
Reversible Polymorphism-Aware Phylogenetic Models
and their Application to Tree Inference

Dominik Schrempfa,b, Bui Quang Minhc, Nicola De Maiod,e, Arndt von Haeselerc,
Carolin Kosiola,∗

aInstitut für Populationsgenetik, Vetmeduni Vienna, Wien, Austria
bVienna Graduate School of Population Genetics, Wien, Austria

cCenter for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical
University of Vienna, Austria

dNuffield Department of Medicine, University of Oxford, UK
eOxford Martin School, University of Oxford, UK

Abstract

We present a reversible Polymorphism-Aware Phylogenetic Model (revPoMo) for

species tree estimation from genome-wide data. revPoMo enables the reconstruc-

tion of large scale species trees for many within-species samples. It expands the

alphabet of DNA substitution models to include polymorphic states, thereby, natu-

rally accounting for incomplete lineage sorting. We implemented revPoMo in the

maximum likelihood software IQ-TREE. A simulation study and an application to

great apes data show that the runtimes of our approach and standard substitution

models are comparable but that revPoMo has much better accuracy in estimating

trees, divergence times and mutation rates. The advantage of revPoMo is that an

increase of sample size per species improves estimations but does not increase run-

time. Therefore, revPoMo is a valuable tool with several applications, from specia-

tion dating to species tree reconstruction.
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1. Introduction

Molecular phylogenetics seeks to understand evolutionary phenomena such as

speciation dynamics and biodiversity by estimating evolutionary parameters at the

species level. The reconstruction of the species history gives insights into the basic

mechanisms of biology. However, the topology of the species tree is not always

clear, especially when phylogenies from different genomic regions (i.e., gene trees

or genealogies) differ from each other (Degnan and Rosenberg, 2006).

Statistical approaches to tree reconstruction such as maximum likelihood and

Bayesian methods rely on substitution models (Tavaré, 1986). These models de-

scribe and quantify the probabilities of how sequences may evolve along a phy-

logeny. They are defined by an instantaneous rate matrix Q that contains the sub-

stitutions rates between the different character states. For computational conve-

nience, most substitution models are reversible. That is, the process describing the

evolution of the sequence is independent of the direction in time. Reversibility is im-

portant in phylogenetics for tree inference from large data sets with many species

because it simplifies the likelihood function (Yang, 2006, p.34) and reduces the

number of trees by a factor of 2l−3, where l is the number of tips of the tree (Hein

et al., 2004, p. 70). Finally, rate matrices of reversible substitution models have

real eigenvalues (Kelly, 1979) which enables a fast and stable eigendecomposition

during matrix exponentiation (Golub and Loan, 1996). Many software packages

use reversible substitution models (e.g., HyPhy, Pond et al. 2005; PhyML, Guindon

et al. 2010 and MrBayes, Ronquist et al. 2012). RAxML (Stamatakis, 2014) and

IQ-TREE (Nguyen et al., 2015) additionally offer efficient tree search algorithms

for very large phylogenies.

Substitution models, when naively applied to species trees (concatenation meth-

ods, e.g., Gadagkar et al., 2005), assume the species or population to be fixed for

a specific character state and do not account for effects on the population genetics

level such as Incomplete Lineage Sorting (ILS; Maddison, 1997; Knowles, 2009).

Incompletely sorted lineages coalesce deep in the tree and their coalescent events

do not match the speciation events. The probability of ILS is large and consequently
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tree reconstruction is difficult if the time between speciation events is short or if the

effective population size is large (Pamilo and Nei, 1988). The multispecies coales-

cent model can be used to quantify the phylogenetic distortion due to ILS. It simu-

lates a coalescent process (Kingman, 1982) on each branch of the species tree and

combines these separate processes when branches join together. This model pre-

dicts that for specific evolutionary histories the gene trees with highest abundance

conflict the species tree topology (anomaly zone; Degnan and Rosenberg, 2009;

Degnan, 2013). These are extreme cases where common tree inference methods

not accounting for ILS such as concatenation (Gadagkar et al., 2005) or democratic

vote (Pamilo and Nei, 1988) fail because they are statistically inconsistent (e.g., Ew-

ing et al., 2008). However, ILS considerably deteriorates estimates already when

species trees are not in the anomaly zone (Pollard et al., 2006).

We have recently developed an approach called Polymorphism-Aware Phylo-

genetic Model (PoMo, De Maio et al., 2013). PoMo builds on top of substitution

models but makes use of within-species data and considers present and ancestral

polymorphisms thereby accounting for ILS. Similar to multispecies coalescent mod-

els it uses multiple sequence alignments of up to several hundred species while

allowing for many within-species sequences to infer base composition and muta-

tional parameters. Recently, we applied PoMo to infer species trees (De Maio,

Schrempf, and Kosiol, 2015). We showed in a large scale simulation study with

various demographic scenarios and evaluation against other state-of-the-art meth-

ods like BEST (Liu, 2008), *BEAST (Heled and Drummond, 2010), SNAPP (Bryant

et al., 2012) and STEM (Kubatko et al., 2009) that PoMo is approximately as fast as

standard DNA substitution models while being more accurate in terms of the branch

score distance (Section 3.1). Furthermore, application to great apes data leads to

phylogenies consistent with previous literature and also with the geographic distri-

bution of the populations.

Here, we prove the reversibility of PoMo when an associated reversible mutation

model (Section 2.3) is used and derive the corresponding stationary distribution.

This will open the PoMo approach to a new area of applications because a reversible

model can take advantage of existing algorithms that efficiently reconcile the species

3

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 10, 2016. ; https://doi.org/10.1101/048496doi: bioRxiv preprint 

https://doi.org/10.1101/048496
http://creativecommons.org/licenses/by-nc-nd/4.0/


tree. We will discuss the reversible solution of PoMo, provide connections to the

diffusion equation and introduce an implementation in IQ-TREE (Nguyen et al.,

2015). Finally, we present a simulation study and an application to real data to

demonstrate the performance of the reversible PoMo (revPoMo) and to confirm its

relevancy in medium to large-scale tree search.

2. Materials and Methods

2.1. DNA Substitution Models

DNA substitution models assume that a DNA sequence evolves as a series of in-

dependent substitution events which replace a nucleotide by another one. Substitu-

tions are modeled as a time-continuous, time-homogeneous Markov process (Yang,

1994). Additionally, the different sites of a sequence are assumed to evolve inde-

pendently. The four nucleotides A, C , G and T form the alphabet A . The rates

of change qx y from nucleotide x to nucleotide y are summarized in an instanta-

neous rate matrix Q = (qx y)x ,y∈A which completely describes the time-continuous

Markov process. The assumption of time-homogeneity implies that the entries of

Q are constant in time. One also assumes stationarity, i.e., the existence of a sta-

tionary distribution π = (πx)x∈A which is the solution to πQ = 0. If the Markov

process is reversible, then detailed balance πxqx y = πyqy x is fulfilled. Thus, for

the General Time Reversible (GTR, Tavaré, 1984) model the rate matrix has the

following structure

Q =



















A C G T

A ∗ rACπC rAGπG rATπT

C rCAπA ∗ rCGπG rC TπT

G rGAπA rGCπC ∗ rGTπT

T rTAπA rT CπC rT GπG ∗



















, (1)

with qx y = πy rx y and exchangeabilities rx y = ry x > 0. The diagonal entries are

chosen such that the row sums are zero. The expected number of events on a

branch of length d is E(d) = −d
∑

x πxqx x . Usually, Q is normalized such that
∑

x

∑

x 6=y πxqx y = 1 or E(1) = 1.

4

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 10, 2016. ; https://doi.org/10.1101/048496doi: bioRxiv preprint 

https://doi.org/10.1101/048496
http://creativecommons.org/licenses/by-nc-nd/4.0/


2.2. The Alphabet of revPoMo

Standard DNA substitution models are limited in the sense that they assume

that species are always fixed for a specific nucleotide (i.e., the changes are sub-

stitutions). For revPoMo, we use standard DNA models such as HKY (Hasegawa

et al., 1985) or GTR (Tavaré, 1984) as mutation models introducing variation into

populations that are no longer assumed to be fixed for one nucleotide. We expand

the alphabet to include characters that represent polymorphisms so that popula-

tions can have polymorphic states. Thereby, revPoMo introduces a virtual haploid

population of constant size N and distinguishes between fixed (boundary) {N x} =
{N x , 0y} = {0y, N x} and polymorphic characters {i x , (N − i)y} (1 ≤ i ≤ N − 1;

x , y ∈ {A, C , G, T}; x 6= y), where x and y are the nucleotides of the associated

mutation model (Fig. 1). For convenience, we call the set of boundary characters

the boundary. To keep the alphabet of revPoMo APoMo manageable, we assume

that at most two different nucleotides per site are present simultaneously. This is

only a mild restriction and many real data sets meet this assumption. For example,

no sites with three or four nucleotides have been found in the great apes data set

described in Section 2.11. This restriction also agrees with the chosen mutation

model (Section 2.3). The alphabet-size of revPoMo is

|APoMo|= 4+
�

4
2

�

(N − 1). (2)

To differentiate between revPoMo and the associated mutation model, we refer to

the characters of the mutation model as nucleotides and to the characters of revPoMo

as states. The instantaneous rate matrix of revPoMo QrevPoMo is composed of the

rates of mutations and genetic drift

QrevPoMo = QMut +QDri f t , (3)

which will be discussed in the next two sections.

2.3. The Mutation Model of revPoMo

For any nucleotide pair (x , y) with x 6= y , the state {N x} can mutate to state

{(N − 1)x , 1y} at rate µx y introducing a new nucleotide y into the population.
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9A1T 8A2T 2A8T 1A9T10A 10T

9A1G9A1C

8A2C

1G9T1C9T

2G8T2C8T8A2G

2A8C 8G2T2A8G8C2T

9C1T1A9C 9G1T1A9G

9C1G 8C2G 2C8G 1C9G10C 10G

Figure 1: The alphabet of revPoMo and its connectivity for N = 10. Blue and gray arrows indicate
mutations and genetic drift, respectively. Dashed arrows symbolize the presence of intermediate states.
A virtual population that is in the boundary state {10A} can move to the polymorphic states {9A, 1C},
{9A, 1G} and {9A, 1T} through a mutational event. Only states with frequency changes of size one are
directly connected. For example, two jumps of the Markov process are needed to move from {10A} to
{8A, 2G}.

Additionally to restricting the state space, mutations are confined to the boundary

only. This is a good assumption if mutation rates are low or if genetic drift re-

moves variation reasonably fast (Vogl and Clemente, 2012), a requirement that is

met for low effective population sizes. Analogous to the GTR model, the mutation

coefficients µx y can be decomposed into µx y = mx yπy , where mx y = my x and πy

is the entry of the stationary distribution of the mutation model corresponding to

nucleotide y . Although the concepts are similar we separate the substitution rates

from the mutation rates of the associated mutation model by using different sym-

bols (qx y ∼ µx y , rx y ∼ mx y). The symmetry of the coefficients mx y is a requirement

for the reversibility of the GTR model and consequently also of revPoMo. This type

of mutation model also fits the structure of the alphabet of revPoMo which only

allows two nucleotides to be present in a virtual population. The mutation rates

µx y of the associated mutation model are summarized in the rate matrix QMut of

dimension |APoMo|. All other rates are zero and the diagonal elements are defined

such that the respective row sum is zero.
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2.4. Genetic Drift in revPoMo

The drift rate for a polymorphic state is modeled with the time-continuous

neutral Moran model (e.g., Durrett, 2008, p. 46). Given a virtual population of

size N , in each generation an individual is randomly chosen to reproduce. The

offspring is of the same type as the parent and replaces another randomly cho-

sen individual from the population. Thereby, the population size remains con-

stant. For 1 ≤ i ≤ N − 1, the rate of change from a state {i x , (N − i)y} to states

{(i + 1)x , (N − i − 1)y} or {(i − 1)x , (N − i + 1)y} is

qi,i+1 = qi,i−1 = qi =
i(N − i)

N
. (4)

Similar to the mutation model, these rates are summarized in the rate matrix QDri f t

of dimension |APoMo|. Again, all other rates are zero and the diagonal elements are

determined by the requirement that all row sums are zero. For our polymorphic

states, the model is symmetric because the rates of increase and decrease are equal.

Importantly, nucleotide frequency shifts larger than one require more than one drift

event (Fig. 1). In contrast to DNA substitution models, a substitution in revPoMo is

the interplay of a mutational event with subsequent frequency shifts such that the

newly introduced nucleotide becomes fixed.

2.5. Reversibility of revPoMo

If the equilibrium of a Markov process exists it is described by the stationary dis-

tribution π (see above). The stationary distribution of the time-continuous Markov

process defined by the instantaneous rate matrix QrevPoMo (Appendix A) will be de-

noted p to differentiate it from the stationary distribution of the Markov process of

the associated mutation model π. The entries corresponding to the four boundary

states are denoted px , the entries corresponding to polymorphic states {i x , (N−i)y}
(1≤ i ≤ N − 1, x 6= y) are pi

x y . The number of elements of p is |APoMo| (Eq. 2).

Theorem 1. The Markov process defined by QrevPoMo is reversible with stationary

distribution

px = cπx , (5)

pi
x y = cπxπy mx y/q

i . (6)
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The normalization constant is

c =






1+

N−1
∑

k=1

1
k

∑

x ,y∈A
x 6=y

πxπy mx y







−1

. (7)

Note that
∑N−1

k=1 1/k is half of the expected branch length of a genealogy with N sam-

ples for the standard coalescent model. This coincides with the rate of coalescence

in the Moran model being twice as much as the rate in the standard coalescence

model. Furthermore,
∑

x ,y∈A ,x 6=y πxπy mx y is the expected number of mutations

per site and unit time for the associated mutation model.

Proof: An irreducible Markov process with a finite number of states is reversible

if its (unique) stationary distribution fulfills detailed balance prqrs = psqsr (r, s ∈
APoMo; e.g., Norris 1998, p. 125). We distinguish two cases; (a) balance between

boundary states and their neighbors

{N x}� {(N − 1)x , 1y} : pxµx y = p1
x yq1 (8)

and (b) balance between neighboring polymorphic states

{i x , (N − i)y}� {(i + 1)x , (N − i − 1)y} : pi
x yqi = pi+1

x y qi+1, (9)

where 1 ≤ i ≤ N − 2. Both conditions can be verified using Eq. (5) and (6). Sup-

plemental Section S1 shows the derivation of the normalization constant and the

computation of the stationary distribution p. �

2.6. The Stationary Distribution

In this section we illustrate the stationary distribution p of revPoMo and con-

nect it to previous results of phylogenetics and population genetics. Similarly to

DNA substitution models, the frequencies of the boundary states px are propor-

tional to the stationary distribution of the nucleotides π. revPoMo can estimate this

nucleotide distribution empirically from the alignment data or by maximum like-

lihood. We were concerned that the genetic variation at stationarity of the small,

virtual population of revPoMo represented by pi
x y differs considerably from the ge-

netic variation in the real (modeled) populations with high effective population
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Figure 2: A comparison of the stationary solution of the diffusion equation (Wright, 1931) Φ(ν,θ ) =
νθ−1.0(1− ν)θ−1.0 for equal scaled mutation rates θ = 4Neu and drift with the polymorphic elements
of the stationary distribution of revPoMo for N = 10. ν is the continuous relative nucleotide frequency.
Both p and Φ have been normalized such that the polymorphic elements integrate to one and the domain
of Φ has been expanded from (0, 1) to (0, 10). Φ converges to a continuous version of pi

x y if θ goes to
zero (blue dotted line) because revPoMo only allows for mutations at the boundaries.

sizes. A substantial amount of theoretical work exists that models the dynamics

and the equilibrium properties of populations assuming very large effective popu-

lation sizes (diffusion limit; e.g., Wright, 1931, 1945; Kimura, 1964). The diffusion

limit has been found to be an adequate approximation in a broad range of popu-

lation genetics scenarios (Kimura, 1964). We compared the polymorphic entries

of the stationary distribution of revPoMo pi
x y to the stationary solution of the dial-

lelic diffusion equation with drift, equal mutation rates and without selection (e.g.,

Durrett, 2008, p. 254) which is the probability density of the Beta distribution

Φ(ν,θ ) ∼ Beta(θ ,θ ), where ν is the continuous allele frequency. It converges to
1

ν(1−ν) if the scaled mutation rate θ = 4Neµ is small. The elements of the station-

ary distribution of PoMo corresponding to polymorphic states pi
x y are distributed

proportional to its discrete, empirical version 1
i(N−i) (Fig. 2). In particular, revPoMo

is a good approximation if θ < 0.1. Many real data sets (e.g., genomic sequences

of mammals, and Drosophila species) meet this requirement. For microbial data

sets, however, this assumption might not be valid. Section S2 includes additional
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thoughts on the stationary distribution for non-uniform π.

2.7. Number of Parameters

This section discusses a peculiarity of the number of parameters of revPoMo

compared to the associated mutation model. For example, both the GTR model

and revPoMo with the GTR model as associated mutation model (GTR + revPoMo)

have three free parameters for the stationary nucleotide frequencies because the

four entries of π have to sum to one. Furthermore, the GTR model normalizes the

substitution coefficients such that the total substitution rate is one per unit time,

i.e.,

−
∑

x∈A
πxqx x =
∑

x ,y∈A
x 6=y

πxπy rx y = 1. (10)

Thereby it reduces the number of free rate parameters from six to five. This step

is necessary because only the ratios of the substitution coefficients matter and the

total substitution rate between nucleotides is confounded with the branch lengths.

However, in revPoMo the total rate of mutations cannot be constrained in the same

way because it also determines the percentage of polymorphic states in the station-

ary distribution p (Eq. 7). Scaling the symmetric mutation coefficients mx y by a

common factor affects the ratio px/p
i
x y . This is why the number of parameters of

revPoMo is larger by one, e.g., the GTR model has eight and GTR + revPoMo has

nine parameters. Previously, this additional unknown variable was empirically es-

timated (De Maio et al., 2013). In contrast, we jointly infer it with all other model

parameters.

2.8. Relation between revPoMo and Substitution Models

It is desirable to compare distance estimations of revPoMo with estimations from

standard DNA substitution models. We have seen however, that a mutation from

the boundary requires subsequent nucleotide frequency shifts to become a substi-

tution and that the total number of mutations scales with phylogenetic distance.

Phylogenetic distances are usually normalized such that on average one event (i.e.,

one jump of the Markov process) happens per unit length (see also Section 2.7). If a
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Markov process starts in equilibrium, we have E(#E) = d, where #E is the number

of events and d is the total branch length. For substitution models, the expected

number of substitutions is E(#S) = E(#E) = d. Also in revPoMo the total rate of

events per unit length can be normalized to one. However, events can still be either

mutations or frequency shifts. Let Pm be the probability that an event is a muta-

tion. This mutation moves away from a boundary state {N x} towards a different

nucleotide y . Let h be the hitting probability of the opposite boundary state {N y}
before moving back to {N x}. h does not depend on x and y because revPoMo

assumes boundary mutations only. The expected number of substitutions is

E(#S,revPoMo) = E(#E)Pm h. (11)

From population genetics, we know that h = 1/N (e.g. Ewens, 2004, p. 105) be-

cause genetic drift is the only active force and the frequency of y is just 1/N . A com-

parison of the transition rates of QrevPoMo shows that also Pm = 1/N (Appendix B)

and we get

E(#S,revPoMo) =
d

N2
. (12)

This enables us to compare the branch lengths of revPoMo with the ones of

standard DNA substitution models if we assume that the estimated number of sub-

stitutions E(#S) and E(#S,revPoMo) are equal across both models.

2.9. Implementation

We present an implementation of revPoMo in IQ-TREE (Nguyen et al. 2015; for

technical details see Section S5). We allow the virtual population size N to vary

between 2 and 19. The maximum of 19 is an arbitrarily chosen cut-off to keep

the size of the executable small. revPoMo uses multiple sequence alignments in

the form of counts files as input data (De Maio et al., 2015). That is, nucleotide

counts are given for each site and population. In general, the nucleotide counts (i.e.,

the number of sampled individuals from a population) will differ from the virtual

population size N of revPoMo. Furthermore, sequencing errors, merged data from

different sources as well as alignment problems may lead to a variation of nucleotide
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counts between populations or even within populations at different sites. In contrast

to DNA substitution models, where the character of the corresponding terminal

node is set to the observed nucleotide, the revPoMo state at the same terminal node

is not obvious anymore if the sample size is not equal to N . A simple method to

determine the revPoMo state is to sample N nucleotides with replacement from the

given data. We do this independently for each site and population and call this

method sampled.

Instead, similarly to handling ambiguity and error (Felsenstein, 2004, p. 255),

we can also weight the revPoMo states at each terminal node according to their

likelihood of representing the observed counts. We set these likelihoods to the bi-

nomial distribution because a revPoMo state represents a real population with the

same proportions of nucleotides. In detail, for a terminal node with observed nu-

cleotide counts { j x , (M − j)y}, the likelihood of revPoMo state {i x , (N − i)y} is

P({ j x , (M − j)y}|{i x , (N − i)y}) =
�

M
j

��

i
N

� j�N − i
N

�(M− j)

(13)

= Bin
�

j; M ,
i
N

�

, (14)

where 0 ≤ j ≤ M and 0 ≤ i ≤ N . Only nucleotides that are present in the virtual

population can be sampled. We call this sampling method weighted.

2.10. Simulation Study

The performance of revPoMo was tested with simulated sequences. Two differ-

ent pipelines were used to create genealogies. First, for scenarios with four (e.g.,

Fig. 3) and eight extant species, the species trees were predefined and genealogies

were simulated with the coalescent simulation program MSMS (Ewing and Hermis-

son, 2010). For the coalescent simulations, the tree height is specified in units of

effective population size Ne. We used values of 1 Ne and 10 Ne. Between two and

twenty individuals were sampled per population. That is, the genealogies for the

scenarios with four taxa have up to 80 tips. Second, in the larger scenario with 60

species, the species trees were created under a Yule birth model (Yule, 1925). A

new species tree was simulated for each replicate. We used SimPhy (Mallo et al.,
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Figure 3: The Incomplete Lineage Sorting (ILS) scenario is a species tree with four tips and height 1 Ne ,
where Ne is the effective population size. The lengths of non-labeled branches are defined by the strict-
molecular clock constraints. Using the multispecies coalescent model, we expect about 50 percent of the
simulated genealogies to exhibit ILS.

2015) to simulate the species tree and subsequently the genealogies with ten indi-

viduals per population. Overall, these genealogies have 600 tips. The tree height

was fixed to 3 Ne and the parameter describing the rate of speciations events per

coalescent time unit was determined such that the expected coalescence time for

60 species matches 3 Ne. This corresponds to a rate of 1.226 speciations per Ne.

For both pipelines 1000 independent genealogies were simulated. We used

these genealogies to generate DNA sequences of genes with Seq-Gen (Rambaut

and Grass, 1997) using the HKY model. Thereby, we scaled the branch lengths with

a factor of 0.0025. In particular, for scenarios with tree height 1 Ne, the number

of substitutions per site from the root to the tips is 0.0025 on average. Likewise,

the level of polymorphism within a species was equal for all scenarios and corre-

sponds to an average Watterson’s theta (Watterson, 1975) of 0.0025 per site. The

sequence or gene length per genealogy was set to 1000 base pairs (bp). This simula-

tion procedure is equivalent to no recombination within genes, free recombination

between genes and no migration between species. The amount of input data was

varied between three and all 1000 genes. We performed ten replicate analyses for

each setting. In the main text, we include results for the Incomplete Lineage Sort-

ing species tree scenario (Fig. 3; De Maio, Schrempf, and Kosiol, 2015) and Yule
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trees with 60 species. A calculation according to the multispecies coalescent model

shows that for the incomplete lineage sorting scenario, if one gene is sampled out

of each species A, B and C , about 55 % of the genealogies that connect these genes

are expected to exhibit ILS.

The analysis of the simulated data focuses on the comparison of three differ-

ent methods: (1) a standard concatenation approach, where the input sequences

within species are concatenated and a DNA substitution model is used for the anal-

ysis (2) the non-reversible PoMo with N = 10 implemented in HyPhy (Pond et al.,

2005; De Maio et al., 2015) and (3) the new reversible version with varying N and

weighted sampling implemented in IQ-TREE (Nguyen et al., 2015). All methods use

the HKY substitution model (Hasegawa et al., 1985).

The accuracy of the estimation was measured with the branch score distance

(BSD, Kuhner and Felsenstein, 1994) between the true and the estimated species

tree. The BSD is the square root of the sum of the quadratic differences in branch

lengths between two trees. For one taxon trees it coincides with the relative branch

length error. Branches that do not exist in both trees due to differences in topology

fully contribute to the BSD. Before we calculated BSDs with PHYLIP (Felsenstein,

2005), the trees were normalized such that their total branch lengths equal 1.0.

Normalization is necessary because branch lengths are confounded with substitu-

tion rates for DNA substitution models and have a different meaning for PoMo (Sec-

tion 2.8). Section S3 and S4 provide command lines for the simulation and analysis

procedure, respectively.

2.11. Application to Great Apes

Shared ancestral polymorphisms are very common in great apes (Dutheil et al.,

2009). A variety of evolutionary patterns, short internal branches as well as closely

related taxa lead to a high level of incompletely sorted lineages between Humans,

Chimpanzees and Gorillas (about 25 %, Scally et al., 2012). We apply revPoMo to

a data set that includes all 6 great apes species divided into 12 populations (Prado-

Martinez et al., 2013). The number of sequences per population varies highly be-

tween 1 (Gorilla gorilla diehli) and 23 (Gorilla gorilla gorilla). About 2.8 million
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Figure 4: A boxplot of the runtimes of the concatenation approach (IQ-TREE, HKY+Conc), the non-
reversible PoMo with N = 10 (HyPhy, HKY+PoMo) and revPoMo with N = 10 and the weighted sampling
scheme (IQ-TREE, HKY+revPoMo+Weighted) for the ILS scenario with ten samples and a tree height of
1 Ne (Fig. 3). The HKY model was used for all methods. Ten replicate analyses were performed. Different
amounts of input data are shown on the x-axis (each gene has a length of 1000 bp).

exome-widely distributed, 4-fold degenerate sites were analyzed. We use the sam-

pled input method which may lead to differences in estimates between runs. We

do not expect a high divergence between runs but asses the variance by doing ten

replicate analyses.

3. Results and Discussion

3.1. Simulations

A previous simulation study showed that the non-reversible PoMo outperforms

other state-of-the-art methods (De Maio, Schrempf, and Kosiol, 2015) in estimating

species trees from large data sets. To begin with, we assay the speed of the con-

catenation method, the non-reversible PoMo and revPoMo for different amounts

of sequence data (in number of genes, one gene has 1000 bp). The introduction

of reversibility improves speed greatly and the new implementation of revPoMo in

IQ-TREE runs up to 50 times faster than the the version implemented in HyPhy.

Overall, the runtime is similar to that of standard DNA substitution models (Fig. 4

and Section S6 with Fig. S1–S3).
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Figure 5: Tree error measured by the branch score distance for concatenation (IQ-TREE, HKY+Conc),
the non-reversible PoMo with N = 10 (HyPhy, HKY+PoMo) and revPoMo with N = 10 and the weighted
sampling scheme (IQ-TREE, HKY+revPoMo+Weighted) in dependence of the amount of data; one gene
has 1000 bp. The HKY model was used for all models. The analyzed sequences were simulated under
the ILS scenario with ten samples and a tree height of 1 Ne or 0.0025 substitutions per site (Fig. 3).
The non-reversible version performs marginally better because the frequency distribution at the root is
arbitrary.

The simulation scenario with four species exhibits a significant amount of ILS

and both PoMo approaches outperform the concatenation method if the input data

contains enough independently evolved genes (Fig. 5). At least 50 genes (50k bp)

are needed to get trustworthy results with small standard deviations and analy-

ses of 1000 genes have an error of about 2 % only. In general, the error is small

(Section S7 and Fig. S4–S18). For species trees that do not exhibit any incomplete

lineage sorting, the accuracy of PoMo measured in BSD is similar to the one from

concatenation methods and slightly better if more than three samples per popula-

tion and about 50 genes are available (e.g., Section S7.3 and S7.4 but also De Maio

et al., 2015).

With the non-reversible version of PoMo we were limited to trees of about a

dozen species only. revPoMo takes advantage of efficient algorithms and the re-

duced runtime enables us to analyze trees with many species. Here, we present an

analysis of trees with 60 species generated under the Yule birth model. The non-
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Figure 6: Branch score distance for the concatenation approach (IQ-TREE, HKY+Conc) and revPoMo
with N = 9 and the weighted sampling scheme (IQ-TREE, HKY+revPoMo+Weighted) applied to se-
quences simulated under a Yule tree with 60 species with ten samples each. The HKY model was used
in both cases. The tree height is 3 Ne and the level of polymorphism measured by Watterson’s theta is
θW ≈ 0.0025 per site. Ten replicate analyses were performed. The x-axis denotes the number of genes
that were analyzed (one gene has 1000 bp).

reversible PoMo approach is too slow for trees of this size. The runtime of revPoMo

on sequences with 1000 genes is about 4.5 h with a standard deviation of about

25 min (i5–3330S, 2.70GHz, 2 physical cores). Taking polymorphisms into account

improves accuracy in terms of BSD for this scenario. In particular, if more than 100

independently evolved genes are used for the analysis, the BSD is reduced by a fac-

tor of seven (Fig. 6). Notably, revPoMo performs better than concatenation methods

already if three genes are available. Although it is expected that an increase in the

number of species leads to a higher chance of topological errors, the total error is

similar to the one of the ILS scenario with four species only. Section S7.5 includes

results for a Yule tree with 50 species.

A very important variable of PoMo is the virtual population size N which has

initially been set to ten for parameter estimation (De Maio et al., 2013). Up to this

point, only the weighted sampling method has been used. Now we use both sam-

pling methods sampled and weighted to analyze the ILS scenario with ten sequences

per species and 1000 genes in dependence of N . We find that the allowance of a
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Figure 7: The branch score distance in dependence of the virtual population size N for revPoMo with both
sampling techniques (IQ-TREE, HKY+revPoMo+Sampled; IQ-TREE, HKY+revPoMo+Weighted). The an-
alyzed scenario is incomplete lineage sorting with ten samples, a tree height of 1 Ne and 1000 genes of
input data. The error bars are standard deviations of ten runs. For N = 1, the estimate of the concate-
nation approach (IQ-TREE, HKY+Conc) is shown. All models use the HKY model.

single polymorphic state for each pair of bases (N = 2) already decreases the tree

estimation error and that an increase of N from two to nine greatly improves the

accuracy (Fig. 7). During a further increase of N up to 19 the improvement is only

marginal. Random sampling with replacement of N samples from the data gives

better results if N is very low. For higher virtual population sizes between 5 and 15,

weighting the partial likelihoods performs better on average and is also numerically

more stable. Values of N above the sample size do not add useful information and

therefore do not positively influence the performance.

Additional results (Section S8 and Fig. S20–S24) confirm that for the weighted

sampling method an increase of the virtual population size above the sample size

does not greatly improve the results. For the sampled input method and N above

ten, we also observed numerical underflow errors due to low frequencies of poly-

morphic states of the stationary distribution if the alphabet is oversized. In general,

we advice to choose N between five (large trees) and 19 (small to intermediately

sized trees), depending on computational resources, tree size and input data. The
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Figure 8: The estimated tree length in substitutions per site in dependence of the virtual popula-
tion size N for revPoMo with both sampling methods (IQ-TREE, HKY+revPoMo+Sampled; IQ-TREE,
HKY+revPoMo+Weighted). The analyzed scenario is incomplete lineage sorting with ten samples, a tree
height of 1 Ne and 1000 genes of input data. The errors bars are hardly visible and denote standard
deviations of ten replicate analyses. The dashed line is the true value. For N = 1, the estimate of the
concatenation approach (IQ-TREE, HKY+Conc) is shown.

sampled input method seems to do better if the average number of samples is below

three.

The total branch length of the inferred phylogeny is a further criterion to judge

the quality of revPoMo. Usually, the branch lengths of phylogenies inferred by

Markov process based models are given in units of estimated average number of

events per site. The connection between mutation and substitution rates (cf. Meth-

ods) allows an interpretation of the estimated branch lengths of revPoMo. In partic-

ular, we can convert the branch lengths to estimated average number of substitutions

per site, compare them to estimations from standard substitution models and — for

simulations — also to the true value (Fig. 8).

The concatenation approach systematically overestimates the phylogenetic dis-

tance because polymorphisms are interpreted as substitutions. For revPoMo, we

find that the estimated tree length in substitutions improves for both input meth-

ods if N is increased. The sampled input method seems to converge faster but over-

shoots for values of N above the sample size. The further decrease of branch lengths
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Figure 9: The estimated phylogeny of the great apes data set with revPoMo and the GTR model agrees
with the geographic distribution of the species. There are no topological differences between the ten
replicate analyses. The virtual population size was set to N = 9 and the input method to sampled. The
phylogenetic scale is in substitutions/site and can be directly compared to values inferred by standard
substitution models.

can be attributed to an unnecessary interpretation of substitutions as standing poly-

morphisms. We conclude that it is only preferable to use the sampled input method

when the data contains populations with very few individuals.

3.2. Real Data

The previous, non-reversible PoMo already performed well on the great apes

data set (De Maio et al., 2015). The phylogeny estimated by revPoMo (Fig. 9)

agrees with the geographic distribution of the great apes (species with neighboring

habitats are more closely related than species that live further apart) and the topol-

ogy presented in the original publication (Prado-Martinez et al., 2013). revPoMo

evaluates all (weighted) or nearly all (sampled) available polymorphic information

in the data and we expect that estimates between consecutive runs have no or low

variance, respectively. Indeed, ten replicate analyses with the GTR model (Tavaré,

1986), N = 9 and the sampled input method show that it is stable and accurate.

The estimated topologies are identical and the total branch lengths have a mean of

3.08 ·10−2 substitutions/site with a very low standard deviation of about 6.45 ·10−7

substitutions/site. On the contrary, the topology inferred by DNA substitution mod-

els is not stable and depends on the individuals chosen to represent the species (De
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Maio, Schrempf, and Kosiol, 2015).

The branch lengths of revPoMo can be used to estimate the germline mutation

rate per generation within the Human-Chimpanzee-Gorilla clade. This is interesting

because many discrepancies of estimates have been discussed in the past (Scally

and Durbin, 2012). We assume that Humans split from Chimpanzees 7 million

years ago (Ségurel et al., 2014) and that the Human-Chimpanzee clade split from

the Gorilla clade 10 million years ago (Scally and Durbin, 2012). Furthermore we

set the generation time to 25 years. Then, we get an estimate of about 2.65 · 10−8

germline mutations per generation per site. This value lies on the lower boundary

of other estimates from phylogenies (Li and Tanimura, 1987; Takahata and Satta,

1997). We stress that this is a rough estimate that ignores various complex aspects

considered by Li and Takahata. However, with our approach we take into account

the effect of standing and ancestral variation on the estimate of mutation rates.

4. Conclusions

Polymorphism-aware phylogenetic models have been shown to improve accu-

racy substantially in parameter estimation (De Maio et al., 2013) and tree infer-

ence (De Maio, Schrempf, and Kosiol, 2015) in the presence of ILS. However, the

number of populations that could be analyzed with the non-reversible PoMo im-

plementation was limited. Here, we present a reversible PoMo under the following

assumptions: (a) polymorphic states can only contain two different nucleotides, (b)

the associated mutation model is reversible, (c) drift is described by the continuous-

time Moran model (e.g., Durrett, 2008, p. 46) and (d) mutations can only happen

when a nucleotide is fixed in the population. The stationary distribution for poly-

morphic states mimics the stationary solution of the diffusion equation without se-

lection and low scaled mutation rate θ .

The number of free parameters of revPoMo is determined by the associated mu-

tation model plus one for the total mutation rate which determines the proportion

of polymorphic states. This additional parameter can also be empirically estimated

from the data. A generalization of the mutation model such that mutations can

happen anytime not only naturally demands a further expansion of the alphabet of
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revPoMo to allow states with multiple nucleotides but also introduces problems with

respect to reversibility. Because of the Kolmogorov criterion (Kelly, 1979, p. 21),

the mutation coefficients themselves have to be symmetric then, i.e., qx y = qy x and

not only rx y = ry x in Eq. (1). This is incompatible with mutation models that use

estimates of nucleotide frequencies like the HKY model. Furthermore, for polymor-

phic states the stationary distribution is symmetric with respect to an interchange

of nucleotides (Section 2.4). It may be interesting to investigate if and only if this

is symmetry is implied by a reversible mutation model.

The introduction of reversibility slightly increases the error in tree inference for

some scenarios that have been examined but greatly improves runtimes up to a fac-

tor of 50. This allows the reconstruction of large-scale phylogenies. As an example,

a Yule tree with 60 species was analyzed and low error rates were observed. We

confirm that revPoMo does well on real data and infers a phylogeny that agrees

with the geographic distribution of the analyzed populations. We also presented

how the branch lengths of phylogenies estimated by revPoMo can be interpreted

and compared to the ones estimated by standard substitution models. Finally, we

show how the introduction of polymorphic states and an increase of the virtual

population size N improves estimates. We advice to choose N between five (large

trees) and 19 (small to intermediately sized trees), depending on computational re-

sources, tree size and input data. We discourage from using revPoMo on sequence

data where no population data is available yet.

Describing the evolution of DNA sequences with Markov processes is very fast

but restricts the possibilities of revPoMo to include, e.g., a model of gene flow.

However, we want to assess robustness against gene flow in the future. An extension

that we would like to implement is the inclusion of rate variation, for example with

a gamma distribution. Rate variation might not only be modeled between sites but

also along the tree, e.g., to account for changes in effective population size. In

particular, it is of high interest to relate the virtual population size of revPoMo to

the effective population size of real populations. This would allow direct inference

of effective population size as well as germline mutation rates.

Two different methods to process the data at the leaves of the phylogeny sam-
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pled and weighted were implemented. We found that both sampling schemes influ-

ence accuracy, especially when the sample size is low. With the weighted sampling

method a beta-binomial distribution could be used to allow pool sequence (Futschik

and Schlötterer, 2010) input data with sequencing errors (Appendix S5.2). Fur-

thermore, one could run a diffusion process that connects the data to the leaves

to improve the determination of the likelihoods of the revPoMo states. This would

also enable us to model population genetic effects with large or even variable Ne

relatively close to the present which is the stage where these effects are most impor-

tant. We also would like to enable automatic bootstrap with IQ-TREE. Importantly,

we want to stress that the idea of revPoMo can be used with substitution models of

any type including alphabets consisting of amino acids or codons.

revPoMo is peculiar in the sense that it is discrete in frequency but continuous in

time. This property makes it a connection between models that are discrete in time

and frequency (e.g., Wright-Fisher model with mutations) and the diffusion limit

which corresponds to continuity in time and frequency. The advantage of revPoMo

compared to multispecies coalescence based models is that an increase of sample

size improves tree and parameter estimations but does not increase runtime. We

believe that revPoMo is a valuable tool in species tree estimation from population

data.
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Appendix A The Instantaneous Rate Matrix QrevPoMo

Let qi j
x y be the rate of a jump from {i x , (N − i)y} to { j x , (N − j)y}. We can

summarize QrevPoMo as

qi j
x y =



































0 if |i − j|> 1,

µy x if i = 0, j = 1,

µx y if i = N , j = N − 1,

qi if 0< i < N and |i − j|= 1,

(15)

where

qi,i+1 = qi,i−1 = qi =
i(N − i)

N
(16)

(Section 2.4), x 6= y and the diagonal elements (q00
x x or qNN

x x and qii
x y , 0 < i < N)

are defined such that the respective row sum is 0.

Appendix B Derivation of E(#S,revPoMo)

This section derives the expected number of substitutions of revPoMo (Sec-

tion 2.8). If we denote Pm to be the probability of an event to be a mutation,

the expected number of substitutions is

E(#S,revPoMo) = E(#E)Pm h. (17)

Pm is the ratio of the rate of mutations rm to the total rate r = rm+ rs. We have

rm =
∑

x ,y∈A
x 6=y

cπxµx y =
∑

x ,y∈A
x 6=y

cπxπy mx y , (18)
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and for the rate of frequency shifts rs

rs =
1
2

∑

x ,y∈A
x 6=y

∑

0<i<N

∑

0≤ j≤N
j 6=i

pi
x yqi j

x y

=
1
2

∑

x ,y∈A
x 6=y

∑

0<i<N

pi
x y

�

qi,i−1
x y + qi,i+1

x y

�

=
∑

x ,y∈A
x 6=y

∑

0<i<N

cπxπy mx y

rs = (N − 1)rm, (19)

where the qi j
x y are the rates from {i x , (N − i)y} → { j x , (N − j)y} (qi,i+1

x y = qi,i−1
x y ;

Section S1). Finally,

Pm = rm/r = rm/(rs + rm) = 1/N , and

E(#S,revPoMo) =
l

N2
. (20)

30

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 10, 2016. ; https://doi.org/10.1101/048496doi: bioRxiv preprint 

https://doi.org/10.1101/048496
http://creativecommons.org/licenses/by-nc-nd/4.0/

