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Abstract 

The site frequency spectrum (SFS) has long been used to study demographic history and natural selection.  

Here, we extend this summary by examining the SFS conditional on the alleles found at the same site in 

other species.  We refer to this extension as the “phylogenetically-conditioned SFS” or cSFS.  Using recent 

large-sample data from the Exome Aggregation Consortium (ExAC), combined with primate genome 

sequences, we find that human variants that occurred independently in closely related primate lineages 

are at higher frequencies in humans than variants with parallel substitutions in more distant primates. We 

show that this effect is largely due to sites with elevated mutation rates causing significant departures 

from the widely-used infinite sites mutation model. Our analysis also suggests substantial variation in 

mutation rates even among mutations involving the same nucleotide changes. We additionally find 

evidence for epistatic effects on the cSFS: namely, that parallel primate substitutions at nonsynonymous 

sites are more informative about constraint in humans when the parallel substitution occurs in a closely 

related species. In summary, we show that variable mutation rates and local sequence context are 

important determinants of the SFS in humans.
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Introduction 

The distribution of allele frequencies across segregating sites, commonly referred to as the Site Frequency 

Spectrum (SFS), is a central focus of population genetics research as it can reflect a wide range of 

evolutionary processes, including demographic history as well as positive and purifying selection [1-8]. 

Until recently, the SFS was usually measured in samples of tens or hundreds of people, but advances in 

sequencing technology have enabled the collection of sequence data at much larger scales [9-14].  

Notably, the Exome Aggregation Consortium (ExAC) recently released high quality, exome-wide allele 

counts for over 60,000 people [12].  

Large sample sizes are valuable because they make it possible to detect many more segregating 

sites, and to estimate the frequencies of rare variants.  For example, the recent dramatic expansion of 

human populations leaves little signal in the SFS in small samples [15], but is readily detected in large 

samples, where there is a huge excess of low frequency variants compared to model-predictions without 

growth [13,14,16,17].  Similarly, large samples enable the detection of deleterious variants that are held 

at very low frequencies by purifying selection [18-22].  

In this paper, we extend the SFS by considering the SFS conditional on the observed alleles at a 

given site in other species (specifically, other primates in our analysis).  Our original motivation was that 

this could allow us to measure the effects of sequence context on the selective constraint of missense 

variants. In general, sites with strong levels of average constraint across mammals tend to be less 

polymorphic within humans [16,23,24], but to the best of our knowledge, there has not been extensive 

consideration of the joint distribution of the substitutions across other lineages and the human SFS.  In 

particular, we hypothesized that if an identical substitution has occurred independently in a closely 

related species—e.g., in a great ape—then this is strong evidence that the same variant is unlikely to be 
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deleterious in humans. However, an identical substitution in a more distantly related species may be much 

less informative, as substitutions at other positions within the same gene may change the set of preferred 

alleles due to epistatic interactions [25-31] (Figure 1).  For example, it has been shown that, in a handful 

of cases, likely disease-causing variants in humans are actually wildtype alleles in mouse, presumably 

rendered harmless by parallel substitutions at interacting positions [26].  

 

Figure 1. Hypothesis about information in parallel mutations. If an identical substitution occurred independently in a closely 

related species, then the variant is unlikely to be deleterious in humans. An identical substitution in a more distantly related 

species may be less informative because sequence divergence at interacting sites may change the set of preferred alleles, and 

hence the selective constraint at the site. 

 

As we show below, the human SFS varies greatly depending on patterns of substitutions in other 

species.  In part, this does appear to be due to the accumulation of epistatic effects on more distant 

lineages; however a more important factor is mutation rate variation across sites.  Under the widely-used 

infinite sites model, the SFS is independent of mutation rate; but in the ExAC dataset we observe a clear 

breakdown of this model.  Mutation rates are known to vary across sites due to a variety of different 

mechanisms, leading to differences between CpGs, transitions and transversions, as well as additional 
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effects that correlate with broader sequence context, replication timing, transcription, recombination rate 

and chromatin environment [32-39].  We show here that mutation rates are much more variable than 

generally appreciated, and that rates at some sites are high enough to generate substantial deviations 

from infinite sites predictions.  The main ExAC paper [12] also recently reported that the SFS varies 

substantially across mutation types, and also noted that this implies departures from the infinite sites 

model, especially for CpGs.  

In summary, our results suggest more variation in mutation rates across sites than is generally 

appreciated, and further that the infinite sites model provides a poor fit for population genetic analyses 

in large modern data sets.  We also show a significant, albeit smaller, role for epistatic effects in shaping 

the cSFS.  
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Results 

To investigate the properties of the human cSFS, we combined exome sequence data from 60,706 humans 

from ExAC version 0.2 [12,40] and orthologous reference alleles for 6 nonhuman primate species from 

the UCSC genome browser [41].  After applying several filters (see Materials and methods for details) we 

were left with 6,002,065 single nucleotide polymorphisms (SNPs) for which we had orthologous data in at 

least one nonhuman species.  

We examined how the human SFS changes as we condition on various divergence patterns 

observed in primates.  There are many possible ways to condition on variation across the nonhuman 

primates.  We focus here on sites that are variable in human only (denoted human-private), as well as 

sites where exactly one other species carries the human minor allele (and all others match the human 

major allele); see Figure S1 for an alternative conditioning based on the most closely related species 

carrying the human minor allele. Throughout, we assume that the observation of the human minor allele 

as the reference allele in another primate implies that the mutation arose independently and fixed in that 

primate.  This assumption may be violated for a small fraction of SNPs when comparing human to our 

closest relatives (notably, chimpanzee and gorilla [42]), but the overall patterns that we report here are 

maintained when we consider more distant species for which shared ancestral polymorphism is unlikely 

(see Materials and Methods and Supplementary Material for further discussion).  The SFS presented 

here, unless otherwise stated, are constructed using minor allele frequencies. 

Henceforth, we will use the term substituted species to refer to the single species in which the 

human minor allele is observed, and the corresponding species cSFS to refer to the human SFS conditional 

on a substituted-species divergence pattern.  For example, “substituted-orangutan” refers to human 

variants for which the human minor allele is observed in orangutan, and the human major allele is 

observed in all other primates; “orangutan cSFS” will refer to the human SFS at these sites (Figure 2A).  
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There were 5,286,937 human-private sites in the data set, and the number of substituted-species sites 

ranged from 22,209 (substituted-chimpanzee) to 66,254 (substituted-gibbon). 

Figure 2B shows a comparison of the human-private cSFS and the orangutan cSFS for 

nonsynonymous and synonymous sites, respectively.  Within each cSFS class, the nonsynonymous 

spectrum has more rare variants than the synonymous spectrum, as expected given that nonsynonymous 

variants are more likely to have deleterious effects.  Secondly, if we compare the human-private versus 

orangutan cSFS at nonsynonymous sites, we see more rare variants in the human-private set.  Again, this 

matches expectations, as the presence of a parallel substitution in orangutan implies that a substitution 

at this position is tolerated.  
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Figure 2. The human SFS conditioned on primate substitution patterns. (A) An example of the phylogenetic conditioning that 

defines what we denote as “substituted-orangutan” sites. (B) The cumulative distribution functions (CDF) of orangutan cSFS (i.e. 

the SFS of substituted-orangutan sites), and the SFS of phylogenetically conserved sites. The cSFS are more skewed towards 

common variants than the SFS of conserved sites. These skews are much more pronounced than in the comparison of 

synonymous and nonsynonymous sites. (C) The more closely related the substituted-species, the higher the skew of the cSFS 

towards common variants (only nonsynonymous mutations shown). The inset shows the rare variants slice of the CDF for each 

species, for both synonymous and nonsynonymous variants. 

 

However, we were surprised to see that substituted-orangutan synonymous sites also segregate 

at much higher frequencies than both synonymous and nonsynonymous human-private sites.  Taken at 

face value, this would seem to imply that a large fraction of synonymous sites are functionally constrained.  

While it is known that some synonymous sites play roles in functions such as splicing [43,44], it is generally 

believed that most synonymous variants in mammals are effectively neutral.  We were thus curious to 

understand whether this result is primarily driven by a surprising degree of constraint at synonymous 

sites, or by some other factors.  

Looking more broadly across the primates, we observed a clear trend of cSFS across substituted 

species (Figure 2C): the more closely related the substituted species, the greater the skew towards high 

frequency variants.  This trend is most easily noticeable in the fraction of rare variants (defined here, 

arbitrarily, as singletons and doubletons; Figure 2C, inset). In the following sections, we try to understand 

the factors driving these observations. 

 

Effect of mutation rate variation on the human SFS 
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In this section we consider whether mutation rate variation may contribute to the observed trend across 

cSFS.  Under the standard infinite sites assumption, the SFS is independent of mutation rate. However, 

we conjectured that in the very large sample size of ExAC, infinite sites may no longer be a good model 

for the data [45].  

To examine this, we stratified the human SFS by mononucleotide mutation types (as well as the 

dinucleotide mutation type CpG->TpG), for which there are well-characterized differences in mutation 

rates.  For this analysis we focused on intronic sites, to reduce potential effects of selective constraint.  

We found that the different mutation types have significantly distinct spectra.  The fraction of rare variants 

among CpG->TpG mutations (36%) was roughly half that of non-CpG transitions (71%, see Figure 3A). 

Similarly, non-CpG transitions have higher mutation rates than transversions and indeed, the SFS for 

transitions is also skewed towards higher frequencies than transversions (Figure 3B). Overall, the fraction 

of rare variants in the subsample of Europeans was significantly negatively correlated with germline 

mutation rates estimated from the deCode project dataset [46] (weighted linear regression 𝑝 =

4.9𝑥10−6, see Figure 4A and Supplementary Material).  
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Figure 3. Rare variant frequencies vary dramatically by mutation type. All panels show the SFS of derived alleles constructed 

from intronic sites. The notation of mutation types refers to mutations on either strand (e.g., A->C indicates an A to C change on 

either strand). (A) SFS stratified by non-CpG mononucleotide mutation types and CpG transitions, represented by different 

curves. The fraction of rare variants in CpG transitions is nearly half that of other mutations.  (B) Focusing on non-CpG mutations, 

transitions have an SFS significantly skewed towards common variants compared with transversions. (C) Sharing of 

polymorphisms between East Asians and Europeans. The excess sharing of CpG polymorphisms at low frequencies is suggestive 

of multiple occurrences of the mutations. x-axis values are binned on a logarithmic scale.  (D) Stratification to coding and template 

strands revealed differences between the two for some mutation types, suggesting transcription-associated mutational 
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mechanisms also affect the SFS. CpG mutations excluded from the analysis in this panel.  (E) Recombination rates are positively 

correlated with the fraction of rare variants; this could be due to a correlation between recombination rates and mutation rates. 

x-axis values are standardized to the genomewide mean, and are binned on a logarithmic scale.  (F) SFS across chromatin states. 

Chromatin states in H1 human embryonic stem cells were inferred by ChromHMM. The chromatin state exhibits substantial 

association with the fraction of rare variants in CpG mutations, and modest association in other mononucleotide mutation types. 

In panels D,E and F: Points show means; lines show 95% confidence interval computed with nonparametric bootstrap. 

Figure 4. All panels exhibit the unfolded SFS (i.e., constructed using the derived alleles) of intronic sites. (A) Fit of mutational 

models to observed SFS. The x-axis shows previously estimated de-novo germ-line mutation rates [46]. These data illustrate that 

the fraction of rare variants is strongly negatively correlated with germ-line mutation rates. Lines show expectations under 

various mutational models: yellow – infinite sites model (SFS independent of mutation rate); teal – Jukes Cantor finite-sites model; 

red – Jukes-Cantor model with within-mutation-type variation (i.e., variation beyond mutation rate heterogeneity due to the type 

of mutation in sequence). (B) SFS subsampling and the effect of mutation rate. Dots show the fraction of rare variants in the full 
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sample SFS of the European population in ExAC. Lines show the expected fraction of rare variants after subsampling to smaller 

numbers of individuals. In large samples, the SFS of CpG and non-CpG sites are very different. In smaller samples, these 

differences shrink. In the shaded region, the trend across mutation types is changed (the inflection point is indicated by an arrow); 

with these sample sizes, CpG transitions exhibit more rare variation than non-CpG transitions.   

 

If multiple hits are prevalent within the ExAC sample, some of them should occur in different 

subpopulations.  Higher mutation rates should then lead to excess sharing of low frequency variants 

among subpopulations.  To verify the occurrence of recurrent mutations, we examined the sharing 

between the European and East Asian ExAC subsamples.  Indeed, at low frequencies, non-CpG transitions 

exhibited a higher sharing rate than transversions, and CpG transitions exhibited much higher sharing rate 

than non-CpG sites (For example, for sites with minor allele count of 10, we get a t-test 𝑝 < 2.2 ∙ 10−16 

for both comparisons; see Figure 3C, and a similar analysis performed in Figure 2d in the main ExAC paper 

[12]).   

As an additional test of whether mutation rate affects the fraction of rare variants, we turned to 

sites in transcribed regions.  It is known that in such regions, A->G and A->T mutations occur at higher 

rates on the template (non-coding) strand than on the non-template (coding) strand, due to the effects 

of transcription-coupled repair or other transcription-associated mutational asymmetries [47-49].  

Indeed, as predicted from these rate asymmetries, we observed a 1% difference between the template 

and the coding strands in the fraction of rare variants in introns (t-test 𝑝 < 2.2 ∙ 10−16 for A−> G, 𝑝 =

6.0𝑥10−7 for A->T). C->T mutations also exhibit a small but significant difference (t-test 𝑝 = 3.0𝑥10−4) 

between the strands, even though, to our knowledge, no previous work has observed a rate asymmetry 

for C->T mutations (Figure 3D).  
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Similarly, we hypothesized that the SFS at CpG sites might also depend on chromatin environment 

(Figure 3F).  Specifically, CpG sites experience high mutation rates only when they are methylated [50-53].  

We thus examined the effect of chromatin states in H1 human embryonic stem cell lines, inferred by 

ChromHMM [54] (as a proxy for germline chromatin states) on the SFS across different mutation types. 

Methylation levels are expected to be low in active regions including promoters and enhancers and high 

in repressed regions such as heterochromatin.  Indeed, we find highly significant differences in the SFS at 

CpGs (see Supplementary Material for details), consistent with this expectation: i.e., fewer rare variants 

in heterochromatin, where methylation levels are high. In contrast, the other mononucleotide mutations 

showed only modest variation across chromatin states.   

Finally, we found that recombination rate is also negatively correlated with the fraction of rare 

variants (Pearson correlation 𝑝 < 2.2 ∙ 10−16, and see Figure 3E and Figure S5).  This is consistent with 

the postulated positive correlation between recombination and mutation rates [55,56].  However, linked 

selection—which is expected to be more pervasive in regions of low recombination—could also contribute 

to this trend [57-59].  Overall, the SFS variation patterns across chromatin states, recombination rates, 

and strands, underscores that heterogeneity in mutation rates does exist within mutation types, and that 

it has a substantial effect on the SFS. 

These observations on mutation rate variation led us to conclude that the infinite-sites model 

provides a poor fit for these large-sample human polymorphism data.  We therefore investigated finite-

sites mutational models.  Below, we describe the fit of various mutational models while using previously-

inferred population genetic models of European demography.  In particular, we eventually used a 

modified version of the demography inferred by Nelson et al. [14] (see Materials and Methods for the 

other demographic models considered). The assumed demography provides a good fit for the SFS of sites 

with the lowest mutation rates. 
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We asked how well different finite-sites models account for the observed relationship between 

de-novo mutation rates and the SFS.  First, we considered the Jukes-Cantor model, which uses a 4 x 4 

uniform mutation transition matrix [60].  But we were surprised to find that this finite sites model barely 

improved the fit to the SFS across the range of estimated mutation rates (Figure 4A).  In our simulations, 

the probability of obtaining more than one mutation on the genealogy of a segregating site is low enough 

that the finite sites SFS is similar to the infinite sites SFS, even at the relatively high mutation rate 

estimated for CpGs.    

We hypothesized that we might achieve a better fit if some sites have higher intrinsic mutation 

rates than the mean for the particular nucleotide change at that site; this notion has received increasing 

support in the recent decade from both evolutionary and family-based studies of human mutation rates 

[32-35,37,61-63].  We therefore augmented the Jukes-Cantor model by incorporating additional variation 

in mutation rates across sites belonging to each mutation type (see Materials and Methods).  The 

augmented Jukes-Cantor model with within-mutation-type variation fitted the data well, including the 

large difference in SFS between CpG and non-CpG sites (Figure 4A).  The augmented model suggests that 

3% of mutations within a mutation type have a mutation rate of over 5 times the mean rate for that type.   

This estimate is close to the level of mutation rate variation inferred by Hodgkinson and Eyre-Walker [64].   

It is natural to wonder what effect recurrent mutations may have in smaller samples.  Small 

samples have the disadvantages of increased noise and limited temporal resolution of analysis.  For 

example, in demographic inference, larger samples are essential for detecting the signal of recent rapid 

growth of the human population [17,65,66].  Interestingly, we found that samples much smaller than ExAC 

may also create an unappreciated bias, as we describe next. 

We examined the effect of subsampling the SFS of the European ExAC sample to a smaller number 

of individuals (see Supplementary material). SFS differences between non-CpG transitions and 
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transversions remained roughly the same, even with a sample of a few hundred people.  Conversely, the 

difference between CpG and non-CpG sites changed dramatically for smaller samples. For samples smaller 

than 1500 people, there appears to be more rare variation in CpG than non-CpG transitions (Figure 4B, 

Figure S4).  This finding exemplifies that if one category of sites has substantially more rare variation in 

the population than a second category, the sample SFS may actually exhibit more rare variation in the 

second category.  Therefore, a comparison of the amount of rare variation across categories of sites may 

yield different orderings, depending on the sample size. 

Finally, we returned to the species trend across cSFS that we described earlier (Figure 2C).  Given 

the previous observations on SFS differences between mutation types, we asked whether the trend across 

substituted-species cSFS we described earlier (Figure 2C) could be explained by differing compositions of 

the various mutation types.  Indeed, most of this trend is due to the fact that CpG transitions make up a 

higher fraction of sites for more closely related substituted species (Spearman 𝜌 = −0.9, 𝑝 = 0.08, and 

see Figure S2).  Since CpG transitions are depleted of rare variants, this results in the cSFS skewness trend.  

Namely, the fraction of rare variants is strongly negatively correlated with the fraction of CpG transitions 

across substituted-species (Pearson 𝑟 = −0.997, 𝑝 = 9.7𝑥10−6 for nonsynonymous mutations; 𝑟 =

−0.999, 𝑝 = 9.9𝑥10−7 for synonymous mutations, see Figure 5C).   
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Fig 5. (A) Some mutation types accumulate in a roughly constant yearly rate across different primate lineages. For these mutation 

types the expected number of substitutions on an evolutionary branch is proportional to the branch length in years (pink).  The 

yearly rates of other substitution types (blue) depends on various life-history traits like generation times (“generation time 

effect”).  As a result, the composition of substitution types in a lineage depends on lineage-specific traits like generation times; 

this is illustrated by the blue to pink ratio, which differs across lineages.   (B) Model-based expectations for the distribution of 

mutation rates at substituted-species sites.  These results were computed using a theoretical model and a set of realistic 

parameters.  At substituted species sites, we expect a distribution skewed towards higher mutation rates compared to random 

sites, or to random polymorphic sites.  In addition, the distribution of mutation rates is skewed towards higher mutation rates 

for substituted-species with longer generation times; for the primates we considered in this work, this would imply higher 

mutation rates for more closely-related substituted-species.  (C) CpG transitions enrichment is a strong predictor of cSFS skewness 

in real data. 

 

Why is the fraction of CpG transitions negatively correlated with the relatedness of the 

substituted-species to humans?  Below, we suggest how this could be explained through the mutational 

mechanism of CpG transitions, which leads to different substitution dynamics on evolutionary timescales 

than the dynamics at non-CpG sites.  

Substituted-species sites likely experienced two independent mutations at the site during primate 

evolution, and are therefore enriched for hypermutable sites [61,62,64]. A simple model that we develop 

in the Supplementary Material supports this intuition.  In this model, we initially assumed a “uniform 

molecular clock” regime in which substitutions accumulate at the same yearly rate across the primate 

phylogeny.  Under this assumption, differences in the distribution of mutation rates between substituted-

species categories should be vanishingly small (Figure S6). 

However, recent work [67-70] has demonstrated that while the “uniform clock” assumption is 

valid for some mutation types—importantly, CpG transitions—the yearly substitution rates of other 
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mutation types depend heavily on life-history traits such as generation time [69,71,72], and thus vary 

extensively across primates.  Notably, Moorjani et al. have pointed out that this difference leads to 

variable mutational spectra across primates [67].  We therefore augmented our model by including two 

mutation categories: mutation types that follow a “uniform clock”, and mutation types with rates that 

depend on generation times (Supplementary Material, and see Figure 5A).  The model predicts an 

enrichment of uniform-clock mutations for substituted-primates with longer generation times.  Notably, 

this translates into a prediction of an enrichment of uniform-clock mutations—like CpG transitions—in 

substituted species more closely-related to humans (with the exception of orangutan, which is thought to 

have the longest generation time among the primates considered, although it was only estimated in 

females [73]).  Examining the expected distributions of mutation rates in substituted-species sites, this 

enrichment leads to a skew towards higher mutation rates for more closely-related substituted-species 

(Figure 5B).    

Overall, this model provides an explanation by which mutational mechanisms underlie the 

observed correlation between the relatedness of the substituted species and the skew of its cSFS towards 

common variants.  We next asked whether additional causes beyond mutation rate variation might also 

contribute to the species trend across cSFS.  

 

Effects of epistasis on the human SFS  

A second process that could contribute to the observed pattern of cSFS differences across substituted-

species is fitness epistasis [25-27,31]. It is well-known that sites that are functionally important in humans 

tend to be relatively conserved across the mammals [74]. However, this is neither a necessary nor a 

sufficient condition for predicting functional sites in humans, and there are some counter-intuitive 
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examples of disease-causing mutations in humans that are annotated as the reference allele in mouse 

[26].  It is presumed that such cases may be explained by parallel changes at other interacting amino acids 

that alter the structural context of the relevant site in mouse.  

We thus hypothesized that the observation of a human variant in a closely related species 

provides suggestive evidence that the allele may be benign for humans as well. This evidence is expected 

to be stronger the more closely related the other species is to humans, because there would have been 

less time to accumulate additional epistatic interactions. An effect of this type could contribute to the 

trends observed in Figure 2C.  In this section we test for evidence of epistatic effects.   

To this end, we used a logistic regression model (see Materials and Methods). We first examined 

whether the probability of the variant being rare is associated with the relatedness of the substituted 

species.  A model that included only the relatedness of the substituted species showed a perfectly 

correlated ordering of the two (Figure 6A, CpG transitions were excluded from this analysis).  We then 

turned to examine whether this correlation persists after controlling for mutational composition 

differences between substituted-species categories.  We controlled for the effect of mononucleotide 

mutation types on the probability of the variant being rare (Figure 6B).  We then further refined the 

mononucleotide mutation types by using their two flanking nucleotides, and estimated another model 

with these finer mutation type categories (Figure 6C).  The trend persisted even after controlling for 

mutation type, most noticeably for nonsynonymous sites, which likely involve the strongest purifying 

selection pressures (Spearman 𝜌 = 1, 𝑝 = 0.016 for the ordering of substituted-species coefficients for 

both models).  We repeated the analysis while including CpG transitions, and found that the perfect 

correlation persisted (Spearman 𝜌 = 1, p=0.016 for both models; Figure S12).  
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Figure 6. Depletion of rare variants is correlated with relatedness to substituted species. The figure shows logistic regression 

coefficient estimates with their corresponding standard errors.  Substituted-species labels are spaced by their split times from 

humans. The lines are the least-squares line fitting the coefficients to the split times.  (A) Estimates from a simple logistic 

regression to the substituted species. The trend is partly due to mutational composition differences between substituted-species 

categories. To test whether the trend is driven solely by mutational rate differences, we estimate coefficients in a model including 

the variation explained by (B) mononucleotide mutation type, and (C) combinations of focal mononucleotide mutations and 

upstream and downstream nucleotides.  Even after controlling for mutational composition with these models, a significant trend 

persists for nonsynonymous variants. 

 

One explanation for the residual trend observed in Figures 6B,C is that more-related species have, 

on average, more similar context on which the mutation occurs.  We can interpret this residual trend as 
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support for the following hypothesis: when the sequence context of the substituted species is similar to 

that of humans, the fixation of the human-minor allele in the substituted species suggests that the 

mutation is benign for humans.  As sequence context diverges, epistatic effects may come into play and 

change the selective effect of the mutation [28,75,76].  In the Supplementary Material, we investigate 

the effect of sequence context divergence more directly.   
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Discussion 

Our analysis showed a significant correlation between the probability that a variant is rare in humans and 

the relatedness of another species in which the same mutation occurred.  This trend was largely driven 

by mutation rate variation, which we have observed to be a primary determinant of the human SFS. 

The large effect that mutation rate variation has on the human SFS could have a major impact on 

any future work involving human polymorphism datasets with large sample sizes.  For example, most 

demographic inference algorithms that use the SFS as a summary statistic [e.g. 6,66,77] rely on the 

infinite-sites model, which is evidently not a valid assumption for large samples.  Adjusting demographic 

inference schemes to include the effects of recurrent mutations on the SFS (for examples of recent efforts 

towards this goal, see [78-82]) has the potential to significantly improve inference accuracy. 

We have also seen that the trend across cSFS persisted even after tri-nucleotide mutational 

composition was taken into account.  This remaining correlation is consistent with an effect of sequence 

context epistasis on the fate of mutations.   

Substitutions in other lineages have proven to be highly informative for understanding deleterious 

effects in the contemporary human genome; among numerous features that have been considered, the 

strongest predictors of the pathogenicity of a mutation are species divergence features [83-86].  

Nevertheless, methods used to predict the deleteriousness of a mutation at a site typically rely on a single 

summary of how variable a site is across the phylogenetic tree.  Our analysis suggests that epistatic effects 

can bias the inferred deleteriousness of the mutation, and that the location of a mutation on the 

evolutionary tree is informative of how deleterious the same mutation is for humans.  It is our hope that 

the integration of divergence patterns and sequence context into methods that predict the fitness or 

health effects of human mutations could increase accuracy and predictive power.  
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Materials and Methods 

Data 

For polymorphism data, we downloaded single nucleotide polymorphism (SNP) data from version 0.2 of 

the Exome Aggregation Consortium database [40]. This database is a standardized aggregation of several 

exome sequencing studies amounting to a sample size of over 60,700 individuals and approximately 8 

million SNPs. For each SNP we extracted upstream and downstream 30 nucleotides in the coding sequence 

of the human reference genome hg19 build. For simplicity we excluded sites that are tri-allelic (6.5% of all 

SNPs) or quad-allelic (0.2% of all SNPs). 

For divergence data, we used the following reference genome builds downloaded from the UCSC 

genome browser [41]: chimpanzee (panTro4), gorilla (gorGor3), orangutan (ponAbe2), gibbon (nomLeu1), 

macaque (rheMac3), and baboon (papHam1). We used the UCSC genome browser’s liftOver program to 

align each ExAC SNP along with its 60bp sequence context to the six aforementioned reference genomes. 

We used the baboon reference genome solely for the ascertainment of all other substituted-species 

categories (rather than including a substituted-baboon category in the analysis). 

For gene annotations, we downloaded the refGene table of the RefSeq Genes track from the 

UCSC genome browser. For each SNP in our data, we extracted all gene isoforms in which the position 

was included. We kept all ExAC SNPs that fell in a coding exon, intron or untranslated region. We excluded 

from the analysis non-autosomal SNPs, SNPs that had multiple annotations corresponding to different 

transcript models, and SNPs with a sample size of less than 100,000 chromosomes. After applying the 

filters we were left with 6,002,065 SNPs.  

For recombination rates, we downloaded the sex-averaged recombination rate map constructed by Kong 

et al. [87], which estimates rates at a resolution of 10kbp bins. 
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The probability of ancestrally shared polymorphisms 

In order to construct an upper bound on the probability of a human polymorphic site being ancestrally 

shared with another species, we consider the case of a selectively neutral polymorphism shared with 

chimpanzees.  A polymorphism observed in the human sample at the current time is an ancestral 

polymorphism at the time of the human-chimpanzee split only if there are at least two lineages ancestral 

to the human sample at the human-chimpanzee split time. Leffler et al. [42] assume a constant human 

effective population size of 10,000 people throughout history, and estimate a probability of about 1.0 ∙

10−5.  In the Supplementary Material, we augment Leffler et al.’s approximation with more complex 

demographic models for recent human history and derive an upper bound of 1.4 ∙ 10−5 for this 

probability.  Multiplying this probability by the number of exonic sites (3,531,936) in our data, we get an 

expected number of 49 sites in our data that are ancestrally shared with chimpanzees.  

However, our derivations are based on a pre-out-of-Africa effective population size (𝑁𝑒
pOOA

) of 

10,000 people.  Very little is known about human demographic history prior to the out-of-Africa event, 

and as we show in the Supplementary Material, the probability of an ancestral polymorphism rises very 

quickly with increasing 𝑁𝑒
pOOA

.  Estimates of 𝑁𝑒
pOOA

 range between 7300  [88] and 12,500 [89] people 

and are continually revised as estimates of human mutation rate and demographic history are refined.  

With 𝑁𝑒
pOOA

= 12,500, we get an upper bound of 283 polymorphisms in the dataset that are expected to 

be shared between human and chimpanzee, which compose at most 1.2% of the substituted-chimpanzee 

sites.  The upper bound for other species, or sites under purifying selection, should be even smaller, and 

are overall too few to affect our results. We therefore conclude that ancestral polymorphisms are too few 

to significantly affect our analysis.     
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Simulating mutational models and demographic models 

To get a theoretical expectation for the fraction of rare variants under different mutational models, we 

used various software for computing the expected sample SFS of 33,750 diploid individuals, corresponding 

to the size of the non-Finnish European subsample in the ExAC dataset. For all mutational models, which 

we describe below, we generated predictions under various demographic models from recent literature: 

Gazave et al. [90] (model 2 in their work), Tennessen et al. [16] and Nelson et al. [14].  

For the infinite-sites model, we computed the expected sample SFS analytically using 

fastNeutrino [66]. The infinite-sites model corresponds to an upper bound for the fraction of rare 

variants, but nonetheless predicted a fraction of rare variants much lower than that observed in data 

(75%-78%) for all non-CpG mutations under the Gazave et al. (59%) and Tennessen et al. (60%) 

demographies. The Nelson et al. model, which was inferred using a larger sample size of 11,000 people 

predicted 75% of biallelic polymorphisms would be rare under the infinite-sites model. In order to fit the 

highest observed fraction of rare variants for non-CpG sites in the ExAC data, we modified the parameters 

of the most recent epoch of exponential growth in Nelson et al. We estimated these parameters using 

fastNeutrino [66] on all A->C intronic mutations from ExAC. The inferred parameters were: current 

effective population size of 4,009,877 diploids, and an exponential growth onset time of 119.47 

generations in the past with a growth rate of 5.38% per generation. The more ancient demographic 

parameters were fixed to the same values as in the model of Nelson et al.  

We assume multiple mergers (non-Kingman merger events) have negligible effect on the SFS 

since the sample size is significantly smaller than the current effective population size. A similar 

demographic model [91] with a four-fold smaller current effective population size exhibited a relative 

difference of only about 1.3% and 0.3% in the proportion of singletons and doubletons respectively for a 
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comparable sample size of 50,000 people. Hence, we felt confident in using the Kingman coalescent for 

drawing genealogies. 

For the finite sites model, we first simulated independent coalescent trees using ms [92] and 

then generated 1kb non-recombining sequences for each coalescent tree using the desired recurrent 

mutation rate with the 4 x 4 Jukes-Cantor model of mutation [60]. We used the program Seq-Gen [93] 

to drop recurrent mutations on coalescent trees drawn from ms. We used mutation rates in a uniform 

logarithmically spaced grid of 40 points ranging from 10−9  to 5.3 ∙ 10−5 mutations per basepair per 

generation per haploid. For each value of the mutation rate, we simulated enough sequence data so that 

at least 100,000 biallelic polymorphic sites were available to reliably estimate the expected fraction of 

rare variants. If we indicate whether a variant is rare by 𝑌, then for each mutation rate 𝜇, the expected 

fraction of rare variants is 

𝐸[𝑌|𝑆 = 1; 𝜇], 

where 𝑆 is an indicator variable indicating whether a site is polymorphic and, specifically, biallelic. Finally, 

we considered a model with additional, within-mutation-type heterogeneity in mutation rate. Specifically, 

we considered a model in which sites of a particular mutation type (e.g., C->A sites) have a mean mutation 

rate 𝜇 as before, but the mutation rate itself, 𝑀, is no longer fixed (and equal to 𝜇), but rather a random 

variable with mean 𝜇. Let 𝑓(𝑀|𝑆 = 1; 𝜇) be the probability density function of 𝑀 in a site with mean 

mutation rate 𝜇 conditional on it being biallelic. Then, by the law of total expectation we have: 

𝐸[𝑌|𝑆 = 1; 𝜇] = ∫ 𝐸[𝑌|𝑀, 𝑆 = 1]𝑓(𝑀|𝑆 = 1; 𝜇)𝑑𝑀. 

By Bayes’ rule, 𝑓(𝑀|𝑆 = 1; 𝜇) is determined by both the within-mutation-type distribution of mutation 

rates, 𝑔(𝑀; 𝜇), and the probability of a site with mutation rate 𝑀 being biallelic, as follows: 
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𝑓(𝑀|𝑆 = 1; 𝜇) =
𝑃(𝑆 = 1|𝑀)𝑔(𝑀; 𝜇)

𝑃(𝑆 = 1; 𝜇)
. 

Therefore, 

𝐸[𝑌|𝑆 = 1; 𝜇]  = ∫ 𝐸[𝑌|𝑆 = 1, 𝑀]
𝑃(𝑆 = 1|𝑀)𝑔(𝑀; 𝜇)

∫ 𝑃(𝑆 = 1|𝑀′)𝑔(𝑀′; 𝜇)𝑑𝑀′
𝑑𝑀. 

For a large range of 𝑀, we have already estimated 𝐸[𝑌|𝑀] as described above. From the same simulations 

we have estimated the probability of a site with mutation rate 𝑀 being a biallelic polymorphism, 

𝑃(𝑆 = 1|𝑀). Lastly, the distribution of mutation rates due to within-mutation-type variance was modeled 

using a lognormal distribution: 

log10 𝑀 ; 𝜇 ~ 𝑁 (log10 𝜇 −
𝜎2

2
ln (10), 𝜎2). 

The mean parameter in the lognormal distribution above ensures that 𝐸[𝑀] = 𝜇.  𝜎 was arbitrarily chosen 

to be 0.57 (red line in Figure 4A). Notably, Hodgkinson et al. also fit a lognormal distribution of mutation 

rates to their dataset of co-occurrence of SNPs in chimpanzees and humans, and estimate a similar value 

of 𝜎 = 0.83 for non-CpG mutations [64] and 𝜎 = 0.8 for CpG transitions (personal correspondence).   

 

Logistic model for the probability of a variant to be rare 

We tested whether the species trend across cSFS is due solely to the effect of mutation rate variation. We 

used a logistic regression model to examine whether a residual substituted-species trend remains after 

controlling for mutation type. Let 𝑌 be a binary-valued random variable indicating whether a variant is 

rare, 𝜇 be a vector of mutually exclusive indicator (dummy) variables for each mutation type, 𝑠 be a vector 

of mutually exclusive indicator variables for the divergence pattern for the variant (substituted in one of 
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the primates or human-private) and 𝑍 be an indicator of whether the variant is nonsynonymous (we only 

considered coding variants). We fitted the logistic regression model 

𝑙𝑜𝑔𝑖𝑡(𝑃(𝑌 = 1|𝜇, 𝑠, 𝑍)) = 𝛽0 + 𝛽𝜇 ∙ 𝜇 + (1 − 𝑍)𝛽𝑠
𝑠𝑦𝑛

∙ 𝑠 + 𝑍𝛽𝑠
𝑛𝑠 ∙ 𝑠, 

where the parameters 𝛽0, 𝛽𝜇 , 𝛽𝑠
𝑠𝑦𝑛

, and 𝛽𝑠
𝑛𝑠 were learned from the data. We tested whether the 

coefficients 𝛽𝑠
𝑠𝑦𝑛

, 𝛽𝑠
𝑛𝑠 exhibit a trend across 𝑠, i.e. whether the probability of the variant being rare is 

associated with the relatedness of the substituted species. When ignoring the mutation rate effect (i.e. 

fixing 𝛽𝜇 ≡ 0), the 𝛽𝑠
𝑛𝑠 estimates were perfectly anti-correlated with the relatedness of the substituted 

species to human, consistent with the observation in data (Figure 6A). We then allowed for an effect for 

the mutation type by estimating 𝛽𝜇 for the different categories of mononucleotide mutation types (Figure 

6B(. We also estimated a model with a finer resolution of mutational categories, further partitioning the 

mononucleotide mutation types by their two flanking nucleotides (Figure 6C). For nonsynonymous sites, 

which likely involve the strongest purifying selection pressures, the trend persisted even after controlling 

for mutation rate variation (Spearman 𝜌 = 1, 𝑝 = 0.016 for both mononucleotide correction and for the 

correction including flanking nucleotides context).  
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