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ABSTRACT 

Prokaryotic cell-free systems are currently heavily used for the production of 

protein that can be otherwise challenging to produce in cells. However, historically cell-

free systems were used to explore natural phenomena before the advent of genetic 

modification and transformation technology. Recently, synthetic biology has seen a 

resurgence of this historical use of cell-free systems as a prototyping tool of synthetic 

and natural genetic circuits. For these cell-free systems to be effective prototyping tools, 

an understanding of cell-free system mechanics must be established that is not purely 

protein-expression driven. Here we discuss the development of E. coli-based cell-free 

systems, with an emphasis on documenting published extract and energy preparation 

methods into a uniform format. We also discuss additional considerations when 

applying cell-free systems to synthetic biology.  
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INTRODUCTION 

Cell-free systems have historically been a fundamental tool for biological 

research. This was partially a necessity, as transformation technologies to introduce 

DNA into E. coli (Mandel & Higa, 1970) and modern recombinant DNA technology 

(Smith & Welcox, 1970) were not available until 1970. As a result, many scientific 

phenomena were limited to probing in crude lysates. The most-well known is 

Nirenberg’s use of a cell-free system to decipher the genetic code for the Nobel Prize in 

Medicine in 1968 (Nirenberg & Matthaei, 1961).  

When recombinant DNA technology became mainstream and working in cellular 

hosts the norm, cell-free systems were relegated to the production of hard-to-produce or 

high-value proteins such as antibodies (Ryabova, Desplancqh, & Spirin, 1997; Yin et al., 

2012) or cytotoxic agents (Martemyanov, Shirokov, Kurnasov, Gudkov, & Spirin, 2001; 

Salehi et al., 2016). Significant field focus has been on producing large amounts of 

proteins, either by engineering of the cell-free system itself (Kigawa, Yabuki, Yoshida, 

Tsutsui, & Ito, 1999) or through assisted methods of production (Spirin, Baranov, 

Ryabova, & Ovodov, 1988a). These methods all utilize the ability of cell-free systems to 

efficiently produce protein without interference from cellular growth and metabolism. In 

addition, many systems are driven by T7 RNA polymerase expression (Krieg & Melton, 

1987) to encourage as much protein production as possible. Completely “synthetic” cell-

free systems from purified components (Shimizu et al., 2001) have also been developed 

for hard-to-produce proteins. 

There has been a recent resurgence of using cell-free systems as a fundamental 

tool. An overview contrasting this approach to utilizing systems for expression is given 

in Figure 1. The goal is similar to original applications probing biological phenomena, 

but motivated by modern-day synthetic biology tools of DNA sequencing, synthesis, and 

assembly. The first implementation of this was in 2003, with genetic circuits in cell-free 

(Noireaux, Bar-Ziv, & Libchaber, 2003), followed by the high expression of native 

sigma70 promoters (Shin & Noireaux, 2010) and the implementation of a panel of native 

circuits (Shin & Noireaux, 2012). By uncoupling protein expression activity from cell-

growth requirements and opening the system to external manipulation and perturbation, 
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cell-free is increasingly being used as a “prototyping environment,” or an environment 

for testing hypotheses before final implementation (in a cell, or a cell-free environment) 

(Niederholtmeyer, Sun, Hori, & Yeung, 2015; Takahashi et al., 2014). The emphasis in 

this application is less on protein production and more on the data collected from the 

cell-free system itself.  

In this review, we focus on the development and application of cell-free systems 

in synthetic biology. This diverges from, but builds off of previous in-depth reviews that 

take a broad-focus of cell-free systems as an expression platform (Carlson, Gan, 

Hodgman, & Jewett, 2012; Hodgman & Jewett, 2012; James R Swartz, 2012; Jim 

Swartz, 2006) or focus on engineering in cell-free (Takahashi et al., 2015). In doing so, 

we will explore the extensive prior research in cell-free system production and energy 

regeneration, as well as methods of executing cell-free reactions.   

 

Figure 1. 
Overview of cell-
free expression 
process. 
Execution is split 
into expression 
(left) and 
prototyping (right). 
On the right, the 
prototyping of a 3-
node oscillator is 
represented. 
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E. coli  EXTRACT PREPARATION METHODS 

Since the earliest method for the cell-free synthesis of proteins was published by 

Nirenberg in 1961 (Nirenberg & Matthaei, 1961), numerous modified and improved 

protocols have been created. A detailed system published by Zubay in 1973 became 

what is considered to be the standard “S30” protocol upon which subsequent protocols 

were based (Spirin & Swartz, 2008; Zubay, 1973).  

Generally, these protocols share a common schematic with the following 

features: a specific strain of E. coli upon which the extract is based, a strategy for cell 

culture, an elected method for cellular lysis, a centrifugation step to clarify the lysate, a 

heat incubation (run-off), dialysis, and post-dialysis clarification. Although this remains a 

fairly faithful general representation of the extract preparation process, none of these 

parameters were left unexplored in later iterations of the cell-free system and 

accordingly, current protocols do deviate from this paradigm. We parse extract 

production into the component pieces specified and evaluate the developments 

targeting each step (Figure 2). 

 

Figure 2. Flow-chart schematic for extract preparation. Preparation is divided into: 
strain (red), growth conditions (orange), lysis (yellow), clarification (green), runoff 
determination (blue), and dialysis (purple). 
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Strain selection 
 

Selection of model organism is critical as different E. coli strains offer a variety of 

different advantages over one another. Strains are differentiated by their engineered 

traits, some of which are very conducive to the controlled expression of protein. Choice 

of organism presents the first unit of modularity in the construction of cell-free systems. 

Engineered properties critical to the development of new applications can be directly 

conferred from engineered strains to their extracts. E. coli extracts have been 

successfully produced from a number of different cell strains. We divide strain selection 

into 4 overlapping areas:  protein production-optimized strains, application-specific 

strains, generic strains, and pre-programmed pathway strains. Common genes over-

expressed and under-expressed are in Table 1, and common strains are in Table 2. 

 

Protein production optimized strains 

Increasing protein production yield has been one of the main focuses of cell-free 

optimization. Many of the strain modification findings in this area were pioneered by 

Swartz and colleagues from 2004 onwards. Earlier efforts on engineering cell-free 

systems focused on utilizing physical systems (D. M. Kim & Choi, 1996; Spirin, 

Baranov, Ryabova, Ovodov, & Alakhov, 1988b)) and engineering energy regeneration 

(Kigawa et al., 1999; Ryabova, Vinokurov, Shekhovtsova, Alakhov, & Spirin, 1995). 

However, in 2004 a seminal paper from Swartz et al. described deletions in genes 

encoding for amino acid degradation enzymes, thereby stabilizing amino acid supply 

and protein production (Michel-Reydellet, Calhoun, & Swartz, 2004). The paper 

identified four limiting amino acids: arginine, serine, tryptophan, and cysteine. Arginine 

was stabilized by removing speA, a gene encoding for a arginine decarboxylase, 

thereby inhibiting the conversion of arginine to putrescine. Serine was stabilized by 

removing serine deaminases sdaA and sdaB, inhibiting the conversion of serine to 

pyruvate. Tryptophan was stabilized by removing tnaA. There was an additional attempt 

to stabilize cysteine, but deletions in tnaA and yfhQ failed to achieve desired results. A 

follow-up paper identified a deletion in gshA, a glutamate-cysteine ligase, as the 
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cysteine degradation culprit (Calhoun & Swartz, 2006). The resulting strain was named 

KC6 (Calhoun & Swartz, 2005a; Michel-Reydellet et al., 2004). 

To stabilize templates off of which DNA can be translated, the lambda-phage 

cluster has also been inserted into strains made into cell-free lysates (Michel-Reydellet, 

Woodrow, & Swartz, 2005), creating the NMR5 strain. The insertion of lambda-phase 

cluster represented one of the first strain-engineering attempts at stabilizing linear DNA. 

Although the cluster was identified as exo and beta in (Michel-Reydellet et al., 2005), 

earlier efforts revealed gam, when added in purified form, to be the main RecBCD 

inhibitor and linear DNA stabilizer (Sitaraman et al., 2004). 

Separately, work from the Kim (HJ) lab in 2005 identified strains with the 

overexpression of molecular chaperones capable of reducing aggregation and improve 

solubility of eukaryotic proteins such as human erythropoietin (Kang et al., 2005). The 

work inserted plasmids to overexpress chaperone and heat-shock genes groEL/ES, 

dnaK/J and grpE, or dsbC. Interestingly, the Kim group also explored the creation of 

extracts from the Origami strain (Novagen) that encourages disulfide bond formation. 

The roles of proteins trxB, gor, and dsbC would for later formally explored in the context 

of disulfide bond formation in (Knapp, Goerke, & Swartz, 2007). 

With the success in engineering amino acid stability, high-throughput approaches 

for determining positive and negative factors to cell-free expression was explored. In a 

first attempt, Woodrow et al. expressed 55 genes from E. coli off of linear DNA 

templates in NMR5, and demonstrated gene expression (Kim A Woodrow, Isoken O 

Airen, & Swartz, 2006). This work was followed by an expression of 49 genes affecting 

transcription, folding, energy, and cell-division, coupled to a selective degradation of 

linear templates with DpnII (on methylation pattern) and a subsequent analysis of cell-

free yields (Woodrow & Swartz, 2007). In a final iteration, Airen (in unpublished but 

peer-reviewed thesis work) expressed 3,789 E. coli open reading frames, identifying 79 

positive effectors and 60 negative effectors (Airen, 2011). Using this information on 

negative effectors, 4 mutant strains were made that, when combined with (1) 

supplementation with positive effectors, (2) stabilization of pH, (3) substrate 

replenishment, and (4) mRNA stabilization were able to increase expression 3-4-fold. 
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While strains with 4 negative effectors removed, pnp, rnb, raiA, and mazG, did not result 

in significant increased expression, supplementation in ibpA, ibpB, if-1, if-2, if-3, and ef-

tu demonstrated increased yields (Airen, 2011; Woodrow & Swartz, 2007). Negative 

effectors rna, rnb, csdA, mazF, and endA have also been removed from newer MAGE-

recoded (H. H. Wang et al., 2009) strains, resulting in increased fluorescent protein 

yield. rna and rnb code for RNAses, csdA for a cold-shock protein that degrades mRNA, 

mazF for a RNA-degrading toxin, and endA for a dsDNA endonuclease (Hong et al., 

2015). 

 

Application specific strains 

Strain modifications have also been explored to enable the expression of 

proteins with disulfide bonds. Disulfide bonds are a common feature of mammalian 

proteins, but are difficult to implement in cell-free due to rapid reduction in vitro (Jim 

Swartz, 2006).  While iodoacetamide treatment can inactive thiols responsible for 

reducing disulfide bonds (Yin & Swartz, 2004), the treatment globally targets –SH 

groups and can result in non-specific inactivation of critical enzymes (such as DsbC and 

G-3PDH) (Knapp et al., 2007). A workaround was through the creation of a deletion 

mutant of trxB (thioredoxin reductase) and gor (glutathione reductase) and 

supplementation with DsbC. Critically, trxB is tagged with a hemagglutinin tag to allow 

for it to be present during cell growth but removed after cell-free processing, as a double 

trxB gor knockout causes ahpC to mutate to a potent disulfide reductase (Knapp et al., 

2007). It is noted that this genotype closely represents the Origami strain (Novagen) 

that contains knockouts of trxB and gor with suppressor mutations in ahpC, and was 

demonstrated successfully for cell-free production two years prior (Kang et al., 2005). 

The resulting strain (KGK10) or findings from engineering the strain form the basis for 

current production efforts of disulfide bond proteins. Commercially, Sutro Biopharma 

utilizes variants of the strain for producing cytokine rhGM-CSF at 200L scale (Zawada, 

Yin, Steiner, & Yang, 2011) and producing antibody fragment light and heavy chains 

(Yin et al., 2012). 
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Generic strains 

While strains can be specifically engineered for protein production or for specific 

applications, there is also a focus on using “generic” strains for cell-free prototyping. 

Reasons for using generic strains rather than specialized strains include: (1) Lack of 

need of high protein expression, and (2) the desire to maintain prototyping fidelity 

between in vitro and in vivo. Generic strains such as K19, first introduced in 1966 

(Gesteland, 1966), have been commonly used (Kigawa et al., 1999; D.-M. Kim, Kigawa, 

Choi, & Yokoyama, 1996), as well as MRE-600 (Spirin et al., 1988a), BL21-derivatives 

(CP strains (Kigawa, Yabuki, Matsuda, Matsuda, Nakajima, Tanaka, & Yokoyama, 

2004a), Rosetta strains ((de los Santos, Meyerowitz, Mayo, & Murray, 2015; Shin & 

Noireaux, 2012; Sitaraman et al., 2004; Sun et al., 2013; Sun, Yeung, Hayes, Noireaux, 

& Murray, 2014; Takahashi et al., 2014)), DE3 strains ((Karim & Jewett, 2016; Kwon & 

Jewett, 2015; Kwon et al., 2013), Origami strains ((Kang et al., 2005)), and K12 

MG1655 (Kwon & Jewett, 2015). These generic strains can be chosen for favorable 

properties of growth; for example, the Rosetta derivatives provide rare tRNAs, DE3-

derivatives provide T7 RNA Polymerase, BL21-derivatives are optimized for protein 

production, and Origami derivatives optimize for disulfide bond formation with txrB and 

gor deletions. However, selection does not need to be limited to widely recognized sub-

strains. For example, cells with lacI, araC, and tetR knockouts such as JS006 (Stricker 

et al., 2008) have been made into extracts to build oscillators that require exogenous 

lacI (Niederholtmeyer et al., 2015). In the reverse case, ExpressIQ (lacIQ) has been 

used to shut-down operons that are lacI sensitive (Sun, Kim, Singhal, & Murray, 2015). 

Commercially, cells optimized for 1,4-BDO production were used by Genomatica as the 

starting strain for lysis, to test hypotheses of expression efficiency (Fischer, 2016; 

Schilling, 2015). If using cell-free as a prototyping platform, where the data collected 

from cell-free systems is critical, the selection of strain is driven by the final in vivo 

implementation.  

 

Pre-programmed pathway strains 
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Recently, strains with complete pathways already present have also been made 

into cell-free systems for the purposes of driving production of a specific product. This is 

distinct from directed cell-free synthesis of products by the combination of separate cell-

free lysates, each with a single enzyme to drive catalysis, as exemplified by Zhang 

(YHP) and colleagues ((Rollin et al., 2015; Y. Wang, Huang, Sathitsuksanoh, Zhu, & 

Zhang, 2011).  

Greenlight Biosciences has pioneered a unique method to produce cell-free 

systems pre-programmed with metabolic pathways of the product of interest, where 

energy flux is solely directed towards producing the product (and not towards cellular 

growth). This is achieved by compartmentalizing the cell into a cytoplasm and a 

periplasm, where the cytoplasm contains the pathway of interest without a key enzyme 

and the periplasm contains the key enzyme and proteases against tagged proteins that 

are essential for cellular growth and function (but divert metabolic flux in vitro) (James R 

Swartz, 2012). Upon lysis, both compartments are brought together. The protease can 

then degrade the tagged growth-related proteins, while the key enzyme can run the 

pathway. This process can be achieved by engineering the strain to have protein 

degradation tags on growth-related proteins and periplasm-export tags on key enzymes. 
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Table 1. Genes commonly over-expressed or under-expressed in engineered cell-
free strains. Citations indicate where more information about the gene in the context of 
cell-free can be found. 
Gene Description Citation 
ackA+ acetate kinase, added to increase yield (Airen, 2011)  
csdA- cold shock degradosome protein, removed to prevent mRNA 

decay during preparation 
(Hong et al., 2015) 

dnaJ+ chaperone protein, added to assist folding with dnaK, grpE (Kang et al., 2005) 
dnaK+ chaperone protein, added to assist folding with dnaJ, grpE (Kang et al., 2005) 
dsbC+ disulfide isomerase, added for disulfide bond formation (J. Yang, Kanter, Voloshin, 

Levy, & Swartz, 2004; Yin & 
Swartz, 2004) 

ef-tu+ translation factor, added to increase yields (most abundant 
protein in cell, potentially rate-limiting) 

(Airen, 2011; Woodrow & 
Swartz, 2007) 

endA- endonuclease, removed for plasmid stability (Michel-Reydellet et al., 2004) 
gamS+ lambda gam, added to protect linear DNA (Michel-Reydellet et al., 2005; 

Sitaraman et al., 2004; Sun et 
al., 2014) 

gorB- glutathione reductase, removed to prevent disulfide bond 
persistence 

(Kang et al., 2005; Knapp et al., 
2007) 

groEJ+ chaperone protein, added to assist folding with groEL+ (Kang et al., 2005) 
groEL+ chaperone protein, added to assist folding with groEJ+ (Kang et al., 2005) 
grpE+ heat shock protein, added to assist folding with dnaJ, dnaK (Kang et al., 2005) 
gshA- glutamate-cysteine ligase, removed to stabilize cysteine  (Calhoun & Swartz, 2006) 
hchA+ chaperone protein, added to increase solubility and yield (Airen, 2011)  
ibpA+ small heat shock protein (chaperone), added to increase 

solubility and yield 
(Airen, 2011)  

ibpB+ small heat shock protein (chaperone), added to increase 
solubility and yield 

(Airen, 2011)  

If-1+ initiation factor 1, added to increase yield (Airen, 2011)  
If-2+ initiation factor 2, added to increase yield (Airen, 2011)  
If-3+ initiation factor 3, added to increase yield (Airen, 2011; Kim A Woodrow et 

al., 2006; Woodrow & Swartz, 
2007) US 20130316397 

lacI- lacI repressor, removed to prevent interference with lacI-
expressing circuits 

(Niederholtmeyer et al., 2015) 

mazF- mazF toxin, removed to prevent mRNA degradation at ‘ACA’ 
sites 

(Hong et al., 2015) 

met+ P1 selection marker, engineering scar (Michel-Reydellet et al., 2004) 
recD- recD, removed to protect linear DNA (ineffective) (Michel-Reydellet et al., 2005) 
rna- RNAse A, removed for RNA stability (Gesteland, 1966; D.-M. Kim et 

al., 1996) 
rnb- RNAse II, removed for RNA stability (Hong et al., 2015; Woodrow & 

Swartz, 2007) 
rpfA- release factor 1, removed to encourage nsAA incorporation (Hong et al., 2014) 
sdaA- serine deaminase, removed to stabilize serine (Michel-Reydellet et al., 2004) 
sdaB- serine deaminase, removed to stabilize serine (Michel-Reydellet et al., 2004) 
speA- arginine decarboxylase, removed to stabilize arginine (Michel-Reydellet et al., 2004) 
tnaA- tryptophanase, removed to stabilize tryptophan (Michel-Reydellet et al., 2004) 
tonA- outer membrane protein, engineering scar (Michel-Reydellet et al., 2004) 
trxB- thioredoxin reductase, removed post-growth with HA tag to (Kang et al., 2005; Knapp et al., 
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HA prevent disulfide bond persistence 2007) 
 

Table 2. Commonly used strains, with genotypes. Citations indicate originally 
developed locations and/or application 
Strain  Genotype Citation 
BL21-
Rosetta2 

F- ompT hsdSB(rB
- mB

-) gal dcm (DE3) pRARE2 
(Novagen) 

(Shin & Noireaux, 2010; 2012; 
Sun et al., 2014) 

JS006 MG1655 araC- lacI- (Niederholtmeyer et al., 2015; 
Stricker et al., 2008) 

K12-A19 rna- gdhA2 relA1 spoT metB1 (Gesteland, 1966; D.-M. Kim et 
al., 1996)  

KC1 A19 speA- tnaA- tonA- endA- sdaA- sdaB- met+ (Michel-Reydellet et al., 2004) 
KC6 KC1 gshA- (Calhoun & Swartz, 2005a) 
KG6-der. KC6 rnb- ackA+ ef-tu+ hchA+ ibpA+ ibpB+ if-1+ if-2+ 

if-3+ 
US20130316397 

KGK10 KC6 gorB- trxB-HA (Knapp et al., 2007; Knapp & 
Swartz, 2007; Yin et al., 2012; 
Zawada et al., 2011) 

NMR1 A19 endA- met+ (Michel-Reydellet et al., 2004) 
NMR2 A19 speA- tnaA- tonA- endA- met+ (Michel-Reydellet et al., 2004) 
NMR4 A19 recD- endA- met+ (Michel-Reydellet et al., 2005) 
NMR5 A19 lambda-phage<>recBCD met+ (Michel-Reydellet et al., 2005) 
S30BL/Dna BL21(DE3) dnaK/J+ grpE+ (Kang et al., 2005) 
S30BL/DsbC BL21(DE3) dsbC+ (Kang et al., 2005) 
S30BL/GroE BL21(DE3) groEL/ES+ (Kang et al., 2005) 
S30OB F- omp ThsdSB(rB

- mB
-) gal dcm lacY1 

ahpC (DE3) gor522:: Tn10 trxB (Novagen) 
(Kang et al., 2005) 

S30OB/Dna S30OB dnaK/J+ grpE+ (Kang et al., 2005) 
S30OB/DsbC S30OB dsbC+ (Kang et al., 2005) 
S30OB/GroE S30OB groEL/ES+ (Kang et al., 2005) 
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Growth conditions 

Growth volume 

Historically, fermenters have been used to produce cell biomass. The original 

protocols utilized fermenters of up to 10 L in size to grow cells (Zubay, 1973). Building 

off of this, Swartz et al. demonstrated a 10 L scale (20 g/L wet pellet cell mass), which 

produced similar cell-free protein yield as shake-flask growth (Zawada & Swartz, 2005), 

but with the advantage of denser OD collection. The same protocol is cited by Sutro 

Biopharma in (Zawada et al., 2011), but utilizing a 200 L bioreactor also custom-

retrofitted with baffles. In both cases, feed rates of glucose are controlled to prevent 

acetate accumulation. Fermenters can be used to scale up biomass production, but 

suffer from increased labor and monitoring needed to collect data. 

In lieu, growth can be conducted on a shake-flask scale (1 L of cell culture in a 

2.8 L – 4 L Erlenmeyer flask), which yields about 1-2 mL of crude extract per L (Sun et 

al., 2013). Shake-flasks allow for quick production of biomass without fermenter 

maintenance. Protocols are focused on maintaining fast growth and aeration before 

capture at culture mid-log phase, and thus typically use baffled flasks. Examples of 

protocols using shake-flasks can be found at (Kigawa, Yabuki, Matsuda, Matsuda, 

Nakajima, Tanaka, & Yokoyama, 2004b; Sun et al., 2013; W. C. Yang, Patel, Wong, & 

Swartz, 2012). 

 For smaller volumes, a recent protocol by Kwon and Jewett demonstrates the 

first rapid production of cell-free at the 10 mL culture tube, allowing for the rapid 

exploration of ~100 strains per day using basic, readily available equipment (sonicator, 

small shaker, tabletop centrifuge) (Kwon & Jewett, 2015). Expression levels from the 10 

mL scale produce comparable protein to the 10 L scale. By allowing for small-scale but 

high throughput production, Kwon and Jewett’s protocol scales cell-free expression for 

exploring multiple rapidly-engineered strains or conditions. 
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Growth media 

While older protocols utilized 28°C growth (Zubay, 1973), the current standard 

protocol utilizes 37°C growth to encourage rapid protein production. This is driven by 

the knowledge that ribosome concentration correlates directly with growth rate 

(Bosdriesz, Molenaar, Teusink, & Bruggeman, 2015). There is evidence that 

temperature, effecting growth rate, has a direct correlation with extract productivity. In 

particular, Kigawa and colleagues have found that extracts have a linear productivity 

from 20°C to 37°C of growth, where CAT production yield at 20°C is 66% that of 37°C 

(Seki, Matsuda, Yokoyama, & Kigawa, 2008). Similarly, Nakano’s lab identified amino-

acid supplemented growth conditions that enabled cell-free growth of A19 at 42°C, 

yielding 40% more CAT production yield compared to 37°C growth (Yamane, Ikeda, 

Nagasaka, & Nakano, 2005). However, to date we are not aware of other protocols 

utilizing 42°C growth.  

 Growth medias vary from extract to extract perpetration, although in general 

medias used are complex, non-defined mixtures such as LB, 2xYT, etc. (Spirin & 

Swartz, 2008). Medias can be supplemented for limiting reagents; for example, 

asparagine, glutamine, and tryptophan (Yamane et al., 2005) is added to a complex 

media to encourage faster growth. For specific applications such as fermenter growth, 

glucose and amino acid concentration can be selectively monitored and fed to prevent 

acetate accumulation (Zawada & Swartz, 2005). In addition, in 2000 Kim and Choi 

identified the addition of phosphate and glucose to a 2xYT media (named 2xYT-PG) to 

be suppressive of phosphatase activity in the resulting extracts (R. G. Kim & Choi, 

2000). Phosphatase activity was found to consume energy sources PEP and amino 

acid cysteine. The group’s working hypothesis was supplementation of phosphate and 

glucose would prevent the cell from making its own phosphatases to produce inorganic 

phosphate. This media forms the basis for most modern cell-free preparations. It is 

noted that cell-free formulations for prototyping to-date have removed glucose from the 

media (Caschera & Noireaux, 2015; Shin & Noireaux, 2010; Sun et al., 2013) for 

unknown reasons. 
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Lysis methods 

Following culture, a number of options exist for lysing the cells and harvesting. 

Considerations of note when selecting a lysis method are lysis efficiency, scaling 

potential, ease of use, and preservation of native cell components. Different lysis 

techniques have different pros and cons and consequently, different protocols have cell 

disruption methods tailored to their applications. There has been relatively little 

innovation in this area; reviews addressing general cell lysis, such as one from 1986, 

provide good overviews of the different methods (Chisti & Moo-Young, 1986). We divide 

our discussion of lysis methods into five categories: mechanical (non-pressure), 

mechanical (pressure), acoustic, temperature, and chemical. 

 

Mechanical (non-pressure-based) lysis 

Mechanical methods utilize a grinding mechanism of action. These techniques 

involve the agitation of a suspension of cells in the presence of ceramic/glass beads, 

the motion of which results in crushing and grinding forces that break apart the cells and 

efficiently shears DNA (Miller, Bryant, Madsen, & Ghiorse, 1999). Industrial scale bead-

mills have been deployed for cellular lysis (Chisti & Moo-Young, 1986), although the use 

of “Bead-beater” type desktop devices have been preferred (Thompson & Chassy, 

1981) and adopted in cell-free protocols (Kigawa, Yabuki, Matsuda, Matsuda, Nakajima, 

Tanaka, & Yokoyama, 2004b; Shrestha, Holland, & Bundy, 2012; Sun et al., 2013). 

Beads are easily separated from the lysate by centrifugation/filtering and no expensive 

equipment is required, greatly reducing the financial barrier of entry into cell-free 

biology. The protocol also has utility in lysing non-E. coli such as cyanobacteria (Mehta, 

Evitt, & Swartz, 2015) and environmental samples from soil (Yeates, Gillings, Davison, 

Altavilla, & Veal, 1998). To maintain high protein concentrations necessary for cell-free 

expression, beads can also be filtered out of solutions post-processing (Sun et al., 

2013). As is the case with all mechanical lysis methods, localized sample heating that 

may denature native proteins is a concern in bead beating methods (Shrestha et al., 

2012). This problem is circumvented by limiting lysis to short bursts and by incubating 

the samples on ice between bursts (Sun et al., 2013). Perhaps the largest drawback to 
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this method of lysis is difficulty of scaling up to larger volumes as this method is typically 

conducted in 1-2 mL tubes. Bead mills present one avenue for scale-up but requires 

manual loading of extract. The ability to work in small volumes, however, is conducive to 

producing multiple distinct, small batches. Bead-beating is useful for studies requiring 

the production of multiple different extract batches, as is the case when conducting 

protocol modifications.  

 

Mechanical (pressure-based) lysis 

High pressure disruption mechanisms such as impinge homogenizers are among 

the earliest and most widely utilized methods for lysing cells for the purpose of 

preparing extracts (Chisti & Moo-Young, 1986). These work by forcing cell suspensions 

through a narrow aperture under high pressure. The high-velocity flow of cells either 

impinges on an opposite high-pressure stream of cells or a rigid valve/nozzle surface. 

The resulting shear rates and rapid decompression are thought to be critically important 

in the formation of inverted membrane vesicles in the resultant extracts (Jewett, 

Calhoun, Voloshin, Wuu, & Swartz, 2008). Because the enzymes essential to the 

oxidative phosphorylation pathway must be membrane-associated to function, the 

possibility of their presence is worth considering when selecting a lysis method. Access 

to the oxidative phosphorylation pathway potentially increases the metabolic efficiency 

of extracts, enabling more economical and productive strategies for powering the 

transcription-translation machinery.  

For E. coli extracts, different types of impinge homogenizers are currently in use, 

ranging from French Press-style homogenization (Caschera & Noireaux, 2014; D. M. 

Kim & Choi, 1996; T. W. Kim et al., 2006)  to Avestin™-type homogenization (Jewett et 

al., 2008; Liu, Zawada, & Swartz, 2005; Sitaraman et al., 2004; W. C. Yang et al., 

2012). Both types of homogenizers allow for scaling of batches; French-press 

homogenizers scale up to the size of the press (typically 30 mL), while Avestin©-type 

homogenizers allow for feeding of cell biomass. 
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Acoustic lysis 

Sonication, or acoustic lysis, relies on ultrasound energy (15-20kHz) to disrupt 

cells in solution. The mechanism of lysis is thought to be related to cavitation, a 

phenomena where microbubbles form at nucleation sites, absorb energy and burst, 

releasing mechanical shock waves that disrupts the cell wall and can shear DNA (Chisti 

& Moo-Young, 1986). There are relatively few examples of sonication being used as a 

lysis method for E. coli cell-free protein synthesis, with an early example failing due to 

“sample heating and difficulty of management” (Kigawa, Yabuki, Matsuda, Matsuda, 

Nakajima, Tanaka, & Yokoyama, 2004b). In 2012, Bundy and colleagues re-attempted 

sonication as a lysis technique, and were able to successfully demonstrate protein 

yields comparable to that of high-pressure homogenization, albeit with significant 

optimization of the sonication burst times and cooling times (Shrestha et al., 2012). In 

this study, temperature was also not shown to be a damaging factor. This was followed 

by a study from Kwon and Jewett optimizing energy input to cell-strain and processing 

volume, which found a surprising strain-dependence (Kwon & Jewett, 2015). It is 

anticipated that sonication will be studied further for E. coli cell-free systems. Like bead-

beating, benefits of sonication include low startup costs and the ability to work with very 

small volumes. 

 

Temperature based-lysis 

Temperature-based lysis relies on freeze-thaw cycles to disrupt cellular 

membranes, and is one of the easiest methods of cellular disruption for producing 

purified proteins (Johnson & Hecht, 1994; Ron, Kohler, & Davis, 1966). This lysis can 

take place with or without enzymatic or chemical assistance such as lysosome. If 

successful, the method does not require advanced materials (other than liquid nitrogen 

or -80 C storage). However, freeze-thaw has not been demonstrated successfully for E. 

coli cell-free systems, with no appreciable expression detected despite a 99.6%-99.9% 

lysis efficiency (Shrestha et al., 2012). This is relatively surprising, as freeze-thaw in 

20% glycerol has been demonstrated for Trichoplusia ni (insect) cell-lines (Ezure et al., 

2006). 
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Chemical lysis 

Chemical lysis relies on the use of enzymes or detergents to remove cell walls, 

typically used in the context of protein purification. Enzymes such as lysozyme 

(peptidoglycan layer in E. coli) or benzonase (nuclease to remove DNA and RNA) are 

commonly utilized in tandem with defined detergents such as Tween-20, Triton-X, or 

RIPA buffer or commercial mixtures such as BugBuster (Novagen) or CellLytic X 

(Sigma). To our knowledge, there is no successful production of a coupled cell-free 

system using chemical lysis, although attempts using lysozyme with freeze-thaw have 

been unsuccessful (Shrestha et al., 2012). While chemical lysis has been used for 

anaerobic cell-free activity assays (Kuchenreuther, Shiigi, & Swartz, 2014), no coupled 

transcription-translation has been demonstrated. 

 
Clarification 
 

Following lysis, the resultant solution is typically extremely viscous and difficult to 

manipulate. For this reason, the lysis step is always followed by a clarification step in 

which the lysate is spun down in a centrifuge to separate cellular debris from the soluble 

substrates (active enzymes, small molecules, and co-factors, necessary to drive 

coupled transcription-translation). Although crude extract can be used with no 

clarification step, aside from issues arising from viscosity, background expression is 

increased relative to clarified extracts (T. W. Kim et al., 2006). Traditionally, clarification 

has consisted of (2x 30 min) 30,000 x g spins, a process that comprises a large portion 

of the processing time (resulting in term S30 extract) (Nirenberg & Matthaei, 1961). Two 

washes were later found to be unnecessary, with 1 wash sufficient to obtain equivalent 

signal (Liu et al., 2005). 

In 2006 Kim (DM) and colleagues demonstrated a radical shift in clarification 

protocols by showing that one 12,000 x g spin for 10 minutes was successful in 

maintaining expression (T. W. Kim et al., 2006). Interestingly, cell-free expression from 

a 12,000 x g spin followed by no-dialysis was similar to that of the traditional 2 x 30,000 

x g spins, and crude lysate with no processing showed only marginally less (20%) 

expression. This finding was reproduced independently, demonstrating a 30% 
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increased yield using S12 over S30 (Pedersen, Hellberg, Enberg, & Karlsson, 2011). 

S12 preparations also demonstrated increased co-factors relative to S30 preparations 

(T.-W. Kim, Keum, et al., 2007a). S12 extract demonstrated workable viscosity and 

decreased background expression, but was strain specific to the Rosetta, BL21, and 

BL21-Star lines. Subsequently, 12,000 x g spins have become widely adopted for 

preparing cell-free systems from compatible strains (Kwon & Jewett, 2015; Shrestha et 

al., 2012; Sun et al., 2013).  

 

Runoff  

A runoff reaction is typically conducted after clarification of the lysate, 

presumably to release ribosomes from bound mRNA and degrade leftover, sheared 

mRNA and DNA from the host strain (Jermutus, Ryabova, & Plückthun, 1998; 

Nirenberg, 1963). Before the runoff reaction, solutions are typically clear; afterwards, 

however, the solutions become cloudy, indicating degradation or modification (Sun et 

al., 2013). However, there has been little experimental evidence of this hypothesis, and 

it is a rich area of potential further exploration. Traditionally, the runoff reaction occurs at 

37°C for 80 minutes, and mixes clarified lysate with a pre-incubation mix of Tris, Mg, 

ATP, DTT, amino acids, PEP, and pyruvate kinase. However, Swartz and colleagues 

first reported that the pre-incubation mix was unnecessary to obtain signal (Liu et al., 

2005), and that a 37°C, 80-minute incubation of the post-clarified lysate was sufficient. 

In addition, ribosome release as the reason for the runoff is called into question, with a 

new hypothesis that the runoff activated activators or degraded inhibitors. Adding to the 

confusion, in 2015 Kwon and Jewett identified a strain-specific runoff property, with 

BL21-Star (DE3) strains not requiring runoff to activate protein production and other 

strains requiring different experimentally-optimized runoff steps (Kwon & Jewett, 2015). 

While current protocols for prototyping use a set 80-minute runoff without pre-incubation 

(Sun et al., 2013), this area is ripe for future research. 
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Dialysis 

After the runoff reaction, lysates are typically re-clarified by centrifugation to 

remove substrates accumulated during the reaction and dialyzed against a final S30 run 

buffer at 4 C (Sun et al., 2013). Traditionally, the dialysis step varies in length of time 

from one cycle of 3 hours (Sun et al., 2013) or 18 hours (Zubay, 1973) to 45 minutes x 4 

cycles (Kigawa, Yabuki, Matsuda, Matsuda, Nakajima, Tanaka, & Yokoyama, 2004b). 

However, when explored with the runoff Swartz and colleagues found the dialysis step 

to be unnecessary, with no statistical difference between 0 – 4 dialysis cycles (Liu et al., 

2005). This was confirmed by Kim (DM) and colleagues, who found dialysis un-

necessary in the standard protocol, except when used after a 80 minute runoff step, 

presumably to remove by-products from the runoff (T. W. Kim et al., 2006). A potential 

added benefit of removing the dialysis step is the retention of cofactors that would 

otherwise pass through the 10kDa membrane used. There currently is a mix of 

protocols used, with some protocols utilizing dialysis (Garamella, Marshall, Rustad, & 

Noireaux, 2016; Sun et al., 2013; W. C. Yang et al., 2012) and others omitting dialysis 

(Kwon & Jewett, 2015; Shrestha et al., 2012). The effect of dialysis on extract 

composition and on prototyping ability is another area ripe for future research. 
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E. coli ENERGY REGENERATION 

The development of more efficient methods for energizing cell-free protein 

synthesis mirrors the maturation of cell-free extracts as a platform for synthetic biology 

(Figure 3). For decades, the ability to leverage the advantages of cell-free systems in 

industrial applications was limited by inefficient methods for regenerating ATP 

necessary for protein synthesis. In addition to being unable to sustain protein synthesis 

beyond an hour as a result of substrate instability (D. M. Kim & Choi, 1996; D.-M. Kim & 

Swartz, 2000b; R. G. Kim & Choi, 2000), early energy regeneration systems relied on 

prohibitively expensive substrates. These issues were gradually addressed by enabling 

and utilizing increasingly extended pieces of native cell metabolism to more efficiently 

drive protein synthesis. Much of the exploration in this area was not through building 

synthetic pathways, but rather through the observation that cell-free lysates innately 

conserve complex central metabolism, such as pathways for glycolysis and oxidative 

phosphorylation (Figure 4). For example, for oxidative phosphorylation to work, all 

enzymes in the TCA cycle and in the electron transport chain must be present and 

functional (Jewett et al., 2008; Jewett & Swartz, 2004a).  

  As a result, the latest cell-free systems feature a thousand-fold improvement in 

the relative cost of energy substrate demonstrated (Caschera & Noireaux, 2015) and 

protein synthesis can be extended to ten hours in simple batch mode (Caschera & 

Noireaux, 2014). This is a direct result of being able to exploit E. coli sugar metabolism 

in its entirety. The demonstration of such extensive, intact native machinery and the 

ability to manipulate its utility signals an important paradigm shift in cell-free systems. 

Rather than a black-box system used for simple protein production, cell-free extracts 

have evolved into a complex and valuable prototyping environment.  

 

General requirements 

Although not constrained by energy costs associated with growth and 

maintenance in whole cells, cell-free extracts are still subject to stringent energy 

requirements posed by high-volume protein expression. Two molecules of ATP and two 

GTP are consumed in the formation of each peptide bond. Resource limitation is an 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 15, 2016. ; https://doi.org/10.1101/048710doi: bioRxiv preprint 

https://doi.org/10.1101/048710
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

important consideration in maximizing yields in protein production applications of cell-

free reactions but is equally important in successfully implementing multi-step pathways 

and ensuring fidelity in rapid prototyping functions. Accordingly, a robust energy 

regeneration system is essential to maximizing extract performance across the board 

for all cell-free protein synthesis applications. This energy regeneration system must 

also be capable of avoiding inorganic phosphate accumulation (Spirin & Swartz, 2008) 

while maintaining pH within physiological range. We divide our discussion of energy 

regeneration in rough chronological order of development: single-step (substrate level) 

phosphorylation, multi-step pathway phosphorylation and oxidative phosphorylation.   

 

 
Figure 3. Energy sources to feed cell-free metabolism, arranged by year. Top of 
figure shows “major” breakthroughs in energy metabolism, while bottom of figure shows 
other breakthroughs. 
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Figure 4. Simplified map of E. coli cell-free metabolism.  Map is divided into 
Glycolysis, TCA  Cycle, and Fermentation; areas in green are energy sources that have 
been explored for cell-free metabolism.  
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Single-step (substrate level) phosphorylation 

The earliest iterations of cell-free extracts utilized molecules containing high-

energy phosphate bonds as their source of energy (Figure 5). This paradigm remained 

relatively unchanged for many years. The most popular has been phosphoenolpyruvate 

(PEP) (Zubay, 1973). While PEP and pyruvate kinase (PK) together produced ATP, 

Spirin and colleagues hypothesized that acetyl phosphate could provide a cheaper 

alternative, and demonstrated equivalent signal with acetyl phosphate alone (Ryabova 

et al., 1995). This was the first evidence substrate-level phosphorylation was relatively 

independent of high-energy molecule chosen, and endogenous enzymes could be 

utilized.1 Four years later, Yokoyama and colleagues showed a completely exogenous 

system, creatine phosphate (CP), could also be used in conjunction with enzyme 

creatine kinase (CK) (Kigawa et al., 1999). CP/CK was tested after finding that PEP had 

inhibitory effects on cell-free reactions, which would later be attributed to inorganic 

phosphate accumulation from non-specific phosphatase degradation (D.-M. Kim & 

Swartz, 1999). Pyruvate kinase, creatine kinase, and acetate kinase each transfer their 

high-energy phosphate bonds to ADP to form ATP via substrate-level phosphorylation.  

 

                                                
1 It is likely that if PEP was supplied alone, the system would still produce ATP from the 
endogenous pyruvate kinase present in the extracts. 

 

Figure 5. Substrate-level 
phosphorylation. Shown are 
three substrate-level 
phosphorylation modes 
utilized for cell-free systems: 
phosphoenolpyruvate/pyruvate 
kinase, acetyl 
phosphate/acetate kinase, and 
creatine phosphate/creatine 
kinase. 
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Although single-step phosphorylation of ATP is simple and effective in energizing 

cell-free protein synthesis, the use of PEP, CP, and AP has a number of drawbacks. 

The utility of high-energy phosphate molecules as energy donors is limited by their 

susceptibility to nonspecific attack by endogenous phosphatases (D.-M. Kim & Swartz, 

1999; 2000b). The result is very transient expression as the energy molecules are 

quickly degraded. 70% of PEP was degraded into pyruvate and inorganic phosphate 

after a 30-minute incubation in S30 extract in the absence of DNA, indicating the 

presence of an unproductive sink for the supplied energy source (D.-M. Kim & Swartz, 

1999). Protein yield is further limited by the accumulation of high concentrations of 

inorganic phosphate in solution resulting from the unproductive cleavage of the high-

energy phosphate bonds. Reactions quickly terminate when phosphate concentrations 

reach 40-50 mM as a result of chelation of magnesium (T.-W. Kim, Oh, et al., 2007b), 

which is essential to biologically activating ATP and the function of essential enzymes 

(D.-M. Kim & Swartz, 1999). Altogether, this results in reactions not exceeding 1-2 

hours in duration. To some extent, replenishing magnesium and the energy source in 

the reaction has been demonstrated to extend the duration of protein synthesis but such 

an approach rules out simple batch-mode reactions (D.-M. Kim & Swartz, 2000b). 

Another solution explored addition of inorganic phosphate and glucose to the growth 

medium in which the cells are grown, which limited phosphatase activity in extracts by 

suppressing expression of phosphatases during growth (R. G. Kim & Choi, 2000).  

 

Multi-step pathway phosphorylation  

A number of different systems from 1999 onwards were developed to address 

the weaknesses inherent in systems dependent on high-energy phosphate-bonded 

compounds.  These strategies relied on utilizing multi-step enzymatic pathways in order 

to more efficiently harness the energy of the high-energy phosphate compounds. By 

utilizing multi-step pathways, substrates would be less prone to phosphatase attack and 

a spike in inorganic phosphate concentrations. In addition, ATP generation could be 

extended over the course of the reaction. The first multi-step system generated acetyl 

phosphate through the addition of pyruvate and pyruvate oxidase in the presence of 
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thiamine pyrophosphate (TPP) and flavin adenine dinucleotide (FAD) (D.-M. Kim & 

Swartz, 1999). Substrate-level phosphorylation of acetyl phosphate produces ATP by 

endogenous acetate kinase. This method is more resistant to phosphatase activity as a 

lower, sustained concentration of acetyl phosphate is lower relative to the Km of the 

phosphatases. Importantly, the use of an un-phosphorylated substrate serves as an 

inorganic phosphate sink, thereby preventing phosphate buildup by coupling the activity 

of pyruvate oxidase to the inorganic phosphate produced by acetyl kinase.  

 In 2001, the PANOx system (PEP, amino acids, NAD+, oxalic acid) debuted as a 

highly rationally-engineered multi-step pathway phosphorylation system (D.-M. Kim & 

Swartz, 2001) (Figure 6). PANOx employs multiple enzymatic steps to more efficiently 

harness the energy of high-energy phosphorylated molecules. This system utilizes PEP 

as the main source of energy but benefits from substrate-level phosphorylation at two 

points: the conversation of PEP to pyruvate, and the conversion of acetyl phosphate to 

acetate. The latter conversion is enabled by the addition of NAD+ and CoA, which drive 

the conversation of pyruvate to acetate. Addition of oxalic acid prevents the 

nonproductive reverse reaction of pyruvate to PEP by inhibiting the activity of PEP 

synthase (D.-M. Kim & Swartz, 2000a), thereby driving flux forward. Finally, amino acids 

were supplemented to replace degradation of arginine, serine, tryptophan, and cysteine 

(Michel-Reydellet et al., 2004). The second generation of this system, PANOx-SP 

adapted the PANOx environment to look more like the cell by replacing polyethylene 

glycol with spermidine and putracine (the SP of PANOx-SP), and removing HEPES 

buffer (Jewett & Swartz, 2004a). These changes were made to encourage metabolism 

of pyruvate, as pyruvate alone provided only 20% of the signal of PEP. The PANOx, 

PANOx-SP, and variants thereof are still widely in use as energy regeneration methods, 

both in academic settings (T Michaele Holland & Bundy, 2012; Hong et al., 2014; Kwon 

& Jewett, 2015) and in commercial settings (Roche, now Biotechrabbit RTS-100). 
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Figure 6. PANOx energy regeneration system. Underlined are PANOx additives 
(amino acids not shown). In grey are non-productive pathways. In italics are enzymes. 
ATP is generated from conversion of PEP to pyruvate via pyruvate kinase, and 
converstion of acetyl phosphate to acetate via acetate kinase. Figure adapted from (Jim 
Swartz, 2006) 
 
 Also in 2001, glucose-6-phosphate (G6P) was found as sufficient to energize 

cell-free reactions (D.-M. Kim & Swartz, 2001). This finding was particularly notable, as 

G6P is 9 steps removed from pyruvate in the glycolytic pathway. At worst case, G6P 

required conversion to fructose-1,6-biphosphate (F1,6-BP) before substrate-level 

phosphorylation; at best case, the catabolic machinery for glycolysis remained intact in 

cell-free extracts. Logically, it follows that any of the intermediates in the glycolytic 

pathway can be utilized as the starting substrate for ATP regeneration. Following this 

line of reasoning, 3-phosphoglycerate (3-PGA), a glycolytic intermediate two steps 

upstream of PEP, was employed as a primary energy source to offer further 

improvement on the existing ATP regeneration paradigm. By co-opting endogenous 

enzymes to generate PEP in situ from 3-PGA, Chatterjee and colleagues were able to 

extend the duration of protein synthesis well beyond the limit of an analogous system 

utilizing PEP (Sitaraman et al., 2004). The continuous synthesis of PEP allowed the 

system to evade the phosphatase activity that hampered ATP regeneration by 

maintaining PEP at low enough concentrations to avoid premature degradation. The 3-

PGA system would form the basis of prototyping extracts from Noireaux, Murray, and 

colleagues (Shin & Noireaux, 2010; Sun et al., 2013). Similarly, F1,6-BP, which is 

further upstream than 3-PGA, was demonstrated to outstrip 3-PGA as an energy donor 
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as theoretically one molecule of FBP would yield more ATP than intermediates 

downstream (T.-W. Kim, Keum, et al., 2007a).  

The glycolytic pathway, in its entirety, has also been leveraged for the cheap and 

efficient replenishment of ATP. In such a situation, glucose, the cost of which is 

negligible relative to most other energy sources, can serve as an economical and 

efficient substrate for energizing protein expression. In contrast to traditional substrate-

level phosphorylation reactions that yield only one mole of ATP per mole of costly 

energy molecule, one mole of glucose can yield 2 or 3 moles of ATP, respectively. A 

landmark moment was the usage of glucose, notable as a cheap substrate, for 

energizing cell-free systems in parallel with NMPs (vs. NTPs) (Calhoun & Swartz, 

2005c). While effective, glucose metabolism was found to decrease the pH of the 

reaction below the physiological range as a result of organic acid production (Calhoun & 

Swartz, 2005b), thereby requiring extensive buffering. Reactions utilizing glucose 

required the addition of inorganic phosphate in addition to pH buffering to express on 

par with G6P. One approach coupled glucose metabolism with creatine phosphate and 

creatine kinase in a complementary energy regeneration system (T.-W. Kim, Oh, et al., 

2007b). The normally inhibitory inorganic phosphate from creatine phosphate 

metabolism served as the phosphate source necessary to activate glucose metabolism. 

Although the amount of protein yielded by this combination of resources was high, the 

return to creatine phosphate offset this advantage with a much higher cost to yield ratio. 

Another iteration refined the parameters for glucose utilization and dramatically 

extended reaction duration and productivity, resulting in a six-hour reaction yielding 1.8 

mg/mL of protein (T.-W. Kim, Kim, Oh, & Kim, 2008). This was accomplished by 

growing the cells in the presence of glucose and phosphate, further fortifying the pH 

buffering capacity, and utilizing the S12 extract preparation method to preserve 

cofactors. 

Recently, cell-free systems have been engineered to use complex sugars in 

order to prevent pH issues, maintain cost advantage, and allow for long-lasting energy 

release. Wang and Zhang (YHP) in 2009 demonstrated that maltodextrin, in 

combination with supplemental maltodextrin phosphorylase and phosphoglucomutase, 

could effectively energize cell-free reactions at very low cost (Y. Wang & Zhang, 2009). 
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This strategy integrates phosphorolysis to serve as an inorganic phosphate sink and 

glycolysis in addition to the PANOx pathway to generate ATP. Each glucose equivalent 

in maltodextrin can produce one more net ATP relative to glucose by consuming 

inorganic phosphate rather than ATP in the formation of G6P. Maltodextrin resulted in 

less pH perturbations (relative to glucose, PEP, and G6P in analogous systems), and in 

more homeostatic and stable reaction conditions. Further refinement of the 

polysaccharide approach utilizing starch and glycogen demonstrated that protein 

synthesis could continue for 12 hours in a simple batch mode, yielding 1.7 mg/mL of 

protein without addition of exogenous enzymes (H.-C. Kim, Kim, & Kim, 2011). Kim et 

al. also demonstrated the maintenance of a steady supply of ATP without drastic 

alteration of pH which they postulated might explain the improved solubility of 

synthesized protein. Quantification of the ATP and starch levels after cessation of 

transcription at 12 hours showed that only 20% of the starch had been consumed and 

ATP concentrations were still constant, implying that ATP supply was not the limiting 

factor. In an effort to improve upon the system by introducing a gradually released 

phosphate reservoir, bypassing the presence of potentially inhibitory amounts of 

inorganic phosphate, hexametaphosphate was recently utilized in place of potassium 

phosphate (Caschera & Noireaux, 2015). An approach combining the strengths of the 3-

PGA system with maltose, a disaccharide acting as an inorganic phosphate sink and 

secondary energy source was also pursued (Caschera & Noireaux, 2013).  

 
Oxidative Phosphorylation 

The Cytomim system was originally produced to metabolize (cheaper) pyruvate 

in lieu of (more expensive) PEP, with the working hypothesis that conditions more 

representative of the cytoplasm would be necessary for pyruvate utilization (Jewett & 

Swartz, 2004b; 2004a). Interestingly, however, Jewett and Swartz discovered that ATP 

generation and protein synthesis continued beyond the depletion of pyruvate, the 

presumed energy substrate. On follow-up, the depletion of glutamate and formation of 

TCA cycle intermediates was observed, demonstrating that glutamate alone could serve 

as a stand-alone energy substrate (Jewett et al., 2008). This process was found to be 

heavily oxygen-dependent, thereby confirming that oxidative phosphorylation could be 
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activated in cell-free extracts. Biochemical inhibitors of the electron transport chain also 

significantly reduced the protein yielded by the cell-free system. This represents a 

substantial shift in thinking, as the TCA cycle as well as the electron transport chain are 

necessary. It was theorized that lysis methods causing high shear rates (eg. high-

pressure homogenization) allows inverted membrane vesicles (IMVs) upon which 

oxidative phosphorylation can occur. 

 

Energy Regeneration in the context of Synthetic Biology 

 While there has been extensive innovation in energy regeneration in cell-free 

systems, less clear are the conditions that are necessary to enable synthetic biology 

applications to function, such as the rapid prototyping of circuits (Garamella et al., 2016; 

Sun et al., 2014; Takahashi et al., 2015) and of pathways (Karim & Jewett, 2016; Wu, 

Culler, Khandurina, Van Dien, & Murray, 2015). For circuit prototyping specifically, one 

can assume that interactions such as protein-binding strength to operators, or weak Km 

binding events, are more critical than pure protein expression. In addition, native 

polymerases are favored over T7 polymerase to better emulate cellular conditions (Shin 

& Noireaux, 2010). With a goal of prototyping to match cellular function and implement 

complexity (versus pure protein production), it is likely that re-evaluation of existing 

approaches will be necessary to support this new application. To date, two protocols 

have been used for circuit prototyping: (1) a protocol utilizing bead-beating and 3-PGA 

energy regeneration (Sun et al., 2013), and (2) a protocol mixing bead-beating or 

French-press preparation and 3-PGA with maltodexrin and/or maltose (Garamella et al., 

2016). In addition, the protocol of (Sun et al., 2013) has been used for prototyping 

pathways for 1,4-BDO (Wu et al., 2015) and violacein (Nguyen, Wu, Guo, & Murray, 

2015), as well as a modified PANOx-SP run off of T7 RNA polymerase for n-butanol 

(Karim & Jewett, 2016). However, there has been no published work on engineering of 

the cell-free protocol to specifically support circuit prototyping. 

While we now know that cell-free systems contain large amounts of intact 

metabolism, there is also a need to apply –omics technologies (genomics, proteomics, 

metabolomics, transcriptomics, glycomics) to better understand the cell-free “black-box.” 
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Since the dense period of discovery from 1999 – 2011, there has been a lack of 

published work seeking to understand the extent to which central metabolism can be 

activated and manipulated. This is particularly compelling with the new tools available 

since the bulk of discovery was conducted, including RNAseq (Mortazavi, Williams, 

McCue, Schaeffer, & Wold, 2008), high-throughput gene synthesis and assembly 

(Kosuri et al., 2010), and high-throughput gene sequencing (Shendure, Mitra, Varma, & 

Church, 2004). It is also increasingly evident that cell-free systems are not uniform, 

standard “collections” of lysates, but rather complex compositions that are affected by 

the multiple variables of preparation and energizing. These complex compositions may 

require standardization of preparation, or individual analysis per batch to understand 

variability that result extract-to-extract (Takahashi et al., 2014; 2015). Attempts by 

Panke and colleagues to conduct real-time analysis on lysates is a start at 

understanding this complexity (Bujara, Schümperli, Pellaux, Heinemann, & Panke, 

2011).  
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