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ABSTRACT The characterization of the distribution of mutational effects is a key goal in evolutionary biology. Recently
developed deep-sequencing approaches allow for accurate and simultaneous estimation of the fitness effects of hundreds
of engineered mutations by monitoring their relative abundance across time points in a single bulk competition. Naturally,
the achievable resolution of the estimated fitness effects depends on the specific experimental setup, the organism and type
of mutations studied, the sequencing technology utilized, among other factors. By means of analytical approximations
and simulations, we provide guidelines for optimizing time-sampled deep-sequencing bulk competition experiments,
focusing on the number of mutants, the sequencing depth, and the number of sampled time points. Our analytical
results show that sampling more time points together with extending the duration of the experiment improves the
achievable precision disproportionately as compared with increasing the sequencing depth, or reducing the number of
competing mutants. Even if the duration of the experiment is fixed, sampling more time points and clustering these at the
beginning and the end of the experiment increases experimental power, and allows the efficient and precise assessment
of the entire range of selection coefficients. Finally, we provide a formula for calculating the 95%-confidence interval
for the measurement error estimate, which we implement as an interactive web tool. This allows for quantification of
the maximum expected a priori precision of the experimental setup, as well as for a statistical threshold for determining
deviations from neutrality for specific selection coefficient estimates.
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Introduction

Mutations provide the fuel for evolutionary change, and their
fitness effects critically influence the course and dynamics

of evolution. The distribution of fitness effects (DFE) lies at the
heart of many evolutionary concepts, such as the genetic basis of
complex traits (Eyre-Walker 2010) and diseases (Keightley and
Eyre-Walker 2010), the rate of adaptation to a new environment
(Gerrish and Lenski 1998; Orr 1998, 2005b), the maintenance
of genetic variation (Charlesworth et al. 1995), and the relative
importance of selection and drift in molecular evolution (Ohta
1977, 1992; Kimura 1979). Unsurprisingly, considerable effort has
been devoted, both empirically (e.g., Sawyer et al. 2003; Sousa
et al. 2012; Gordo and Campos 2013; Bernet and Elena 2015) and
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theoretically (e.g., Gillespie 1983; Orr 2005a; Martin and Lenor-
mand 2006b; Rice et al. 2015; Connallon and Clark 2015) to assess
the fraction of all possible mutations that are beneficial, neutral
or deleterious. Until recently, the two main approaches (Eyre-
Walker and Keightley 2007; Hietpas et al. 2011) for assessing the
distribution of fitness effects (DFE) have been based either on
the analysis of polymorphism and divergence data (Jensen et al.
2008; Keightley and Eyre-Walker 2010; Schneider et al. 2011) or
on laboratory evolution studies in which spontaneously occur-
ring mutations are followed for many generations (Imhof and
Schlötterer 2001; Rozen et al. 2002; Halligan and Keightley 2010;
Frenkel et al. 2014). However, the complex action and interac-
tion of evolutionary forces within and between individuals and
the environment makes accurate estimation of fitness effects of
single mutations difficult (Orr 2009).

Recently, an alternative option to study mutational effects
on a large scale has emerged from the field of biophysics: deep
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mutational scanning (DMS; Fowler et al. 2010; Hietpas et al. 2011;
Fowler and Fields 2014). This approach is typically focused
on a specific region of the genome for which a large library of
mutants is created, either through random or systematic muta-
genesis. The effects of the mutants are subsequently assessed
by sequencing, with the readout yielding the relative frequen-
cies of each mutant through time (obtained either directly, or
via sequence tags). This results in a high-precision snapshot of
local mutational effects without the influence of genome-wide
interactions (e.g., epistasis and pleiotropy) and environmental
fluctuations.

DMS provides various advantages over traditional ap-
proaches of deriving DFEs from polymorphism and laboratory-
evolution data. Firstly, it is not confounded by sampling bias (i.e.,
also lethal mutations can be observed) because the entire spec-
trum of pre-engineered or random mutations is introduced into a
controlled and identical genetic background rather than waiting
for mutations to appear and survive stochastic loss (Rokyta et al.
2005; Orr 2009). Secondly, the short time frame of the experiment
and the large library size minimize the influence of secondary
mutations, which eliminates the challenges imposed by epistasis
and linked selection. Finally, bulk competition ensures that all
mutants experience the same environment.

A DMS approach termed EMPIRIC (Hietpas et al. 2011) has
been most prevalently studied with respect to estimation of the
DFE and its application to evolutionary questions. EMPIRIC
allows simultaneous estimation of the fitness of systematically
engineered mutations in a given protein region. Mutants are con-
structed by transformation of pre-constructed plasmid mutant
libraries, each representing one of all total point mutations from
the focal protein region; these then undergo bulk competition
for a number of generations. Fitness is determined by assessing
relative growth rates from the relative abundance of each mu-
tant, which is obtained from deep sequence data from a number
of time points.

To date, EMPIRIC has been applied to yeast (Saccharomyces
cerevisiae) to illuminate the DFE of all point mutations in Ubiq-
uitin (Roscoe et al. 2013) and Hsp90 (Hietpas et al. 2011) across
different environments, to quantify the amount and strength
of epistatic interactions within a region of Hsp90 (Bank et al.
2015), and to assess a large intragenic fitness landscape in Hsp90.
Recently, this approach has been extended to human influenza A
virus to study the DFE in a region of the Neuraminidase protein
containing a known drug-resistant locus. This opens the door for
studying the mechanistic features underlying drug resistance
and for determining potential future resistance mutations in
viral populations (Jiang et al. 2015).

It has been demonstrated that the EMPIRIC approach is
highly reproducible across replicate experiments and shows
strong correspondence with selection coefficient estimates from
binary competitions (Hietpas et al. 2011, 2013), resulting in pre-
cise estimates of selection coefficients (Bank et al. 2014). However,
the attainable precision strongly depends on the experimental
setup, in particular on the number of mutants considered, the
number of time samples taken, and the sequencing depth. Fur-
thermore all these factors need to be determined before the ex-
periment and are constrained by the scientific question at hand,
and additional limitations imposed by time and budget. The
aim of this paper is to provide a statistical framework for a priori
optimization of the experimental setup for future DMS studies.

Our model has been originally inspired by the EMPIRIC
approach, but our predictions can be readily applied to any

experiment that meets the following requirements (see Table 1
for further examples):

1. All studied mutants are present at large copy number at the
beginning of the experiment.

2. The population size is always kept lower than the carrying
capacity (e.g., through serial dilution, or in a chemostat),
such that mutants grow approximately exponentially (i.e.,
log-linearly) throughout the experiment.

3. Population size and sample size (for sequencing, or in case
of serial passaging) are large compared with the number of
mutants and sequencing depth.

4. Populations are sampled by deep sequencing (or fluores-
cence counting) at two or more time points, and individual
mutant frequencies are assessed either directly or via se-
quence tags.

Thus the statistical guidelines derived in the following, can in
principle be directly applied to experiments using new genome
editing approaches based on CRISPR/Cas9 (Jinek et al. 2012),
ZFN (Chen et al. 2011) and TALEN (Joung and Sander 2013)
which constitute particularly exciting and promising new means
for assessing the selective effects of new mutations (i.e., the
DFE), but equally pertain to traditional binary competition ex-
periments to assess relative growth rates.

Here, we derive analytical approximations for the variance
and the mean squared error (MSE) of the estimators for the
selection coefficients obtained by (log-)linear regression. We
describe how measurement error decreases with the number
of sampling time points and the number of sequencing reads,
and how increasing the number of mutants generally increases
the MSE. Based on these results, we derive the length of the
95%-confidence interval as an a priori measure of maximum
attainable precision under a given experimental setup. Further-
more, we demonstrate sampling more time points together with
extending the duration of the experiment improves the achiev-
able precision disproportionately as compared with increasing
the sequencing depth. However, even if the duration of the
experiment is fixed, sampling more time points and clustering
these at the beginning and the end of the experiment increases
experimental power and allows the efficient and precise assess-
ment of selection coefficients of strongly deleterious as well as
almost neutral mutants. When applying our statistical frame-
work to a data set of 568 engineered mutations from Hsp90 in
Saccharomyces cerevisiae, we find that the experimental error is
well predicted as long as the experimental requirements (see
above) are met. To ease application of our results to future ex-
periments, we provide an interactive online calculator (available
as supplement, and on www.evoldynamics.org).

Model and Methods

Experimental setup
We consider an experiment assessing the fitness of K mutants
that are labeled by i ∈ {1, 2, . . . , K}. Each mutant is present in
the initial library at population size ci and grows exponentially
at constant rate ri. Consequently, the number of mutants of type
i at time t is given by Ni(t) = ci exp{rit}. For convenience, we
measure time in hours. Growth rates can easily be rescaled to
r′i =

ri
log(2) , where r′i denotes the the growth rate per generation.

At each sampling time point t = (t1 = 0, t2, . . . , tτ), sequencing
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Table 1 – List of published DMS studies assessing mutant growth rates in accordance with our statistical model.

Reference Number of
time points

Number of
mutants

Total number of
sequence reads (millions)

Reproducibility (if reported) Summary of reference

Hietpas et al.
(2013)

6 or 7 568 30 R2 = 0.95 for full replicates Beneficial single substitutions in Hsp90
of yeast under altered environments

Jiang et al.
(2013)

6 or 7 568 34 R2 = 0.96 for full replicates Interaction of expression and single
substitutions on DFE of yeast Hsp90

Roscoe et al.
(2013)

6 1 530 21 R2 = 0.93 for full replicates Functional biophysics of single substi-
tutions in ubiquitin of yeast

Hietpas et al.
(2011)

3 or 7 568 26 R2 = 0.82 for full replicates DFE of single substitutions for a short
region of Hsp90 in yeast

Bank et al.
(2015)

5 1 015 21.6 credibility intervals (Fig. 6B) DFE of epistatic substitutions in Hsp90
of yeast

Wu et al.
(2013)

3 >400 >0.002 n/a Compensatory single substitutions for
neuraminidase mutant of influenza

Jiang et al.
(2015)

2 475 20.5 R2 = 0.92 for full replicates Biophysics of single substitutions in in-
fluenza neuraminidase with antiviral

Roscoe and
Bolon (2014)

2 1 617 30 R2 = 0.96 for full replicates Biophysics of single ubiquitin substitu-
tions on E1 activity and yeast fitness

Melnikov
et al. (2014)

2 4 993 33.2 R2 = 0.90 for full replicates Biophysics of single substitutions in
APH(3’)II in E. coli with antibiotics

Kim et al.
(2013)

2 29 708 90.2 n/a Biophysics of single substitutions in
yeast Deg1 protein degradation signal

Melamed
et al. (2013)

2 110 745 186.5 n/a Biophysics of single and multiple sub-
stitutions in Pab1 RRM of yeast

Deng et al.
(2012)

2 5 240 0.72 n/a Biophysics of single substitutions in an-
tibiotic resistant β-lactamase of E. coli

reads are drawn from a multinomial distribution with parame-
ters D (sequencing depth) and p(t) = (p1(t), p2(t), . . . , pK(t)),
where pi(t) = Ni(t)/ ∑K

j=1 Nj(t) is the relative frequency of
mutant i in the population at time t. Accordingly, τ and tτ

denote the number of samples and the duration of the exper-
iment, respectively. Note that for notational convenience, we
will omit the subscript in t to denote any element in t. For
illustrative purposes, we will present our results under the as-
sumption that T equally spaced time points are sampled, such
that t = (0, 1, . . . , T − 1), and in particular τ = T and tτ = T− 1.
Note that with this definition increasing the number of sampling
time points T, increases the actual numbers of samples taken τ
and the duration of the experiment tτ . The separate effects of τ
and tτ will be discussed subsequently.

Furthermore, let n(t) = (n1(t), n2(t), . . . , nK(t)) denote the
random vector of the number of sequencing reads sampled at
time t. Without loss of generality, we denote the wild-type
reference (or any chosen reference type) by i = 1 and set its
growth rate to 1 (i.e., r1 = 1). Thus, mutant growth rates will
be measured relative to that of the wild type. Accordingly, the
selection coefficient of mutant i with respect to the wild type is
given by, si = ri − r1.

Estimators for the selection coefficients si are then obtained
from linear regression, based on log ratios of the number of
sequencing reads ni(t) over the different sampling time points
(but see Bank et al. 2014, for a Bayesian Markov chain Monte-
Carlo approach). The corresponding linear model can then be
written as

yt = C + sit + εt, (1)

where yt is the (transformed) observation variable, C is a con-
stant (i.e., the intercept) and εt denotes the regression residual.

In the following, we derive an estimator that uses the log ra-

tios of the number of reads of mutant i over the number of reads
of the wild type as dependent variables in a linear regression.
We call this method the wild-type approach (WT). In Supporting
Information B we derive and analyze an alternative selection
coefficient estimator that is based on log ratios of the number
of mutant reads with respect to the total number of sequencing
reads and which we call the total approach (TOT). This estima-
tor has previously been used for detecting outliers within the
experimental setup considered in Bank et al. (2014).

Estimation of selection coefficients ŝWT

Ultimately, we want to calculate the mean of the log ratios of
the number of sequencing reads for mutant i over the number of

wild-type sequencing reads, E
[
log
(

ni(t)
n1(t)

)]
. By noting that ni(t)

is binomially distributed (for every mutant i ∈ {1, 2, . . . , K})
and using the Delta method (for derivation see Supporting In-
formation A; see also Hurt 1976; Casella and Berger 2002), we
derive

E
[

log
(

ni(t) + 1
n1(t) + 1

)]
= E[log(ni(t) + 1)]− E[log(n1(t) + 1)]

≈ log(Dpi(t))− log(Dp1(t))

= log
(

pi(t)
p1(t)

)
= log

(
ci
c1

)
+ sit (2)

such that an estimator ŝWT,i for si can be obtained by applying
the ordinary least squares (OLS) method on the linear regression
model

log
(

ni(t) + 1
n1(t) + 1

)
= log

(
ci
c1

)
+ sit + εWT,t. (3)
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Table 2 – Summary of notation and definitions.

K number of mutants

D total number of reads per sampling time point (sequencing depth)

ci initial population size of mutant i

ri (exponential) growth rate of mutant i

Ni(t) number of mutants of type i at time t

n(t) = (n1(t), n2(t), . . . , nK(t)) vector of the observed number of sequencing reads sampled at time t

pi(t) relative frequency of mutant i at time t

τ number of samples taken

tτ duration of the experiment

T number of sampling time points (τ = T, tτ = T − 1)

si = ri − r1 selection coefficient of mutant i

Note that the additive term within the logarithm ensures that
the logarithm is always well-defined and was added solely for
mathematical convenience.

Simulation of time-sampled deep sequencing data
In order to validate analytical results, we simulated time-
sampled deep sequencing data (implemented in C++; available
upon request). We assumed that mutant libraries were created
perfectly, such that the initial population size ci was identical for
all mutants and, accordingly, pi(t1) =

1
K for all i = 1, 2, . . . , K.

Selection coefficients were independently drawn from a nor-
mal distribution with mean 0 and standard deviation 0.1. To
test the robustness of these assumptions we performed addi-
tional simulations where initial population sizes were drawn
from a log-normal distribution (i.e., ci ∼ 10N (4,σ=0.5)) reflect-
ing empirical distributions of inferred initial population sizes.
Furthermore, selection coefficients were drawn from a mixture
distribution

si ∼
{
−|N (0, σ = 0.1)| if z = 0
Exp(0.02) if z = 1

, (4)

where Z ∼ Bernoulli(0.7) (Fig. SI D_1). For a given number of
sampling time points T and sequencing depth D, the number
of mutant sequencing reads (n1(t), n2(t), . . . , nK(t)) was drawn
from a multinomial distribution with parameters D and p(t) for
each sampling point. Selection coefficient estimates (ŝi)i=2,...,K
were then obtained by fitting the linear model by means of OLS.
Finally, the accuracy of the parameter estimates was assessed by
computing the mean squared error (MSE),

MSE =
1

K− 1

K

∑
i=2

(ŝi − si)
2, (5)

and the deviation (DEV)

DEV =
1

K− 1

K

∑
i=2

(ŝi − si). (6)

Note that we have omitted the hat over the MSE and DEV for
notational convenience. If not stated otherwise, statistics were
calculated over 1,000 simulated experiments for each set of pa-
rameters.

Results and Discussion

The aim of this paper is to provide a statistical framework for
a priori optimization of the experimental setup for future DMS
studies. As such, our primary interest lies in the quantification
of the MSE and its dependence on the experimental setup. We
first deduce analytical approximations for the variance and the
MSE of the estimators for the selection coefficient and compare
these with simulated data. We then derive approximate formu-
las for the length of the confidence interval of the estimates and
the mean absolute error (MAE), which can be used to assess
the expected precision of the estimates. For each of these steps,
we discuss the consequences of relaxing some of the above as-
sumptions along with potential extensions of the model. Finally,
we apply our statistical framework to experimental evolution
data of 568 engineered mutations from Hsp90 in Saccharomyces
cerevisiae, and show that that our model captures indeed the
most prevalent source of error (i.e., error from sampling).

Approximation of the mean squared error

Generally, the MSE of an estimator θ̂ (for parameter θ) is given
by

MSE(θ̂) = E
[
(θ̂ − θ)2

]
= Var

[
θ̂
]
+ bias

(
θ̂
)2

(see section 7.3.1 of Casella and Berger 2002). Since E [εWT] = 0
(i.e., the mean of the regression residual is zero, implying that
ŝWT,i is an unbiased estimator; Fig. SI D_2), it is sufficient to
analyze Var

[
ŝWT,i

]
to asses MSE

(
ŝWT,i

)
. For ease of notation,

and since all results in the main text are derived using the wild-
type approach, we will omit the WT index from here on. Taking
the variance of equation (3) implies

Var
[

log
(

ni(t) + 1
n1(t) + 1

)]
= Var [εt] , (7)

which, by applying the Delta method (see Supporting Informa-
tion A) and using equation (S5) together with equations (S4) and
(S6) can be approximated by

Var [εt] ≈
Dpi(t)(1− pi(t))
(1 + Dpi(t))2 +

Dp1(t)(1− p1(t))
(1 + Dp1(t))2

− 2
Dpi(t)p1(t)

(1 + Dpi(t))(1 + Dp1(t))
. (8)
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Figure 1 – Comparison of the predicted mean squared error (eq. 10; red) and the average mean squared error (blue star), obtained from 1,000 simulated data sets for (A) different numbers of
sampling time points T and mutants K, for sequencing depth D = 100,000, and for (B) different sequencing depth D, with fixed T = 5, K = 100. Boxes represent the interquartile
range (i.e., the 50% C.I.), whiskers extend to the highest/lowest data point within the box ± 1.5 times the interquartile range, and black and gray circles represent close and far
outliers, respectively. Results are presented on log-scale.

Note that the residuals are heteroscedastic (i.e., their variance
is time-dependent). Hence, there is no general closed form
expression of the variance of ŝi. However, by making the sim-
plifying assumption of homoscedasticity (i.e., pi(t) ≈ pi(t1) and
p1(t) ≈ p1(t1) for all t), we obtain

Var [ε] ≈ Dpi(1− pi)

(1 + Dpi)2 +
Dp1(1− p1)

(1 + Dp1)2 − 2
Dpi p1

(1 + Dpi)(1 + Dp1)

≈ Dpi(1− pi)

(1 + Dpi)2 +
Dp1(1− p1)

(1 + Dp1)2 , (9)

where the dependence on time has been dropped for ease of
notation. Note that omitting the covariance term implicitly as-
sumes that the number of mutants K is sufficiently large (i.e.,
pi and p1 are small). Equation (9) shows that Var [ε] decreases
monotonically with increasing sequencing depth and increasing
relative proportions of the wild-type and focal mutants.

Using existing theory on variances of slope coefficients in
a linear regression framework with homoscedastic error terms
(e.g., see section 11.3.2 Casella and Berger 2002), the variance of
the selection coefficient estimate is given by

MSE (ŝi) = Var [ŝi] =
Var [ε]

∑τ
i=1(ti − t̄)2

≈
(

Dpi(1− pi)

(1 + Dpi)2 +
Dp1(1− p1)

(1 + Dp1)2

)
1

∑τ
i=1(ti − t̄)2

(10)

which is our first main result.
Using that sampling times are assumed to be equally spaced

equation (10) can further be rewritten as

MSE (ŝi) ≈
(

Dpi(1− pi)

(1 + Dpi)2 +
Dp1(1− p1)

(1 + Dp1)2

)
12

T3 − T
, (11)

which shows that the MSE decreases cubically with the num-
ber of time points T (Fig. 1). Thus, sampling additional time
points (i.e., taking more samples and extending the duration of

the experiment) drastically increases the precision of the mea-
surement.

Our approximation generally performs very well across the
entire parameter space. Although we assumed that the relative
abundance of all mutants remains roughly constant with time,
the (small) absolute error of our approximation remains constant
across time points (Fig. SI D_3A). Deviations from homoscedas-
ticity increase as more and later time points are sampled, as
shown by the relative error (Fig. SI D_3B). This is also reflected
by the deviation between the predicted MSE and the true aver-
age MSE obtained from the data (Fig. 1).

Uneven sampling schemes. To obtain a closed formula for the
decay in the measurement error with the number of time sam-
ples T (eq. 11), we assumed equally spaced sampling times. The
observed decay remains cubic relative to the number of time
points also when samples are not taken at equally spaced time
points. Furthermore, equation (10) informs about the optimal
sampling scheme to use to minimize measurement error: for
fixed sequencing depth and number of mutants, the MSE is min-
imized when the sum of squared deviations of the sampling
times from their mean is maximized. In other words, to mini-
mize the measurement error one should sample in two sampling
blocks one at the beginning and another at the end of the experi-
ment instead of sampling throughout the experiment, or, if time
and resources allow, create full two-time-point replicates (see
also the interactive demonstration tool provided online).

Duration and sampling density of the experiment. Equa-
tion (11) implies that the MSE decreases cubically when both
more samples are taken and the duration of the experiment is
extended. However, extending the experiment indefinitely is
impossible, both because of experimental constraints and be-
cause secondary mutations will begin to affect the measurement.
Hence, the possible duration of an experiment under a given
condition may be a (fixed) short time tτ (e.g., less than 20 yeast
generations for EMPIRIC). To separate the effects of taking more
samples τ from those of extending the duration of the experi-
ment tτ – which are combined in T in the normal model setup
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(see Model and Methods) – equation (11) can be re-written as

MSE (ŝi) ≈
(

Dpi(1− pi)

(1 + Dpi)2 +
Dp1(1− p1)

(1 + Dp1)2

)
12(τ − 1)
τ(τ + 1)t2

τ
. (12)

Thus, when the duration of the experiment tτ is held constant,
measurement error decays linearly as τ (i.e., the number of
sampling points) increases. Conversely, when extending the
duration of experiment, the MSE decreases quadratically. This
result suggests that the experimental duration should always
be maximized under the constraints that mutants grow expo-
nentially and population size is much lower than the carrying
capacity. How long both of these assumptions are met depends
on each individual mutant’s selection coefficient (or growth rate)
and its initial frequency. Accordingly, there is no universal ‘op-
timal’ duration of the experiment. For example, the frequency
of strongly deleterious mutations in the population generally
decreases quickly, such that the phase where they show strict ex-
ponential growth is short and does not span the entire duration
of the experiment. Furthermore, mutations might be lost from
the population before the experiment is completed. Thus, when
sampling two time points that extend over a long experimental
time, growth rate estimates for strongly deleterious mutations
can be substantially overestimated (see also Contribution of
additional error: Data application).

Conversely, for mutations with small (i.e., wild-type-like) se-
lection coefficients, increasing the duration of the experiment
considerably improves the precision of the estimates. Specifi-
cally, to infer deviations from the wild-type’s growth rate the
(expected) log ratio of the number of mutant sequencing reads
over the number of wild-type sequencing reads (i.e., the ratio of
relative frequencies between mutant and wild-type abundance)
need to change consistently with time (i.e., either increase or
decrease; eq. 2). However, changes in the log ratios will be small
if the duration of the experiment is short, and even if there are
slight shifts, sequencing depth D needs to be large enough such
that they are not washed-out by sampling.

Thus, beyond the linear improvement on the MSE that comes
with increasing τ, sampling more time points can be an efficient
strategy to capture the entire range of selection coefficients (i.e.,
strongly deleterious and wild-type like mutants). Specifically,
sampling in two blocks (one at the beginning and another at the
end of the experiment as suggested above) would allow using
different tτ depending on the underlying selection coefficient,
which could be determined by a bootstrap leave-p-out cross
validation approach could be used (for details see Contribution
of additional error: Data application). For example, the first
sampling block could be used for strongly deleterious mutations,
whereas all sampled time points could be used for the remaining
mutations, reducing error due to overestimation of strongly-
deleterious selection coefficients and increasing statistical power
to detect differences to wild-type like growth rates.

Library design and the number of mutants. Increasing the num-
ber of mutants K reduces the number of sequencing reads per
mutant and hence pi, which explains the approximately linear
increase of the MSE with K (Fig. 1). Crucially, we assumed that
the initial mutant library was balanced, such that all mutants
were initially present at equal frequencies. In practice this is
hardly ever the case and previous analyses have shown that ini-
tial mutant abundances instead follow a log-normal distribution
(Bank et al. 2014). Taking this into account, we find that unbal-
anced mutant libraries, as expected from equation (9), introduce

an error due to the higher variance terms resulting from the
generally lower pi (Fig. SI D_5). This error can be avoided by us-
ing the estimated relative mutant abundance, p̂i in equation (9)
(Fig. SI D_5).

The additional though practically inevitable error introduced
by variance in mutant abundance indicates that library prepa-
ration is an important first step for obtaining precise estimates.
In fact, equation (9) suggests that the measurement precision
increases with the relative abundance of the wild type (such that
the second term in eq. 9 decreases). However, this results in
a trade-off, because increasing wild-type abundance results in
a decrease of the abundance of all other mutants, which leads
to an increase of the first term in equation (9). Assuming that
increasing the relative abundance of the wild type reduces the
relative abundance of all mutants equally (i.e., pi = pj for all
i, j ∈ {2, 3, . . . , K}), we find that precision is maximized by in-
creasing the wild-type abundance by a factor proportional to√

K (analytical result not shown; Fig. 2). This way, the MSE can
be reduced by 50% as compared to the MSE with equal propor-
tions of all mutants. Most importantly however, if wild-type
abundance is low (i.e., p1 � 1

K ), the error increases substantially
(i.e., more than 10-fold; see inset in Fig. 2 A).

Sequencing depth and its fluctuations. The MSE decreases ap-
proximately linearly with the sequencing depth D (Fig. 1), be-
cause the number of reads per mutant increases. As long as
D is independent of the number of mutants K in the actual
experiment, it can simply be treated as a rescaling parameter;
hence, qualitative results are independent of the actual choice
of D. Similarly, the variance of the estimated MSE decreases ap-
proximately quadratically with sequencing depth and increases
quadratically as the number of mutants increases (Fig. 1).

Although we here treat the sequencing depth D as a constant
parameter, it will in practice vary between sampling time points.
Thus, D should rather be interpreted as the (expected) average
sequencing depth taken over all time points. In particular, com-
pared to a fixed sequencing depth, variance in D introduces an
additional source of error (due to increased heteroscedasticity),
although deviations from the predicted to the observed mean
MSE remain roughly identical (Fig SI D_6). Our model can also
account for other forms of sampling. For example, if the sample
taken from the bulk competition is known to be smaller than the
sequencing depth, its size should be used as D in the precision
estimates.

Shape of the underlying DFE. Our results remain qualitatively
unchanged when selection coefficients are drawn from differ-
ently shaped DFEs. The assumed normally distributed DFE
corresponds to theoretical expectations derived from Fisher’s
geometric model (assuming that the number of traits under se-
lection is large; Martin and Lenormand 2006a; Tenaillon 2014).
DFEs inferred from experimental evolution studies, however,
are typically characterized by an approximately exponential tail
of beneficial mutations and a heavier tail of deleterious muta-
tions (Eyre-Walker and Keightley 2007; Bank et al. 2014) that
roughly follows a (displaced) gamma distribution (Martin and
Lenormand 2006a; Keightley and Eyre-Walker 2010). To account
for this expected excess of deleterious mutations in the DFE (re-
viewed by Bataillon and Bailey 2014), we used a mixture distri-
bution that resulted in a highly skewed DFE. For this, beneficial
mutations (s > 0) were drawn from an exponential distribution
and deleterious mutations were given by the absolute value
drawn from a Gaussian distribution (Fig.SI D_1; see Methods
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Figure 2 – A The relative MSE as a function of the relative abundance of the wild type, i.e.,
MSE(p1=

x
K )

MSE(p1=
1
K )

, for K = 100. The inset shows results for p1 ≤ 1
K , where the y-axis has been put on

log-scale. The abundance of all other (except the wild type) is assumed to scale proportionally. B The relative wild-type abundance which minimizes the MSE as a function of the
number of mutants K. Explicit formula (as given by the black line) is not shown due to complexity, but can well be approximated by

√
K. Either prediction is based on equation (10).

Other parameters: D = 100,000.

for details). Even with this highly skewed DFE, we did not find
changes to either the MSE (Fig. SI D_4) or the deviation (Fig. 3),
indicating that our results are robust across a range of realistic
DFEs.

An alternative normalization. In Supporting Information B, we
analyze and discuss an alternative estimation approach based
on the log ratios of the number of mutant reads over the sequenc-
ing depth D (as opposed to a single reference/wild type) that
was proposed in Bank et al. (2014) and called the "total" (TOT)
approach. Although the TOT approach can improve results for
very noisy data (i.e., if T or D are small; Figs. SI B_1,SI B_2,
SI B_3, SI B_4), its estimates are generally biased. The bias in-
creases with the number of time points and overrides the smaller
variance in residuals (see eqs. 9 and S8). Thus, application of
the TOT approach is only recommended under special circum-
stances, e.g. under the suspicion of outlier measurements in the
wild type (as in the case of Bank et al. 2014).

Confidence intervals, precision and hypothesis testing
One way of quantifying the precision of the estimated selection
coefficient is obtained using Jensen’s inequality (see section 6.6
of Williams 1991), which yields an upper bound for the mean
absolute error (MAE)

MAE (ŝi) ≤
√

Var [ŝi]

≈
√(

Dpi(1− pi)

(1 + Dpi)2 +
Dp1(1− p1)

(1 + Dp1)2

)
1

∑τ
i=1 (ti − t̄)2

=

√(
Dpi(1− pi)

(1 + Dpi)2 +
Dp1(1− p1)

(1 + Dp1)2

)
12

T3 − T
, (13)

where, in the last line, we have again used that sampling times
are assumed to be equally spaced. Thus, the MAE is simply the
square root of the MSE.

Alternatively, using central limit theorem arguments (Rice
1995), it can be shown that for a fixed mutant i the estimated
selection coefficient ŝi asymptotically follows a normal distri-
bution (Figs. 3, SI D_2). The upper and lower bound of the
(1− α)-confidence interval with significance level α for si are
then given by

CI (ŝi) = ŝi ±
√

Var [ŝi]z1−α/2, (14)

where z1−α/2 denotes the (1 − α/2)-quantile of the standard
normal distribution. The length of the (1− α)-confidence in-
terval, L(1−α), can be used as an intuitive a priori measure for
the precision of the estimated selection coefficient. Formally,
let L1−α = 2

√
Var [ŝi]z1−α/2 denote the length of the (1− α)-

confidence interval. Setting α = 0.05 and using equation (10),
we obtain the approximation

L0.95 ≈ 4

√
K
D

2
∑τ

i=1(ti − t̄)2

≈ 20

√
K

D(T3 − T)
, (15)

where we assumed z0.975 ≈ 2. Equation (15) shows that the
sequencing depth D and the number of mutants K are inversely
proportional. Similarly to equation (10), the number of time
points T enters cubically.
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Figure 3 – Histogram of the deviation (eq. 6) between the estimated and true selection
coefficients either drawn from a normal distribution or a mixture
distribution (for details see Model and Methods) based on 1,000 simulated
data sets each. The red line is the prediction based on equation 10. Other
parameters: T = 5, D = 100,000, K = 100.

Furthermore, equation (14) can be used to define the upper
and lower bounds of the region of rejection of a two-sided Z-test
with, for instance, null hypothesis si = 0 (or more generally any
other null hypothesis si = θ). The Z-statistic is then given by

Z =
ŝi − θ√
Var [ŝi]

(16)
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(see chapter 8 in Sprinthall 2014). This statistic can be applied
to existing data to test whether a mutant has an effect different
from the wild type. In addition, we can use this statistic to
determine the maximum achievable statistical resolution of a
planned experiment.

Optimization of experimental design
Equation (10) suggests that the measurement error modelled
here could in theory be eliminated entirely by sampling (in-
finitely) many time points. In practice, the attainable resolution
of the experiment is also limited by technical constraints im-
posed by the experimental details and by sequencing error, and
by the available manpower and budget. To further improve the
experimental design taking the latter two factors into account,
we can integrate our approach into an optimization problem
using a cost function Cα,β,Ctτ ,K(D, tτ , τ). As an example, we
define

Cα,β,Ctτ ,K(D, τ, tτ) = tτ ∗ Ctτ + τ ∗ f (D) + α ∗MSEK(D, tτ , τ)β,
(17)

where Ctτ denote the personnel costs over the duration of the
experiment, f (D) denotes the sequencing costs per sampled
time point, and α and β scale the associated error costs given by
equation (12) (Boyd and Vandenberghe 2004). The optimization
problem is solved by minimizing

Cα,β,Ctτ
(D, tτ , τ) (18a)

under constraints

2 ≤ τ ≤ τmax (18b)

tτ,min ≤ tτ ≤ tτ,max (18c)

Dmin ≤ D ≤ Dmax (18d)

MSEK(D, tτ , τ) ≤ MSEmax, (18e)

which yields the maximum tolerable error MSEmax while mini-
mizing the total experimental costs. An illustrative example is
given in Supporting Information C.

Contribution of additional error: Data application
An important limitation of our model is that it does not consider
additional sources of experimental error. Therefore, any results
presented here should be interpreted as upper limits of the at-
tainable precision. In particular, sequencing error (dependent
on the sequencing platform and protocol used) is expected to
affect the precision of measurements. However, if the additional
error is non-systematic (i.e., random), it will not change the re-
sults qualitatively, but solely add an additional variance to the
measurement.

To assess the influence of additional error sources to the va-
lidity of our statistical framework, we re-analyzed a data set
of 568 engineered mutations from Hsp90 in Saccharomyces cere-
visiae grown in standard laboratory conditions (i.e., 30°C; for
details see Bank et al. 2014). We estimated the initial popu-
lation size and the selection coefficient for each mutant using
the linear-regression framework discussed here. With respect
to the experimental parameters (i.e., number and location of
sampling points, sequencing depth) and our proposed model,
we simulated 1,000 bootstrap data sets. We assessed the accu-
racy of our selection coefficient estimates by calculating the MSE
between the selection coefficient estimates obtained from the

bootstrap data sets and those obtained from the experimental
data, which serve as a reference for the “true” (but unknown)
selection coefficient. To quantify the effect of the number of
sampling time points, we used a leave-p-out cross-validation
approach, successively dropping sampling time points (Geisser
1993).
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Figure 4 – Comparison of the predicted mean squared error (eq. 10; red) against the
average mean squared error (blue star) obtained from 1,000 cross-validation
data sets. Only mutants with an estimated selection coefficient larger than
the intermediate between the estimated mean synonym and the estimated
mean stop codon selection coefficient were considered. The inset shows the
MSE calculated for all mutants. The MSE is presented on log-scale. Other
parameters: t = (4.8, 7.2, 9.6, 12, 16.8, 26.4, 36),
DFigure = (474,931, 636,257, 873,827, 1,513,392, 424,182, 443,739, 452,326),
DInset = (654,311, 820,301, 1,046,169, 1,726,516, 469,855, 464,070, 463,363),
KFigure = 400, KInset = 568.

For the complete data set, our prediction holds only when
the number of time points considered is small. Conversely, with
more than four time samples, the MSE even slightly increases
with the number of sampling points (inset in Fig. 4). However,
when strongly deleterious mutations (i.e., those with a selec-
tion coefficient closer to that of the average stop codon than to
the wild type, see also Bank et al. 2014) are excluded from the
analysis, the MSE is very well predicted by equation (10) for
any number of time points (Fig. 4). Two model violations may
well explain the observed pattern when deleterious mutations
are included. Firstly, the frequency of strongly deleterious mu-
tations in the population decreases quickly and do not show
strictly exponential growth (Fig. S2 in Bank et al. 2014), espe-
cially for later time points. Secondly, these mutations might
not be present in the population over the entire course of the
experiment. Sequencing error, however, will create a spurious
signal, feigning and extending their “presence”, thus biasing the
results. The bootstrap approach utilized here could in principle
be used to determine the time points that should be considered
for the estimation of strongly deleterious mutations, and to gen-
erally test for model violations. Indeed, Figure 4 demonstrates
that our model captures the most prevalent source of error (i.e.,
error from sampling) when strongly deleterious mutations are
excluded.

Conclusion

The advent of sophisticated biotechnological approaches on a
single-mutation level, combined with the continual improve-
ment and reduction in costs of sequencing, present us with an
unprecedented opportunity to address long-standing questions
about mutational effects and the shape of the distribution of
fitness effects. An additional step towards optimizing results
receives little attention: by systematically invoking statistical
considerations ahead of empirical work, it is possible to quantify
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and maximize the attainable experimental power while avoid-
ing unnecessary expenses, both regarding costs and human
resources. Here, we present a thorough statistical analysis that
results in several straightforward, general predictions and rules
of thumb for the design of DMS studies, which can be applied
directly to future experiments using a free interactive web tool
provided online (https://evoldynamics.org/tools). We empha-
size here three important and general rules that emerged from
the analysis:

1. Increasing sequencing depth and the number of replicate
experiments is good, but adding sampling points together
with increasing the duration of the experiment is much
better for accurate estimation of small-effect selection coef-
ficients.

2. Preparation of a balanced library is the key to good results.
The quality of selection coefficient estimates strongly de-
pends on the abundance of the reference genotype: Always
ensure that the frequency of the reference genotype is larger
than 1/K – “less is a mess”.

3. Clustering sampling points at the beginning and the end of
the experiment increases experimental power, and allows
the efficient and precise assessment of the entire range of
the distribution of fitness effects.

Although the statistical advice presented here is limited to ex-
perimental approaches that fulfill the requirements listed in the
introduction and focuses on the error introduced through sam-
pling, our work highlights the promises that lie in long-term
collaborations between theoreticians and experimentalists as
compared to the common practice of post-hoc statistical consul-
tation.
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Supporting Information

A. Derivation of the Delta method
In this Supporting Information we will briefly motivate and introduce the delta method and derive the equations in the main
text. Consider a generic random variable X with finite second moment and smooth function f : R → R. If f is non-linear
E [ f (X)] = f (E [X]) does in general no longer hold such that f and E[•] can no longer be interchanged. However, an approximate
result can be obtained by Taylor-expanding f around E[X] up to the second order such that

E [ f (X)] ≈ E
[

f (E [X]) + f ′(E [X])(X−E [X])

+
1
2

f ′′(E [X])(X−E [X])2]

= f (E [X]) +
1
2

f ′′(E [X])V(X).

(S1)

This approach is called the Delta-method or method of error propagation (Hurt 1976; Oehlert 1992; Casella and Berger 2002).
Thus, for X ∼ Bin(D, p) and f (x) = log(1 + x), the expectation of f (X) can be approximated as

E [log(X + 1)] ≈ log(1 + Dp)− 1
2

Dp(1− p)
(1 + Dp)2 ≈ log(Dp), (S2)

which is used in equation (2) in the main text. Note that the approximation induces a small error. However, for fixed p this distortion
is of order O(D−1), which is generally negligible if D is large (i.e., when the sequencing depth is large).

Analogously, we can calculate the variance of f (X) as

Var[ f (X)] ≈ f ′(E [X])2 Var [X] , (S3)

which again for X ∼ Bin(D, p) and f (x) = log(1 + x) becomes

Var[log(X + 1)] ≈ Dp(1− p)
(1 + Dp)2 , (S4)

which is used in equation (9) and (10) in the main text.
Similarly, let g : R2 → R be a smooth function and X1, X2 denote two square integrable random variables. Taylor-expanding up to

the first order and taking variances yields

Var [g(X1, X2)] ≈ ∂1g(E [X1])
2 Var [X1] + ∂2g(E [X2])

2 Var [X2]

+ 2∂1g(E [X1])∂2g(E [X2])Cov [X1, X2] ,
(S5)

which is used for the derivation of equation (9) and (10) in the main text. Furthermore, if x1 and x2 denote two realizations of the same
multinomial, the covariance between x1 and x2 are given by

Cov[x1, x2] = Dp1 p2, (S6)

which is again used in equation (9) and (10) in the main text.
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B. The Total Approach

In this Supporting Information B we derive and analyze an alternative estimator of selection coefficient to the one proposed in the main
text. Unlike the WT approach this estimator is based on the log-ratios of the number of mutant reads with respect to the total number
of sequencing reads (i.e., sequencing depth) and which is thus called the total approach (TOT). This estimator has previously been used
for detecting outliers in time-sampled deep-sequencing bulk completion data (Bank et al. 2014) and proved to be more robust than the
WT approach. Analogous to the main text we will first analyse and discuss the statistical properties of selection coefficient estimator
based on the TOT approach and then compare its performance to the WT approach. Finally, we will end by giving rough guidelines
when to prefer one over the other approach.

Statistical analysis of the TOT approach In contrast to the WT approach the TOT approach is based on the log-ratios of the number of
mutant reads with respect to the sequencing depth D, such that a linear model can be written as

log
(

ni(t) + 1
D

)
= log

(
ci

∑K
j=1 cj

)
+ log (pi(t)) + εTOT,t

= log

(
ci

∑K
j=1 cj

)
+ log

 exp (rit)

∑K
j=1 exp

(
rjt
)
+ εTOT,t

≈ log

(
ci

∑K
j=1 cj

)
+ sit + εTOT,t, (S7)

where the approximation assumes that rj ≈ 1 for all mutants K.
Then, with a calculation analogous to the one in the main text, we obtain

Var [εTOT,t] ≈
Dpi(t)(1− pi(t))
(1 + Dpi(t))2 . (S8)

Again assuming that residuals are homoscedastic, i.e., that pi(t) ≈ pi(t1) for all t, we have

Var
[
ŝTOT,i

]
≈ Dpi(t)(1− pi(t))

(1 + Dpi(t))2
1

∑τ
i=1 (ti − t̄)2

=
Dpi(t)(1− pi(t))
(1 + Dpi(t))2

12
T3 − T

. (S9)

However, the approximation used in equation (S7) induces a systematic error, such that E [εTOT,t] 6= 0 meaning that ŝTOT,i is generally
biased as can be seen from Figure SI B_1 and Figure SI B_2.
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Figure SI B_1 – The average mean squared error (blue star) obtained from 1,000 simulated data sets for A different numbers of sampling time points T compared against the analytical
prediction with (red) and without (purple) accounting for the estimation bias as given by equation S15 and S9, respectively. B for different numbers of sequencing reads D
with T = 5. Boxes represent the interquartile range (i.e., the 50% C.I.), whiskers extend to the highest/lowest data point within the box ± 1.5 times the interquartile range, and
black and gray circles represent close and far outliers, respectively. Results are presented on log-scale. Other parameters: D = 100,000, K = 100.
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Figure SI B_2 – A Comparison of the deviation (eq. 6) of the true and estimated selection coefficient as obtained by the WT and TOT approach, calculated from 1,000 simulated data sets for
different numbers of sampling time points T. B Histogram of the deviation (eq. 6) between the estimated and true selection coefficients based on 1,000 simulated data sets
using the TOT approach with T = 5. The red line is a normal distribution centered around the empirical mean and variance given by the square root of equation (S9). Other
parameters: D = 100,000, K = 100.

To quantify this bias, we will now derive an approximation based on the Delta method (see Supporting Information A). Rewriting
equation (S7) we obtain

log
(

ni(t) + 1
D

)
= log

(
ci

∑K
j=1 cj

)
+ log

 exp (rit)

∑K
j=1 exp

(
rjt
)
+ εTOT,t

= log

(
ci

∑K
j=1 cj

)
+ sit + log

 K

∑
j=1

exp
(

sjt
)+ et, (S10)

where (et)t=1,...,T are independent with mean zero, and εTOT,t = log
(

∑K
j=1 exp

(
sjt
))

+ et. For ease of notation we will define

yt := log
(

ni(t)+1
D

)
and Xt := − log

(
∑K

j=1 exp
(

sjt
))

, and use the fact that the slope coefficient of a simple linear regression can be
expressed as

ŝTOT =
∑τ

i=1(ti − t̄)yt

∑τ
i=1(ti − t̄)2 . (S11)

Defining wti :=
(ti−t̄)yti

∑τ
l=1(tl−t̄)2 , and using that ∑τ

j=1 wtj = 0, ∑τ
j=1 wtj tj = 1 and E [et] = 0, we obtain

bias
(
ŝTOT,i

)
= E

[
ŝTOT,i − si

]
= E

 τ

∑
j=1

wtj εt


=

τ

∑
j=1

wtj E [εt]

=
τ

∑
j=1

wtj E
[

Xtj

]
. (S12)

Note that in order to derive an explicit formula for the bias, the distribution of the (si)i=2,...,K needs to be specified. In accordance with

our simulation assumptions, we consider the case where the sj
i.i.d∼ N (0, σ). Hence, the random variables Yti := ∑K

j=2 exp(sjti) are
sums of i.i.d. log-normal random variables with the first three moments given by

E [Yti ] = (K− 1) exp
(
(σti)

2/2
)

Var [Yti ] = (K− 1)(exp
(
(σti)

2
)
− 1) exp

(
(σti)

2
)

E
[
(Yti − E [Yti ])

3
]
= exp

(
3(σti)

2/2
) (

exp
(
(σti)

2
)
− 1
)2 (

exp
(
(σti)

2
)
+ 2
)

Since Xti = − log(Yti ), we have that Taylor-expanding up to the third order and taking expectations yields
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E [Xti ] ≈ − log(K− 1) +
e(σti)

2 − 1
2(K− 1)

− (σti)
2

2
− 1

3(K− 1)2

(
exp

(
(σti)

2
)
− 1
)2 (

exp
(
(σti)

2
)
+ 2
)

. (S13)

Finally, combining equations (S12) and (S13) and using that ∑τ
i=1 wti = 0 yields

bias(ŝTOT,i) =
τ

∑
j=1

wtj

 exp
(
(σtj)

2
)
− 1

2(K− 1)
−

(σtj)
2

2
− 1

3(K− 1)2

(
exp

(
(σtj)

2
)
− 1
)2 (

exp
(
(σtj)

2
)
+ 2
) . (S14)

Note that the accuracy of the approximation strongly depends on σ, τ and tτ potentially because of the local validity implied by the
Taylor approximation breaking down. In particular, for small σ and T (i.e., σ ≤ 0.1, τ ≤ 7 and tτ ≤ 7) yields a reasonable prediction of
the bias (Figs. SI B_1,SI B_3).

Thus, by combining equations (S9) and (S14) we obtain

MSE
(
ŝTOT,i

)
= Var [ŝTOT] + bias(ŝTOT,i)

≈ Dpi(t)(1− pi(t))
(1 + Dpi(t))2

1

∑τ
j=1

(
tj − t̄

)2

+
τ

∑
j=1

wtj

 exp
(
(σtj)

2
)
− 1

2(K− 1)
−

(σtj)
2

2
− 1

3(K− 1)2

(
exp

(
(σtj)

2
)
− 1
)2 (

exp
(
(σtj)

2
)
+ 2
) (S15)

While comparing equations (9) and (S9) shows that Var
[
ŝTOT,i

]
< Var

[
ŝWT,i

]
(with identical T,D andpi), the bias clearly limits the

use of the TOT approach. In particular, the bias is strongest when T (and in particular tτ) is large and/or only a few mutants were
considered (i.e., K is low relative to D). Similarly, increasing D does not improve the mean MSE by much (Fig. SI B_1).
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Figure SI B_3 – Comparison of the predicted mean squared error (eq. S15; red) against the average mean squared error (blue star) obtained from 1,000 simulated data sets for different
numbers of sampling time points T and mutants K. Other parameters: D = 100,000.

Comparison of the WT and TOT approach Comparing the TOT approach to the WT approach (Fig. SI B_4) shows that the former only
outperforms the latter when stochastic forces (induced by the multinomial sampling and only a few sampling time points) are large
(i.e., when D and T are small, and K is big) – in other words whenever there were problems with obtaining the data. This also shows
up by the generally reduced variance of the MSE when increasing K or decreasing D (Figs. SI B_1, SI B_3, SI B_4). This is due to the
fact that calculating the log-ratios with respect to the sequencing depth D introduces a “saturation effect” such that the log-ratios are
non-linear in t as if the mutants no longer grow exponentially (comparable to deceleration and saturation phase described in Hall et al.
2014). In line with our observations (Figs. SI B_1, SI B_3, SI B_4), this effect is strongest if K is small and/or T is large (and the duration
of the experiment is long), i.e., if pi becomes large such that the log-ratios saturate. Accordingly, the bias also strongly depends on the
variance of the DFE and thus on the environment. If mutants can generally grow faster, i.e., if the variance in the DFE is high, the
log-ratios will start to become saturated even earlier (i.e., with smaller T). The overall effect is that selection coefficient estimates will
be less extreme, i.e., large positive selection coefficients (strongly beneficial mutants) will be underestimated whereas large negative
selection coefficients (strongly deleterious mutants) will be overestimated. Still, when the wild type is systematically misestimated
(due to some non-random error in the experiment) or if the the wild type is rare (see also Fig 2) the TOT approach might outperform
the WT approach. Furthermore, when applied for detecting outliers – where this approach has been proposed initially and proved to
be more robust (Bank et al. 2014) – only the TOT approach is able to detect potential outliers in the wild type. In particular, when
outliers in the wild type remain undetected they will introduce a bias in the estimated selection coefficients for all other mutants.
Accordingly, calculating the log-ratios with respect to the number of sequencing reads of wild-type like mutants could make use of the
advantages of the WT and TOT approach, i.e., reducing the variance of the estimator without introducing a bias, which is however
beyond the scope of this manuscript.
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Figure SI B_4 – Comparison of the mean squared error obtained under the WT and TOT approach calculated from 1,000 simulated data sets for different numbers of sampling time points T.
A K = 100 B K = 1000. Note the differences in scale. Results are presented on log-scale. Other parameters: D = 100,000.
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C. Optimization Example

To illustrate the potential use of the optimization approach, we parameterized equation (17) as

Cα,β,Ctτ ,K(D, τ, tτ) = tτ ∗ 20 + f (τ, D) + 1010 ∗MSEK(D, tτ , τ), (S16a)

where

f (τ, D) = (τ + 1)× (DNA extraction + PCR + quality control & quantification + library synthesis)

+


MiSeq lane cost (τ + 1)× D ≤ 35× 106

MidOutput NextSeq lane cost 35× 106 < (τ + 1)× D ≤ 260× 106

HighOutput NextSeq lane cost 260× 106 < (τ + 1)× D ≤ 800× 106
,

which is inspired by the experimental protocol described in Hietpas et al. (2012). The first term in equation (S16a) denotes personnel
costs as given by product of the duration of the experiment and the median per hour salary of a post-doc researcher in the US
(according to payscale.com).

Estimated order-of-magnitude costs for the procedures given in f (τ, D) were either estimated from personal lab experience or
taken from the Georgia Genomics Facility as

DNA extraction: ∼ 50

PCR: ∼ 10

quality control & quantification: ∼ 50

library synthesis: ∼ 100

MiSeq (300 cycles) (v2); PE150: ∼ 1800

MidOutput Flow Cell NextSeq (300 cycles) PE150: ∼ 2600

HighOutput Flow Cell NextSeq (300 cycles) PE150: ∼ 6000.

Note that following Hietpas et al. (2012), an additional “processing analysis” sequencing run is done per experiment on the
wild-type sequence in order to determine the misread analysis, which is why the total number of reads per experiment is (τ + 1)× D.
Furthermore we have chosen α = 1010 and β = 1 such that a higher MSE induces additional costs reflecting that stochasticity in the
experiment can lead to larger than expected errors (that are highly penalized with this parametrization, putting an emphasise on
the quality of the estimate rather than on experimental costs). Thus, the lower the MSE the more likely it is that the desired minimal
precision MSEmax is reached.

Constraints are chosen arbitrarily since they depend on the experimental setup and are given as

2 ≤ τ ≤ 20 (S17)

500,000 ≤ D ≤ 800× 106/(τ + 1) (S18)

MSEK(D, tτ , τ) ≤ 10−6, (S19)

reflecting that over the course of the experiment at most 20 samples can be taken, and that at least 500,000 but up to 800× 106/(τ + 1)
sequencing reads can be obtained. Furthermore, we assume that the experiment is designed to infer the growth rates of K = 10,000
mutants that evolve for a fixed experimental duration tτ = 20, and the desired minimal precision (given by MSEmax) is 10−6

(corresponding to MAE = 10−3; eq. 13). In addition, we for simplicity assume that sampling time points are equally spaced such that
the sampling interval is given by tτ/τ.

Figure SI C_1 shows that under the given constraints costs (MinCα,β,Ctτ ,K(D, τ, tτ)) sharply decrease and are minimized for τ = 7
with a sequencing depth D = 1× 108, but start to increase again when more time points are sequenced. Pure monetary costs, however,
monotonically increase in τ. Thus, if budgetary constraints were emphasized (e.g., with α = 0), it would be optimal to only sample
twice at the beginning and the end of the experiment. As argued above, however, sampling additional time points (in particular more
than two) can improve capturing the entire range of selection coefficients.

Note that in principle any cost function could be used (also incorporating additional cost terms). Furthermore, sequencing costs
and progress in sequencing technology are inherently dynamic factors, such that any parametrization of Cα,β,Ctτ ,K(D, τ) becomes
outdated and unrealistic immediately. However, as demonstrated by the above example: The experimental guidelines derived from
this study can be used as an auxiliary tool for assessing the a priori measurement error, and, when specifying experimental costs, to
design cost- and time-efficient experiments. Specifically, by providing a free, web-based interface, cost functions can be tailored to the
specific experimental setup and thus our results can readily be used to design efficient and statistically robust experiments.
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Figure SI C_1 – MinCα,β,Ctτ ,K(D, τ, tτ ) as parameterized by eq. S16a for different τ. Costs are minimized for τ = 7. Note however, that pure monetary costs monotonically increase in τ.
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Figure SI D_1 – Histogram showing the distribution of fitness effects obtained from 10,000 draws from a mixture distribution that serves as an alternative to the normal distribution that is
otherwise assumed throughout the manuscript.For details see Model and Methods.
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Figure SI D_2 – The deviation (eq. 6) of the estimated selection coefficient from the true selection coefficient obtained from 1,000 simulated data sets for different numbers of sampling time
points. Other parameters: D = 100,000, K = 100.
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Figure SI D_3 – The absolute (A) and the relative (B) error calculated from 1,000 simulated data sets for different numbers of sampling time points T and mutants K. Results in A are
presented on log-scale. Other parameters: D = 100,000.
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Figure SI D_4 – Comparison of the predicted mean squared error (eq. 10; red) against the average mean squared error (blue star) obtained from 1,000 simulated data sets for different
numbers of sampling time points. Results are presented on log-scale. Other parameters: D = 100,000, K = 100.
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Figure SI D_5 – The mean squared error obtained from 1,000 simulated data sets with a fixed initial population size ci compared to that where ci has been drawn from a log-normal
distribution. In A the prediction (eq. 10; red) is based on p̂i , i.e., the estimated relative abundance of mutant i such that it can be referenced against the empirical average MSE
(blue stars). B compares the empirical average MSE (solid line) against the predicted MSE with a balanced mutant library (i.e., p = 1/K; black) and an uneven mutant library
(i.e., ci ∼ 10N (4,σ=0.5) ; red). Either prediction is based on equation (10). Note the differences in scale. Results are presented on log-scale. Other parameters: D = 100,000.
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Figure SI D_6 – The mean squared error obtained from 1,000 simulated data sets with a fixed sequencing depth D compared to that where D alternates between 1,000,000 and 500,000 for each
time point. The predicted mean squared error (eq. 10; red) for the varying sequencing depth is calculated based on average sequencing depth across time points. The
empirical average MSE is given by the blue stars. Results are presented on log-scale. Other parameters: K = 100.
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