bioRxiv preprint doi: https://doi.org/10.1101/048744; this version posted May 13, 2016. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Ten Simple Rules for Taking Advantage of git and GitHub

Yasset Perez-Riverol"” Laurent Gatto?, Rui Wang', Timo Sachsenberg 2, Julian
Uszkoreit*, Felipe da Veiga Leprevost®, Christian Fufezan®, Tobias Ternent!, Stephen J.
Eglen”, Daniel S. Katz®, Tom J. Pollard?, Alexander Konovalov'®, Robert M Flight'!,
Kai Blin'2, Juan Antonio Vizcaino®"

1 European Molecular Biology Laboratory, European Bioinformatics
Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton,
Cambridge, CB10 1SD, UK.

2 Computational Proteomics Unit, Cambridge Systems Biology Centre,
University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK.
3 Applied Bioinformatics and Department of Computer Science, University
of Tiibingen, D-72074 Tiibingen, Germany.

4 Medizinisches Proteom-Center, Ruhr-Universitat Bochum,
Universitatsstr. 150, D-44801 Bochum, Germany.

5 Department of Pathology, University of Michigan, Ann Arbor, Michigan
48109, USA.

6 Institute of Plant Biology and Biotechnology, University of Muenster,
Schlossplatz 8, 48143 Muenster, Germany.

7 Centre for Mathematical Sciences, University of Cambridge, Wilberforce
Road, Cambridge CB3 OWA, UK.

8 National Center for Supercomputing Applications & Graduate School of
Library and Information Science, University of Illinois, 1205 W. Clark St.,
Urbana, Illinois 61801, USA.

9 MIT Laboratory for Computational Physiology, Institute for Medical
Engineering and Science, Massachusetts Institute of Technology,
Cambridge, MA 02142, USA.

10 Centre for Interdisciplinary Research in Computational Algebra,
University of St Andrews, St Andrews, Fife, KY16 9SX, UK.

11 Department of Molecular Biology and Biochemistry, Markey Cancer
Center, Resource Center for Stable Isotope-Resolved Metabolomics,
University of Kentucky, 800 Rose Street Lexington, KY 40536-0093, USA.
12 The Novo Nordisk Foundation Center for Biosustainability, Technical
University of Denmark, Kogle Alle 6, 2970 Hgrsholm, Denmark

* yperez@ebi.ac.uk and juan@ebi.ac.uk

Abstract

A "Ten Simple Rules’ guide to git and GitHub. We describe and provide examples on
how to use these software to track projects, as users, teams and organizations. We
document collaborative development using branching and forking, interaction between
collaborators using issues and continuous integration and automation using, for
example, Travis CI and codecov. We also describe dissemination and social aspects of
GitHub such as GitHub pages, following and watching repositories, and give advice on
how to make code citable.

https://doi.org/10.1101/048744
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/048744; this version posted May 13, 2016. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Introduction

Bioinformatics is a broad discipline in which one common denominator is the need to
produce and/or use software that can be applied to biological data in different contexts.
To enable and ensure the replicability and traceability of scientific claims, it is essential
that the scientific publication, the corresponding datasets, and the data analysis are
made publicly available [1L[2]. All software used for the analysis should be either
carefully documented (e.g., for commercial software) or better, openly shared and
directly accessible to others [3}/4]. The rise of openly available software and source code
alongside concomitant collaborative development is facilitated by the existence of
several code repository services such as SourceForge (http://sourceforge.net/),
Bitbucket (https://bitbucket.org/), GitLab (https://about.gitlab.com/)), and
GitHub (https://github.com/)), among others. These resources are also essential for
collaborative software projects, since they enable the organization and sharing of
programming tasks between different remote contributors. Here, we introduce the main
features of GitHub, a popular web-based platform that offers a free and integrated
environment for hosting the source code, documentation, and project-related web
content for open source projects. GitHub also offers paid plans for private repositories
(see Box 2) for individuals and businesses, as well as free plans including private
repositories for research and educational use.

GitHub relies, at its core, on the well-known and open source version control system
git, originally designed by Linus Torvalds for the development of the Linux kernel, and
now developed and maintained by the git community (https://github.com/git). One
reason for GitHub’s success is that it offers more than a simple source code hosting
service |5L|6]. It provides developers and researchers with a dynamic and collaborative
environment, often referred to as a social coding platform, that supports peer review,
commenting and discussion [7]. A diverse range of efforts, ranging from individual to
large bioinformatics projects, laboratory repositories, as well as global collaborations
have found GitHub to be a productive place to share code, ideas and collaborate (see
Table 1).

Some of the recommendations outlined below are broadly applicable to repository
hosting services. However our main aim is to highlight specific GitHub features. We
provide a set of recommendations that we believe will help the reader to take full
advantage of GitHub’s features for managing and promoting projects in bioinformatics
as well as in many other research domains. The recommendations are ordered to reflect
a typical development process: learning git and GitHub basics, collaboration, use of
branches and pull requests, labeling and tagging of code snapshots, tracking project
bugs and enhancements using issues, and dissemination of the final results.

Rule 1. Use GitHub to track your projects

The backbone of GitHub is the distributed version control system git. Every change,
from fixing a typo to a complete redesign of the software, is tracked and uniquely
identified. While git has a complex set of commands and can be used for rather
complex operations, learning to apply the basics requires only a handful of new concepts
and commands, and will provide a solid ground to efficiently track code and related
content for research projects. Many introductory and detailed tutorials are available
(see Table 2 below for a few examples). In particular, we recommend A Quick
Introduction to Version Control with Git and GitHub by Blischak et al. [5)].

In a nutshell, initialising a (local) repository (often abbreviated repo) marks a
directory as one to be tracked (Fig. 1). All or parts of its content can be added
explicitly to the list of files to track.

http://sourceforge.net/
https://bitbucket.org/
https://about.gitlab.com/
https://github.com/
https://github.com/git
https://doi.org/10.1101/048744
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/048744; this version posted May 13, 2016. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY 4.0 International license.

" /wod *qnyat8d//:sdaay yym poxyeld are sTY() [V -o(durexo o1} Jo Ty oY} pue (1501 1UN ‘©INIONIIS YouRIq ‘Suryorry ansst) ojdurexo
a1} Jo odAy o) ‘A1031s0dal 1) JO SWIRU O} SUIRIUOD J[(RY O], "qUHIIY) Sursn Jo seorjoerd poos Ypm sofdurexs A1011sodal sorpeuriojuiolg *T o[qeq,

37e3

osuadox

s[oojures

odoronem /Qgals

NS00, -HATHd

G601 /sonsst/guad /sWudQ
asequSIN

Toded-qnu18 /[oreatid£
Axered/100lo1d Axeresd

9T) SOTWI09301 JTeUOIYRINdII0)
s1onqriuoo /syderd /uorjsdorq /uoryLdoiq

urepe /soruouseepsiq

190l01d Ayunuwmio)) I[ROH PUR SOIWIOUAL) IO 9OURI[[Y [BQOY) O],

UOTSSNOSIP oNssT ‘joslo1g Ayrunmuo))

uorjeziue3i() jooforg ‘A1ojrsodoy soryeuriojurorgg

poztuesdio eye(] Areurq ‘jduosnueyy ‘josloxd penprarpuy

syoafoxd ordiymyy ‘uoryeziuesi(y joelforg

SoYOURI(‘UOISSNISIP oNSS] ‘A1031s0doY] SoTpRULIOJUION]

A1oy1sodar gooload penprarpuy

100(01g AYrunmruo)) ‘MOIssSnosTp anssy “‘ydrrosnuey

Aroy1s0doy] sorpeurtojurorg ‘joslorg Ajyunwuo))

A1oysodoy qery
s10inqrIyunoo ofdimyy ‘4oelorg Ajrunururo))

sy10§ o(diyny ‘900lo1g Ayrunuuro))

pguad()1
72 SI00INVS

‘e7| £109150d01 RYRD SARM TRUIIOY

3] @yms[00], 1090adsu] HATI
1g) SINuedO

02] asequsIN

Toded quEND

61| 100lo1g Axeren

() SOTW09301 [euorjeinduro))
81| womysgorg

wepy

TN

odAT,

A1091850d0y 91} JO SUIRN

https://github.com/bigdatagenomics/adam/
https://github.com/biopython/biopython/graphs/contributors
https://github.com/ComputationalProteomicsUnit
https://github.com/galaxyproject/galaxy
https://github.com/ypriverol/github-paper
https://github.com/lgatto/MSnbase
https://github.com/OpenMS/OpenMS/issues/1095
https://github.com/PRIDE-Toolsuite
https://github.com/sje30/waverepo
https://github.com/samtools
https://github.com/ropensci
https://github.com/ga4gh
https://doi.org/10.1101/048744
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/048744; this version posted May 13, 2016. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

cd project ## move into directory to be tracked

git init ## initialise local repository

add individual files such as project description, reports, source code
git add README project.md code.R

git commit -m "initial commit" ## saves the current local snapshot

Subsequently, every change to the tracked files, once committed, will be recorded as
a new revision, or snapshot, uniquely identifying the changes in all the modified files.
Git is remarkably effective and efficient in archiving the complete history of a project
by, among other things, storing only the differences between files.

In addition to local copies of the repository, it is straightforward to create remote
repositories on GitHub (called origin, with default branch master - see below) using
the web interface, and then synchronize local and remote repositories.

git push origin master ## push local changes to the remote repository
git pull origin master ## pull remote changes into the local repository

Following Tony Rossini’s advice in 2005 to “commit early, commit often, and commit
in a repository from which we can easily roll-back your mistakes”, one can organise their
work in small incremental changes. At any time it is possible to go back to a previous
version. In larger projects, multiple users are able to work on the same remote
repository, with all contributions being recorded, restorable and attributed to the
author.

Users usually track source code, text files, images, and small data files inside their
repositories, and generally do not track derived files such as build logs or compiled
binaries. And while the majority of GitHub repositories are used for software
development, users can also keep text documents such as analysis reports and
manuscripts (see, for example, the repository for this manuscript at
https://github.com/ypriverol/github-paper).

Due to its distributed design, each up-to-date local git repository is an entire exact
historical copy of everything that was committed - file changes, commit message logs,
etc. These copies act as independent backups as well, present on each user’s storage
device. Git can be considered to be fault-tolerant because of this, which is a win over
centralized version control systems. If the remote GitHub server is unavailable,
collaboration and work can continue between users, as opposed to centralized
alternatives.

The web interface offered by GitHub provides friendly tools to perform many basic
operations and a gentle introduction to a more rich and complex set of functionalities.
Various graphical user-interface driven clients for managing git and GitHub repositories
are also available (https://www.git-scm.com/downloads/guis)). Many editors and
development environments such as, for example, the popular RStudio editor
(https://www.rstudio.com/) for the R programming language [8], directly integrate
with code versioning using git and GitHub. In addition, for remote git repositories,
GitHub provides its own features that will be described in subsequent rules (Fig. 1).

Box 1 Using GitHub, or any similar versioning/tracking system is not a
replacement for good project management; it is an extension, an
improvement for good project and file managing (see for example [9]). One
practical consideration when using GitHub, for example, is dealing with
large binary files. Binary files such as images, videos, executable files, or
many raw data used in bioinformatics, are stored as a single large entity in
git. As a result, every change, even if minimal, leads to a complete new copy
of the file in the repository, producing large size increments and the inability
to search (see https://help.github.com/articles/searching-code/)

https://github.com/ypriverol/github-paper
https://www.git-scm.com/downloads/guis
https://www.rstudio.com/
https://help.github.com/articles/searching-code/
https://doi.org/10.1101/048744
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/048744; this version posted May 13, 2016. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY 4.0 International license.

"SISTIUSIOS I0] 415) pue UL moqe sdoysyiom pue S[LIOIN) ‘SISINO0D dUIU() T O[qelL

/oota0u-113 /0T qnuat8 - Lxqusedreons//:daqy
/Anya13-pue-413-JUTUIRS-JI0J-S9DIN0SOI-Ppo0d/saToTaIe/Wwod " qnuat3-d1ey//:sdaay
/woo *qnya 13- septnd//:sdaqy

/uod " qnuatd - Jututeas//:sdiay

TW3Y €-TY2/¥00q/wod " wos-118//:daay

/oota0u-113 /0T qnuat8 - Lxquedreons//:daqy

/TetIoana—qnuat8/3xo wewoiqs//:daay

1T3 UM PO[[RISUL ‘JUSTNIO(]

115 YHM [OINTO)) UOISIoA :AIjuadre)) a1remijog
qUIS) pue 3I5) SUIUIRdTT 10§ S9OINO0SIY POOL)
SOpINY quuitH

Sururedy, quuitd

915) 0} UOT}ONPOIIU]

D Yim [013U0) UOTISIDA) M OIFUOT) UOISIOA
opm8 qni3t8/918 s, uweworg [Ie3]

e- dyey 213 pue diey 2138

TdN

[eLI9)eW B} JO SUIRN

http://kbroman.org/github_tutorial/
http://swcarpentry.github.io/git-novice/
http://git-scm.com/book/ch1-3.html
https://training.github.com/
https://guides.github.com/
https://help.github.com/articles/good-resources-for-learning-git-and-github/
http://swcarpentry.github.io/git-novice/
https://doi.org/10.1101/048744
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/048744; this version posted May 13, 2016. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

team
5 g
organization

coding

.0 B

coding

sync E
commit
commit
F M continuous
“ % integration and
citable e testing
code repo 1.0.0

documentation
of repo

B L

L issues and ’ .
publication comments discussion

bob's fork
n of repo

pull

request O coding
E_’ bob D

scientific communit sync p
and users o Y Gl
to fork

Figure 1. The structure of a GitHub-based project illustrating project structure and
interactions with the community.

and compare file content across revisions. Git offers a Large File Storage
(LFS) module (https://git-1fs.github.com/)) that replaces such large
files with pointers, while the large binary file can be stored remotely, which
results in small and faster repositories. Git LFS is also supported by GitHub,
albeit with a space quota or for a fee, to retain your usual GitHub workflow
(https://help.github.com/categories/managing-large-files/)
(Supplementary File S1, Section 1).

Box 2 By default, GitHub repositories are freely visible to all. Many
projects decide to share their work publicly and openly from the start of the
project, in order to attract visibility and to benefit from contributions from
the community early on. Some other groups prefer to work privately on
projects until they are ready to share their work. Private repositories ensure
that work is hidden but also limit collaborations to just those users that are
given access to the repository. These repositories can then be made public
at a later stage, such as, for example, upon submission, acceptance, or
publication of corresponding journal articles. In some cases, when the
collaboration was exclusively meant to be private, some repositories might
never be made publicly accessible.

Box 3 Every repository should ideally have the following three files. The
first, and arguably most important file in a repository is a LICENCE file
(see also Rule 8), that clearly defines the permissions and restrictions
attached to the code and other files in your repository. The second
important file is a README file, which provides, for example, a short
description of the project, a quick start guide, information on how to
contribute, a TODO list, and links to additional documentation. Such

https://git-lfs.github.com/
https://help.github.com/categories/managing-large-files/
https://doi.org/10.1101/048744
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/048744; this version posted May 13, 2016. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

README files are typically written in markdown, a simple markup
language that is automatically rendered on GitHub. Finally, a CITATION
file to the repository informs your users how to cite and credit your project.

Rule 2. GitHub for single users, teams and
organizations

Public projects on GitHub are visible to everyone, but write permission, i.e., the ability
to directly modify the content of a repository, needs to be granted explicitly. As a
repository owner, you can grant this right to other GitHub users. In addition to being
owned by users, repositories can also be created and managed as part of teams and
organizations.

Project managers can structure projects to manage permissions at different levels:
users, teams and organizations. Users are the central element of GitHub, as in any other
social network. Every user has a profile listing their GitHub projects and activities,
which can optionally be populated with personal information including name, e-mail
address, image, and webpage. To stay up to date with the activity of other users, one
can follow their accounts (see also Rule 10). Collaboration can be achieved by simply
adding a trusted Collaborator, thereby granting write access.

However, development in large projects is usually done by teams of people, within a
larger organization. GitHub organizations are a great way to manage team-based access
permissions for the individual projects of institutes, research labs, and large open source
projects that need multiple owners and administrators (Fig. 1). We recommend that
you, as an individual researcher, make your profile visible to other users and display all
of the projects and organisations you are working in.

Rule 3. Developing and collaborating on new
features: branching and forking

Anyone with a GitHub account can fork any repository they have access to. This will
create a complete copy of the content of the repository, while retaining a link to the
original ‘upstream’ version. One can then start working on the same code base in one’s
own fork (https://help.github.com/articles/fork-a-repo/) under their username
(see, for example, https://github.com/ypriverol/github-paper/network/members
for this work) or organization (see Rule 2). Forking a repository allows users to freely
experiment with changes without affecting the original project and forms the basis of
social coding. It allows anyone to develop and test novel features with existing code and
offers the possibility of contributing novel features, bug fixes, and improvements to
documentation back into the original upstream project (requested by opening an pull
request) repository and becoming a contributor. Forking a repository and providing pull
requests constitutes a simple method for collaboration inside loosely defined teams and
over more formal organizational boundaries, with the original repository owner(s)
retaining control over which external contributions are accepted. Once a pull request is
opened for review and discussion, it usually results in additional insights and increased
code quality [7].

Many contributors can work on the same repository at the same time without
running into edit conflicts. There are multiple strategies for this, and the most common
way is to use git branches to separate different lines of development. Active
development is often performed on a development branch and stable versions, i.e., those
used for a software release, are kept in a master or release branch (see for example

https://help.github.com/articles/fork-a-repo/
https://github.com/ypriverol/github-paper/network/members
https://doi.org/10.1101/048744
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/048744; this version posted May 13, 2016. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

https://github.com/OpenMS/0OpenMS/branches). In practice, developers often work
concurrently on one or several features or improvements. To keep commits of the
different features logically separated, distinct branches are typically used. Later, when
development is complete and verified to work (i.e., none of the tests fail, see Rule 5),
new features can be merged back into the development line or master branch. In
addition, one can always pull the currently up-to-date master branch into a feature
branch, to adapt the feature to the changes in the master branch.

When developing different features in parallel, there is a risk of applying
incompatible changes in different branches/forks; these are said to become out of sync.
Branches are just short-term departures from master. If you pull frequently, you will
keep your copy of the repository up to date, and you will have the opportunity to merge
your changed code with others’ contributors, ideally without requiring you to manually
address conflicts to bring the branches in sync again.

Rule 4. Naming branches and commits: tags and
semantic versions

Tags can be used to label versions during the development process. Version numbering
should follow ‘semantic versioning’ practice, with the format X.Y.Z, with X being the
major, Y the minor, and Z the patch version of the release, including possible meta
information, as described in http://semver.org/. This semantic versioning scheme
provides users with coherent version numbers that document the extent (bug fixes or
new functionality) and backwards compatibility of new releases. Correct labeling allows
developers and users to easily recover older versions, compare them, or simply use them
to reproduce results described in publications (see Rule 8). This approach also help to
define a coherent software publication strategy.

Rule 5: Let GitHub do some tasks for you: integrate

The first rule of software development is that the code needs to be ready to use as soon
as possible [10], to remain so during development, and that it should be
well-documented and tested. In 2005, Martin Fowler defined the basic principles for
continuous integration in software development [11]. These principles have become the
main reference for best practices in continuous integration, providing the framework
needed to deploy software, and in some way, also data. In addition to mere error-free
execution, dedicated code testing is aimed at detecting possible bugs introduced by new
features, or changes in the code or dependencies, as well as detecting wrong results,
often known as logic errors, where the source code produces a different result than what
was intended. Continuous integration provides a way to automatically and
systematically run a series of tests to check integrity and performance of code, a task
that can be automated through GitHub.

GitHub offers a set of hooks (automatically executed scripts) that are run after each
push to a repository, making it easier to follow the basic principles of continuous
integration. The GitHub web hooks allows third-party platforms to access and interact
with a GitHub repository and thus to automate post-processing tasks. Continuous
integration can be achieved by Travis CI (https://travis-ci.org), a hosted
continued integration platform that is free for all open source projects. Travis CI builds
and tests the source code using a plethora of options such as different platforms and
interpreter versions (Supplementary File S1, Section 2). In addition, it offers
notifications that allow your team and contributors to know if the new changes work,

https://github.com/OpenMS/OpenMS/branches
http://semver.org/
https://travis-ci.org
https://doi.org/10.1101/048744
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/048744; this version posted May 13, 2016. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

and to prevent the introduction of errors in the code (for instance, when merging pull
requests), making the repository always ready to use.

Rule 6: Let GitHub do more tasks for you: automate

More than just code compilation and testing can be integrated into your software
project: GitHub hooks can be used to automate numerous tasks to help improve the
overall quality of your project. An important complement to successful test completion
is to demonstrate that the tests sufficiently cover the existing code base. For this, the
integration of Codecov is recommended (https://codecov.io). This service will report
how much of the code base and which lines of code are being executed as part of your
code tests. The Bioconductor project, for example, highly recommends that packages
implement unit testing (Supplementary File S1, Section 2) to support developers in
their package development and maintenance
(http://bioconductor.org/developers/unitTesting-guidelines/)), and
systematically tests the coverage of all of its packages
(https://codecov.io/github/Bioconductor-mirror/)). One might also consider
generating the documentation upon code/documentation modification (Supplementary
File S1, Section 3). This implies that your projects provide comprehensive
documentation so others can understand and contribute back to them. For Python or
C/C++ code, automatic documentation generation can be done using sphinx
(http://sphinx-doc.org/) and subsequently integrated into GitHub using “Read the
Docs” (https://readthedocs.org/|). All of these platforms will create reports and
badges (sometimes called shields) that can be included on your GitHub project page,
helping to demonstrate that the content is of high quality and well-maintained.

Rule 7. Use GitHub to openly and collaboratively
discuss, address and close issues

GitHub issues are a great way to keep track of bugs, tasks, feature requests, and
enhancements. While classical issue trackers are primarily intended to be used as bug
trackers, in contrast, GitHub issue trackers follow a different philosophy: each tracker
has its own section in every repository and can be used to trace bugs, new ideas, and
enhancements, by using a powerful tagging system. Issues main focus is on promoting
collaboration, providing context by using cross-references.

Raising an issue does not require lengthy forms to be completed. It only requires a
title, and preferably at least a short description. Issues have very clear formatting, and
provide space for optional comments, which allow anyone with a github account to
provide feedback. For example, if the developer needs more information to be able to
reproduce a bug, he or she can simply request it in a comment.

Additional elements of issues are (i) color-coded labels that help to categorize and
filter issues, (ii) milestones, and (iii) one assignee responsible for working on the issue.
They help developers to filter and prioritise tasks and turn issue tracker into a planning
tool for their project.

It is also possible for repository administrators to create issue and pull request (see
Rule 3) templates (https:
//help.github.com/articles/helping-people-contribute-to-your-project/)
to customize and standardize the information to be included when contributors open
issues. GitHub issues are thus dynamic, and they pose a low entry barrier for users to
report bugs and request features. A well-organized and tagged issue tracker helps new
contributors and users to understand a project more deeply. As an example, one issue

https://codecov.io
http://bioconductor.org/developers/unitTesting-guidelines/
https://codecov.io/github/Bioconductor-mirror/
http://sphinx-doc.org/
https://readthedocs.org/
https://help.github.com/articles/helping-people-contribute-to-your-project/
https://help.github.com/articles/helping-people-contribute-to-your-project/
https://doi.org/10.1101/048744
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/048744; this version posted May 13, 2016. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

in the OpenMS repository (https://github.com/0OpenMS/0OpenMS/issues/1095)
allowed the interaction of eight developers and attracted more than hundred comments.
Contributors can add figures, comments, and references to other issues and pull requests
in the repository, as well as direct references to code.

As another illustration of issues and their generic and wide application, we
(https://github.com/ypriverol/github-paper/issues) and others
(https://github.com/ropensci/RNeXML/issues/121) used GitHub issues to discuss
and comment changes in manuscripts and address reviewers’ comments.

Rule 8. Make your code easily citable, and cite
source code!

It is a good research practice to ensure permanent and unambiguous identifiers for
citable items like articles, datasets, or biological entities such as proteins, genes and
metabolites (see also Box 3). Digital Object Identifiers (DOIs) have been used for many
years as unique and unambiguous identifiers for enabling the citation of scientific
publications. More recently, a trend has started to mint DOIs for other types of
scientific products such as datasets [12] and training materials (for example [13]). A key
motivation for this is to build a framework for giving scientists broader credit for their
work [14,(15], while simultaneously supporting clearer, more persistent ways to cite and
track it. Helping to drive this change are funding agencies such as the NIH (National
Institutes of Health) and NSF (National Science Foundation) in the USA and Research
Councils in the UK, who are increasingly recognizing the importance of research
products such as publicly available datasets and software.

A common issue with software is that it normally evolves at a different speed than
text published in the scientific literature. In fact, it is common to find software having
novel features and functionality that were not described in the original publication.
GitHub now integrates with archiving services such as Zenodo (https://zenodo.org/)
and Figshare (https://figshare.com/)), enabling DOIs to be assigned to code
repositories. The procedure is relatively straightforward (see
https://guides.github.com/activities/citable-code/)), requiring only the
provision of metadata and a series of administrative steps. By default, Zenodo creates
an archive of a repository each time a new release is created in GitHub, ensuring the
cited code remains up to date. Once the DOI has been assigned, it can be added to
literature information resources such as Europe PubMed Central [16].

As already mentioned in the introduction, reproducibility of scientific claims should
be enabled by providing the software, the datasets and the process leading to
interpretable results that were used in a particular study. As much as possible,
publications should highlight that the code is freely available in, for example, GitHub,
together with any other relevant outputs that may have been deposited. In our
experience, this openness substantially increases the chances of getting the paper
accepted for publication. Journal editors and reviewers receive the opportunity to
reproduce findings during the manuscript review process, increasing confidence in the
reported results. In addition, once the paper is published, your work can be reproduced
by other members of the scientific community, which can increase citations and foster
opportunities for further discussion and collaboration.

The availability of a public repository containing the source code does not make the
software open source per se. You should use an OSI approved license
(https://opensource.org/licenses/alphabetical) that defines how the software
can be freely used, modified and shared. Common licenses such as those listed on
http://choosealicense.com are preferred. Note that the LICENSE file in the

10

https://github.com/OpenMS/OpenMS/issues/1095
https://github.com/ypriverol/github-paper/issues
https://github.com/ropensci/RNeXML/issues/121
https://zenodo.org/
https://figshare.com/
https://guides.github.com/activities/citable-code/
https://opensource.org/licenses/alphabetical
http://choosealicense.com
https://doi.org/10.1101/048744
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/048744; this version posted May 13, 2016. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

repository should be a plain-text file containing the contents of an OSI approved license,
not just a reference to the license.

Rule 9. Promote and discuss your projects: web page
and more

The traditional way to promote scientific software is by publishing an associated paper
in the peer-reviewed scientific literature, though as pointed out by Buckheir and
Donoho, this is just advertizing [17]. Additional steps can boost the visibility of a
organization. For example, GitHub Pages are simple websites freely hosted by GitHub.
Users can create and host blog websites, help pages, manuals, tutorials and websites
related to specific projects. Pages comes with a powerful static site generator called
Jekyll (https://jekyllrb.com) that can be integrated with other frameworks such as
Bootstrap (http://getbootstrap.com/) or platforms such as Disqus
(https://disqus.com/), to support and moderate comments.

In addition, several real-time communication platforms have been integrated with
GitHub such as Gitter (http://gitter.im) and Slack (https://slack.com/).
Real-time communication systems allow the user community, developers and project
collaborators to exchange ideas and issues, and to report bugs or get support. For
example, Gitter is a GitHub-based chat tool that enables developers and users to share
aspects of their work. Gitter inherits the network of social groups operating around
GitHub repositories, organizations, and issues. It relies on identities within GitHub,
creating IRC (Internet Relay Chat)-like chat rooms for public and private projects.
Within a Gitter chat, members can reference issues, comments, and pull requests.
GitHub also supports wikis (which are version-controlled repositories themselves) for
each repository, where users can create and edit pages for documentation, examples, or
general support.

A different service is Gist (https://gist.github.com), which represents a unique
way to share code snippets, single files, parts of files, or full applications. Gists can be
generated in two different ways: public gists that can be browsed and searched through
Discover (https://gist.github.com/discover]), and secret gists that are hidden
from search engines. One of the main features of Gist is the possibility of embedding
code snippets in other applications, enabling users to embed gists in any text field that
supports JavaScript.

Rule 10. Use GitHub to be social: follow and watch

In the same way as researchers are following developments in their field, scientific
programmers could follow publicly available projects that might benefit their research.
GitHub enables this functionality by following other GitHub users (see also Rule 2) or
watching the activity of projects, which is a common feature in many social media
platforms. Take advantage of it as much as possible!

Conclusions

If you are involved in scientific research and have not used git and GitHub before, we
recommend that you to explore its potential as soon as possible. As with many tools a
learning curve lays ahead, but several basic yet powerful features are accessible even to
the beginner and may be applied to many different use-cases [6]. We anticipate the
reward will be worth your effort. To conclude, we would like to recommend some

11

https://jekyllrb.com
http://getbootstrap.com/
https://disqus.com/
http://gitter.im
https://slack.com/
https://gist.github.com
https://gist.github.com/discover
https://doi.org/10.1101/048744
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/048744; this version posted May 13, 2016. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

REFERE]\?@EBBY 4.0 International license. REFERENCES

examples of bioinformatics repositories in GitHub (Table 1) and some useful training
materials, including workshops, online courses and manuscripts (Table 2).

Acknowledgments

The authors would like to thank C. Titus Brown for mentioning the manuscript on
social media, leading to additional contributions and further improvements. We also
thank Peter Cock (peterjc) for helpful suggestions contributed directly though GitHub.

Y.P.R is supported by the BBSRC PROCESS grant (reference BB/K01997X/1) and
by the BBSRC Quantitative Proteomics grant (reference BB/I00095X/1). R.W. is also
funded by grant BB/100095X/1. J.A.V. is supported by the Wellcome Trust (grant
number WT101477MA). J.U. and T.S. are funded by the BMBF grant de.NBI -
German Network for Bioinformatics Infrastructure (FKZ031 A 534A and FKZ031 A
535A). L.G. is supported by the BBSRC Strategic Longer and Larger grant (Award
BB/L002817/1). F.V.L. is supported by NIH grant number R01-GM-094231. A K. is
supported by the EPSRC Collaborative Computational Project CoDiMa (reference
EP/MO022641/1). R.M.F. is supported by NSF grant number 1252893. T.P. is
supported by the National Institutes of Health through grant R01-EB-017205. K.B. is
funded by the Novo Nordisk Foundation.

References

1. Goodman A, Pepe A, Blocker AW, Borgman CL, Cranmer K, Crosas M, et al.
Ten simple rules for the care and feeding of scientific data. PLoS Comput Biol.
2014 Apr;10(4):€1003542.

2. Perez-Riverol Y, Alpi E, Wang R, Hermjakob H, Vizcaino JA. Making
proteomics data accessible and reusable: current state of proteomics databases
and repositories. Proteomics. 2015 Mar;15(5-6):930-49.

3. Osborne JM, Bernabeu MO, Bruna M, Calderhead B, Cooper J, Dalchau N, et al.
Ten simple rules for effective computational research. PLoS Comput Biol. 2014
Mar;10(3):€1003506.

4. Vihinen M. No more hidden solutions in bioinformatics. Nature. 2015
May;521(7552):261.

5. Blischak J, Davenport E, Wilson G. A Quick Introduction to Version Control
with Git and GitHub. PLoS computational biology. 2016;12(1):e1004668.

6. Ram K. Git can facilitate greater reproducibility and increased transparency in
science. Source code for biology and medicine. 2013;8(1):1.

7. Dabbish L, Stuart C, Tsay J, Herbsleb J. Social Coding in GitHub: Transparency
and Collaboration in an Open Software Repository. In: Proceedings of the ACM
2012 Conference on Computer Supported Cooperative Work. CSCW ’12. New
York, NY, USA: ACM; 2012. p. 1277-1286. Available from:
http://doi.acm.org/10.1145/2145204.2145396.

8. R Core Team. R: A Language and Environment for Statistical Computing.
Vienna, Austria; 2016. Available from: https://www.R-project.org/l

9. Noble WS. A quick guide to organizing computational biology projects. PLoS
Comput Biol. 2009 Jul;5(7):¢1000424.

12

http://doi.acm.org/10.1145/2145204.2145396
https://www.R-project.org/
https://doi.org/10.1101/048744
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/048744; this version posted May 13, 2016. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

REFERE]\?@EBBY 4.0 International license. REFERENCES

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Leprevost FV, Barbosa VC, Francisco EL, Perez-Riverol Y, Carvalho PC. On best
practices in the development of bioinformatics software. Front Genet. 2014;5:199.

Fowler M. Continuous Integration; 2006. Accessed: 2015-12-09.
http://www.martinfowler.com/articles/continuousIntegration.htmll

Vizcaino JA, Deutsch EW, Wang R, Csordas A, Reisinger F, Rios D, et al.
ProteomeXchange provides globally coordinated proteomics data submission and
dissemination. Nat Biotechnol. 2014 Mar;32(3):223-6.

Ahmadia A, Aiello-Lammens M, Ainsley J, Allen J, Alsheikh-Hussain A,
Banaszkiewicz P, et al.. Software Carpentry: Programming with R; 2015.
Available from: http://dx.doi.org/10.5281/zenodo.27353.

Credit where credit is overdue. Nat Biotechnol. 2009 Jul;27(7):579.

FORCEI11 Software Citation Working Group;. Accessed: 2016-03-31.
https://www.forcell.org/group/software-citation-working-group.

Europe PMC Consortium. Europe PMC: a full-text literature database for the
life sciences and platform for innovation. Nucleic Acids Res. 2015
Jan;43(Database issue):D1042-8.

Buckheit J, Donoho D. WaveLab and Reproducible Research. Springer-Verlag;
1995. p. 55-81.

Cock PJ, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, et al. Biopython:
freely available Python tools for computational molecular biology and
bioinformatics. Bioinformatics. 2009 Jun;25(11):1422-3.

Goecks J, Nekrutenko A, Taylor J, Galaxy Team. Galaxy: a comprehensive
approach for supporting accessible, reproducible, and transparent computational
research in the life sciences. Genome Biol. 2010;11(8):R86.

Gatto L, Lilley KS. MSnbase-an R/Bioconductor package for isobaric tagged
mass spectrometry data visualization, processing and quantitation.
Bioinformatics. 2012;28(2):288-289. Available from:
http://bioinformatics.oxfordjournals.org/content/28/2/288.abstract.

Sturm M, Bertsch A, Gropl C, Hildebrandt A, Hussong R, Lange E, et al.
OpenMS—an open-source software framework for mass spectrometry. BMC
bioinformatics. 2008;9(1):163.

Perez-Riverol Y, Xu QW, Wang R, Uszkoreit J, Griss J, Sanchez A, et al.
PRIDE Inspector Toolsuite: Moving Toward a Universal Visualization Tool for
Proteomics Data Standard Formats and Quality Assessment of ProteomeXchange
Datasets. Molecular & Cellular Proteomics. 2016;15(1):305-317. Available from:
http://www.mcponline.org/content/15/1/305.abstract,

Eglen SJ, Weeks M, Jessop M, Simonotto J, Jackson T, Sernagor E. A data
repository and analysis framework for spontaneous neural activity recordings in
developing retina. Gigascience. 2014;3(1):3.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence
Alignment/Map format and SAMtools. Bioinformatics. 2009 Aug;25(16):2078-9.

13

http://www.martinfowler.com/articles/continuousIntegration.html
http://dx.doi.org/10.5281/zenodo.27353
https://www.force11.org/group/software-citation-working-group
http://bioinformatics.oxfordjournals.org/content/28/2/288.abstract
http://www.mcponline.org/content/15/1/305.abstract
https://doi.org/10.1101/048744
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/048744; this version posted May 13, 2016. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

REFERENaéEBBY 4.0 International license. REFERENCES

Supporting Information Legends

Supplementary File S1. Supplementary Information including three sections: Git
Large File Storage (LFS), Testing Levels of the Source Code and Continuous
integration, and Source code documentation.

14

https://doi.org/10.1101/048744
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Rule 1. Use GitHub to track your projects
	Rule 2. GitHub for single users, teams and organizations
	Rule 3. Developing and collaborating on new features: branching and forking
	Rule 4. Naming branches and commits: tags and semantic versions
	Rule 5: Let GitHub do some tasks for you: integrate
	Rule 6: Let GitHub do more tasks for you: automate
	Rule 7. Use GitHub to openly and collaboratively discuss, address and close issues
	Rule 8. Make your code easily citable, and cite source code!
	Rule 9. Promote and discuss your projects: web page and more
	Rule 10. Use GitHub to be social: follow and watch
	Conclusions

