
4/12/2016

The effects of population size histories on estimates of selection coefficients from time-

series genetic data

Ethan M. Jewett1,2, Matthias Steinrücken3, Yun S. Song1,2,4,5,6

Departments of EECS1, Statistics2, and Integrative Biology4, University of California, Berkeley, CA

94720, USA.

Department of Biostatistics and Epidemiology3, University of Massachusetts, Amherst, MA 01003,

USA.

Departments of Biology5 and Mathematics6, University of Pennsylvania, Philadelphia, PA 19104,

USA.

Corresponding author: Yun S. Song (yss@berkeley.edu)

Keywords: selection, inference, time series, diffusion, Wright-Fisher

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 13, 2016. ; https://doi.org/10.1101/048355doi: bioRxiv preprint 

https://doi.org/10.1101/048355
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract

Many approaches have been developed for inferring selection coefficients from time series data

while accounting for genetic drift. However, the improvement in inference accuracy that can be

attained by modeling drift is unknown. Here, by comparing maximum likelihood estimates of

selection coefficients that account for the true population size history with estimates that ignore

drift, we address the following questions: how much can modeling the population size history improve

estimates of selection coefficients? How much can mis-inferred population sizes hurt inferences of

selection coefficients? We conduct our analysis under the discrete Wright-Fisher model by deriving

the exact probability of an allele frequency trajectory in a population of time-varying size and we

replicate our results under the diffusion model by extending the exact probability of a frequency

trajectory derived by Steinrücken et al. (2014) to the case of a piecewise constant population. For

both the discrete Wright-Fisher and diffusion models, we find that ignoring drift leads to estimates

of selection coefficients that are nearly as accurate as estimates that account for the true population

history, even when population sizes are small and drift is high. In populations of time-varying size,

estimates of selection coefficients that ignore drift are similar in accuracy to estimates that rely on

crude, yet reasonable, estimates of the population history. These results are of interest because

inference methods that ignore drift are widely used in evolutionary studies and can be many orders

of magnitude faster than methods that account for population sizes.
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1. Introduction

Methods for inferring the selection coefficient

at a single genetic locus from time series data

have been employed extensively in evolutionary

studies of simple traits. Such methods track the

frequency of an allele or Mendelian trait over

multiple generations and infer the selection coef-

ficient that best explains the observed frequency

changes. Studies of selective pressures conducted

using time series approaches have provided evi-

dence for strong selective forces in natural popu-

lations and have helped to characterize the ways

in which environmental factors influence evolu-

tion through selection (Clarke and Murray, 1962;

Clark, 1979; Wall et al., 1980; Lynch, 1987; Stine

and Smith, 1990; Goudsmit et al., 1996; Cowie

and Jones, 1998; Harrigan et al., 1998; Cook et al.,

1999; Haubruge and Arnaud, 2001; Bonhoeffer

et al., 2002; Reimchen and Nosil, 2002; Cook

et al., 2005; Labbé et al., 2009).

Because random fluctuations in allele frequen-

cies due to genetic drift are often small compared

to changes due to selective pressures, it is com-

mon practice for studies to assume that allele

frequencies change deterministically over time ac-

cording to well-known deterministic formulas of

Fisher (1922, p.424) and Haldane (1927, p.840)

or related expressions (Gillespie, 2010; Hartl and

Clark, 2007). However, because allele frequency

trajectories can be heavily influenced by genetic

drift when population sizes or selection coeffi-

cients are small, many methods have been devel-

oped to account for drift by explicitly modeling

finite population sizes when inferring selection

coefficients from observed allele frequency tra-

jectories (Manly, 1985; O’Hara, 2005; Bollback

et al., 2008; Malaspinas et al., 2012; Mathieson

and McVean, 2013; Lacerda and Seoighe, 2014;

Steinrücken et al., 2014; Foll et al., 2015; Ferrer-

Admetlla et al., 2015) and when testing hypothe-

ses about selection versus drift (Fisher and Ford,

1947; Schaffer et al., 1977; Wilson, 1980; Nishino,

2013; Feder et al., 2014; Topa et al., 2015).

Although estimates of selection coefficients are

likely to be improved by accounting for popula-

tion size histories, the expected amount of im-

provement is not well characterized. Even in

relatively small populations, allele frequencies

and other evolutionary processes behave almost

deterministically if the selection coefficient or al-

lele frequency is sufficiently high (Rouzine et al.,

2001), suggesting that methods that ignore drift

might perform well under these conditions. Con-

versely, if drift is strong allele frequency trajec-

tories can be noisy and the accuracy of methods

that ignore drift may be comparable to that of

methods that account for population size, as all

methods are likely to perform poorly under these

conditions (Gallet et al., 2012).

If computationally fast methods that ignore

drift are accurate, they could dramatically reduce

the time required to infer selection coefficients

in data sets with many loci. In addition to their

computational efficiency, methods that ignore

drift do not require estimates of effective pop-

ulation sizes, which can be difficult to obtain

accurately. Moreover, ignoring drift can lead to

simple formulas and inference procedures under

complicated evolutionary scenarios (e.g., Illing-

worth et al., 2012). Therefore, in light of the

beneficial properties of methods that ignore drift

and assume deterministic allele frequency trajec-

tories, it is of interest to compare their accuracy

to that of methods that account for population

size histories.

The theoretical accuracy of methods for in-

ferring selection coefficients can be difficult to

derive analytically. Thus, to explore differences

between methods that ignore or account for drift,

one can take the approach of empirically com-

paring inferences made by the same estimator,

either accounting for the true population size
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history or ignoring the size history by assuming

that populations are large and drift is negligi-

ble. This is the the approach we take here. For

our analyses, we consider maximum likelihood

estimators of selection coefficients because they

are typically quite accurate and have desirable

statistical properties. Moreover, the majority of

recently-developed methods for inferring selection

coefficients from time series data are maximum

likelihood estimators, making them an important

category of methods to evaluate.

To draw conclusions about the accuracy of

maximum likelihood estimators, it is important

to consider estimators based on exact likelihoods

rather than approximations, so that differences in

estimates can be attributed entirely to whether

a method ignores or accounts for drift. Although

several approximate approaches have been devel-

oped for computing the likelihood of a selection

model given time series allele frequency data,

only two existing methods compute probabilities

that are exact under a widely accepted model.

In particular, the methods of Bollback et al.

(2008) and Steinrücken et al. (2014) compute

exact probabilities under the diffusion approxi-

mation of the Wright-Fisher process. However,

no method computes the exact probability of

an allele frequency trajectory under the discrete

Wright-Fisher model, as the matrix powers re-

quired for such a method are considered to be

computationally inefficient. Moreover, no exist-

ing inference method based on the exact likeli-

hood models time-varying population histories,

making it difficult to explore the effects of ac-

counting for demography on inference accuracy.

Here, we derive the exact probability of an al-

lele frequency trajectory in a population of piece-

wise constant size under two classical models:

the discrete Wright-Fisher model and the diffu-

sion approximation of the Wright-Fisher process.
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Figure 1. Diagram of the model. An
allele at a single locus evolves in a pop-
ulation of piecewise constant size with
L = 5 epochs spanning the time periods
[τ0, τ1], ..., [τL−1, τL], where τ0 ≡ 0. Sam-
ples of sizes n1, ..., nk haplotypes are taken
at times t1, ..., tK .

We then use maximum likelihood estimators ob-

tained using these probabilities to explore how

ignoring or accounting for the true population

history affects estimates of selection coefficients.

Results

To compare the performance of estimators that

ignore or account for drift, we inferred selection

coefficients from allele frequency trajectories sim-

ulated under a variety of population histories of

time-varying size.

1.1. The population model. In all of our anal-

yses, we considered a single biallelic locus with

alleles labeled a and A evolving under selection

and recurrent mutation in a panmictic population

comprised of L different epochs ` = 1, ..., L, each

with constant size N` diploid individuals (Fig-

ure 1). Epoch ` corresponds to the time interval

[τ`−1, τ`], where time is measured continuously in

units of generations and we define τ0 ≡ 0. By

varying the population sizes N` across epochs, it
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is possible to model a variety of size-change pat-

terns including exponential growth, bottlenecks,

and rapidly oscillating population sizes.

Within epoch `, all mutation and selection

parameters are assumed to be constant. In par-

ticular, we assume that the per-generation proba-

bility that allele a mutates to allele A is u
(`)
aA and

the per-generation probability that allele A to a

is u
(`)
Aa. The three possible genotypes, aa, aA, and

AA, have relative fitnesses given by w
(`)
AA = 1+s`,

w
(`)
aA = 1+h`s`, and w

(`)
aa = 1 in epoch `, where s`

is the selection coefficient and h` is the dominance

parameter.

We denote the collection of model parameters

in epoch ` by Θ` and the set of parameters across

all epochs by Θ. It will also be convenient to

denote the value of the model parameters at time

t by Nt, u
(t)
aA, u

(t)
Aa, st, and ht, where t is measured

continuously in units of generations. The epoch

in which time t lies will be denoted by `t and

the epoch in which sampling event k lies will be

denoted by `k. It will be clear from the context

whether the subscript on ` refers to a time or a

sampling event.

We denote the population-wide number of copies

of alleleA in generation t by ct and the population-

wide frequency of allele A by yt. In practice, we

do not observe the true population count of allele

A. Instead, the data consist of observed counts

o1, ..., oK of the number of times allele A is ob-

served in K different samples of sizes n1, ..., nK

haplotypes, taken at times t1 < · · · < tK . For

simplicity, we assume that each sampling time

tk is an integer for k = 1, ...,K. The consecutive

observed counts (ok, ok+1, ..., ok′) will be denoted

by o[k:k′].

In general, we will denote random variables

corresponding to observed quantities using cap-

ital letters (e.g., Ok, Ct, and Yt). The goal is

to compute the probability PΘ{O[1:K] = o[1:K]}

of the observed data, conditional on the model

parameters Θ.

1.2. Probabilities of frequency trajectories.

Several different evolutionary models can be used

to describe stochastic allele frequency changes

over time in a population. Discrete changes in al-

lele frequency are often modeled using the Wright-

Fisher and Moran processes, whereas continuous

changes are often modeled using the diffusion ap-

proximation of the Wright-Fisher process (Karlin

and Taylor, 1981; Ewens, 2004; Wakeley, 2008) or

one of several approximations of the diffusion (e.g.

Feder et al., 2014; Lacerda and Seoighe, 2014).

Because it is unclear which model provides the

most accurate description of biological evolution-

ary processes, we take the approach in this paper

of deriving exact probabilities of allele frequency

trajectories under two different evolutionary mod-

els: the discrete Wright-Fisher process and the

continuous diffusion approximation.

Under the Wright-Fisher model, the proba-

bility PΘ,W{O[1:K] = o[1:K]} of the observed al-

lele counts can be obtained using the recursive

formula developed in Section 3.1 (Procedure 1).

Under the diffusion approximation, the probabil-

ity PΘ,D{O[1:K] = o[1:K]} can be obtained using

the recursive formula developed in Section 3.2

(Procedure 2).

In Sections 3.4.1 and 3.4.2, we show that if

drift is ignored and allele frequencies evolve deter-

ministically, then the probabilities PΘ,W{O[1:K]

= o[1:K]} and PΘ,D{O[1:K] = o[1:K]} can be re-

duced to the simpler approximate probabilities

P∞Θ,W{O[1:K] = o[1:K]} and P∞Θ,D{O[1:K] = o[1:K]}
which ignore the population history and which are

computed using Procedures 3 and 4, respectively.

Different estimates of the model parameters Θ

can be obtained using each of the different prob-

abilities PΘ,W{O[1:K] = o[1:K]}, PΘ,D{O[1:K] =

o[1:K]}, P∞Θ,W{O[1:K] = o[1:K]}, and P∞Θ,D{O[1:K] =

o[1:K]} by finding the value of Θ that maximizes
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the given probability of the observed allele counts

o[1:K]. In our analyses we estimated the model

parameters Θ separately using each of the differ-

ent probabilities, yielding the estimators ŝW , ŝD,

ŝ∞W , and ŝ∞D . The estimator ŝW accounts for drift

under the discrete Wright-Fisher model, while

drift in this model is ignored by the estimator ŝ∞W .

Similarly, the estimator ŝD accounts for drift un-

der the diffusion model, while drift in this model

is ignored by the estimator ŝ∞D .

The degree to which accounting for drift can

improve estimates of selection coefficients can be

investigated by comparing ŝW to ŝ∞W on trajecto-

ries simulated under the discrete Wright-Fisher

model and by comparing ŝD to ŝ∞D on trajectories

simulated under the diffusion approximation.

1.3. Overview of the experimental design.

We simulated allele frequency trajectories under

a variety of selection strengths and piecewise con-

stant population histories reflecting demographic

patterns such as exponential growth, bottlenecks,

rapid population size oscillations, and constant

histories. We then compared the demography-

aware estimates ŝW and ŝD with the estimates ŝ∞W
and ŝ∞D that ignore drift to study the degree to

which accounting for population size can improve

the accuracy of inferences.

1.4. Expected allele frequency trajectories.

Before comparing the accuracy of the different

estimators, we first explored the degree to which

trajectories that ignore drift differ from trajecto-

ries that account for the population size under

different evolutionary scenarios. Figure 2 shows

the expected frequency of allele A in a discrete

Wright-Fisher population of constant size for sev-

eral different initial allele frequencies, selection

coefficients, and effective population sizes. Figure

2 illustrates that, for any starting frequency and

selection coefficient, the mean allele frequency

trajectory approaches the mean trajectory in a

population without drift (e.g., in a population of

infinite size), as the true population size increases.

Moreover, if the initial frequency is sufficiently

high, the expected trajectory is close to its deter-

ministic limit even when the population size is

small and drift is high.

The results presented in Figure 2 suggest that

the allele frequency trajectory will differ substan-

tially from the limiting trajectory without drift

only when at least two of the three factors that

influence stochasticity in the allele frequency tra-

jectory (effective population size, selection co-

efficient, and initial allele frequency) are small.

Moreover, for biological populations with suffi-

ciently large effective sizes, the allele frequency

trajectory is likely to match the deterministic

trajectory, regardless of the selection coefficient

and initial frequency.

From Figure 2 it can also be seen that an

effective population size of several thousand in-

dividuals is often sufficiently large to guarantee

deterministic behavior, even when the selection

coefficient and initial allele frequency are small.

Thus, selection coefficient inference methods that

ignore drift are likely to be accurate for a broad

range of population sizes and selection coefficients.

As we will see, methods that ignore drift can

be almost as accurate as methods that account

for drift, even within the small-parameter-value

regime.

1.5. Inference accuracy, accounting for con-

stant population size. To explore how account-

ing for drift affects inference accuracy, we first

considered the accuracy of inferring selection

coefficients in a population of constant finite

size. Figure 3 shows the maximum likelihood

estimate (MLE) of the selection coefficient for

three different effective population sizes (N =

100, 500, 1000), three selection coefficients (s =

0.01, 0.05, 0.1), and two initial allele frequencies
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Procedure 1 Computing PΘ,W{O[1:K] = o[1:K]}

1: Define the quantities d0 = (P{C0 = 0},P{C0 = 1}, ...,P{C0 = 2Nt0}) and γ(o1), where
γ(ok) = (γ0(ok), γ1(ok), ..., γ2Ntk

(ok)) with γi(ok) =
(
nk
ok

)
(i/2Ntk)ok(1− i/2Ntk)nk−ok .

2: Initialize v1 = d0

[∏t1
t=1 Tt−1,t

]
diag{γ(o1)}.

3: For k = 2 : K, compute

vk = vk−1

 tk∏
t=tk−1+1

Tt−1,t

diag{γ(ok)}.

4: Compute PΘ,W{O[1:K] = o[1:K]} =
∑2NtK

i=0 vK,i.

Procedure 2 Computing PΘ,D{O[1:K]}
1: For an initial starting frequency x initialize

b0 = C−1
`1

B`1(x),

where B`(x) is the vector of eigenfunctions of the diffusion operator given in Equation
(A.14) and C` = diag{〈B`,i, B`,i〉}∞i=0 is given in Equation (A.18).

2: For k = 1 : K, compute

ak =

{
bk−1E`k(tk − tk−1) if `k−1 = `k,
bk−1F(tk−1, tk; ζ) otherwise,

and

bk = akW`kG
ok
`k

(1−G`k)nk−okW−1
`k
,

where the matrices E`(t), F(tk−1, tk; ζ), W`, and G` are given by Equations (A.17),
(B.10), (A.15) and (A.11), respectively and ζ is the set of Chebyshev nodes in the
interval [0, 1]. The matrix inverse W−1

` = D`W
T
` C−1

` is computed easily using the
diagonal matrices C` and D` in Equations (A.18) and (A.19).

3: Compute

PΘ,D{O[1:K] = o[1:K]} =
c`K ,0

B`K ,0(0)
bK,0, (1)

where c`K ,0 = 〈B`,0, B`,0〉 = [C`K ]0,0 is the (0, 0) element of matrix C` in Equation
(A.18) and B`K ,0(0) is the 0th element of the vector B`K (0) in Equation (A.14).

(y0 = 0.01, 0.1) for h = 1/2. In each panel, the

violin plots summarize the maximum likelihood

estimates for 100 different simulation replicates

in which an allele frequency trajectory was sim-

ulated for 500 generations with samples of size

n = 50 taken at generations t =50, 100, 150, 200,

250, 300, 350, 400, 450, and 500.

For the discrete Wright-Fisher model, allele fre-

quency trajectories were simulated by sampling

the allele frequency in each generation from the

vector of transition probabilities, conditional on

the frequency in the previous generation. Under

the diffusion model, trajectories were sampled

using the approach of Jenkins and Spanò (2015,

personal communication). Maximum likelihood

estimates were obtained for the Wright-Fisher

trajectories using a grid search over the likeli-

hoods computed using Procedures 1 and 3, and

maximum likelihood estimates for the diffusion

trajectories were obtained using the same grid
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Procedure 3 Computing P∞Θ,W{O[1:K] = o[1:K]}

1: Starting with y∞0 = y0, for t = 0, ..., tK − 1,

(1) Compute ỹ∞t = u
(t)
aA + (1− u(t)

Aa − u
(t)
aA)y∞t .

(2) Compute

y∞t+1 = u
(t)
aA +

[
(ỹ∞t )2(1 + st) + ỹ∞t (1− ỹ∞t )(1 + htst)

w̄t

]
(1− u(t)

Aa − u
(t)
aA),

where w̄t = (ỹ∞t )2(1 + st) + 2ỹ∞t (1− ỹ∞t )(1 + htst) + (1− ỹ∞t )2.

2: Compute

P∞Θ,W{O[1:K] = o[1:K]} =
K∏
k=1

(
nk
ok

)
(y∞tk )ok(1− y∞tk )nk−ok .

Procedure 4 Computing P∞Θ,D{O[1:K] = o[1:K]}

1: Fix a large integer n and set ∆t = 1/n.
2: Starting with y∞0 = y0, for j = 0, ..., ntK − 1, compute

y∞(j+1)∆t =
{
u

(j4t)
aA − (u

(j4t)
aA + u

(j4t)
Aa )y∞j∆t

+y∞j∆t(1− y∞j∆t)[(1− 2y∞j4t)hj4tsj4t + y∞j∆tsj4t]
}

∆t.

3: Compute

P∞Θ,D{O[1:K] = o[1:K]} =
K∏
k=1

(
nk
ok

)
(y∞tk )ok(1− y∞tk )nk−ok .

search approach over the likelihoods computed

using Procedures 2 and 4.

By comparing the estimates computed account-

ing for drift with the estimates obtained ignoring

drift, it can be seen that all methods have similar

accuracies. All methods perform well when the

population size, selection coefficient, and initial

frequency are sufficiently large (e.g., Figure 3I

for the case y0 = 0.01 and Panels 3K through 3R

for the case y0 = 0.1), and all methods perform

poorly, otherwise. Figure 3 suggests that the pa-

rameter range in which selection coefficients can

be inferred accurately by maximum likelihood cor-

responds with the range in which the assumption

N ≈ ∞ yields accurate inferences. Put another

way: the regime in which selective pressures are

strong enough to measure accurately corresponds

to the regime in which allele frequency change

is quasi-deterministic. Thus, methods that ig-

nore or account for drift are likely to produce

estimates of similar accuracy.

1.6. Inference accuracy in populations of

piecewise constant size. We next explored the

degree to which accounting for more complicated

population histories can improve maximum like-

lihood estimates, focusing on three scenarios, a

population with a bottleneck, a population un-

dergoing exponential growth, and a population

undergoing rapid oscillations in size. Under each

scenario, we simulated 100 allele frequency tra-

jectories for an allele with selection coefficient

s = 0.05, dominance parameter h = 1/2, and ini-

tial frequency y0 = 0.1 under either the Wright-

Fisher or diffusion models. The parameter values
7
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Figure 2. Expected Wright-Fisher trajectories of allele A for different initial starting counts
c0, selection coefficients s, and effective population sizes N . Columns correspond to different
initial starting frequencies c0/2N with c0/2N = 0.01, 0.1, and 0.25. In all panels, the error bars
show the mean deviation on either side of the expected trajectory (E[max{0, ct − E[ct]}]/2N
for the upper bar and E[max{0,E[ct]− ct}]/2N for the lower bar). The dominance parameter
is set to h = 1/2 in all panels. Because the effects of mutation are negligible during the time
periods we consider, we set uAa = uaA = 0.

in these simulations were chosen so that drift

would be strong enough to affect allele frequency

trajectories, but not strong enough to prevent

accurate inferences of selection coefficients.

To investigate the effect on accuracy of using

crude, yet reasonable estimates of the popula-

tion history, we also inferred selection coefficients

using likelihoods computed using variants of Pro-

cedures 1 and 2 in which the population was

assumed to consist of a single epoch of constant

size equal to the Watterson estimate (Hein et al.,

2005, p.62) of the effective population size. The

Watterson estimate was obtained by computing

the expected site frequency spectrum (SFS) for

the multi-epoch model for a sample size of 20

alleles, and then inferring the effective size of a

single epoch using Watterson’s estimate. The

discrete Wright-Fisher and diffusion estimators

based on the Watterson estimate of effective size

are denoted by ŝNe

W and ŝNe

D , respectively.

1.6.1. The case of a bottleneck. To model popula-

tions with bottlenecks, we considered populations

composed of three epochs, each of length 100

generations, with sizes N1, N2, and N3 satisfying

N1 = N3 = 5N2. Samples of size 50 were taken at

times 50, 100, 150, 200, 250, and 300. Figures 4A
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Figure 3. Maximum likelihood estimates of the selection coefficient s in populations of
constant size. For each of three different selection coefficients (s = 0.01, 0.05, 0.1) and effective
population sizes (N = 100, 500, 1000), 100 allele frequency trajectories were simulated for
500 generations under the either the Wright-Fisher or diffusion models. Samples of 50 alleles
were taken at times 50, 100, 150, 200, 250, 300, 350, 400, 450, and 500 generations. Bimodal
violin plots are due to the fact that allele frequency trajectories typically fall into one of two
categories: trajectories in which allele A is lost quickly, resulting in a strong negative estimate
of the selection coefficient, and trajectories in which allele A remains segregating long enough
to allow a more accurate estimate of the selection coefficient. Red bars indicate medians. The
maximum width of each violin plot is scaled to the same value for all estimators.

and 4B show results for two different popula-

tions; in the population in Figure 4A, we set

N1 = 500 and in the population in Figure 4B we

set N1 = 2500.

From Figures 4A and 4B, it can be seen that

all methods performed similarly. However, the

methods that relied on the Watterson estimate

of the effective population size were more biased

than the other two methods when the effective

population size was small, suggesting that meth-

ods that ignore drift entirely can produce more

accurate estimates than methods that rely on

rough estimates of the population history for the

bottleneck model. Note that, despite the tight

bottleneck in Figure 4A, inferences were still rel-

atively accurate due to the larger sizes of epochs

1 and 3.

1.6.2. The case of exponential growth. To model

exponential growth, we considered populations

composed of five epochs, each of length 100 gen-

erations, with effective population sizes chosen

to represent five-fold exponential growth across
9
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ŝ

ŝ
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Figure 4. Maximum likelihood estimates of the selection coefficient s in populations with
a bottleneck, exponential growth, or rapidly oscillating population size. In each panel, the
trajectory of an allele with selection coefficient s = 0.05, dominance parameter h = 1/2, and
starting frequency y0 = 0.1 was simulated 100 times under the Wright-Fisher and diffusion
models. Red bars indicate medians. The maximum width of each violin plot is scaled to the
same value for all estimators.

all five epochs. Specifically, the size in epoch `

was set to N` = N1e
−ητ`−1 , where the growth

constant η was chosen such that e−ητ5 = 1/5.

Samples of size 50 were taken in generations 100,

200, 300, 400, and 500. From the results in Fig-

ures 4C and 4D, it can be seen that all methods

performed with similar accuracy in the growth

scenario.

1.6.3. The case of rapidly oscillating population

size. Figures 4E and 4F show inferences of the se-

lection coefficient in a population with rapidly os-

cillating size. Such demographic histories, which

are often seen in insect populations like Drosophila,

have moderate arithmetic mean sizes, but small

harmonic mean sizes and experience episodes of

extreme drift.

In the simulations shown in Figure 4E, the pop-

ulation size oscillates rapidly between 10 and 100

diploids every five generations. In the simulations

shown in Figure 4F, the population size oscillates

between 100 and 500 diploids every five gener-

ations. From Figure 4 it can be seen that the

methods that ignore drift have similar accuracy

to the methods that account for drift, although

the methods that account for drift are slightly

less biased when the population size oscillates

between very small values (Figure 4E).

1.7. Conditioning on segregation in the fi-

nal sample. It is sometimes of interest to infer

the selection coefficient of an allele, conditional

on the event that the allele is segregating in the

most recent sample. Such conditional inferences

are useful if alleles are ascertained in present-

day samples and their historical trajectories are

subsequently investigated.

Conditioning on segregation in the final sample

is also useful for estimating weak positive selec-

tion coefficients when initial allele frequencies are

low. This is because a large fraction of weakly

selected alleles with low initial frequencies will
10
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drift out of the population quickly resulting in

large negative estimates of their selection coeffi-

cients. However, more accurate estimates can be

obtained for the subset of alleles that are not lost

quickly, which can be seen in Figures 3B, 3C, and

3E, in which the part of the density correspond-

ing to alleles that are not lost quickly from the

population is localized around the true selection

coefficient.

Considering only alleles that are segregating in

the final sample can lead to biased estimates of

selection coefficients if likelihood methods do not

properly condition on segregation. For example,

weakly selected alleles typically drift out of small

populations quickly. Thus, weakly selected alleles

that escape loss and ultimately fix generally ex-

hibit faster-than-expected increases in frequency

that are similar to the unconditional trajecto-

ries of alleles under stronger selection. Thus, if

a likelihood method does not properly account

for conditioning, weakly selected alleles that are

segregating in the final sample will have inflated

inferred selection coefficients.

Estimators that ignore drift cannot be modi-

fied to condition on the event of segregation in the

final sample because they implicitly assume that

alleles follow fixed trajectories whose long-term

behavior in the absence of mutation is entirely de-

termined by the selection coefficient: fixation for

positively selected alleles and loss for negatively

selected alleles. Thus, estimators that ignore drift

are expected to produce biased estimates of se-

lection coefficients when applied to conditioned

trajectories.

In contrast, the allele frequency trajectories

in likelihood methods that account for the pop-

ulation size are modeled stochastically, allowing

likelihoods to be modified to condition on segre-

gation in the final sample. It is expected that

methods that account for the true population

size can be modified to produce accurate esti-

mates of selection coefficients, whereas methods

that ignore drift will necessarily produce biased

estimates.

1.7.1. Simulations conditioning on segregation.

To investigate the degree to which accounting

for drift can improve estimates of selection co-

efficients when allele frequency trajectories are

conditioned on segregation in the final sample, we

modified the discrete Wright-Fisher probability

in Section 1 to compute the likelihood conditional

on segregation in the final sample using results

derived in Section 3.3. Under a grid search, this

modified likelihood yields the conditional maxi-

mum likelihood estimator ŝW|SK
. We compared

the estimates computed using the exact condi-

tional estimator ŝW|SK
with estimates computed

using the approximate estimator ŝ∞W that ignores

drift and cannot be modified to account for con-

ditional allele frequency trajectories.

The effect of failing to account for condition-

ing is evident in the blue violin plots in Figure

5A-I, which correspond to the unconditional ap-

proximate maximum likelihood estimates ŝ∞W . As

expected, when the true selection coefficient is

small (s ≤ 0.01), the estimates ŝ∞W are biased up-

ward. Conversely, when the selection coefficient

is larger (s ≥ 0.05), the approximate estimator

ŝ∞W produces negatively biased estimates because

alleles under strong positive selection that remain

segregating in the final sample show slower-than-

expected increases in frequency. In contrast to

the estimator ŝ∞W , the bias is negligible in the

estimator ŝW|SK
, which accounts for drift and

properly conditions on segregation in the final

sample (orange violin plots).

The results shown in Figure 5A-I suggest that

methods that account for drift are capable of sig-

nificantly improving the accuracy of estimates of
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selection coefficients when allele frequency trajec-

tories are conditioned on segregation. The differ-

ences in accuracy between methods that ignore

or account for drift are visible for a range of selec-

tion coefficients and population sizes. However,

the differences in accuracy between the meth-

ods diminish as the selection coefficient becomes

weaker or the population size becomes larger.

1.7.2. Simulations conditioning on segregation or

fixation. The magnitude of the bias in the esti-

mates ŝ∞W is due in part to the event on which

trajectories are conditioned. In cases involving

positive selection in populations of moderate or

large size, most alleles will be fixed in the final

sample (e.g., > 80% fixation within 10 genera-

tions when s = 0.1, h = 1/2, and y0 = 0.01, and

N = 1000). Thus, it may sometimes be more

natural to condition on the event FK that a se-

lected allele is found (segregating or fixed) in the

final sample. Under this conditioning scheme,

the approximate estimator ŝ∞W will not generally

produce negatively biased estimates of selection

coefficients because allele frequency trajectories

will not be constrained to those which exhibit

slower-than-expected increases in allele frequency.

In light of these considerations, we repeated

the analysis shown in Figure 5A-I, simulating

allele frequency trajectories conditional on the

event that the allele was segregating or fixed in

the final sample. To compare the estimates ŝ∞W
with maximum likelihood estimates that fully

account for drift and the proper conditioning, we

also modified the probability in PΘ,W{O[1:K] =

o[1:K]} computed in Procedure 1 to condition on

the event FK of segregation or fixation in the

final sample, yielding the conditional probability

PΘ,W{O[1:K] = o[1:K]|FK} (Equation 19) with the

associated estimator ŝW|FK
.

By comparing Figure 5J-R with Figure 5A-I,

it can be seen that the estimator ŝ∞W has consid-

erably less bias when conditioning on the event

FK than when conditioning on SK . Although the

bias is still high when the population size is small

(N ≈ 100), it decreases quickly as the population

size increases and becomes comparable to the

bias in the properly conditioned, demography-

aware estimator ŝW|FK
when the population size

is greater than approximately N = 500 diploids.

In contrast to Figure 5E-I, the bias in ŝ∞W ob-

served in Figure 5M-R is positive because the

trajectories on which these estimates are based

exclude those in which the allele is lost; thus, they

exhibit faster-than-expected growth on average.

The results in Figure 5J-R suggest that under cer-

tain conditioning schemes, methods that ignore

drift can produce similar estimates to methods

that account for drift.

1.8. The effect of sample size on accuracy.

When the sample size is small, the variance in

estimates arising from sampling noise will tend to

obscure small differences between estimators that

ignore or account for population size. Thus, when

comparing methods, it is important to sample

a sufficiently large number of alleles to ensure

that the differences between the methods due to

ignoring or accounting for drift are visible.

To evaluate the effects of sample size on infer-

ence accuracy, we inferred the selection coefficient

for a range of sample sizes for several different

combinations of the population size and selection

coefficient. Figure 6 shows a plot of the variance

in selection coefficients inferred using Procedures

1 and 3 for sample sizes ranging from n = 2 to

n = 50. For each combination of Ne, s, and

n, the trajectories of 100 alleles were simulated

under the Wright-Fisher process with an initial

allele frequency of y0 = 0.1. Samples were taken

in generations 50 and 100.

The plots in Figure 6 suggest that variability

due to small sample sizes has a strong effect on

the variability in estimates only for sample sizes
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ŝW|FK
ŝW|FK
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Figure 5. Estimates of selection coefficients, conditional on segregation. Each violin plot
was computed using 100 frequency trajectories sampled over 500 generations for an allele with
selection coefficient s = 0.01 and initial frequency y0 = 0.01. As in Figure 3, samples of size
n = 50 were taken in generations 50, 100, 150, 200, 250, 300, 350, 400, 450, and 500. In Panels
A-I, trajectories were sampled conditional on the event that the selected allele was segregating
in the final sample. In Panels J-R, trajectories were sampled conditional on the event that the
selected allele was either segregating or fixed in the final sample. Red bars indicate medians.
The maximum width of each violin plot is scaled to the same value for both estimators.

smaller than 10 alleles. Thus, in all of our simula-

tions we have used a sample size of n = 50 alleles

so that differences between estimators are not

likely to be obscured by the variance in estimates

due to small sample sizes.

1.9. Computational efficiency of methods.

As we have noted, methods that assume that

allele frequency trajectories are deterministic can

be considerably faster than methods that account

for population size histories. Table 1 shows the

average runtimes of the estimators ŝ∞W , ŝW , ŝD,

Table 1. Mean runtimes of the methods in
Figure 4A-I (seconds).

Ne s ŝ∞W ŝW ŝ∞D ŝD
100 0.01 0.01 2.30 4.74 197.25

0.05 0.01 2.36 4.23 204.66
0.1 0.01 2.29 3.98 217.34

500 0.01 0.02 134.07 4.41 185.18
0.05 0.01 132.45 4.41 496.83
0.1 0.02 126.35 4.46 531.15

1000 0.01 0.02 175.27 4.64 196.90
0.05 0.02 191.53 4.78 815.27
0.1 0.02 199.32 4.67 1950.59
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Figure 6. The effect of sample size on inference accuracy. The variance of the estimates
produced by the methods in Procedures 1 and 3 are shown for a range of sample sizes.

and ŝ∞D for the computations used to produce

Figure 4A-I.

From the table, it can be seen that the run-

times are considerably faster for the estimators

based on deterministic trajectories (ŝ∞W and ŝ∞D ).

Moreover, the runtimes for ŝ∞W and ŝ∞D do not

depend on the population size or selection co-

efficient. In comparison, the runtimes for the

estimators ŝW and ŝD increase with increasing

Ne and s because these methods depend on eigen-

value decompositions or sparse matrix products,

which require larger matrices or greater precision

when Ne or s is large.

2. Discussion

The results of our analyses suggest that accu-

rate estimates of selection coefficients from allele

frequency time series data can be obtained by

assuming that alleles evolve without drift in a

population of infinite size. In the majority of

our simulations, the estimates obtained using

deterministic approximations were nearly as ac-

curate as estimates obtained by explicitly mod-

eling the true population history and they were

sometimes more accurate than estimates obtained

using crude but reasonable estimates of the popu-

lation history. Surprisingly, estimates made under

the deterministic approximation were generally

as accurate as estimates that accounted for drift,

due to the fact that the exact maximum likeli-

hood methods had low accuracy when drift was

strong.

Accounting for the true population history only

resulted in significantly improved estimates of se-

lection coefficients when conditioning on the event

that the target allele was segregating in the final

sample. Methods that modeled the true popula-

tion history were more accurate in this case be-

cause they could be modified to model conditional

trajectories, whereas methods that assumed in-

finite population sizes could not. These results

suggest that methods that account for drift are

likely to be preferable under circumstances in

which conditioning on segregation is desirable.

However, it is important to note that determin-

istic methods can perform well when population

sizes are moderately large if allele frequencies

are conditioned on a slightly different event: the

event that an allele is found (segregating or fixed)

in the final sample.

The idea that ignoring drift can lead to accu-

rate estimates of selection coefficients is not new.

In fact, inference methods based on deterministic

allele frequency trajectories capitalize on exactly

this idea. However, our comparison with estima-

tors based on exact likelihoods makes it possible
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to characterize the relative loss in accuracy that

is incurred when drift is ignored, as well as the

demographic, evolutionary, and sampling scenar-

ios under which accounting for drift is likely to

be important.

The comparatively accurate estimates achieved

by methods that assume deterministic allele fre-

quency trajectories are encouraging for three pri-

mary reasons. First, a large number of studies

have relied on the assumption that alleles evolve

deterministically in order to infer selection co-

efficients from biological time series data. Our

results suggest that these estimates are likely to

be nearly as accurate as those obtained using

the exact likelihood accounting for drift. Sec-

ond, estimators based on deterministic trajecto-

ries can be considerably faster than estimators

that account for drift, making them useful for

inferring selection coefficients at large numbers

of loci. Third, it may be easier to obtain ana-

lytical results under the assumption that allele

frequencies change deterministically, simplifying

the development of inference methods for infer-

ring selection coefficients under more complicated

scenarios; for example, inferring coefficients at

linked loci (Illingworth et al., 2012). The ability

to model factors such as linkage between alleles

under selection may ultimately be more impor-

tant than modeling drift, as these factors can

have a strong effect on evolutionary dynamics

(Burke, 2012; Long et al., 2015). Finally, the

ability to ignore the population size is useful in

situations in which the true population history is

unknown or difficult to infer.

In addition to characterizing the degree to

which accounting for drift can improve estimates

of selection coefficients, our results shed light on

the accuracy of exact maximum likelihood meth-

ods for inferring selection coefficients from allele

frequency trajectories. In accordance with pre-

vious work (Schaffer et al., 1977; Gallet et al.,

2012), our findings suggest that very small selec-

tion coefficients (s ≤ 0.01) are difficult to infer

if the initial allele frequency and population size

are not large. Moreover, even if the population

size is large, the accurate inference of a small

selection coefficient may require samples taken

over hundreds of generations, during which time

the selection coefficient could change considerably

(Felsenstein, 1976; Siepielski et al., 2009).

Despite the difficulties of inferring weak se-

lection coefficients when the population size is

small, coefficients of one percent or lower can be

inferred accurately if the initial allele frequency is

sufficiently high. It is important to note that the

selection coefficient need not be high at the time

of the very first sampling event, as long as the

allele has reached a sufficiently high frequency

at one of the intermediate sampling events, lead-

ing to quasi-deterministic behavior between some

sampling time points that can be exploited by

the maximum likelihood estimator. Thus, one

need not restrict analyses to cases of selection on

standing variation to obtain accurate inferences.

Although we have only considered positively

selected alleles in our analyses, our results apply

equally well to negatively selected alleles, as it

is arbitrary whether we choose to track the tra-

jectory of the allele with higher or lower fitness.

We have also considered only low initial allele fre-

quencies (y0 ≤ 0.1) for selected alleles; however,

it is clear from Figure 2 that allele frequency tra-

jectories become increasingly deterministic as the

initial allele frequency increases. Thus, the accu-

racy of a method that assumes a deterministic

trajectory will become more similar to that of a

method that accounts for drift as the initial allele

frequency increases. Conversely, for negatively

selected alleles, the accuracy of the deterministic

method will approach that of the exact likelihood

as the initial allele frequency decreases. Thus,
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our analyses provide a characterization of infer-

ence accuracy for both positively and negatively

selected alleles for the full range of starting fre-

quencies.

At first glance, our finding that the popula-

tion size does not strongly influence estimates

of selection coefficients might appear to be at

odds with the fact that population size histories

can be inferred from allele frequency time series

data (O’Hara, 2005; Bollback et al., 2008; Ferrer-

Admetlla et al., 2015). However, this is not the

case. Methods for inferring the population size

capitalize on information in the short term fluctu-

ations of the allele frequency around its expected

value, arising from drift; conversely, estimators

of selection coefficients capitalize on the long-

term changes in allele frequency due to selection,

effectively averaging over the short-term fluctua-

tions due to drift. Our results suggest that allele

frequencies often change quasi-deterministically,

even in small populations. Thus, deviations around

the expected trajectory can be distinguished from

long-term changes, allowing effective population

sizes to be inferred accurately even in small pop-

ulations.

We have conducted our analyses under two

different models of evolution: the discrete Wright-

Fisher model and the continuous diffusion model.

Although the diffusion model was developed as

an approximation to the Wright-Fisher process, it

also captures the limiting behavior of a large class

of evolutionary models, including the Wright-

Fisher process, as the population size grows to

infinity and mutation and selection parameters

are scaled accordingly. Thus, it is reasonable

to believe that our findings will generalize to

maximum likelihood estimators derived under a

wide range of evolutionary models.

Taken together, our results help to characterize

the properties of maximum likelihood methods

for inferring selection coefficients from time se-

ries data. Because of the accuracy and beneficial

properties of maximum likelihood methods, it

is reasonable to believe that our results provide

insight into the accuracy with which it is possi-

ble to infer selection coefficients from biological

data, and the degree to which accounting for

the true population history can improve these

estimates. Our results also provide justification

for the use of fast inference methods based on

the assumption that allele frequencies evolve de-

terministically. Such methods can be applied

to infer selection coefficients efficiently on large

genomic data sets with many loci. Finally, our

results provide further justification for the use of

deterministic approximations in the development

of statistical approaches for studying time series

data.

3. Methods

In this section, we compute the exact probabil-

ity of an allele frequency trajectory in a popula-

tion of piecewise-constant size under the discrete

Wright-Fisher model and under the diffusion ap-

proximation. We also describe how drift can be

ignored in these probabilities, yielding approxi-

mate estimators of selection coefficients that are

similar to commonly-used approaches that as-

sume deterministic allele frequency trajectories.

3.1. Computing PΘ,W{O[1:K] = o[1:K]} under

the discrete Wright-Fisher model. To com-

pute the probability PΘ,W{O[1:K] = o[1:K]} under

the discrete Wright-Fisher model, we make use of

a hidden Markov model (HMM) similar to that

presented in Steinrücken et al. (2014). However,

the hidden state in our discrete model is the count

ct of the number of (unobserved) copies of allele

A in the population at time t, rather than the

continuous allele frequency yt.

In our model, the count ct of allele A evolves

according to a Wright-Fisher process in which
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mutation occurs, followed by random mating,

selection, and drift. Given that the count of

allele A in generation t is ct = i, let f tA|i be the

frequency of allele A in the gamete pool after

mutation. Then

f tA|i =

(
i

2Nt

)
(1− µ(t)

Aa) +

(
1− i

2Nt

)
µ

(t)
aA

= µ
(t)
aA + (1− µ(t)

Aa − µ
(t)
aA)

(
i

2Nt

)
. (2)

After random mating, the fraction of zygotes with

each of the genotypes AA, Aa, and aa is (f tA|i)
2,

2f tA|i(1 − f tA|i), and (1 − f tA|i)
2, from which it

follows that the fraction of genotypes of each

kind remaining after selection is given by

ptAA|i =
(f tA|i)

2(1 + st)

w̄t,i
,

ptAa|i =
2f tA|i(1− f

t
A|i)(1 + htst)

w̄t,i
,

ptaa|i =
(1− f tA|i)

2

w̄t,i
, (3)

where w̄t,i = (f tA|i)
2(1 + st) + 2f tA|i(1− f

t
A|i)(1 +

htst) + (1− f tA|i)
2 is the mean fitness of the pop-

ulation.

Immediately after selection and before drift

occurs, the probability that a randomly chosen

allele is of type A is given by ptA|i = ptAA|i+
1
2p
t
Aa|i.

Then, as the result of drift, the count of allele A

in generation t+ 1 is binomially distributed with

mean ptA|i. Thus, the probability that allele A

has count j in generation t+ 1, given that it had

count i in generation t is

PΘ,W{Ct+1 = j|Ct = i}

=

(
2Nt+1

j

)
(ptA|i)

j(1− ptA|i)
2Nt+1−j . (4)

The Wright-Fisher transition matrix Tt,t+1 from

generation t to generation t+ 1 is the (2Nt+ 1)×
(2Nt+1 + 1) matrix with entry i, j given by

[Tt,t+1]ij = PΘ,W{Ct+1 = j|Ct = i}, (5)

which can be used to obtain the allele frequency

distribution at each discrete generation t given

the initial distribution at some time s < t. In

particular, define dt = (P{ct = 0},P{ct = 1},
...,P{ct = 2Nt}), to be the distribution of the

count of allele A in generation t. Using Equa-

tion (5), dt can be computed recursively as dt =

ds

[∏t
g=s+1 Tg−1,g

]
for s < t.

3.1.1. Computing the probability PΘ,W{O[1:K] =

o[1:K]}. The probability PΘ,W{O[1:K] = o[1:k]} of

the observed data is computed using the forward

procedure for hidden Markov models. In particu-

lar, we define the vector vk whose ith entry vk,i

is the joint probability of the population-wide

count of allele A at the kth sampling event and

the observed sample allele counts up to sample

k:

vk,i = PΘ,W{O[1:K] = o[1:k], Ctk = i}. (6)

To simplify calculations, we also define the con-

ditional “emission probability”

γi(ok) = PΘ{Ok = ok|Ctk = i}

=

(
nk
ok

)
(i/2Ntk)ok(1− i/2Ntk)nk−ok (7)

of the observed allele count, conditional on the

population allele count. The probability in Equa-

tion (7) comes from the fact that the observed

allele count at time tk is a binomial random vari-

able with sample size nk and probability ctk . We

then construct the emission probability vector

γ(ok) = (γ0(ok), γ1(ok), ..., γ2Ntk
(ok)). (8)

The probability of the data is then given by the

forward procedure (Rabiner, 1989), outlined in

Procedure 1. In Procedure 1, the formula for v1

comes from the fact that

v1 = (PΘ,W{O1 = o1, Ct1 = 0}, ...,

PΘ,W{O1 = o1, Ct1 = 2N`t1
})

= (γ0(o1)PΘ,W{Ct1 = 0}, ...,
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γ2N`t1
(o1)PΘ,W{Ct1 = 2N`t1

})

= dt1diag{γ(o1)}

= d0

[
t1∏
t=1

Tt−1,t

]
diag{γ(o1)}, (9)

where diag(γ) denotes the square matrix whose

diagonal entries are given by γ.

It has been noted by several authors that com-

puting powers of the transition matrix is com-

putationally prohibitive, providing one motivat-

ing factor for the use of approximations of the

Wright-Fisher process, such as the diffusion and

Gaussian approximations (Ewens, 1963; Feder

et al., 2014; Lacerda and Seoighe, 2014). How-

ever, the products
∏tk
t=tk−1+1 Tt−1,t in Procedure

1 do not require products of the transition matrix

Tt−1,t because it suffices to repeatedly compute

vector-matrix products instead of multiplying full

matrices together. In practice, this can be done

very quickly, even for large population sizes. A

similar fast procedure was carried out by Zhao

et al. (2014) to simulate trajectories under the

Wright-Fisher model.

3.2. Computing PΘ,D{O[1:K] = o[1:K]} under

the diffusion approximation. The diffusion

approximation models the evolution of the con-

tinuous population frequency Yt of allele A, rather

than its count Ct. The time-evolution of the ran-

dom frequency Yt is governed by the diffusion

transition density pΘ(s, t;x, y) given by

pΘ(s, t;x, y)dy =

PΘ,D{y ≤ Yt < y + dy|Ys = x}, (10)

for an infinitesimal increment dy. The quantity

pΘ(s, t;x, y) specifies the density of the allele fre-

quency at time t, conditional on the value of the

allele frequency at an earlier time s. For more

details about the transition density function of

the diffusion approximation, see Appendix A.

Using the diffusion transition density pΘ(s, t;

x, y) Steinrücken et al. (2014) developed an HMM

to compute the probability PΘ,D{O[1:K] = o[1:K]}
of the data in a single epoch of constant size

by efficiently integrating over the hidden allele

frequencies {yt1 , ..., ytK} at the set of sampling

times. Here, we extend this HMM to the case of

piecewise-constant population size.

To compute the probability PΘ,D{O[1:K] =

o[1:K]} efficiently, Steinrücken et al. (2014) de-

fine the quantities fk(y) and gk(y) satisfying

fk(y)dy :=

PΘ,D{O[1:k] = o[1:k], y ≤ Ytk < y + dy},
(11)

and

gk(y)dy :=

PΘ,D{O[1:k−1] = o[1:k−1], y ≤ Ytk < y + dy}
(12)

for an infinitesimal increment dy. The quantity

fk(y) is the joint density of the allele frequency at

time tk and the observed counts up to sampling

event k. The quantity gk(y) is the joint density of

the allele frequency at time tk and the observed

counts up to sampling event k − 1.

It follows from the definition of fk(y) that the

probability of the data is given by

PΘ,D{O[1:K] = o[1:K]} =

∫ 1

y=0
fK(y)dy. (13)

The quantity fK(y) can be obtained efficiently

by recursion using the relationships

fk(y) = gk(y)

(
nk
ok

)
yok(1− y)nk−ok , (14)

and

gk(y) =

∫ 1

z=0
fk−1(z)pΘ(tk−1, tk; z, y)dz. (15)

Equation (14) follows from the fact that the ob-

served number of copies of allele A at sampling

event k is binomially distributed with count nk

and probability ytk and Equation (15) follows

from the law of total probability integrating over

Ytk−1
.
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Let B`,i(y) (i = 0, 1, ...) be the ith eigenfunc-

tion of the backward diffusion operator L` and let

π`(y) be the speed density of L` (Appendix A).

Steinrücken et al. (2014) demonstrated that the

recursive formulas in Equations (14) and (15) can

be evaluated efficiently by expressing fk(y) and

gk(y) as series of the form

fk(y) =
∞∑
i=0

bk,iπ`k(y)B`k,i(y) = bkπ`k(y)B`k(y)

(16)

and

gk(y) =

∞∑
i=0

ak,iπ`k(y)B`k,i(y) = akπ`k(y)B`k(y),

(17)

where B`(y) = (B`,0(y), B`,1(y), ...) and where

bk = (bk,0, bk,1, ...) and ak = (ak,0, ak,1, ...) are

vectors of constants that encode the densities

fk(y) and gk(y) at the beginning of the epoch. In

Appendix B, we extend the results of Steinrücken

et al. (2014) to derive recursive formulas for the

coefficients ak and bk, resulting in Procedure

2, which computes the probability of an allele

frequency trajectory under the diffusion approx-

imation in a population of piecewise constant

size.

3.3. Conditional probabilities. Sometimes it

is desirable to compute the probability of the

observed allele counts conditional on the event

SK that allele A is segregating in the final sample.

In this section, we provide formulas for these

conditional probabilities under the Wright-Fisher

and diffusion models.

3.3.1. Computing PΘ,W{O[1:K] = o[1:K]|SK}. In

Section 1.7.1, we consider the probability PΘ,W{
O[1:K] = o[1:K]|SK} of the data conditional on

the event SK that allele A is segregating in the

final sample. In Appendix C, we show that in

the case of the discrete Wright-Fisher model,

PΘ,W{O[1:K] = o[1:K]|SK}

=
P{SK |OK = oK}

PΘ,W{SK}

2NtK∑
i=0

vK,i, (18)

where vk,i is defined in Equation (6) and P{SK |OK
= oK} = 1 if 1 ≤ oK < nK , or 0 otherwise. The

probability PΘ,W{SK} is given in Equation (C.3).

Thus, if we wish to compute conditional proba-

bilities under the Wright-Fisher model, we carry

out Procedure 1, replacing step 3 with Equation

(18).

3.3.2. Computing PΘ,W{O[1:K] = o[1:K]|FK}. Sim-

ilarly, for the event FK that allele A is segregating

or fixed in the final sample, we show in Appen-

dix C that

PΘ,W{O[1:K] = o[1:K]|FK}

=
P{FK |OK = oK}

PΘ,W{FK}

2NtK∑
i=0

vK,i, (19)

where vk,i is defined in Equation (6) and P{FK |
OK = oK} = 1 if 1 ≤ oK ≤ nK , or 0 other-

wise. The probability PΘ,W{FK} is given in Equa-

tion (C.6). If we wish to compute conditional

probabilities under the Wright-Fisher model, we

carry out Procedure 1, replacing step 3 with Equa-

tion (19).

3.3.3. Computing PΘ,D{O[1:K] = o[1:K]|SK}. In

the case of the diffusion approximation, we show

in Appendix D that the conditional probability

of the data given SK can be computed as

PΘ,D{O[1:K] = o[1:K]|SK}

=
P{SK |OK = oK}c`K ,0bK,0(tK)

B`K ,0(0)− c`K ,0b̃K,0(0)− c`K ,0b̃K,0(nK)
,

(20)

where P{SK |OK = oK} = 1 if 1 ≤ oK < nK or 0

otherwise, and

b̃K(j) =
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
b0E`1(tK)W`KGj

`K
(1−G`K )nK−jW−1

`K
,

if `tK = 1,

b0F(0, tK ; ζ)W`KGj
`K

(1−G`K )nK−jW−1
`K
,

otherwise.

(21)

Thus, if we are interested in conditional proba-

bilities under the diffusion model, we carry out

Procedure 2, replacing step 3 with Equation (20).

3.4. The probability in the absence of ge-

netic drift. If we ignore genetic drift, the allele

frequency changes deterministically over time.

Here, we obtain versions of Procedures 1 and 2

in the case when the changes in allele frequency

arising from genetic drift are negligible relative

to the changes due to selection and recurrent

mutation.

3.4.1. Deterministic allele frequency trajectories

under the Wright-Fisher model. If there is no

contribution to the change in allele frequency

arising from genetic drift, the allele frequency

in a given generation is equal to its expectation

after mutation, random mating, and selection,

conditional on its value in the previous genera-

tion. Because the expectation is not necessarily

integer-valued, we no longer consider discrete

integer allele counts ct. Instead, we track the

expected allele frequency, which we denote by

y∞t ≡ E∞[Yt], where the subscript∞ denotes the

expectation when drift is negligible.

The expected frequency y∞t is obtained by com-

bining Equations (2) and (3), ignoring the drift

step in Equation (4), yielding

y∞t+1 =

[
(ỹ∞t )2(1 + st) + ỹ∞t (1− ỹ∞t )(1 + htst)

w̄t

]
,

(22)

where

ỹ∞t = u
(t)
aA + (1− u(t)

Aa − u
(t)
aA)y∞t (23)

and w̄t = (ỹ∞t )2(1+st)+2ỹ∞t (1− ỹ∞t )(1+htst)+

(1−ỹ∞t )2. Equations (22) and (23) are iterated to

find the allele frequency in any generation t > 0.

3.4.2. Deterministic allele frequency trajectories

under the diffusion model. Under the diffusion

model in an Epoch ` of constant size, the al-

lele frequency Yt obeys the stochastic differential

equation (SDE)

dYt =M`(Yt)dt+
√
Yt(1− Yt)dBt,

t ∈ [τ`−1, τ`], (24)

with the initial condition Yτ`−1
= yτ`−1

, where

time is measured in units of generations and τ`−1

is the time at which Epoch ` begins (Durrett,

2008, Section 7.2). The quantity
√
Yt(1− Yt) in

Equation (24) controls random fluctuations due

to drift whereas the quantityM`(y) describes the

deterministic change in the mean frequency of

the allele over time due to mutation and selection

and is given by

M`(y) = u
(`)
aA − (u

(`)
aA + u

(`)
Aa)y+

y(1− y)[h`s`(1− 2y) + s`y], (25)

In Equation (25) we have rescaled the usual form

of M` so that time is measured continuously in

units of generations.

If the drift term in Equation (24) is negligi-

ble compared with M`(Yt), then Equation (24)

can be approximated by the ordinary differential

equation

dy∞t
dt

=M`(y
∞
t ), (26)

where we may write y∞t instead of Yt because the

evolution of the allele frequency is deterministic

and follows its expectation in the absence of drift.

We can also suppress the explicit dependence

on the epoch ` by defining Mt(y
∞
t ) ≡M`t(y

∞
t ),

yielding

dy∞t
dt

=Mt(y
∞
t ), y∞0 = y0, t ∈ [0, τL], (27)
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which holds for the full population history across

all epochs ` = 1, ..., L. Equation (27) can be

solved numerically, for instance by choosing a

sufficiently small time step 4t and iteratively

computing y∞t+4t =Mt(y
∞
t )4t.

3.4.3. Sample probabilities based on determinis-

tic allele frequency trajectories. To compute the

probability P∞Θ {O[1:K] = o[1:K]} under either the

discrete Wright-Fisher or diffusion models when

drift is negligible, we note that the observations

(O1, ..., OK) are conditionally independent of one

another, given the underlying allele frequencies.

Thus, in the absence of drift we have

P∞Θ {O[1:K] = o[1:K]}

=
K∏
k=1

PΘ{Ok = ok|Ytk = y∞tk } (28)

for both the diffusion and Wright-Fisher models,

where y∞tk is the deterministic allele frequency at

time tk, for k = 1, ...,K . Using Equations (22)

and (28), the probability of the data under the

Wright-Fisher model in a population without drift

can be obtained using Procedure 3. Similarly,

using Equations (27) and (28), the probability

of the data in the case of the diffusion model is

given by Procedure 4.
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Appendix A. Diffusion transition

densities: background

The equations in Section 3.2 were derived un-

der a model in which the selected allele A evolves

under the diffusion approximation in a popula-

tion of piecewise constant size. Given that allele

A has frequency x at a fixed time s, the density

at a later time t is given by the transition den-

sity of the diffusion approximation (Equation 10).

Steinrücken et al. (2014) derived a formula for

the density for the case of a single population of

constant size. Here, we review this derivation to

provide background and notation for the deriva-

tion of the diffusion model probability computed

in Procedure 2.

A.1. The diffusion approximation in a pop-

ulation of constant size. Let p`(s, t;x, y) de-

note the transition density restricted to a spe-

cific epoch ` of constant size with s, t ∈ `. The

density p`(s, t;x, y) is the unique solution of the

Kolmogorov backward equation,

∂p`(s, t;x, y)

∂t
=

1

2N`
L`p`(s, t;x, y) (A.1)

satisfying the terminal condition ρs(y) = δ(y−x),

where δ(·) is the Dirac delta distribution and L` is

the Kolmogorov backward operator in the epoch

defined in Equation (A.2). The factor 1/2N` in

Equation (A.1), is introduced so that the time-

scaling is the same in all epochs, and time is

measured continuously in units of generations.

The Kolmogorov backward operator is defined

in terms of the scaled mutation and selection

parameters β` = 4N`u
(`)
aA, α` = 4N`u

(`)
Aa, and

σ` = N`s` as

L` =
1

2
ξ2(x)

∂2

∂x2
+ µ`(x)

∂

∂x
, (A.2)

where the quantity

ξ2(x) = x(1− x) (A.3)

captures the contribution to the change in allele

frequency arising from genetic drift and

µ`(x) =
1

2
[β` − (β` + α`)x]+

2x(1− x)[h`σ`(1− 2x) + σ`x] (A.4)

captures the contribution from recurrent muta-

tion and selection.

Song and Steinrücken (2012) showed that

p`(s, t;x, y) can be expressed as an expansion

in the eigenfunctions of L` of the form

p`(s, t;x, y) =

∞∑
n=0

e−λ`,n(t−s)/2N`
π`(y)B`,n(x)B`,n(y)

〈B`,n, B`,n〉π`
,

(A.5)

where {B`,n(x)}∞n=0 are the eigenfunctions of L`
with associated eigenvalues {λ`,n}∞n=0 and the

function π`(y) is given by

π`(y) = eσ̄`(y)yβ`−1(1− y)α`−1, (A.6)

where σ̄`(y) = 4h`σ`y(1− y) + 2σ`y
2. The inner

product 〈f, g〉ω with respect to a weight func-

tion ω(x) in Equation (A.5) is defined for two

functions f and g on an interval [a, b] by

〈f, g〉ω =

∫ b

a
f(x)g(x)ω(x)dx. (A.7)

In Equation (A.5), the inner product 〈·, ·〉π` is

taken over the interval [0, 1] with respect to π`(y).

A.2. Expressions for the quantities in Equa-

tion (A.5). Expressions for the eigenvalues

{λ`,n}∞n=0, eigenfunctions {B`,n(y)}∞n=0, and in-

ner products {〈B`,n, B`,n〉}∞n=0 in Equation (A.5)

can be obtained using a matrix formulation devel-

oped by Steinrücken et al. (2014). In particular,

the eigenfunctions {B`,n(y)}∞n=0 can be expressed

as

B`,n(y) =

∞∑
m=0

w`,n,me
−σ̄`(y)/2R(β`,α`)

m (y), (A.8)
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where R
(α,β)
m (y) = p

(β−1,α−1)
m (2y−1) and p

(a,b)
m (y)

is themth classical Jacobi polynomial (Abramowitz

and Stegun, 1972, Chapter 22). The vector w`,n =

(w`,n,0, w`,n,1, . . .) is the nth left eigenvector of the

infinite-dimensional matrix

M` := −

(
Υ(α`,β`) +

4∑
r=0

q`,rG
r
`

)
(A.9)

corresponding to the nth eigenvalue λ`,n, where

Υ(α,β) = diag(υ
(α,β)
0 , υ

(α,β)
1 , . . .) is the diagonal

matrix with elements given by υ
(α,β)
n = 1

2n(n +

α+ β − 1) and the quantities q`,r are given by

q`,0 = αkh`σ`,

q`,1 = −(2 + 3α` + β` − 2h`σ`)h`σ` + (1 + α`)σ`,

q`,2 = (2 + 2α` + 2β` + 4σ` − 10h`σ`)h`σ`−

(1 + α` + β`)σ`, (A.10)

q`,3 = 16h2
`σ

2
` + 2σ2

` (1− 6h`),

q`,4 = −2σ2
` (1− 2h`)

2.

The matrix Gr
` in Equation (A.9) has elements

given by

[G`]n,m =



(n+α`−1)(n+β`−1)
(2n+α`+β`−1)(2n+α`+β`−2) ,

if m = n− 1 and n > 0,
1
2 −

β2
`−α

2
`−2(β`−α`)

2(2n+α`+β`)(2n+α`+β`−2) ,

if m = n and n ≥ 0,
(n+1)(n+α`+β`−1)

2(2n+α`+β`)(2n+α`+β`−1) ,

if m = n+ 1 and n ≥ 0,

0,

otherwise,

(A.11)

which correspond to the coefficients of the three-

term recurrence relation satisfied by the Jacobi

Polynomials.

A.3. Matrix expressions for the transition

density. It is computationally and notationally

simpler to express the eigenfunctions of L` and

the transition density as products of matrices. In

particular, we can express Equation (A.8) as

B`,n(y) = e−σ̄`(y)/2w`,nR
(α`,β`)(y), (A.12)

where

R(α,β)(y) = (R
(α,β)
0 (y), R

(α,β)
1 (y), ...)T (A.13)

and we can express the vector B`(y) of eigenfunc-

tions as

B`(y) = (B`,0(y), B`,1(y), ...)T

= e−σ̄`(y)/2W`R
(α`,β`)(y), (A.14)

where

W` =


w`,0

w`,1

...

 (A.15)

is the matrix whose rows are the left eigenvectors

of the matrix M` in Equation (A.9).

Using Equations (A.5) and (A.14), the tran-

sition density in a single epoch ` can then be

expressed as the matrix product

p`(s, t;x, y) = π`(y)BT
` (x)C−1

` E`(t− s)B`(y),

(A.16)

where

E`(t) = diag{e−λ`,0t/2N` , e−λ`,1t/2N` , ...} (A.17)

and C` = diag{〈B`,n, B`,n〉π`}∞n=0. Steinrücken

et al. (2014) showed that the matrix C` in Equa-

tion (A.16) can be expressed as

C` = W`D`W
T
` , (A.18)

where

D` = diag{d(α`,β`)
0 , d

(α`,β`)
1 , ...} (A.19)

and

d
(α`,β`)
i =

Γ(i+ α`)Γ(i+ β`)

(2i+ α` + β` − 1)Γ(i+ α` + β` − 1)Γ(i+ 1)
.

(A.20)

Thus, the transition density in a single epoch

can be computed by constructing matrix M`,
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computing its eigenvectors W` and eigenvalues

(λ`,0, λ`,1, ...), and plugging these into the compo-

nents of Equation (A.16). In practice, because

the matrix M` has infinite dimension, we approx-

imate it by truncating its dimensions at some

large integer M yielding approximate eigenvec-

tors {w̃`,n}Mn=0 and eigenvalues {λ̃`,n}Mn=0. We

also truncate the length of the vector B`(y) at

a large integer N . Although these truncations

lead to approximate values of the transition den-

sity, the approximation can be made arbitrarily

precise by taking N ≤M to be sufficiently large.

Appendix B. Recursions for the

coefficients ak and bk.

B.1. Discussion of the problem. Here, we ex-

tend the HMM of Steinrücken et al. (2014) to

accommodate populations of piecewise constant

size. As we noted in Section 3.2, the probability

PΘ,D{O[1:K] = o[1:K]} of the data under the dif-

fusion model can be obtained using the equation

PΘ,D{O[1:K] = o[1:K]} =

∫ 1

y=0
fK(y)dy, (B.1)

where the quantity fK(y) is obtained by recur-

sively evaluating Equations (14) and (15). Be-

cause fk(y) and gk(y) can be expressed as the

series fk(y) = π`k(y)bkB`k(y) and gk(y) = π`k(y)

akB`k(y) (Equations 16 and 17), determining

fk(y) and gk(y) amounts to determining the co-

efficients ak and bk. Thus, it is useful to develop

analogs of the recursions (13) and (14) that apply

to the coefficients themselves.

B.2. Equations for propagating coefficients.

From Equation (14), it can be seen that obtain-

ing fk(y) from gk(y) involves only multiplication

by a polynomial in y. Thus, the formula for ob-

taining the coefficients bk from the coefficients

ak does not depend on the population history

and, therefore, it can be obtained from results in

Steinrücken et al. (2014) who derived formulas

for the recursion for the case of a population of

constant size. However, the formula for obtaining

gk(y) from fk−1(y) (Equation 15) involves the

transition probability pΘ(tk−1, tk; z, y), which de-

pends on the population parameters Θ. Thus,

it is necessary to account for the population his-

tory when computing the coefficients ak from the

coefficients bk−1.

To obtain ak from bk−1, we first consider the

more general problem of obtaining the general-

ized vector of coefficients ak(t) from bk−1, where

ak(t) is defined as the vector of coefficients of

the expansion of the generalized density gk(y, t)

defined by

gk(y, t)dy

:= PΘ,D{O[1:k−1] = o[1:k−1], y ≤ Yt < y + dy}

= π`t(y)ak(t)B`t(y), (B.2)

i.e., the joint density of the observed data up to

sample k − 1 and the allele frequency at time

t, where we assume tk−1 ≤ t so that the time t

at which gk(y, t) is evaluated occurs later than

the time tk−1 at which fk(y) is evaluated. The

generalized density gk(y, t) is related to the den-

sity gk(y) defined in Equation (12) by gk(y) =

gk(y, tk).

To obtain ak(t) from bk−1, there are two sce-

narios to consider: the case in which both tk−1

and t lie within the same epoch ` and the case in

which tk−1 and t lie within distinct epochs. Our

derivations of these separate cases provide the

results necessary for step 2 of Procedure 2.

B.2.1. The case `tk−1
= `t = `. If both tk−1 and

t lie within the same epoch `, then the transition

density is given by Equation (A.16) and we have

π`(y)ak(t)B`(y)

= gk(y, t)

=

∫ 1

0
fk−1(z)p`(tk−1, t; z, y)dz
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=

∫ 1

0
π`(z)bk−1B`(z)π`(y)BT

` (z)C−1
` ×

E`(t− tk−1)B`(y)dz

= π`(y)bk−1

[∫ 1

0
π`(z)B`(z)B

T
` (z)dz

]
×

C−1
` E`(t− tk−1)B`(y)

= π`(y)bk−1E`(t− tk−1)B`(y), (B.3)

where the second equality follows from Equa-

tion (15) and where we have used the fact that∫ 1
0 π`(y)B`(y)BT

` (y)dy = C`. Because the eigen-

functions

{B`,n(y)}∞n=0 form a complete basis of the Hilbert

space defined with respect to the inner product

〈·, ·〉π` , the coefficients in the expansion on the

left-hand side of Equation (B.3) must equal those

on the right-hand side. Thus,

ak(t) = bk−1E`(t− tk−1), if `tk−1
= `t.

(B.4)

B.2.2. The case when `tk−1
6= `t. If the times

tk−1 and t lie in different epochs, `tk−1
and `t,

then the transition density is no longer given by

Equation (A.16). Instead, we must use a formula

for the transition density across multiple epochs

of different sizes. Steinrücken et al. (2015) showed

that if the allele frequency density ρ`,s(y) at time

s in epoch ` is given by the expansion

ρ`,s(y) = π`(y)r`,sB`(y), (B.5)

where r`,s = (r`,s,0, r`,s,1, ...) are the coefficients

encoding the density at time s in the basis of the

eigenfunctions {B`,n(y)}∞n=0, then at time t in

epoch `+ 1, the allele frequency density is given

by ρ`+1,t(y) = π`+1(y)r`+1,tB`+1(y), where the

coefficients r`+1,t are given by

r`+1,t = r`,sZ`(τ` − s; ζ)E`+1(t− τ`), (B.6)

where τ` is the time of the terminating boundary

of epoch `, and

Z`(τ ; ζ)

= E`(τ)W`R`(ζ)H`,`+1(ζ)R−1
`+1(ζ)W−1

`+1.

(B.7)

In Equation (B.7), R`(ζ) and H`,`+1(ζ) are given

by

R`(ζ) =
[
R(α`,β`)(ζ0),R(α`,β`)(ζ1), ...

]
, (B.8)

where Rα,β(y) is defined in Equation (A.13) and

H`,`+1(ζ)

= diag

{
π`(ζ0)e−σ̄`(ζ0)/2

π`+1(ζ0)e−σ̄`+1(ζ0)/2
,

π`(ζ1)e−σ̄`(ζ1)/2

π`+1(ζ1)e−σ̄`+1(ζ1)/2
, ...

}
, (B.9)

for an arbitrary collection of distinct values ζ =

(ζ0, ζ1, ...) ∈ [0, 1]. In practice, we take ζ to be

the Chebyshev nodes (Steinrücken et al., 2015).

By repeated application of Equation (B.6), it

follows that if the coefficients r`s,s encode the

density ρs(y) at time s in epoch `s, then the coef-

ficients r`t,t encoding the density ρt(y) at time t

in epoch `t > `s are given by r`t,t = r`s,sF(s, t; ζ),

where

F(s, t; ζ)

= Z`s(τ`s − s; ζ)

 `t−1∏
i=`s+1

Zi(τi − τi−1; ζ)

×
E`t(t− τ`t−1).

(B.10)

Moreover, if we define r`s,s(x) to be the vector of

coefficients encoding the density ρ(y) = δ(y − x),

then it follows from Equation (B.10) that the

transition density pΘ(s, t;x, y) for times s < t

lying in distinct epochs `s < `t is given by

pΘ(s, t;x, y) = π`t(y)r`s,s(x)F(s, t; ζ)B`t(y),

if `s < `t. (B.11)

For the initial condition ρ`,s(y) = δ(y − x), it

was shown in Proposition 1 of Steinrücken et al.
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(2014) that the coefficients r`s,s(x) are given by

r`s,s(x) =

(
B`s,0(x)

〈B`s,0, B`s,0〉π`s
,

B`s,1(x)

〈B`s,1, B`s,1〉π`s
, ...

)
= B`s(x)TC−1

`s
, (B.12)

yielding

pΘ(s, t;x, y) = π`t(y)B`s(x)TC−1
`s

F(s, t; ζ)B`t(y),

if `s < `t, (B.13)

which is obtained by plugging Equation (B.12)

into Equation (B.11).

We can now plug Equation (B.13) into Equa-

tion (15) to obtain a relationship between ak(t)

and bk−1 when times tk−1 and t lie in different

epochs:

π`t(y)ak(t)B`t(y)

= gk(y, t)

=

∫ 1

0
fk−1(z)pΘ(tk−1, t; z, y)dz

=

∫ 1

0
π`k−1

(z)bk−1B`k−1
(z)π`t(y)B`k−1

(z)T

C−1
`k−1

F(tk−1, t; ζ)B`t(y)dz

= π`t(y)bk−1

[ ∫ 1

0
π`k−1

(z)B`k−1
(z)

B`k−1
(z)Tdz

]
C−1
`k−1

F(tk−1, t; ζ)B`t(y)

= π`t(y)bk−1F(tk−1, t; ζ)B`t(y), (B.14)

where we have again used the fact that
∫ 1

0 π`(z)

B`(z)B`(x)Tdy = C`. Finally, by the uniqueness

of expansions in the Hilbert basis {B`t,n}∞n=0, we

have

ak(t) = bk−1F(tk−1, t; ζ), if `tk−1
6= `t.

(B.15)

The results derived in Section B.2.2 provide the

machinery necessary to propagate the coefficients

ak and bk in the HMM over time. These results

can now be used to compute the probability of

observing a set of sampled allele frequencies under

the diffusion model.

B.3. Derivation of lemmas necessary for Pro-

cedure 2. We now obtain three lemmas that

provide the steps in Procedure 2.

Lemma B.3.1. If the initial frequency density

ρ0(y) at time t0 = 0 is ρ0(y) = δ(y−x), then the

value of the initial vector b0 encoding the quantity

f0(y) is given by

b0 =

(
B`1,0(x)

c`1,0
,
B`1,1(x)

c`1,1
, ...

)
= C−1

`1
B`1(x),

(B.16)

where B`(x) is given in Equation (A.14) and C`

is the diagonal matrix given in Equation (A.18).

Proof. Because b0 depends only on the parame-

ters Θ`1 in the first epoch, the proof of Lemma

B.3.1 is the same whether we consider a popula-

tion composed of a single epoch, or a population

composed of multiple epochs. The equation for

fk(y) (Equation 16) is the same as Equation 2.14

of Steinrücken et al. (2014). Thus, the coefficients

bk in this paper correspond to the coefficients bk

in Steinrücken et al. (2014) who proved Lemma

B.3.1 for the case of a population of constant size.

Thus, the first equality in Lemma B.3.1 follows

directly from Proposition 1 of Steinrücken et al.

(2014). The matrix representation in the second

equality follows directly from the definitions of

C` and B`(x). �

Lemma B.3.2. Let G`, W`, E`(t), and F(s, t; ζ)

denote the matrices defined in Equations (A.11),

(A.15), (A.17), and (B.10), respectively, where

ζ = (ζ0, ζ1, ...) is a set of distinct values arbitrar-

ily chosen such that {ζ0, ζ1, ...} ∈ [0, 1]. Then the

coefficient vectors ak and bk satisfy the recursive

relationships

bk = akW`kG
ok
`k

(1−G`k)nk−okW−1
`k
, (B.17)

ak =

{
bk−1E`k(tk − tk−1) if `k−1 = `k,

bk−1F(tk−1, tk; ζ) otherwise,

(B.18)

where W−1
` = D`W

T
` C−1

` .
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Proof. The relationship in Equation (B.18) is ob-

tained immediately by setting t = tk in Equa-

tions (B.4) and (B.15), which follows because

ak(tk) = ak. The relationship in Equation (B.17)

does not depend on the population parameters Θ;

therefore, Equation (B.17) is the same as that de-

rived in Steinrücken et al. (2014), who considered

a population of constant size (see Steinrücken

et al. (2014), Theorem 2). �

Lemma B.3.3. The probability PΘ,D{O[1:K] =

o[1:K]} of observing the allele counts o[1:K], given

the population parameters Θ is

PΘ,D{O[1:K] = o[1:K]} =
c`K ,0

B`K ,0(0)
bK,0, (B.19)

where c`,0 = [C`]0,0 is element 0, 0 of the matrix

C` in Equation (A.18) and

B`,0(0) =

∞∑
m=0

(−1)m[W`]0,m
Γ(m+ α`)

Γ(m+ 1)Γ(α`)
.

(B.20)

The quantity [W`]i,j in Equation (B.20) is ele-

ment i, j of the matrix W` given in Equation

(A.15).

Proof. Equation (B.19) can be obtained by inte-

grating over the joint density fK(y) of the data

O[1:K] and the allele frequency YtK at the final

sampling time:

PΘ{O[1:K] = o[1:K]}

=

∫ 1

0
fK(y)dy

=

∫ 1

0

∞∑
n=0

bK,nπ`K (y)B`K ,n(y)dy

=
∞∑
n=0

bK,n

∫ 1

0
π`K (y)B`K ,n(y)dy

=
∞∑
n=0

bK,n

∫ 1

0
π`K (y)B`K ,n(y)

B`K ,0(y)

B`K ,0(0)
dy

= bK,0
c`K ,0

B`K ,0(0)
, (B.21)

where c`K ,0 = [C`K ]0,0 ≡ 〈B`K ,0, B`K ,0〉π`K . In

the fourth equality we have used the fact that

B`,0(y) = B`,0(0) is a constant function in y. To

see why B`,0(y) is constant, note that the eigen-

values λ`,0, λ`,1, ... are non-negative and strictly

increasing. Thus, all terms in Equation (A.5)

must vanish in the limit s→ −∞, except possibly

the term n = 0. Because p`(s, t;x, y) approaches

the stationary density in the limit s → −∞, it

must be the case that λ`,0 = 0, so at least one

term does not vanish. Thus, we have

lim
s→−∞

pθ(s, t;x, y) = π`(y)
B`,0(y)

〈B`,0, B`,0〉π`
∝ π`(y),

(B.22)

where we have used the fact that π`(y) is propor-

tional to the stationary density of the diffusion

equation in Epoch `. It follows from Equation

(B.22) that B`,0(y) is constant. Thus, we obtain

the result, proving Equation (B.19). Equation

(B.20) follows directly from the proof of Proposi-

tion 3 in Steinrücken et al. (2014). �

Appendix C. Conditional probabilities:

the Wright-Fisher model

Under the Wright-Fisher model, the proba-

bility PΘ,W{O[1:K] = o[1:K]|SK} of the observed

allele counts, conditional on the event SK that

allele A is segregating in the final sample can be

computed using the fact that

PΘ,W{O[1:K] = o[1:K]|SK}

=

2NtK∑
j=0

PΘ,W{O[1:K] = o[1:K], ctK = j|SK}

=

2NtK∑
j=0

PΘ,W{SK |O[1:K] = o[1:K], ctK = j}
PΘ,W{SK}

×

PΘ,W{O[1:K] = o[1:K], ctK = j}
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=
P{SK |OK = oK}

PΘ,W{SK}
×

2N`tK∑
j=0

PΘ,W{O[1:K] = o[1:K], ctK = j}

=
P{SK |OK = oK}

PΘ,W{SK}

2NtK∑
i=0

vK,i, (C.1)

where the third equality in Equation (C.1) follows

from the fact that the conditional probability

PΘ,W{SK |O[1:K] = o[1:K], ctK = j} depends only

on the allele count oK and the final equality in

Equation (C.1) follows from the definition of vk.

The probability P{SK |OK = oK} in Equation

(C.1) is given by

P{SK |OK = oK} =

{
1, if 1 ≤ oK < nK ,

0, otherwise

(C.2)

and the probability PΘ,W{SK} is given by

PΘ,W{SK}

=

2NtK∑
i=0

P{SK |CtK = i}PΘ,W{CtK = i}

=

2NtK∑
i=0

[1− P{OK = 0|CtK = i}−

P{OK = nK |CtK = i}]×

PΘ,W{CtK = i}

=

2NtK∑
i=0

[
1−

(
1− i

2NtK

)nK

−
(

i

2NtK

)nK
]
×

PΘ,W{ctK = i},
(C.3)

where, as before, PΘ,W{CtK = i} is given by the

ith element of dt = d0
∏tK
t=1 Tt−1,t.

Note that it is easy to condition on other con-

figurations of the final sample using a procedure

similar to that used to derive Equation (C.1). For

example, for the event FK that allele A is segre-

gating or fixed in the final sample, which we con-

sider in Section 1.7.2, the probability PΘ,W{O[1:K]

= o[1:K]|FK} is given by

PΘ,W{O[1:K] = o[1:K]|FK}

=
P{FK |OK = oK}

PΘ,W{FK}

2NtK∑
i=0

vK,i, (C.4)

where

P{FK |OK = oK}

=

{
1, if 1 ≤ oK ≤ nK ,
0, otherwise

(C.5)

and

PΘ,W{FK}

=

2NtK∑
i=0

[1− P{OK = 0|CtK = i}]PΘ,W{CtK = i}

=

2NtK∑
i=0

[
1−

(
1− i

2NtK

)nK
]
PΘ,W{ctK = i}.

(C.6)

Other probabilities can be obtained in a similar

fashion.

Appendix D. Conditional probabilities:

diffusion model

Under the diffusion approximation, the prob-

ability PΘ,D{O[1:K] = o[1:K]|SK} of the observed

allele counts conditional on the event SK that

allele A is segregating in the final sample can be

computed using the fact that

PΘ,D{O[1:K] = o[1:K]|SK}

=

∫ 1

y=0
PΘ,D{O[1:K] = o[1:K], YtK = y|SK}dy

=

∫ 1

y=0

P{SK |OK = oK}
PΘ,D{SK}

fK(y)dy

=
P{SK |OK = oK}

PΘ,D{SK}

∫ 1

0
fK(y)dy

=
P{SK |OK = oK}

PΘ,D{SK}
PΘ,D{O[1:K] = o[1:K]}

=
P{SK |OK = oK}

PΘ,D{SK}
c`K ,0

B`K ,0(0)
bK,0, (D.1)
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where the second equality follows from the fact

that the conditional probability P{SK |OK = oK ,

YtK = y} depends only on the allele count oK in

the final sample, and the final equality follows

from Equation (B.19).

The probability PΘ,D{SK} can be computed

as

PΘ,D{SK}

= 1− PΘ,D{OK = 0} − PΘ,D{OK = nK}.
(D.2)

In Equation (D.2), the probability PΘ,D{OK = j}
can be found easily by noting that if the only

sampling time is tK , at which OK = j lineages

are observed, then the probability computed us-

ing Procedure 2 is precisely the probability

PΘ,D{OK = j}.
Consider the problem in which the only sam-

pling occurs at time tK and denote the coefficient

vectors for this related problem by ãk and b̃k.

Then, by Equation (B.19), we see that

PΘ,D{OK = j} =
c`K ,0

B`K ,0(0)
b̃K,0(j), (D.3)

where b̃K(j) is is obtained by computing the steps

in Procedure 2. In Step 1, we compute

b̃0 = b0, (D.4)

which follows because the initial vector b0 de-

pends only on the initial frequency. In Step 2, we

compute

ãK =

{
b̃0E`1(tK), if `tK = 1,

b̃0F(0, tK ; ζ), otherwise,
(D.5)

which follows because the coefficients are prop-

agated directly from time t0 = 0 to time tK .

Finally, in Step 3 we have

b̃K(j) = ãKW`KGj
`K

(1−G`K )nK−jW−1
`K
.

(D.6)

Combined together, Equations (D.4), (D.5), and

(D.6) yield

b̃K(j)

=


b0E`1(tK)W`KGj

`K
(1−G`K )nK−jW−1

`K
,

if `tK = 1,

b0F(0, tK ; ζ)W`KGj
`K

(1−G`K )nK−jW−1
`K
,

otherwise.

(D.7)

Plugging Equations (D.2) and (D.3) into Equa-

tion (D.1) gives

PΘ,D{O[1:K] = o[1:K]|SK}

=
P{SK |OK = oK}c`K ,0bK,0(tK)

B`K ,0(0)− c`K ,0b̃K,0(0)− c`K ,0b̃K,0(nK)
,

(D.8)

where

P{SK |OK = oK} =

{
1, if 1 ≤ oK < nK ,

0, otherwise.

(D.9)

Note that it is easy to condition on other con-

figurations of the final sample by computing the

probabilities P{VK |OK = ok} and PΘ,W{VK} for

some other event VK .
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