	single	mutation	near	the	viral	

neuraminidase	active	site	is	sufficient	to	attenuate	drug	binding	and	thereby	

cause	resistance.	Thus,	alternative	classes	of	drugs	for	which	resistance	

evolution	is	less	easily	achieved	have	garnered	interest.		

One	promising	drug	is	favipiravir,	for	which	the	mechanism	of	action	is	

related	to	the	selective	inhibition	of	viral	RNA-dependent	RNA	polymerase	

(RdRp)	and	the	decrease	of	polymerase	fidelity,	which	results	in	an	increase	of	

the	genome-wide	mutation	rate	in	IAV	(Baranovich	et	al.	2013;	Furuta	et	al.	

2013).	To	our	knowledge,	no	study	to	date	has	found	evidence	for	successful	

resistance	evolution	against	favipiravir.		This	may	suggest	either	that	resistance	

is	complex	to	achieve	given	that	the	drug	effectively	targets	the	entire	genome	

(and	thus	no	simple	genetic	solution	for	resistance	exists),	or	that	its	effect	is	so	

strong	that	viral	populations	are	always	driven	to	extinction	prior	to	the	

appearance	of	resistance	mutations.	

The	field	of	evolutionary	theory	has	studied	the	effects	of	increasing	

mutation	rates	on	asexual	populations	for	decades,	and	several	processes	may	be	

invoked	that	lead	to	the	extinction	of	a	population	owing	to	an	artificially	

increased	mutation	rate.	All	are	based	on	the	fact	that	the	majority	of	new	

fitness-affecting	mutations	are	deleterious.	

First,	Muller’s	ratchet	is	a	process	that	describes	the	decline	of	fitness	and	

size	of	a	non-recombining	population,	owing	to	the	periodic	loss	of	the	most	fit	

genotype	(Muller	1964;	Felsenstein	1974).	Theoretical	work	has	shown	that	the	

speed	of	the	ratchet	is	determined	by	the	effective	population	size,	mutation	rate,	

deleterious	selection	coefficient,	and	the	size	of	the	least-loaded	(i.e.,	most	fit)	

class	at	mutation-selection	equilibrium	(Haigh	1978,	and	see	Gordo	and	
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Charlesworth	2000).	Although	the	ratchet	initially	leads	to	a	linear	accumulation	

of	mutations	while	census	population	size	remains	constant,	it	may	ultimately	

lead	to	the	rapid	extinction	of	the	population	due	to	what	is	referred	to	as	

“mutational	meltdown”	(Lynch	et	al.	1990;	Lynch	et	al.	1993).	Under	high	

mutation	rate	conditions,	the	loss	of	the	least-loaded	class	may	be	primarily	

driven	by	mutation	rather	than	genetic	drift	(Lynch	et	al.	1993).	We	argue	that	

the	process	of	mutational	meltdown	is	essentially	similar	to	“lethal	mutagenesis”,	

a	term	that	has	subsequently	been	promoted	in	the	area	of	virology	(Bull	et	al.,	

2007;	Wylie	&	Shakhnovich,	2012).	Both	occur	in	finite	populations	under	high	

mutation	rates,	and	are	characterized	by	the	linear	accumulation	of	mutations	

until	the	mean	viability	of	individuals	is	too	low	to	maintain	the	carrying	

capacity,	at	which	point	both	population	size	and	fitness	deteriorate	rapidly,	

leading	to	extinction.	They	differ	in	two	main	ways:	a	primary	focus	on	effective	

population	size	(mutational	meltdown)	versus	census	population	size	(lethal	

mutagenesis),	and	in	the	assumption	of	strong	(mutational	meltdown)	and	weak	

(lethal	mutagenesis)	genetic	drift.	However,	extinction	is	eventually	driven	by	

mutation	load	in	both,	and	the	models	are	thus	difficult	to	distinguish	

empirically.	

	 Second,	although	beneficial	mutations	(e.g.,	mutations	conferring	drug	

resistance	or	other	relative	growth	advantages)	will	also	become	more	frequent	

under	increased	mutation	rates,	these	are	likely	to	occur	in	individuals	that	also	

carry	deleterious	mutations,	which	may	prevent	or	slow	their	spread	in	the	

population	in	the	absence	of	recombination.	This	effect,	termed	“weak-selection	

Hill-Robertson	interference”	(WSHRI)	(Hill	and	Robertson	1966;	McVean	2000),	

thus	may	also	serve	to	slow	the	evolution	of	resistance.		
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	 Finally,	the	extinction	of	populations	under	high	mutation	rate	conditions	

has	been	frequently	discussed	in	the	area	of	virus	evolution	with	regard	to	the	

concept	of	error	catastrophe	(Eigen	1971;	Eigen	2002;	Holmes	2003).	In	

principle,	the	concept	of	error	catastrophe	is	similar	to	the	theories	of	mutational	

meltdown	and	lethal	mutagenesis,	and	large	parts	of	the	theory	are	equivalent	

(Wilke	2005).	However,	the	causal	mechanism	of	extinction	due	to	error	

catastrophe	is	specifically	mutation	accumulation	beyond	the	“error	threshold”	

above	which	the	evolutionary	dynamics	destabilize	and	the	genome	is	unable	to	

maintain	the	required	information.	The	error	threshold	is	a	sharp	limit,	and	the	

occurrence	of	error	catastrophe	is	not	limited	to	finite	populations.	

	 Here	we	present	data	from	in	vitro	selection	experiments	in	which	

populations	of	IAV	were	evolved	in	the	presence	or	absence	of	favipiravir	

treatment	and	compare	these	to	our	previous,	similar	experiment	using	

oseltamivir	(Foll	et	al.	2014;	Renzette	et	al.	2014).	Results	indeed	demonstrate	

that	favipiravir	induces	mutational	meltdown,	with	experimental	populations	

exposed	to	escalating	drug	concentrations	eventually	becoming	extinct.	This	

result	is	in	stark	contrast	to	the	populations	that	evolved	in	the	presence	of	

escalating	amounts	of	oseltamivir,	in	which	resistance	mutations	arose	and	fixed	

quickly	after	the	introduction	of	drug	pressure.	We	also	evaluate	different	

concentrations	of	favipiravir	treatment,	quantifying	the	extent	necessary	to	

induce	this	effect,	and	we	provide	the	first	evidence	for	potential	adaptation	to	

favipiravir	under	a	constant	low	drug	concentration.	

As	such,	this	experimental	set-up	allowed	us	to	directly	study	the	

evolutionary	dynamics	of	IAV	in	different	drug	environments.	In	doing	so,	we	

were	able	to	quantify	the	adaptive	process	with	respect	to	potential	beneficial	
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mutations	in	response	to	different	conditions	and	discuss	the	potential	for	

evolutionary	rescue	(i.e.,	the	process	by	which	a	population	can	escape	

extinction	in	a	novel	environment	through	rapid	adaptation;	Alexander	et	al.	

2014).	Thus,	this	work	highlights	experimental	scenarios	of	clinical	relevance	of	

both	successful	and	failed	evolutionary	rescue,	and	allows	us	to	observe	the	

dynamics	of	mutational	meltdown	in	action.	Our	results	demonstrate	the	

promise	of	drug-induced	mutational	meltdown	as	a	means	for	combating	viral	

populations,	and	for	favipiravir	as	an	effective	strategy	against	IAV	in	particular.	

Yet,	our	findings	also	raise	concerns	that	proper	drug	dosage	is	essential	for	

effective	treatment.	By	discussing	our	results	with	respect	to	concepts	from	

evolutionary	theory,	we	outline	prospects	for	the	better	prediction	of	the	

evolutionary	response	of	pathogens	to	drug	pressure.	
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MATERIALS	&	METHODS	

	

Cells,	virus	stocks,	and	chemicals.	

Madin-Darby	canine	kidney	(MDCK)	cells	were	obtained	from	American	Type	

Culture	Collection	(Manassas,	VA)	and	propagated	in	Eagle’s	minimal	essential	

medium	(MEM)	with	10%	fetal	bovine	serum	(FBS;	Hyclone,	Logan,	UT)	and	2	

mM	penicillin/streptomycin.	Influenza	virus	A/Brisbane/59/2007	(H1N1),	

grown	in	the	chicken	egg	allantoic	fluid,	was	obtained	through	the	NIH	

Biodefense	and	Emerging	Infections	Research	Resources	Repository,	NIAID,	NIH	

(NR-12282;	lot	58550257).	Favipiravir	was	obtained	from	FUJIFILM	

Pharmaceutical	USA,	Inc.	

		

Viral	titer	determination	by	plaque	assay	

Viruses	were	quantified	on	MDCK	cells	to	determine	infectious	titer	(plaque	

forming	units	per	ml,	or	PFU/ml)	as	previously	described	(Hendricks	et	al.	

2013).	In	brief,	six	10-fold	serial	dilutions	were	performed	on	the	viral	samples	

followed	by	1	h	of	binding	at	37°C	on	confluent	MDCK	cells	in	12-well	plates.	

After	washing	off	unbound	virus	with	phosphate	buffered	saline	(PBS),	the	cells	

were	overlaid	with	agar	(0.5%)	in	DMEM-F12	supplemented	with	

penicillin/streptomycin,	L-glutamine,	bovine	serum	albumin,	HEPES,	sodium	

bicarbonate,	and	20	µg/ml	acetylated	trypsin	(Sigma,	St.	Louis,	MO).	After	the	

agar	solidified,	the	plates	were	incubated	for	~48	h	at	37	°C.	Cells	were	fixed	and	

stained	with	primary	antibody	anti-H1	(MAB8261,	Millipore,	Billerica,	MA).	

Plaques	were	visualized	with	anti-mouse	horseradish	peroxidase-conjugated	
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secondary	antibody	(BD	Biosciences,	San	Jose,	CA)	and	developed	with	

peroxidase	substrate	kit	(Vector	Laboratories,	Burlingame,	CA).	

		

Determination	of	favipiravir	ED50		

The	50%	effective	dose	(ED50)	value	was	defined	as	the	concentration	of	drug	

reducing	plaque	number	to	50%	of	no	drug	control.	In	brief,	the	ED50	was	

determined	by	seeding	2.5	x	105	MDCK	cells	in	each	well	of	a	24-well	plate	and	

incubated	overnight	at	37	°C,	5%	CO2.	Virus	was	added	to	cells	at	an	MOI	of	0.01	

in	100	μl	of	IAV	growth	medium	[EMEM/10%	FBS	with	2	mM	

penicillin/streptomycin,	7.5%	bovine	serum	albumin,	and	1	μg/ml	TPCK-

treated-trypsin	(Sigma)]	plus	favipiravir	(0,	0.1,	0.3,	1,	3,	or	10	μM).	After	

incubation	at	37	°C	for	1	h,	cells	were	washed	once	with	PBS;	500	μl	of	IAV	

growth	medium	with	the	appropriate	concentration	of	favipiravir	was	added	and	

cells	were	again	incubated	at	37	°C	for	several	days.	Supernatants	were	collected	

when	>	50%	cytopathic	effect	(CPE)	was	achieved	for	at	least	one	drug	

concentration.	Supernatants	were	centrifuged	for	15	min	at	300	x	g	at	4	°C	and	

stored	at	-80°	C.	The	viral	titer	for	each	sample	was	determined	by	plaque	assay.	

		

Quantitative	PCR	

	Viral	RNA	was	extracted	from	supernatants	using	the	QIAamp	Viral	RNA	Mini	kit	

(Qiagen),	then	reverse	transcribed	with	the	High	Capacity	cDNA	Reverse	

Transcriptase	Kit	(ThermoFisher	Scientific).	Viral	copies	were	quantified	using	

M1	forward	primer	AAGACCAATCCTGTCACCTCTGA,	reverse	primer	

CAAAGCGTCTACGCTGCAGTCC,	and	probe	TTTGTGTTCACGCTCACCGT	for	40	

cycles	using	the	Eppendorf	Mastercycler	ep	Realplex	program.	
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Viral	culture		

Viruses	were	serially	passaged	in	MDCK	cells	(2.5	x	105	cells	per	well).	For	the	

first	experiment	(favi1,	constA,	withdrawalA,	and	its	controls),	the	multiplicity	of	

infection	(MOI)	was	generally	fixed	at	0.01	for	each	passage.	The	MOI	was	

occasionally	adjusted	to	accommodate	for	the	available	volume/titer	of	virus,	

including	for	escalating	favipiravir	(MOI	0.001	for	P15)	and	for	constant	

favipiravir/withdrawal	of	favipiravir	(MOI	0.001	for	P11,	MOI	0.005	for	P15).	

	 For	the	second	experiment	(favi2	and	its	control),	virus	was	harvested	as	

the	culture	reached	~50%	CPE,	and	the	cell-free	virus	processed	for	sequencing.	

The	variable	MOI	was	a	result	of	continuously	passaging	the	viral	populations.	At	

each	passage,	a	range	of	virus	was	used	to	initiate	the	next	round	of	infection	in	

various	wells.	The	sample	that	generated	50%	CPE	with	the	lowest	input	of	virus	

was	used	to	continue	the	trajectory.	Virus	titers	were	determined	at	the	

conclusion	of	the	experiments.	The	average	MOI	was	subsequently	calculated	as	

0.02	±	0.009	(S.E.M.).	

	 Samples	were	harvested	both	in	the	presence	and	absence	of	escalating	

amounts	of	favipiravir.	In	the	first	passage	with	favipiravir,	the	drug	

concentration	was	2X	the	ED50	of	1	µM	(2	µM),	consistent	with	reports	of	

seasonal	strains	of	IAV,	ranging	from	0.45	to	5.99	µM,		(Sleeman	et	al.	2010).	The	

concentration	was	doubled	for	each	subsequent	passage	as	long	as	>	50%	CPE	

was	present.	If	<	50%	CPE	was	present,	the	concentration	of	favipiravir	was	

escalated	at	a	slower	rate.	
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High-throughput	sequencing		

We	developed	a	high-throughput	sample	processing	work	flow,	carried	out	in	

96-well	format,	including	RNA	purification,	reverse	transcription,	whole	genome	

PCR,	followed	by	DNA	barcoding	and	library	preparation.	See	Renzette	et	al.	

(2014)	for	details.	

		

Bioinformatics	analysis		

Short	reads	from	the	Illumina	or	IonTorrent	platform	(see	Supplementary	Table	

1)	were	filtered	for	quality	scores	>	20	throughout	the	read	and	aligned	to	the	

strain’s	reference	genome	using	BLAST.	Over	95%	of	the	selected	reads	could	be	

mapped	to	the	IAV	reference	genome	obtained	from	GenBank	(accessions	

CY030232,	CY031391,	CY058484-CY058486,	CY058488-	CY058489,	CY058491).	

Only	alignments	longer	than	80	nucleotides	were	retained.	The	median	

sequencing	depth	was	10,226.	Amino	acid	frequencies	were	calculated	after	

aligning	translated	reads	to	the	corresponding	positions	in	the	reference	

proteins.	We	confirmed	that	nucleotide	and	amino	acid	frequencies	were	

identical	between	passages.	Unfolded	SNP	frequencies	were	generated	using	the	

IAV	reference	genome	and	were	used	for	the	population	genetics	analyses.	The	

sequencing	datasets	generated	in	this	study	are	available	at	

http://bib.umassmed.edu/influenza.	See	Renzette	et	al.	(2014)	for	further	

details.	
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Sequencing	error	analysis		

See	Renzette	et	al.	(2014)	for	further	details.	Because	segment	ends	are	known	

to	contain	repetitive	regions	that	are	difficult	to	map,	the	first	and	last	30	sites	of	

each	segment	were	excluded	from	all	analyses.	

	

Population	dynamics	

We	calculated	absolute	growth	rates	for	all	treatments	based	on	the	initial	and	

final	population	size	(obtained	directly	before	and	after	virus	passaging)	as	given	

by	the	MOI	and	the	PFU/ml,	respectively	(see	Supplementary	Table	1).	Note	that	

the	latter	implicitly	assumes	that	each	formed	plaque	represents	a	single	

infective	particle.	However,	given	the	generally	low	MOI	this	assumption	should	

hold	true	for	our	data.	Following	Foll	et	al.	(2014),	we	assumed	that	for	all	

treatments	the	population	grew	for	13	generations	at	constant	rate	r	per	

passage,	yielding			

	 N(t) = N1 exp
rt .	

Note	that	after	rearranging	and	solving	for	r,	the	corresponding	absolute	growth	

rate	is	an	estimate	for	the	Malthusian	parameter	or	the	intrinsic	rate	of	increase	

Chevin	(2010).	

Selection	intensity	s	between	different	treatments	was	quantified	by	

calculating s = rtreatment − rcontrol .	We	then	performed	a	linear	regression	via	ordinary	

least	squares	of	the	growth	rates	r	and	selection	coefficients	against	time	(given	

by	passage	number)	or	drug	concentration.	To	assess	whether	there	was	a	

significant	linear	relationship	between	these	entities	(e.g.,	growth	rate	versus	

initial	population	size;	see	Fig	3A),	we	performed	an	ordinary	t-test	under	the	

null	hypotheses	of	no	significant	relationship	between	the	independent	(i.e.,	drug	
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concentration,	passage	or	MOI)	and	dependent	variable	(i.e.,	absolute	and	

relative	growth	rate),	corresponding	to	a	zero	slope.	To	test	whether	two	

regression	slopes	were	significantly	different	from	one	another	we	again	

performed	an	ordinary	t-test	under	the	null	hypotheses	that	both	slopes	are	

equal.	

	

WFABC	analysis		

We	utilized	the	WFABC	software	(Foll	et	al.	2014;	Foll	et	al.	2015)	to	estimate	the	

effective	population	size	Ne	and	selection	coefficients	from	allele-frequency	

trajectories.	Given	the	sequencing	error	estimates	of	up	to	1%	(see	

Supplementary	Figure	1),	we	randomly	down-sampled	sites	with	coverage	above	

100	to	a	sample	size	of	100.	At	each	site	we	kept	the	counts	of	the	ancestral	allele	

and	the	most	frequent	derived	allele,	hence	we	consider	only	diallelic	SNPs	(Foll	

et	al.	2014).	For	WFABC	we	kept	only	trajectories	that	had	a	derived	allele	count	

of	at	least	3	at	one	passage	throughout	the	experiment,	corresponding	to	a	

frequency	of	>2.5%	in	the	population.	We	used	a	uniform	prior	probability	of	-

0.5	<	s	<	0.5		This	resulted	in	the	following	command	line	for	the	wfabc_2	

selection	estimation	step:	

./wfabc_2	-ploidy	1	-min_s	-0.5	-max_s	0.5	-min_freq	0.025	FILE	

For	the	“fork”	data	sets,	we	ran	WFABC	both	for	passages	9-17,	(denoted	by	

“constA”	etc.	in	Supplementary	Table	2)	and	for	the	full	time	series	of	passages	3-

17	(denoted	by	“favi1-constA”	etc	in	Supplementary	Table	2).	For	the	favi1	data	

set,	we	used	both	the	full	range	of	passages	3-15	(favi1-long),	and	a	reduced	data	

set	excluding	the	last	passage	(favi1-short).	Consistent	with	Foll	et	al.	(2014),	

candidate	trajectories	under	positive	selection	were	selected	to	be	those	with	a	
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posterior	probability	of	s<0	less	than	0.5%.	Passage	12	in	constA	and	constB,	and	

passage	11	in	favi2	and	favi2-control	were	excluded	from	the	analysis	because	of	

low	coverage.	

	

Hierarchical	clustering	analysis	

Our	hierarchical	clustering	analysis	(Figure	4)	is	based	on	the	squared	Euclidean	

distance	between	allele-frequency	trajectories	of	the	candidate	mutations	

identified	by	WFABC	using	Ward’s	minimum	variance	criterion	(Ward	Jr.	1963).	

Furthermore,	for	all	WFABC	candidates	we	calculated	the	correlations	between	

allele	trajectories	–	starting	from	the	point	in	time	where	their	frequency	was	

above	the	level	of	the	sequencing	error	(i.e.,	above	1%)	–	and	the	absolute	and	

relative	growth	rate	estimates	(Supplementary	Table	2).	

	

CP-WFABC	analysis		

The	CP-WFABC	approach	is	an	extension	of	WFABC,	and	considers	models	of	

changing	Nes	from	time-sampled	polymorphism	data	(Shim	et	al.,	2016).	The	

method	uses	the	variance	in	allele	frequencies	between	two	consecutive	

sampling	time	points	defined	as	Fs’,	an	unbiased	estimator	of	Ne,	to	measure	

selection	strength	(Jorde	and	Ryman	2007):	

!!
Fs = (x − y)

2

z(1− z) 	

 !!

Fs '= 1
txy

Fs[1− 1
2!n]−

2
!n

(1+ Fs4 )[1−
1
ny
]
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where	x	and	y	are	the	allele	frequencies	at	two	time	points	separated	by	txy	

generations,	z	=	(x+y)/2,	and !!n is	the	harmonic	mean	of	the	sample	sizes	nx	and	ny	

at	those	time	points.	Additionally,	the	method	adapts	a	procedure	from	Change-

Point	analysis	in	time-serial	data	to	detect	a	change	point	of	selection	along	the	

allele	trajectory.	More	specifically,	a	statistic	from	the	cumulative	sum	control	

chart	(CUSUM)	developed	by	Page	(1954)	is	integrated	into	the	ABC	method	to	

characterize	the	time-sampled	trajectory	of	an	allele:	

	

!! Si = Si−1 +(Fs 'i−Fs '), i =1,…,I 	

	

where	the	index	i	refers	to	the	ith	time	point,	𝑆! = 0,	and	𝐹𝑠′	corresponds	to	the	

mean	of	the	Fs’	over	all	pairs	of	consecutive	time	points.	The	change	point	SCP	is	

the	sampling	time	point	with	the	maximal	absolute	value	of	Sm,	which	is	the	

maximal	accumulation	of	difference	in	Fs’	from	its	average	value	in	the	time-

sampled	trajectory:	

!!SCP = argmaxi=0,...I |Si |. 	
Using	these	two	summary	statistics	(Fs’	and	Scp),	CP-WFABC	jointly	

estimates	the	temporal	position	of	a	change	point	as	well	as	the	strength	of	both	

corresponding	selection	coefficients	(and	dominance	for	diploid	cases)	from	an	

allele	trajectory.	Furthermore,	CP-WFABC	separates	allele	trajectories	

characterized	by	a	single	selection	coefficient	from	those	with	changing	intensity	

via	ABC	model	choice	(see	below).		

The	same	data	sets	and	ascertainment	conditions	were	used	as	for	the	

WFABC	analysis	described	above.	For	each	trajectory	of	interest,	we	tested	the	
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null	model	M0	(i.e.,	a	single	selection	coefficient)	and	the	alternative	model	M1	

(i.e.,	a	changing	selection	coefficient),	with	the	parameters	of	interest	being	(s)	

and	(s1,	s2,	CP),	respectively.	The	uniform	prior	ranges	for	the	selection	

coefficients	were	set	as	[-1,1].	The	prior	here	was	chosen	to	be	wider	than	for	the	

traditional	WFABC	analysis	described	above	since	CP-WFABC	allows	for	the	

detection	of	strongly	deleterious	effects	after	the	change	point.	We	chose	a	

uniform	prior	for	the	change	point	ranging	from	the	second	generation	to	the	

second-to-last	generation.	1x106	simulated	datasets	were	generated	using	the	

Wright-Fisher	model	for	M0	and	M1,	while	keeping	the	other	input	values,	such	as	

the	effective	population	size	estimated	from	WFABC,	the	number	of	generations,	

the	sampling	time	points,	and	the	sample	sizes	identical	for	each	observed	

trajectory.	The	best	1x103	simulated	trajectories	were	drawn	from	the	combined	

M0	and	M1	sets,	determined	by	the	smallest	Euclidean	distance	of	the	

aforementioned	summary	statistics	between	the	simulated	trajectory	and	the	

observed	trajectory.	The	approximate	posterior	densities	of	the	parameters	of	

interest	for	M0	and	M1	were	built	using	the	respective	subsets	of	these	chosen	

simulations,	as	in	the	algorithm	described	in	Beaumont	et	al.	(2002).	

Additionally,	the	ABC	model	choice	was	constructed	to	identify	the	SNP	

trajectories	with	changing	selection	intensity,	with	the	relative	probability	of	M1	

over	M0	as	the	model’s	posterior	ratio	and	as	the	Bayes	factor	B1,0	(Sunnåker	et	

al,	2013):	

!!
p(M1 |D)
p(M0 |D)

=
p(D|M1)p(M1)
p(D|M0)p(M0)

= B1,0
p(M1)
p(M0)

	

when	the	model	prior	p(M0)	is	equal	to	p(M1).	For	a	small	haploid	population,	as	

in	the	case	for	IAV	in	this	experimental	setup	(i.e.,	Ne	on	the	order	of	hundreds),	
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the	Bayes	factor	B1,0	must	exceed	3.7	in	order	to	achieve	sufficient	support	for	

the	alternative	model	M1	with	a	significance	level	of	1%	(see	Supplementary	

Figure	9).	

	

Population	size	estimates	

In	order	to	estimate	the	effective	population	size	between	any	two	time	points,	

we	used	the	Fs’	statistic	introduced	above.	For	each	pair	of	time	points	and	each	

site	in	the	genome,	we	(hypergeometrically)	sampled	min(100,	COVERAGE)	

reads	from	the	focal	data	set,	and	included	these	values	in	our	calculation	if	one	

of	the	observed	frequencies	was	>2.5%.	We	then	computed	the	estimated	

effective	population	size	for	this	pair	of	time	points	as	1/mean(Fs’).	

	

Accumulation	of	mutations		

To	infer	the	average	number	of	mutations	per	individual	accumulating	over	time,	

which	is	not	directly	observed	due	to	the	lack	of	haplotype	information	in	the	

data,	we	took	the	sum	over	the	derived	allele	frequencies	at	all	sites	with	

coverage	greater	than	100,	if	the	frequency	was	above	the	sequencing	error	

threshold	of	1%.	We	then	extrapolated	this	value	to	the	whole	genome.	
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RESULTS	&	DISCUSSION	

	

The	experimental	setup	

We	analyzed	the	evolution	of	IAV	across	nine	experimental	populations	

exposed	to	different	drug	conditions	as	illustrated	in	Figure	1.	As	explained	in	

detail	in	the	Materials	&	Methods	section,	the	virus	(H1N1)	was	serially	passaged	

on	Madin-Darby	Canine	Kidney	(MDCK)	cell	culture,	and	we	assumed	each	

passage	to	be	an	average	of	13	viral	generations	(see	Foll	et	al.	2014).	Each	

treatment	population	(left	half	of	Figure	1)	was	accompanied	by	a	control	

population	passaged	in	the	absence	of	the	drug	(right	half	of	Figure	1)	to	account	

for	environmental	fluctuations,	minor	variation	in	MDCK	cell	culture	conditions,	

and	multiplicity	of	infection	(MOI)	(see	Materials	&	Methods).	The	stock	viral	

populations	originated	from	passage	3	of	an	earlier	experiment	described	in	Foll	

et	al.	(2014)	and	Renzette	et	al.	(2014).	At	this	point,	the	population	was	split	

into	four	subsets	(hereafter	referred	to	with	the	respective	abbreviations):	two	

replicates	with	an	increasing	concentration	of	favipiravir	(favi1,	favi2)	and	their	

parallel	controls	that	were	not	exposed	to	the	drug	(favi1-control,	favi2-control).	

After	passage	9,	three	additional	populations	were	created	from	favi1,	paralleled	

by	two	additional	populations	from	its	accompanying	favi1-control	population;	

these	populations	are	hereafter	referred	to	as	“forks”.	These	forks	consisted	of	

two	populations	originating	from	favi1	exposed	to	a	constant	concentration	of	

favipiravir	(constA	and	constB)	and	their	accompanying	controls	without	drug	

originating	from		favi1-control	(constA-control,	constB-control),	as	well	as	a	fifth	

fork	in	which	favipiravir	was	withdrawn,	originating	from	favi1	(withdrawalA;	
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i.e.,	drug	pressure	was	completely	halted	after	passage	9).	A	summary	of	MOIs,	

drug	concentrations,	and	other	specifics	are	provided	as	Supplementary	Table	1.	

	

	

	

Figure	1.	Experimental	evolution	of	IAV	with	and	without	favipiravir.	Each	
triangle	represents	an	experimental	passage,	at	the	end	of	which	whole-genome	
sequencing	was	performed.	Black	stars	indicate	extinction	of	the	viral	
population.	Rows	(excluding	the	dark	gray	rectangle)	represent	parallel	sets	of	
treatments	and	control	experiments	that	were	processed	and	sequenced	in	the	
same	sequencing	lane	(ensuring	similar	effects	of	cell	culture	and	sequencing	
protocol).	Labels	represent	the	names	of	the	populations	subsequently	used	in	
the	manuscript.	See	Supplementary	Table	1	for	information	on	MOI	and	drug	
concentrations.		

	

The	favi1	and	favi1-control	populations	were	continued	until	passage	15,	

after	which	time	too	few	virions	were	recovered	from	favi1	to	continue	the	

experiment.	Similarly,	favi2	and	favi2-control	were	discontinued	after	passage	

11	–	these	events	are	hereafter	referred	to	as	extinctions.		

	 In	the	following,	we	quantify	and	discuss	the	observed	patterns	from	an	

evolutionary	perspective,	with	a	focus	on	dissecting	the	process	that	leads	to	

extinction	of	the	viral	population	in	favi1	and	favi2,	and	discuss	the	potential	for	

the	evolution	of	resistance	against	favipiravir.	
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Evidence	for	increased	mutation	rate	under	favipiravir	treatment	

Favipiravir	affects	IAV	by	increasing	the	mutation	rate	above	sustainable	

levels,	leading	to	an	accumulation	of	deleterious	mutations	and	the	eventual	

extinction	of	the	population	(Furuta	et	al.	2013).	We	sought	to	validate	the	

mutation-rate	increasing	effect	of	favipiravir	on	IAV	that	was	previously	

described	by	Baranovich	et	al.	(2013).	However,	the	quantification	of	mutation	

rates	from	genomic	data	is	obscured	by	sequencing	error,	which	induces	a	(false)	

baseline	of	observed	variation.	To	investigate	the	effect	of	favipiravir	on	the	

mutation	rate	while	accounting	for	this	complication,	we	studied	the	number	of	

segregating	mutations	above	two	frequency	thresholds,	f,	of	0.1%	and	1%.	

Whereas	the	number	of	segregating	sites	above	f	=	0.1%	is	likely	strongly	

confounded	by	sequencing	errors	and	expected	to	vary	depending	on	sequencing	

depth	and	quality,	f	=	1%	is	expected	to	be	above	the	sequencing	error	threshold	

(see	Supplementary	Figure	1),	but	few	mutations	will	rise	to	such	high	

frequencies.	We	estimated	the	number	of	segregating	sites	in	the	genome	by	

discounting	all	sites	with	coverage	lower	than	1/f	(which	for	most	passages	

comprised	the	majority	if	not	the	entirety	of	the	genome),	and,	if	necessary,	

extrapolated	this	value	to	the	whole	genome.	The	results	are	illustrated	in	Figure	

2	and	Supplementary	Figure	2.	
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Figure	2.	The	number	of	mutations	per	site	in	the	genome	that	segregated	above	
1%	across	time	and	populations	(left	y	axis),	with	data	points	connected	by	solid	
lines.	In	the	background,	estimates	of	the	effective	population	size	between	any	
two	passages	are	displayed	(right	y	axis,	data	points	connected	by	dashed	lines).	
(A-B)	We	observed	a	greater	number	of	segregating	mutations	in	the	favipiravir	
treatments	favi1	and	favi2	as	compared	with	control	populations,	consistent	
with	the	proposed	mechanism	of	an	increase	in	mutation	rate.	In	the	favi2	
population,	a	particularly	steep	increase	in	the	number	of	segregating	mutations	
occurred	immediately	prior	to	extinction	(B).	Also	the	constA	(C)	and	
withdrawalA	(D)	treatments	showed	an	increased	number	of	segregating	
mutations	as	compared	with	their	control	experiments,	but	the	accumulation	of	
mutations	comes	to	a	halt	in	withdrawalA,	and	appears	to	slowly	recover	in	
constA.	The	effective	population	size	tends	to	be	lower	in	the	treatment	
populations	(blue)	than	in	the	controls	(gray).	Gray	shading	indicates	that	this	
part	of	the	figure	represents	favi1	increasing	data,	before	forks	were	created.	
Note	that	although	passages	4	to	9	in	panels	A,	C,	and	D	stem	from	the	same	data,	
estimated	population	sizes	differ	slightly	due	to	the	sampling	procedure	that	was	
individually	performed	to	calculate	the	Fs’	statistic.	
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For	the	lower	threshold	f	=	0.1%,	we	observed	a	strong	correlation	

between	the	number	of	segregating	mutations	in	any	two	parallel	experiments	

(see	Supplementary	Figure	2).	This	is	expected	if	sequencing	error	is	prevalent	

at	this	frequency	threshold.	Hence,	differences	in	the	number	of	segregating	

mutations	in	this	frequency	range	reflect	differences	in	coverage	and	sequencing	

quality	across	passages	and	experiments.		

For	the	high	threshold	f	=	1%,	we	observed	an	increase	in	the	number	of	

segregating	mutations	with	time	in	the	favi1	and	favi2	populations,	consistent	

with	an	increase	in	the	mutation	rate	due	to	favipiravir	treatment	(see	Figure	

2A-B);	we	discuss	alternative	explanations,	including	different	or	changing	

effective	population	sizes,	or	selected	mutations,	below.	In	every	population	

associated	with	favipiravir	treatment	(favi1,	favi2,	constA,	constB,	withdrawalA),	

the	average	number	of	segregating	mutations	was	higher	than	in	any	of	the	

control	treatments.	Whereas	in	favi1	the	increased	number	of	mutations	was	

clearly	visible	by	passage	8,	favi2	appeared	to	be	affected	even	at	very	low	

concentrations.	These	differences	between	favi1	and	favi2	were	likely	due	to	the	

constant	and	larger	bottleneck	sizes	between	passages	in	favi1	as	compared	with	

favi2	(see	Materials	&	Methods,	Supplementary	Table	1).	The	observed	increase	

in	the	number	of	segregating	mutations	was	roughly	2.5-fold	(excluding	the	last	

passage	of	favi2)	which	is	in	agreement	with	previous	estimates	of	the	relative	

increase	in	mutation	rate	under	favipiravir	treatment	(Baranovich	et	al.	2013).	

For	constA,	constB	and	withdrawalA	(Figure	2	C-D,	Supplementary	Figure	

2A)	the	number	of	segregating	mutations	remained	greater	than	that	of	the	

control	for	the	most	part,	but	we	observed	no	further	increase	as	in	favi1	and	

favi2.	As	the	experiment	ended	at	passage	17,	the	potential	recovery	of	the	
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constA	population	that	is	indicated	in	Figure	2C	(but	see	below)	cannot	be	

evaluated.	

	

Monitoring	the	effective	population	size	throughout	the	experiment	

One	alternative	explanation	for	the	increasing	number	of	segregating	

mutations	could	be	a	changing	effective	population	size	through	time	between	

treatments.	If	most	new	mutations	are	deleterious,	larger	effective	population	

sizes	may	result	in	a	lower	number	of	segregating	mutations	due	to	an	increasing	

efficacy	of	selection.	We	estimated	the	effective	population	sizes	between	any	

two	passages	based	on	the	Fs’	statistic	postulated	by	Jorde	&	Ryman	(2007)	(see	

Materials	and	Methods).	Fs’	uses	the	variance	of	allele	frequencies	between	two	

time	points	to	evaluate	the	strength	of	genetic	drift	in	the	population,	and	should	

therefore	not	be	affected	by	an	increased	mutation	rate	(but	see	below	for	a	

discussion	of	the	assumption	of	independence	of	sites).	The	estimated	effective	

population	sizes	are	displayed	in	the	background	of	Figure	2.		

Across	all	populations	and	passages,	the	estimated	effective	population	

size	(i.e.,	1/mean(Fs’),	with	the	mean	being	taken	over	the	Fs’	values	between	

each	pair	of	consecutive	time	points;	see	Materials	and	Methods)	ranged	from	48	

between	passage	10	and	11	in	the	favi2	population	to	823	between	passage	10	

and	11	in	the	constB-control,	which	is	consistent	with	previous	estimates	(Foll	et	

al.	2014).	The	average	estimated	effective	population	sizes	correlate	well	with	

the	estimated	global	Ne	from	WFABC	(see	Supplementary	Figure	3).	Population	

sizes	were	slightly	but	consistently	larger	in	the	control	populations,	and	in	the	

favi1	and	favi2	environments	we	observe	a	steep	decline	in	the	effective	

population	size	immediately	prior	to	extinction	(see	Figure	2A-B).	Interestingly,	
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upon	withdrawal	of	the	drug	pressure,	the	population	size	recovered	and	

continued	at	a	similar	size	as	its	control	despite	a	greater	number	of	segregating	

mutations	(see	Figure	2D).	Conversely,	in	the	constA	population,	the	effective	

population	size	remained	consistently	lower	than	both	its	control	and	the	

withdrawal	population	throughout	the	entire	course	of	the	experiment	(see	

Figure	2C).	

	

Population	dynamics	across	drug	conditions	

	In	contrast	to	data	from	natural	populations,	the	experimental	setup	of	

serial	passaging	of	the	virus	in	cell	culture	allowed	us	to	control	and	monitor	the	

population	dynamics	of	the	virus,	and	thus	to	directly	assess	the	number	of	

virions	introduced	to	the	cell	culture	(reflected	in	the	multiplicity	of	infection	

[MOI]),	and	the	number	of	virions	emerging	at	the	end	of	each	passage	(output	

virions,	specifically	plaque-forming	units	[PFU];	see	Supplementary	Table	1).	We	

used	these	figures	to	estimate	absolute	growth	rates	of	the	viral	population	

during	each	passage	under	the	assumption	of	exponential	growth	(see	Figure	3,	

Supplementary	Figure	4,	and	Materials	and	Methods).	
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Figure	3:	Changes	in	absolute	and	relative	growth	rates	of	the	virus	throughout	
the	experiment.	Panel	A:	Absolute	growth	rate	showed	a	strong	negative	
correlation	with	imposed	drug	concentration,	providing	further	evidence	for	the	
effectiveness	of	the	treatment.	Panel	B:	No	correlation	was	observed	between	the	
initial	population	size	in	each	passage	and	the	absolute	growth	rate.	Panel	C:	In	
favi1,	relative	growth	rates	(compared	with	parallel	control)	were	consistently	
negative.	Panels	D-F:	Relative	growth	rates	of	additional	treatment	strategies	
across	passages.	Whereas	the	growth	rate	decreased	in	the	first	part	of	the	
experiment	(favi1,	passage	4-9)	as	drug	concentration	(blue	line)	increased,	the	
constA	(panel	D)	and	withdrawal	(panel	E)	populations	showed	signs	of	
recovery	upon	the	change	of	treatment.		
	

	 As	a	further	assessment	of	the	effectiveness	of	the	drug	treatment,	we	

studied	the	relationship	between	the	drug	concentrations	throughout	all	

populations	and	the	absolute	growth	rates,	and	reassuringly	observed	a	highly	

significant	negative	correlation	(Figure	3A;	R2=0.38	p<10-9).	While	there	appears	

to	be	no	correlation	globally	between	the	bottleneck	size	and	the	growth	rate	

(Figure	3B;	R2=0.01	p=0.26),	indicating	that	the	imposed	population	dynamics	

do	not	significantly	impact	the	rate	of	growth,	a	small	negative	effect	of	

bottleneck	size	on	the	estimated	growth	rates	cannot	be	ruled	out	when	only	

considering	bottleneck	sizes	of	5000	and	smaller	(R2=0.11	p=0.009;	see	also	

Supplementary	Table	3).	
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To	study	the	effect	of	different	drug	conditions	on	the	growth	rates,	we	

computed	relative	rates	as	the	difference	between	the	growth	rate	of	the	

treatment	and	its	parallel	control,	 s = rtreatment − rcontrol .	This	accounts	for	effects	due	

to	the	MDCK	cell	environment	and	the	size	of	the	imposed	passaging	bottlenecks,	

which	were	generally	kept	identical	between	parallel	experiments	(see	

Supplementary	Table	1).	

We	observed	consistently	negative	relative	growth	rates	in	the	favi1	and	

favi2	populations	(Figure	3C	and	Supplementary	Figure	4),	likely	due	to	the	

challenging	effect	of	the	drug	on	the	population.	It	is	important	to	note	

differences	in	the	experimental	procedure	in	the	favi2	population	and	its	parallel	

control	from	that	of	all	other	populations	(see	also	Materials	&	Methods).	In	

general,	bottleneck	sizes	(i.e.,	MOIs)	were	kept	constant	and	relatively	large,	and	

new	passages	were	seeded	from	a	random	sample	of	the	previous	population.	

However,	the	bottleneck	sizes	in	favi2	were	smaller	and	varied	greatly,	and	new	

passages	were	seeded	based	on	the	fastest-growing	amongst	several	samples.	

Therefore,	slightly	different	patterns	between	the	favi1	and	favi2	populations	are	

expected	(such	as	the	higher	absolute	growth	rates	in	favi2	(see	Supplementary	

Figure	4)).	Furthermore,	the	lower	MOIs	in	favi2	may	have	resulted	in	a	lower	

probability	of	co-infection	of	cells,	and	thereby	in	a	lower	chance	of	virus	

segment	reassortment	which,	analogous	to	recombination,	could	help	to	bring	

together	co-adapted	segments	or	to	purge	deleterious	mutations	from	the	viral	

genome;	a	potential	consequence	is	a	more	rapid	extinction	of	the	favi2	

population.	

Interestingly,	in	the	constA	population	(Figure	3D),	the	initially	negative	

relative	growth	rate	appeared	to	gradually	recover	under	constant	drug	
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pressure,	ultimately	approaching	0	(i.e.,	similar	to	the	growth	rate	of	the	parallel	

control).	The	slope	of	a	linear	regression	from	passage	10	to	17	is	positive	

(p=0.039).	This	provides	the	first	line	of	evidence	that	the	constA	population	

may	be	acquiring	resistance	under	low-concentration	favipiravir	conditions.	A	

similar	pattern	of	recovery	(increasing	slope	of	linear	regression,	p=0.004)	was	

observed	in	the	withdrawalA	population	(Figure	3E).	Finally,	the	constB	

population	did	not	show	signs	of	recovery	(p=0.24),	but	rather	maintained	a	

constant	negative	relative	growth	rate	throughout	treatment	(Figure	3F).			

	

Identification	of	putatively	selected	mutations	

The	whole-genome	SNP	data	obtained	at	the	end	of	each	passage	in	all	

populations	provided	us	with	allele-frequency	trajectories	through	time	for	

every	site	in	the	genome.	These	trajectories	contain	information	on	the	effective	

population	size	and	thus	on	the	magnitude	of	genetic	drift,	and	on	the	selection	

coefficient	of	each	mutation	observed	at	frequencies	above	the	sequencing	error	

threshold.	We	thus	utilized	WFABC	(Foll	et	al.	2014;	Foll	et	al.	2015)	to	identify	

positively	selected	candidate	mutations	(see	Materials	&	Methods).	All	

considered	trajectories	are	displayed	in	Supplementary	Figure	5.	Supplementary	

Table	2	contains	a	list	of	all	identified	candidates.	Of	note,	candidate	mutations	

were	identified	by	WFABC	under	the	assumption	of	independence	between	sites,	

an	assumption	likely	violated	in	IAV.	Hence,	each	candidate	may	be	the	subject	of	

either	direct	or	linked	selection.	However,	WFABC	was	successful	in	identifying	

resistance	mutations	against	oseltamivir	(Foll	et	al.	2014),	several	of	which	have	

been	functionally	validated;	thus,	it	was	a	valuable	tool	for	identifying	a	set	of	

promising	candidates	for	favipiravir.	
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Overall,	WFABC	identified	64	positively	selected	candidate	mutations,	of	

which	24	were	shared	between	at	least	two	populations.	The	allele-frequency	

trajectories	of	all	candidate	mutations	across	all	populations	are	plotted	in	

Supplementary	Figure	6.	Strikingly,	the	strongest	signal	of	selective	sweeps	(see	

also	Supplementary	Figure	5)	and	the	highest	number	of	candidate	mutations	

(n=21,	across	passages	3-19)	were	seen	in	the	constA	population,	which	also	

showed	signs	of	resistance	evolution	based	on	recovering	growth	rates,	as	

detailed	in	the	previous	subsection	(see	Figure	3D);	these	candidates	also	had	

the	highest	inferred	selection	coefficients	(see	Supplementary	Table	2).	Of	the	21	

candidate	mutations,	10	are	non-synonymous	and	the	majority	(n=8)	are	at	

genes	localized	to	the	subunits	of	the	viral	RdRp,	which	could	be	expected	given	

that	favipiravir	is	proposed	to	inhibit	the	viral	RdRp	(Furuta	et	al.	2005;	Jin	et	al.	

2013).	The	phenotype	of	most	of	the	candidate	mutations	is	unknown.		

A	well-characterized	candidate	within	this	group,	NP	S9T,	disrupts	a	

phosphorylation	site	and	alters	nuclear-cytoplasmic	shuttling	of	the	

nucleoprotein	(NP)	(Hutchinson	et	al.	2012;	Zheng	et	al.	2015).	Phosphorylation	

of	NP	S9	prevents	nuclear	import,	and	mutations	at	this	site	thus	lead	to	an	

accumulation	of	NP	within	the	nucleus	(Zheng	et	al.	2015),	the	location	of	viral	

RNA	replication.	Altering	the	levels	of	NP	in	the	nucleus	could	increase	rates	of	

viral	RNA	replication	(Portela	and	Digard	2002),	thereby	counteracting	the	

inhibitory	effects	of	favipiravir,	though	this	mechanism	needs	to	be	formally	

tested.	Interestingly,	NP	S9	is	perfectly	conserved	in	H1N1	isolates,	and	thus	the	

allele	may	be	an	unlikely	resistance	mutation	in	natural	isolates.		

Additional	candidate	mutations	were	identified	in	the	constB	population	

(n=6).	One	of	the	candidates,	NP	D101N,	was	previously	identified	in	an	
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experimental	screen	for	alleles	conferring	resistance	to	the	drug	ribavirin	

(Cheung	et	al.	2014).	Like	favipiravir,	ribavirin	increases	the	mutation	rate	of	the	

IAV	genome	(Cheung	et	al.	2014).	Interestingly,	follow-up	assays	could	not	

confirm	the	action	of	NP	D101N	as	a	resistance	mutation	(Cheung	et	al.	2014),	

suggesting	that	either	NP	D101	is	a	product	of	cell-culture	adaptation,	or	perhaps	

contributes	to	resistance	only	in	interaction	with	other	mutations.	Analysis	of	

our	previously	published	data	on	serial	passaging	of	IAV	in	MDCK	cells	(Foll	et	al.	

2014;	Renzette	et	al.	2014)	showed	fixation	of	NP	D101N	in	one	of	the	two	

trajectories	where	oseltamivir-resistant	influenza	virus	evolved,	which	suggests	

that	NP	D101	indeed	emerges	with	adaptation	to	MDCK	cells.	Of	note,	the	PB1	

V43I	and	the	PB1	D27N	mutations,	known	to	affect	polymerase	fidelity	and	

confer	resistance	to	ribavirin	in	other	studies	(Cheung	et	al.	2014,	Binh	et	al.	

2014),	is	not	detected	in	our	favipiravir	experiments.	

In	both	the	favi1	and	favi2	populations,	few	(n=2	for	favi1	passages	3-14;	

n=3	for	favi2	passages	3-10)	candidate	mutations	were	identified	before	the	

population	was	driven	to	extinction.	The	mutations	in	this	group	were	

distributed	across	the	genome,	suggestive	of	the	absence	of	a	strong	selective	

sweep.	In	the	control	and	withdrawal	populations,	the	identified	candidates	

(listed	in	Supplementary	Table	2)	were	largely	shared	between	populations,	

indicating	potential	adaptations	to	the	MDCK	environment.	Indeed,	many	of	the	

candidate	mutations	across	populations	have	previously	been	described	in	the	

literature	associated	with	mammalian	cell	culture	adaptation	(e.g.	PB2	G590S	

(Mehle	and	Doudna	2009;	Poole	et	al.	2014)	and	HA2	D112N	(Foll	et	al.	2014).		

	

Potential	drivers	of	adaptation	in	constA	
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To	identify	groups	of	mutations	indicative	of	genetic	hitchhiking	and/or	

joint	selection	in	the	constA	environment,	we	performed	a	hierarchical	clustering	

analysis	based	on	the	squared	Euclidean	distance	between	allele-frequency	

trajectories	(see	Materials	&	Methods).	The	result	of	this	analysis	is	illustrated	in	

Figure	4.	We	chose	a	dissimilarity	threshold	of	0.95,	which	results	in	six	clusters	

(see	Figure	4A).	

The	mutations	in	cluster	1	(see	Figure	4B)	begin	to	increase	in	frequency	

at	passage	9,	though	come	to	a	halt	(potentially	due	to	interference)	around	

passage	13,	which	also	coincides	with	the	increasing	frequency	of	cluster	5.	Two	

non-synonymous	mutations	(indicated	with	an	asterisk	in	Figure	4A)	are	the	

likely	targets	of	direct	selection	(i.e.,	drivers)	in	this	cluster:	HA	S220P	is	a	

mammalian	cell	adaptation	that	has	been	observed	in	MDCK	cells,	ferrets	and	

humans	(Smirnov	et	al.	2000;	Ding	et	al.	2010;	Imai	et	al.	2012);	the	same	

mutation	is	also	identified	as	a	candidate	in	the	favi2	population.	PB2	G590S	is	a	

temperature-sensitive	polymerase	mutation	that	has	been	frequently	observed	

upon	switching	from	propagation	of	the	virus	in	chicken	eggs	to	mammalian	cells	

(Mehle	and	Doudna	2009;	Poole	et	al.	2014).	Hence,	this	cluster	likely	represents	

an	adaptation	to	the	cell	culture.	

Cluster	2	contains	only	a	single,	non-synonymous	mutation	in	the	

polymerase	subunit	PB2	that	has	not	been	characterized	previously.	The	

frequency	of	this	mutation	decreased	towards	the	end	of	the	experiment,	which	

may	be	indicative	of	linked	rather	than	direct	selection,	for	example	from	

clusters	1	or	3.	

Cluster	3	was	the	earliest	to	begin	increasing	in	frequency	in	the	

population,	and	several	of	the	mutations	contained	in	this	cluster	were	present	
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early	in	the	experiment	(during	the	phase	of	increasing	drug	concentration;	see	

Figure	4D).	The	best-characterized	candidate	and	potential	driver	of	this	cluster	

is	NP	S9T	(discussed	above).	However,	an	additional	potentially	interesting	

candidate	for	further	study	is	PA	R204R/PA-X	D204G,	which	represents	a	non-

synonymous	mutation	in	the	recently	discovered	second	open	reading	frame	of	

segment	3,	and	whose	protein	product	has	been	reported	to	be	involved	in	

virulence	of	IAV	(Jagger	et	al.	2012).	

Cluster	4	is	represented	by	two	mutations	showing	highly	

uncharacteristic	allele-frequency	trajectories	(see	Figure	4E).	Given	their	long	

persistence	at	intermediate	frequencies,	they	are	unlikely	to	be	driver	mutations.	

Cluster	5	contains	the	highest	number	of	mutations,	with	four	being	

tightly	linked	in	the	polymerase	subunit	PA.	Most	of	the	involved	mutations	are	

synonymous,	making	them	unlikely	driver	candidates.	Two	non-synonymous	

mutations	in	PA,	E31G	and	E56G,	have	not	been	previously	characterized.	

However,	the	third	non-synonymous	mutation	in	this	cluster,	PB2	K718E	

mutates	a	residue	important	in	PB2	binding	to	various	importin	α	isoforms	(α1,	

α3	and	α7),	and	thus	is	critical	in	altering	the	kinetics	of	PB2	nuclear	importation	

(Pumroy	et	al.	2015).	Combining	this	putative	phenotype	with	that	of	the	NP	S9T	

allele	of	cluster	3	suggests	a	model	in	which	adaptation	to	favipiravir	is	

associated	with	alteration	of	the	sub-cellular	localization	of	viral	RdRp	

components	rather	than	changes	in	viral	RdRp	enzymatic	activity	or	drug	

binding.	This	model	is	tentative,	though,	and	warrants	further	investigation.	

Finally,	cluster	6	contains	two	mutations,	one	of	which	is	synonymous.	

The	other	mutation	is	outside	the	protein-coding	domain	of	the	polymerase	

subunit	PB2	and	is	of	unknown	function.	
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In	summary,	the	following	observations	emerged	from	the	cluster	

analysis:	first,	larger	clusters	(suggestive	of	stronger	selective	sweeps)	contained	

the	most	compelling	candidate	mutations	for	adaptation	and	resistance	

evolution.	Second,	we	were	able	to	reconstruct	a	hypothesized	history	of	

adaptation:	an	early	selective	sweep	of	MDCK	cell	adaptation	(cluster	1)	

interferes	with	a	later	sweep	of	a	resistance	mutation	(cluster	5).	However,	a	

high	mutation	rate	and	co-infection	(and,	hence,	reassortment	of	segments)	

appears	to	enable	the	combination	of	multiple	beneficial	mutations	on	the	same	

background,	which	leads	to	rapid	adaptation	in	this	population.	It	is	unclear	

whether	the	staggered	sweeps	observed	here	would	be	possible	in	isolation	or	

whether	the	effects	of	later	mutations	are	indeed	dependent	on	the	presence	of	

earlier	mutations.	However,	our	results	provide	an	excellent	means	of	identifying	

candidates	for	functional	testing.	

	

	

Figure	4:	Clustering	of	WFABC	candidate	mutations	in	the	constA	environment.	
Panel	A:	Tree	showing	the	(dis-)similarity	between	allele-frequency	trajectories	
of	beneficial	candidates	as	an	indicator	of	either	hitchhiking	effects	or	joint	
selection.	Asterisks	indicate	the	mutations	that	are	discussed	in	the	main	text	as	
potential	driver	mutations.	Panel	B-G:	Allele-frequency	trajectories	of	the	
mutations	in	each	cluster.	
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Assessment	of	changes	in	the	selection	pressure			

We	also	apply	a	newly	developed	extension	of	WFABC	to	test	for	severely	

changing	selection	coefficient	s	or	population	size	Ne	during	the	course	of	the	

experiment.	CP-WFABC	(“change-point”-WFABC	(Shim	et	al.	2016);	see	Materials	

and	Methods)	can	also	identify	the	change	point	and	magnitude	of	the	product	of	

Ne	and	s	before	and	after	the	change,	and	tests	a	model	with	changing	parameters	

against	the	null	model	of	a	single	fixed	selection	coefficient	and	population	size.	

As	visualized	in	Supplementary	Figure	7,	the	results	of	CP-WFABC	were	

consistent	with	the	rapid	population	extinction	in	favi1.	The	population	collapse	

was	accompanied	by	a	steep	decrease	in	the	effective	population	size,	which	

produces	hundreds	of	trajectories	that	are	not	consistent	with	a	classical	

constant-environment	model.	In	contrast,	only	few	and	relatively	uniformly	

distributed	change	points	are	identified	in	the	control	populations,	consistent	

with	our	expectation	in	a	constant	environment.	

	

Favipiravir-induced	mutational	meltdown		

We	observed	successful	extinction	of	the	viral	population	within	<150	

generations	in	both	replicates	under	increasing	drug	concentrations.	The	

observed	pattern	is	stunningly	similar	to	the	dynamics	of	mutational	meltdown	

described	in	Lynch	et	al.	(1993):	shortly	after	a	new	asexual	lineage	is	created,	

individuals	accumulate	mutations	almost	linearly	until	reaching	a	transition	

point	at	which	the	population	size	collapses,	producing	a	sharp	increase	in	

mutation	accumulation.	In	Figure	5,	the	accumulation	of	mutations	per	

individual	(see	Materials	&	Methods)	in	the	favi1	population	(blue	dots)	is	

overlaid	on	a	reproduction	of	Figure	1	of	Lynch	et	al.	(1993)	(blue	line).	Although	
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we	lack	information	on	the	carrying	capacity	of	the	population	and	the	census	

population	size	(shown	as	gray	dashed	line	following	Lynch	et	al.	(1993)),	the	

observed	changes	in	the	effective	population	size	(gray	dots)	are	consistent	with	

this	model:	over	time,	the	effective	population	size	decreases	gradually	(due	to	

Muller’s	ratchet)	but	slowly,	until	it	collapses	at	the	transition	point.	Notably,	this	

transition	point	was	also	indicated	by	CP-WFABC	as	a	major	change	in	the	

selection	pressure.	The	same	pattern	was	observed	for	the	favi2	population,	and	

all	populations	showed	the	linear	mutation	accumulation	expected	under	

Muller’s	ratchet	(visualized	in	Supplementary	Figure	8).	Because	mutation	

accumulation	in	the	model	is	proportional	to	the	mutation	rate,	comparing	the	

slopes	provides	additional	confirmation	of	the	increase	in	mutation	rate	

observed	under	favipiravir	treatment	(see	Supplementary	Figure	8).	

	

Figure	5:	Qualitative	comparison	of	accumulation	of	mutations	in	the	favi1	
population	(blue	dots)	with	pattern	of	mutation	accumulation	redrawn	from	
Figure	1	of	Lynch	et	al.	(1993)		as	the	solid	blue	line,	representing	mutational	
meltdown.	The	horizontal	gray	dashed	line	represents	the	census	population	size	
in	the	original	model,	which	is	here	overlaid	by	our	Ne	estimates	between	
passages	(gray	dots).	The	dashed	vertical	line	in	green	indicates	the	transition	to	
the	meltdown	phase.	
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CONCLUSION	
	

In	this	study,	we	examined	a	novel	class	of	drug	treatment	that	acts	to	

increase	viral	mutation	rates.	Although	an	increased	mutation	rate	may	allow	for	

a	more	rapid	appearance	of	beneficial	mutations	in	the	population	(e.g.,	Cirz	and	

Romesberg	2007),	the	underlying	notion	is	that	the	comparatively	much	greater	

input	rate	of	deleterious	mutations	should	lead	to	population	extinction	(i.e.,	

within-host	extinction	of	the	virus)	and	prevent	any	rescue	mutations	from	

emerging.	This	expectation	is	supported	by	a	large	body	of	classical	studies	in	

evolutionary	theory	that	have	described	the	processes	of	mutational	meltdown	

(e.g.,	Lynch	et	al.	1993),	lethal	mutagenesis	(e.g.,	Bull	et	al.	2007;	Martin	and	

Gandon	2010;	Arias	et	al.	2014)	and	error	catastrophe	(e.g.,	Biebricher	and	Eigen	

2005).		

By	comparing	multiple	replicates	of	populations	grown	in	the	absence	of	

favipiravir	treatment,	at	constant	concentrations	of	the	drug,	and	at	escalating	

concentrations,	we	quantified	the	respective	effects	on	underlying	mutation	

rates	and	described	the	resulting	evolutionary	processes.	We	demonstrated	that	

all	populations	treated	with	increasing	concentrations	of	favipiravir	were	

characterized	by	increased	mutation	rates,	decreasing	effective	population	sizes	

through	time,	no	observed	rescue	mutations,	and	ultimate	extinction	in	all	

population	replicates	(see	Table	1).	This	pattern	is	in	sharp	contrast	to	

populations	treated	with	a	constant	concentration	of	favipiravir,	which	maintain	

constant	(but	reduced)	effective	population	sizes,	show	signs	of	selective	sweeps	

and,	in	one	replicate,	a	striking	recovery	of	the	population	growth	rate	–	

suggesting	that	lower	concentration	conditions	may	indeed	allow	for	the	virus	to	

persist	and	potentially	even	develop	resistance.	The	contrast	with	populations	
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grown	in	the	presence	of	oseltamivir	is	also	noteworthy,	for	which	single-

mutational-step	resistance	mutations	rapidly	arose	in	all	treatment	populations	

allowing	for	a	complete	evolutionary	rescue	(Foll	et	al.	2014).	

	

Table	1.	A	summary	of	observations	across	data	sets	

Population 
#	beneficial	
candidates 

Extinction	
observed? 

Increased	#	
mutations? 

Indication	
of	
recovery? 

Reduced	
Ne? 

favi1 5 yes yes no yes 

favi2 3 yes yes no yes 

constA 18 no yes yes yes 

constB 6 no yes unclear yes 

withdrawalA 1 no yes yes no 

	

	

As	the	ultimate	source	of	variation,	mutational	effects	and	rates	have	

remained	a	persistent	subject	in	evolutionary	theory.	In	1930,	R.A.	Fisher	(1930)	

argued	that	an	intermediate	mutation	rate	is	optimal	for	organisms	to	ensure	a	

steady	input	of	beneficial	mutations	while	avoiding	the	detrimental	

accumulation	of	deleterious	mutations.	His	arguments	were	later	formalized	in	

several	evolutionary	concepts	including	Muller’s	ratchet	(Muller	1964;	

Felsenstein	1974),	mutational	meltdown	(Lynch	et	al.,	1990),	lethal	mutagenesis	

(Bull	et	al.,	2007),	background	selection	(Charlesworth	et	al.	1993;	Charlesworth	

2012),	background	trapping	(Johnson	and	Barton	2002),	Hill-Robertson	
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interference	(Hill	and	Robertson	1966;	McVean	2000),	and,	in	a	more	

biophysically	inspired	framework,	quasi-species	theory	(Eigen	1971;	Biebricher	

and	Eigen	2005;	but	see	Wilke	2005).	Whereas	these	models	generally	predict	an	

eventually	detrimental	effect	of	increasing	the	mutation	rate,	instances	of	rapid	

resistance	evolution	against	mutation-rate	increasing	treatment	(Pfeiffer	and	

Kirkegaard	2003)	and	a	general	escape	from	extinction	(Springman	et	al.	2010)	

have	been	previously	reported.		

Furthermore,	so-called	mutator	genotypes	are	frequently	observed	when	

bacteria	are	exposed	to	novel	environments,	where	an	increased	mutation	rate	

may	facilitate	adaptation,	particularly	over	short	time	scales	(Taddei	et	al.	1997;	

Ram	and	Hadany	2012).	Therefore,	efforts	are	made	to	develop	mutation-

inhibition	treatments	to	prevent	antibiotic	resistance	evolution	in	bacterial	

pathogens	(Cirz	and	Romesberg	2007).	Conversely,	as	demonstrated	here	and	as	

previously	argued	theoretically	(e.g.,	Martin	and	Gandon	2010),	increasing	

mutation	rates	indeed	also	represent	a	potential	treatment	strategy.		

Thus,	the	precise	relevance	of	this	information	for	the	study	of	virus	

evolution	and	the	development	of	improved	treatment	strategies	requires	

further	examination.	First,	the	correspondence	of	the	observed	patterns	with	

classical	theory	demonstrates	the	predictive	value	of	population-genetic	models.	

In	the	model	of	Lynch	et	al.	(1993),	extinction	time	is	estimated	based	on	the	

mutation	rate,	the	carrying	capacity,	the	rate	of	reproduction,	and	the	selection	

coefficient.	Whereas	the	relationship	between	the	reproductive	rate	and	the	

carrying	capacity	and	extinction	time	are	relatively	simple,	we	here	present	a	

novel	finding	of	the	(deleterious)	selection	coefficient	having	a	non-linear	

relationship	with	extinction	time,	a	time	that	is	minimized	under	intermediate	

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 2, 2016. ; https://doi.org/10.1101/048934doi: bioRxiv preprint 

https://doi.org/10.1101/048934
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 39	

selection	coefficients.	This	has	important	implications	for	the	evolution	of	the	

virus:	if	changing	the	environment	(e.g.,	drug	pressure)	changes	the	distribution	

of	fitness	effects	of	new	mutations,	this	can	result	either	in	shorter	or	longer	

extinction	times.	Changing	this	distribution	also	alters	the	relevance	of	the	

discussed	evolutionary	mechanisms	(e.g.,	Muller’s	ratchet,	background	selection,	

WSHRI).	Essentially,	minimizing	the	expected	extinction	time	optimizes	drug	

efficacy	and	decreases	the	risk	of	resistance	evolution.	By	combining	our	

emerging	knowledge	of	the	underlying	distributions	of	fitness	effects	of	new	

mutations	with	classical	theory,	we	may	be	able	to	develop	better	predictions	

regarding	the	efficacy	of	both	single	and	combination	drug	therapies.		

Second,	we	observe	that	the	number	of	accumulated	mutations	per	

individual	in	the	passage	immediately	prior	to	extinction	was	almost	twice	as	

large	in	the	favi1	as	compared	with	the	favi2	population.	This	may	be	partly	

explained	by	differences	in	the	experimental	setup	(see	Materials	&	Methods),	

but	considering	the	similar	effective	population	sizes	it	more	likely	provides	

evidence	for	the	inherent	stochasticity	of	the	extinction	process	(Lynch	et	al.	

1993;	Martin	and	Gandon	2010;	Wylie	and	Shakhnovich	2012).	Hence,	it	

supports	the	synergism	between	stochastic	and	deterministic	drivers	of	

extinction	proposed	in	the	theory	of	mutational	meltdown	(Lynch	et	al.,	1993)	

rather	than	error	catastrophe,	which	proposes	extinction	due	to	the	inability	of	

the	population	to	contain	information	upon	crossing	a	(sharp)	error	threshold.	

Thus,	this	work	is	an	important	empirical	insight	into	the	widely	

theorized	models	discussed	above.	Further,	by	experimentally	controlling	the	

demographic	dynamics	of	the	population	as	well	as	the	imposed	selective	

pressures,	we	avoid	many	of	the	commonly	confounding	effects	encountered	in	
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attempts	to	quantify	these	processes.	In	addition,	the	results	of	this	evolutionary	

study	hold	great	clinical	importance,	as	they	validate	the	notion	of	inducing	

mutational	meltdown	as	a	viable	viral	treatment	strategy.		

Importantly,	our	results	indicate	the	great	influence	of	dosage,	and	

present	the	first	evidence	to	date	for	viral	adaptation	to	favipiravir	treatment.	

Encouragingly	however,	under	high	concentration	environments	rescue	

mutations	are	not	observed,	ultimately	resulting	in	population	extinction.	The	

mechanism	of	action	of	favipiravir	is	hypothesized	to	be	of	relevance	across	RNA	

viruses,	and	the	results	presented	here	thus	warrant	future	comparative	studies	

in,	for	example,	Ebola	virus	and	West	Nile	virus	populations.	With	regards	to	IAV	

specifically,	these	results	are	encouraging	for	the	future	promise	of	improved	

treatment	strategies	to	help	minimize	the	great	public	health	costs	of	this	virus.	
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