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Abstract  2 

The study of the circadian clock has benefited greatly from using Drosophila as a 3 

model system. Yet, accumulating evidence suggests that the fly might not be the 4 

canonical insect model. Here, we have analysed the circadian transcriptome of 5 

the Jewl wasp Nasonia vitripennis by using RNA-seq in both constant darkness 6 

(DD) and constant light (LL, the wasps are rhythmic in LL with period 7 

shortening).  At a relatively stringent FDR (q < 0.1), we identified 1,057 cycling 8 

transcripts in DD and 929 in LL (fraction of 6.7% and 5.9% of all transcripts 9 

analysed in DD and LL respectively). Although there was little similarity between 10 

cycling genes in Drosophila and Nasonia, the functions fulfilled by cycling 11 

transcripts were similar in both species. Of the known Drosophila core clock 12 

genes, only pdp1e, shaggy and Clok showed a significant cycling in Nasonia, 13 

underscoring the importance of studying the clock in non-model organisms. 14 

 15 

Introduction 16 

The circadian clock regulates fundamental biological processes such as sleep 17 

(Huang, et al. 2011), metabolism (Huang, et al. 2011), and the immune system 18 

(Scheiermann, et al. 2013), and has implications for a wide range of human 19 

diseases. Notable examples of diseases linked to the circadian clock include 20 

cancer (Kelleher, et al. 2014), Alzheimer’s disease (Musiek, et al. 2015), 21 

cardiovascular disease (Takeda and Maemura, 2011), obesity (Maury, et al. 22 

2010), diabetes (Maury, et al. 2010), and depression (Quera Salva, et al. 2011). A 23 

primary output of the clock is circadian regulation of transcription, a trait which 24 

has been demonstrated in mammals (Hughes, et al. 2009), insects (McDonald 25 
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and Rosbash, 2001a), plants (Schaffer, et al. 2001), and even bacteria (Woelfle 26 

and Johnson, 2006). Therefore, analysing transcriptional oscillations in clock-27 

controlled genes (CCGs) is a key step in understanding how the daily rhythms 28 

produced by the clock are ultimately linked to behavioural phenotypes. 29 

The genetic mechanisms underlying the animal circadian clock were first 30 

elucidated through studies of model animals; primarily the fruit fly Drosophila. 31 

The first clock gene to be identified, period (per), was discovered through 32 

mapping the genetic basis of Drosophila mutants with aberrant locomotor and 33 

eclosion rhythms (Konopka and Benzer, 1971). The discovery of period was 34 

followed by the discovery of its heterodimeric partner timeless (tim) (Sehgal, et 35 

al. 1994). These two genes are joined by a roster of other genes working together 36 

to produce robust internal rhythms. 37 

The discoveries made in Drosophila have been instrumental for 38 

understanding the mechanisms of the circadian clock in mammals (Yu and 39 

Hardin, 2006). As the principal insect model, Drosophila has been used to great 40 

effect to model circadian phenomena in humans (Rosato, et al. 2006). However, 41 

as circadian research into non-drosophilid insects has advanced, several 42 

alternative clock models have been proposed (Yuan, et al. 2007), some of which 43 

may better model aspects of the mammalian clock than Drosophila.  44 

For example, a major difference between the various clock models in 45 

insects concerns the light input pathway. The main light input to the clock in 46 

Drosophila is mediated through cryptochrome (cry1) which is activated in 47 

response to light (Ceriani, et al. 1999), binds to and promotes the degradation of 48 

tim (Busza, et al. 2004), ultimately resulting in the degradation of per (Ko, et al. 49 

2002,Grima, et al. 2002). In contrast, mammalian-like cryptochrome (cry2) is not 50 
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light-sensitive (Yuan, et al. 2007), but is a part of the core transcriptional 51 

feedback loop suppressing its own transcription (and that of per) by interfering 52 

with the actions of the CLK-BMAL1 heterodimer (Kume, et al. 1999,Jin, et al. 53 

1999). Mammals also lack a homolog for timeless, possessing only a homolog of 54 

the Drosophila gene timeout (Benna, et al. 2000), a gene whose potential role in 55 

the clock is less clear and less crucial than that of timeless (Gustafson and Partch, 56 

2015,Benna, et al. 2010).  57 

The Lepidoptera harbour both types of cryptochrome (Drosophila-like 58 

cry1 and mammal-like cry2) (Tomioka and Matsumoto, 2010), as well as 59 

homologs of timeless and timeout (Tomioka and Matsumoto, 2015). The two 60 

cryptochromes have been shown to act in a similar way to their Drosophila and 61 

mammal counterparts; cry1 functions as a light receptor and cry2 serves as a 62 

transcriptional repressor (Zhu, et al. 2008).  63 

Of the major insect orders, the Hymenoptera arguably possess the most 64 

mammalian-like core clock architecture, possessing cry2 and timeout but neither 65 

cry1 nor timeless (Tomioka and Matsumoto, 2015,Yuan, et al. 2007). In addition 66 

to these molecular similarities, there is evidence that the transcriptional profiles 67 

of these genes match more closely the mammalian model than the Drosophila 68 

model (Rubin, et al. 2006). Light-entrained circadian rhythms have been 69 

demonstrated in the Hymenoptera, but the question of light detection in the 70 

Hymenopteran clock remains an open one.  71 

Nasonia vitripennis is a parasitoid wasp, which as a research model offers 72 

advantages over other hymenopterans, including a fully sequenced genome 73 

(Werren, et al. 2010), systemic RNAi (Lynch and Desplan, 2006), a robust and 74 

well-characterised circadian response (Bertossa, et al. 2013), a fully functional 75 
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DNA methylation kit (Park, et al. 2011), and a history as a model for 76 

photoperiodism (Saunders, 1969).  77 

In this study, we advance Nasonia as an alternative circadian model by 78 

using RNA-seq to profile whole-transcriptome gene expression in the Nasonia 79 

head. As the Nasonia clock free-runs in both constant darkness and constant light  80 

(Figure 1), we profiled both of these conditions to examine how the two 81 

circadian transcriptomes differ. To our knowledge, this is the first circadian 82 

RNA-seq study performed in an insect other than Drosophila, and the first study 83 

to profile the circadian transcriptome oscillating under constant light.  84 

Results 85 

Identifying rhythmic transcription 86 

We first performed an unbiased clustering analysis to ascertain the kinds of 87 

expression patterns present in the data. To this end, Mfuzz (Kumar and E 88 

Futschik, 2007) was used to carry soft c-means clustering, a method which is less 89 

sensitive to biological noise than traditional clustering (Futschik and Carlisle, 90 

2005). After filtering (see Methods), thirty clusters were generated for each 91 

condition (Supplementary figures S1 and S2), revealing a variety of potentially 92 

rhythmic and non-rhythmic expression trends. Potential asymmetric wave forms 93 

were detected in LL (e.g. Supplementary figure S2, clusters 22 and 26).  94 

To identify rhythmic transcripts, we used the RAIN algorithm (Thaben 95 

and Westermark, 2014). At false discovery rate (FDR) threshold of 0.1 we 96 

identified 1,057 rhythmic transcripts in DD and 929 in LL (Table S1, S2).  97 

Rhythmic transcripts (q < 0.1) were sorted by phase, peak shape, and 98 

significance, and plotted (Figure 2A). Examining the phase distribution (Figure 99 
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2B), it is apparent that the majority of transcripts show peak expression early in 100 

the subjective morning/afternoon or in the subjective night, with fewer 101 

transcripts peaking at intermediate times. This disparity in phase is greater in 102 

the transcripts which show rhythmic expression in both DD and LL; less than 103 

12% of transcripts in DD and less than 5% in LL show peak expression at 104 

intermediate times (Figure 2B). The majority of these transcripts (~87%) exhibit 105 

a similar (+-4 hrs) phase in LL to their phase in DD.  106 

Similarly to Drosophila (Hughes, et al. 2012) and mammals (Hughes, et al. 107 

2009), the majority of transcripts show only small cyclic changes in expression 108 

amplitude over the day; over 80% of reliably quantified (see Methods) 109 

transcripts in both conditions have amplitudes (peak expression divided by 110 

trough expression) of 2 or less. In both DD and LL, transcripts with exceptionally 111 

high amplitudes (> 4) are transcripts with unusually low or high measurements 112 

at isolated time-points with no obvious specific shared function. This is in 113 

contrast with results in Drosophila and mammals, where some core clock genes 114 

exhibit very high amplitude oscillations (Hughes, et al. 2009,Hughes, et al. 115 

2012,Li, et al. 2015).  116 

 117 

Canonical clock genes and comparison with Drosophila 118 

The canonical clock genes were examined for rhythmicity both at the transcript 119 

level and via an additional RAIN analysis at the gene level. The q-values (FDR 120 

adjusted p-values) for the canonical clock genes are shown in supplementary 121 

table S3. We found a rather limited evidence for rhythmicity in these genes 122 

which included pdp1e (q ~ 0.1, LL and DD), shaggy (q < 0.1, DD), and Clk (q ~ 0.1, 123 
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LL). At a less stringent FDR (1< 0.2), per, cyc, Dbt and cwo were rhythmic in DD, 124 

while cry and  cyc, were oscillating in LL.  125 

 126 

The most strongly associated cluster for the primary transcript (most highly 127 

expressed) of each gene is also shown in supplementary table S3, providing 128 

evidence that some clock genes are associated with clusters with rhythmic 129 

trends. For comparison between splice variants and conditions, median 130 

expression levels of the canonical clock genes and their transcripts for both DD 131 

and LL are shown in supplementary table S4. 132 

We compared the transcripts identified as cycling in Nasonia heads with 133 

the transcripts identified as cycling in Drosophila heads. For these purposes, we 134 

used a list of genes identified in a meta-analysis study of Drosophila circadian 135 

microarray data as being rhythmically expressed in either LD or DD (Keegan, et 136 

al. 2007). Of 173 genes identified as rhythmic in Drosophila, 33 genes 137 

(Supplementary table S5) were found to also be rhythmic in Nasonia (either in 138 

LL or DD, q < 0.1), no more than would be expected by chance (p = 0.11, 139 

hypergeometric test).  140 

 141 

Functions of rhythmic genes 142 

To capture the general functions that rhythmic genes may fulfil in Nasonia, we 143 

tested a broader set of rhythmic genes (< 0.2 FDR in RAIN) for GO term 144 

overrepresentation (Davies and Tauber, 2015a), revealing 94 GO terms 145 

overrepresented for genes rhythmic in DD (including ‘response to light stimulus’, 146 

‘proteasome complex’, and ‘generation of neurons’, Supplementary table S6)  and 147 

123 terms for genes rhythmic in LL (including ‘locomotion’,’proteasome 148 
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complex’, and ‘response to external stimulus’, Supplementary table S7), 25 of 149 

which were shared between both conditions (Figure 3). Shared terms include 150 

terms related to neurons, signal transmission, and responses to stimuli. Notably, 151 

all four Nasonia opsins were found to exhibit similar transcriptional profiles in 152 

LL and DD, with low expression in the morning and high expression in the 153 

evening.  154 

It has previously been demonstrated that the timing of different (or indeed 155 

opposing) biological processes can be controlled through the circadian 156 

regulation of  groups of genes (Sancar, et al. 2015,Zhang, et al. 2014). 157 

Unsupervised clustering methods have previously been established as a useful 158 

method for functional characterisation of circadian genes (Nguyen, et al. 2014). 159 

To establish whether temporal separation of functions occurs in Nasonia, we 160 

therefore returned to the expression clustering analysis. Firstly, we employed 161 

hypergeometric tests to identify clusters with an overrepresentation of rhythmic 162 

genes (Figure 4, Supplementary table S8 and S9). Clusters which were found to 163 

have a significant rhythmic component (q < 0.05, supplementary tables S8 and 164 

S9) were analysed for overrepresented GO terms. Examples of clusters with 165 

enriched functions include clusters DD7 and LL20 which are significantly 166 

enriched for catalytic activity GO terms, especially genes involved in the 167 

proteasome, and clusters DD24 and LL6 which are both involved in circadian 168 

and neural processes. Other clusters (DD1 and DD2) did not turn up any 169 

overrepresented GO terms and are thus likely comprised of genes with a wide 170 

range of functions. 171 

 172 
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Transcriptional differences between constant darkness and constant light 173 

To examine whether differences in circadian period seen in locomotor activity 174 

between DD and LL could also be detected in transcriptional rhythms, we fitted 175 

parametric models with a range of periods to transcripts rhythmic in both 176 

conditions (q < 0.1). For those transcripts with statistically significant fits to the 177 

model in both conditions (q < 0.1, see Methods), we took the period with the best 178 

fit and compared these periods between conditions. Overall, transcripts in LL 179 

showed a significantly (p < 3.9e-09, Wilcoxon rank sum test) shorter (median 180 

24) period than those in DD (median 25.4), mirroring the behavioural 181 

differences in period. 182 

We have also tested for differential expression between DD and LL. In the 183 

absence of biological replicates, we analysed differential expression using a fold-184 

change approach. We used 1.5 fold change as a cut-off for differential expression 185 

(Dalman, et al. 2012), yielding 1,488 genes expressed higher in DD than LL and 186 

971 genes expressed higher in LL than DD (Figure 5). Genes more highly 187 

expressed in DD were significantly enriched (q < 0.01) for genes involved in 188 

various forms of catalytic activity (Supplementary table S10), including the vast 189 

majority of proteasome genes (>75%). Genes more highly expressed in LL were 190 

enriched for a small number of terms including ‘plasmalemma’ and ‘sequence-191 

specific DNA binding’ (Supplementary table S11).  192 

Discussion 193 

This study provides the first insights into global transcriptional oscillation in 194 

Nasonia. With RNA-seq, we profiled the circadian transcription of >26,000 195 

transcripts in Nasonia in either DD or LL.  At a relatively stringent FDR (q < 0.1), 196 
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we identified 1,057 cycling transcripts in DD and 929 cycling transcripts in LL. 197 

These transcripts correspond to a cycling fraction of 6.7% and 5.9% of all 198 

transcripts analysed in DD and LL respectively. These figures are comparable to 199 

cycling fractions reported in various organisms and tissues, generally between 200 

2% and 10% of the transcriptome (Michael and McClung, 2003). 201 

In both conditions, cycling transcripts were found to cycle at low 202 

amplitudes (mostly < 2 fold) and with a limited, bimodal, range of phases. This is 203 

in contrast to microarray/RNA-seq studies in Drosophila, where transcripts were 204 

found to cycle with a broader range of phases (Rodriguez, et al. 2013) and 205 

studies in both mammals and Drosophila, which have identified a group of high-206 

amplitude (> 4-fold) cycling genes among the low-amplitude majority (Akhtar, et 207 

al. 2002). High amplitude cyclers typically include clock genes (Akhtar, et al. 208 

2002,Hughes, et al. 2012). The low oscillations of the Nasonia head 209 

transcriptome render the expression profiles of the canonical clock genes 210 

difficult to resolve (Covington, et al. 2008). This issue may also contribute to the 211 

discordance between the various circadian microarray studies in Drosophila 212 

(Keegan, et al. 2007).  213 

An emerging property of the circadian transcriptome in Nasonia is the 214 

temporal separation of function by phase (Fig 2). Notably, genes involved in 215 

catalytic activity were strongly overrepresented in morning-peaking transcripts. 216 

This is in line with other studies which show catalytic activity confined to the 217 

morning in fungi (Sancar, et al. 2015), in agreement with a general observation 218 

that an important (or even primary) function of circadian clocks (Hurley, et al. 219 

2015) is to temporally separate catabolism and anabolism. Although we did not 220 

detect an overrepresentation of anabolic genes within the cyclic transcripts, 221 
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expression clusters DD10 and LL24 (Supplementary figures S1 and S2) did show 222 

strong overrepresentation (Supplementary tables S12 and S13) for genes 223 

involved in cytosolic ribosomal genes (q < 3.e-56) and cellular anabolism (q < 2e-224 

06). These clusters exhibit an antagonistic expression pattern to the expression 225 

clusters containing the catabolic genes, suggesting that catabolism and 226 

anabolism are indeed separated by the circadian clock in Nasonia. 227 

 The comparison of expression between LL and DD reveals that a majority 228 

of genes involved in the proteasome and a broader set of genes involved in 229 

catabolism, are more highly expressed in DD than LL. As turnover rates of clock 230 

proteins have shown to be coupled with changes in the circadian period (Syed, et 231 

al. 2011,He and Liu, 2005), up-regulation of the proteasome may provide an 232 

explanation for differences in period observed between DD and LL.  233 

Although the similarity of genes which cycle in Drosophila and Nasonia is 234 

rather low, the functions fulfilled by CCGs in Nasonia are similar to the functions 235 

filled by CCGs in Drosophila. Examples of functions shared by CCGs in the 236 

Drosophila and Nasonia heads are: various aspects of metabolism (Rodriguez, et 237 

al. 2013,Ueda, et al. 2002,Ceriani, et al. 2002,Claridge-Chang, et al. 2001), 238 

phototransduction (Ueda, et al. 2002,Rodriguez, et al. 2013), synaptic/nervous 239 

functions (McDonald and Rosbash, 2001b,Ceriani, et al. 2002,Claridge-Chang, et 240 

al. 2001), oxidoreductase activity (Claridge-Chang, et al. 2001), mating behaviour 241 

(Rodriguez, et al. 2013), and immunity (McDonald and Rosbash, 2001b,Ceriani, 242 

et al. 2002). 243 

We identified cycling of genes involved in response to light, particularly 244 

all four Nasonia opsins. These opsins, along with associated gPCRs, cycle with a 245 

similar phase and are all more highly expressed in LL than in DD (Supplementary 246 
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figure S6). Daily and circadian changes in opsin expression have been 247 

demonstrated in other organisms (e.g. mice (Bowes, et al. 1988) , zebrafish (Li, et 248 

al. 2005), honeybee (Sasagawa, et al. 2003)), and opsin expression is generally 249 

found to be up-regulated in response to light (Yan, et al. 2014). Characterising 250 

the opsins in Nasonia is likely to provide insights into the light input pathway 251 

into the clock, particularly as Nasonia does not possess other obvious light input 252 

candidate genes such as Drosophila-like CRY1 (Bertossa, et al. 2014) or Pteropsin 253 

(Velarde, et al. 2005) (Supplementary figure S6). 254 

Data availability 255 

We have made the expression profile for each transcript in both conditions 256 

available on WaspAtlas (Davies and Tauber, 2015b). Data have been archived in 257 

the NCBI short read archive (SRA), with accession number(s) [].  258 

Methods 259 

Maintenance and sample collection 260 

Stocks of Nasonia vitripennis (strain AsymCX) were maintained at 25°C on 261 

blowfly pupal hosts in 12:12 light:dark cycles. To obtain male wasps for 262 

experiments, groups of eight females were isolated at the yellow pupal stage and 263 

transferred onto fresh hosts upon eclosion. The resulting male progeny were 264 

collected upon eclosion and moved onto vials with a 30% sucrose agar medium, 265 

in groups of 20. During entrainment (four full days in an LD 12:12 cycle) and 266 

collection, wasps were kept in four light boxes in the same incubator at 19°C. 267 

Starting at CT1, wasps were collected every four hours and snap-frozen in liquid 268 

nitrogen and immediately transferred to -80°C. Wasps were collected 269 

sequentially from light box to light box every four hours to minimise disturbance 270 
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of wasps, and so that wasps were collected from each light box once every 16 271 

hours, thereby minimising the effect of variations within light boxes. 272 

Temperature and light recordings were taken during the experiment, and can be 273 

viewed in Supplementary file S2. To verify that wasps entrained correctly to the 274 

experimental conditions and that free-running behaviour was as expected, 275 

individual male wasps were isolated and locomotor activity was monitored. 276 

Behavioural recordings of individual male wasps in experimental conditions can 277 

be seen in Supplementary figure S7, ruling out behavioural differences caused by 278 

inter light box variations in light intensity in LL, though not transcriptional 279 

differences. 280 

 281 

RNA extraction, sequencing, and read mapping 282 

RNA was extracted from pooled groups of 50 heads for each sample, using Trizol 283 

RNA extraction protocol, and followed by clean-up using the RNAeasy spin 284 

column kit (Qiagen). Samples were polyA selected and sequenced at Glasgow 285 

Polyomics (University of Glasgow, United Kingdom) on the Illumina NextSeq500 286 

platform, resulting in approximately 20 million 75bp paired-end reads per 287 

sample. 288 

Read mapping was achieved with Tophat2 (v2.1.0)(Trapnell, et al. 2012) 289 

against the Nasonia Nvit_2.1 NCBI annotation. As the purpose of this study was 290 

not to identify novel splice variants or improve on existing annotation, novel 291 

junction detection was disabled for accurate quantification of known transcripts. 292 

Mean mapping efficiency was above 90% for both conditions (Supplementary 293 

table S14). Read quantification was performing using the DEseq normalisation 294 
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method (Anders and Huber, 2010). All 24 samples from both conditions were 295 

grouped together to allow comparison between as well as within conditions.  296 

 297 

Expression profile clustering 298 

Isoform expression profiles were first filtered to include only those isoforms 299 

with no missing values at any time-point in either condition. Expression values 300 

were standardised using the ‘Standardise’ function in Mfuzz (Kumar and E 301 

Futschik, 2007). The ‘cselection’ function in Mfuzz was used to select an 302 

appropriate c-value for the c-means clustering (default parameters; m=1.25). 303 

Based on this analysis, thirty fuzzy clusters were generated for each condition 304 

using the fuzzification parameter m=1.25.  305 

 306 

Rhythmic expression analysis 307 

RAIN (Thaben and Westermark, 2014) was used on all filtered isoforms (i.e. 308 

those with no missing values at any timepoint) in either condition to detect 309 

rhythmic isoforms at a period of 24 hours. As a non-parametric method, RAIN 310 

only facilitates detection of rhythmic isoforms with periods which are a multiple 311 

of the sample resolution (in this case 4 hr). The p-values produced by RAIN were 312 

corrected to q-values using the Benjamini-Hochberg method (Benjamini and 313 

Hochberg, 1995). This method was repeated using expression values for genes 314 

rather than transcripts for the clock gene analysis (i.e. the summed expression 315 

values for all known transcripts of a particular gene).  316 

 Maximum fold changes in expression were calculated by normalising per-317 

condition expression values by the median value and calculating the ratio from 318 

the lowest expression over 48 hours to the highest. Reliably quantified 319 
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transcripts are defined as those those transcripts where the absolute FPKM 320 

value is 5 or above at all timepoints, the threshold for this set at a similar level to 321 

other analyses (Hughes, et al. 2012).  322 

 To analyse the period of rhythmic transcripts, we fitted parametric 323 

waveforms with a variety of periods (20 to 28 hrs in steps of 0.2 hrs) to all 324 

transcripts identified as rhythmic (q < 0.1) in both conditions. This FDR 325 

threshold is in line with, or more strict, than thresholds chosen in other similar 326 

studies (Hughes, et al. 2012,Huang, et al. 2013,Keegan, et al. 2007). Those 327 

transcripts (85 in total) which showed a significant (q < 0.1) fit to the model in 328 

both conditions were analysed in terms of their best fitting period.   329 

 GO term overrepresentation was performed in WaspAtlas (Davies and 330 

Tauber, 2015b) using the Nvit_2.1 NCBI annotation dataset. All hypergeometric 331 

tests were performed within R using the ‘phyper’ function. Clusters with 332 

rhythmic components were identified by collapsing the fuzzy clusters into hard 333 

clusters using the ‘cluster’ property of the Mfuzz object, performing 334 

hypergeometric tests to identify clusters with enrichment for rhythmic 335 

transcripts. Thirty tests were performed for each condition (i.e. for all clusters), 336 

and were corrected per-condition using the Benjamini-Hochberg method in R (R 337 

Development Core Team, 2008).   338 

 For comparison to microarray studies, orthologs for Drosophila 339 

melanogaster were obtained from a meta-study of circadian microarray data 340 

(Keegan, et al. 2007). The 214 obtained FlyBase identifiers were converted to the 341 

latest identifiers using the validation tool, resulting in 218 unique identifiers (the 342 

increase in identifiers can be attributed to previous identifiers referring to 343 

multiple genes in the current annotation). Orthologs for these Drosophila genes 344 
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were obtained through WaspAtlas, retrieving orthologs for 135 genes which 345 

mapped to 173 unique Nasonia genes due to gene duplications, etc. This set of 346 

173 genes was compared with the number of genes with rhythmic transcripts 347 

that would be expected by chance using a hypergeometric test.  348 

 349 

Phylogenetic analysis of opsin genes 350 

Opsin genes were searched for using NCBI BLASTP using six species; Apis 351 

mellifera, Bombyx mori, Drosophila melanogaster, Mus musculus, Nasonia 352 

vitripennis, and Homo sapiens, using the Nasonia Lop1 protein sequence as a 353 

query. BLAST results were inspected and 7e-19 was chosen as an appropriate 354 

cut-off to include all opsin sequences. Sequences were aligned by ClustalW in 355 

MEGA (Tamura, et al. 2007) and a maximum likelihood tree generated using 356 

default parameters. Duplicated sequences were manually removed, and 357 

sequences renamed for display on the tree. Full protein name to shortened 358 

display name translations can be found in supplementary table S15. 359 

 360 
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Figure legend 

Figure 1. Free-run behavioural rhythm in Nasonia. Representative actograms of 

individual Nasonia males in DD (left) and LL (right). Activity counts were sorted 

into 30 minute bins and plotted in blue. Yellow and grey backgrounds indicate 

lights on and lights off respectively. Gray and black bars below the actogram 

indicate the 12 hr subjective day and night. 

 

Figure 2. Circadian transcriptional rhythms. (A) Heatmap of median-normalised 

expression of rhythmic (q < 0.1) transcripts in both constant darkness and 

constant light. (B) Histograms and heatmap of phases of rhythmic transcripts (q 

< 0.1 in both conditions), showing bimodal phase distribution and overlap 

between the two conditions. 

 

Figure 3. Enrichment of GO terms among cycling transcripts. (A) Bar plot of 10 

top overrepresented GO terms (by gene proportion) for both DD and LL 

rhythmic genes. (B) Euler diagram showing the overlap of overrepresented 

terms in DD (blue) and LL (red). 

 

Figure 4. Normalised expression of clusters with significant (q < 0.01) 

overrepresentations of rhythmic genes. Each transcript profile in each cluster is 

coloured by that gene’s membership of the cluster. 

 

Figure 5. Comparison of the DD and LL transcriptomes. (A) FPKM (log2) 

expression of transcripts in DD (x axis) and LL (y axis), showing genes classified 
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(> 1.5 median fold change) as differentially expressed up in DD (blue) and up in 

LL (red). (B) Selected overrepresented (q < 0.01) GO terms for genes more 

highly expressed in DD. (C) Heatmap showing median-normalised expression for 

differentially expressed transcripts, in DD (left) and in LL (right), sorted by fold 

change. 
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