
Meta-GWAS Accuracy and Power (MetaGAP) calculator shows

that hiding heritability is partially due to imperfect genetic

correlations across studies

Ronald de Vlaming1,2, Aysu Okbay1,2, Cornelius A. Rietveld1,2, Magnus Johannesson3,
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Abstract

Large-scale genome-wide association results are typically obtained from a fixed-effects meta-analysis of GWAS

summary statistics from multiple studies spanning different regions and/or time periods. This approach

averages the estimated effects of genetic variants across studies. In case genetic effects are heterogeneous

across studies, the statistical power of a GWAS and the predictive accuracy of polygenic scores are attenuated,
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contributing to the so-called ‘missing heritability’. Here, we describe the online Meta-GWAS Accuracy and

Power calculator (MetaGAP; available at www.devlaming.eu) which quantifies this attenuation based on a

novel multi-study framework. By means of simulation studies, we show that under a wide range of genetic

architectures, the statistical power and predictive accuracy provided by this calculator are accurate. We

compare the predictions from MetaGAP with actual results obtained in the GWAS literature. Specifically,

we use genomic-relatedness-matrix restricted maximum likelihood (GREML) to estimate the SNP heritability

and cross-study genetic correlation of height, BMI, years of education, and self-rated health in three large

samples. These estimates are used as input parameters for the MetaGAP calculator. Results from the

calculator suggest that cross-study heterogeneity has led to attenuation of statistical power and predictive

accuracy in recent large-scale GWAS efforts on these traits (e.g., for years of education, we estimate a relative

loss of 51–62% in the number of genome-wide significant loci and a relative loss in polygenic score R2 of

36–38%). Hence, cross-study heterogeneity contributes to the missing heritability.

Author Summary

Large-scale genome-wide association studies are uncovering the genetic architecture of traits which are

affected by many genetic variants. Such studies typically meta-analyze association results from multiple

studies spanning different regions and/or time periods. GWAS results do not yet capture a large share of

the total proportion of trait variation attributable to genetic variation. The origins of this so-called ‘missing

heritability’ have been strongly debated. One factor exacerbating the missing heritability is heterogeneity in

the effects of genetic variants across studies. Its influence on statistical power to detect associated genetic

variants and the accuracy of polygenic predictions is poorly understood. In the current study, we derive

the precise effects of heterogeneity in genetic effects across studies on both the statistical power to detect

associated genetic variants as well as the accuracy of polygenic predictions. We provide an online calculator,

available at www.devlaming.eu, which accounts for these effects. By means of this calculator, we show that

imperfect genetic correlations between studies substantially decrease statistical power and predictive accuracy

and, thereby, contribute to the missing heritability. The MetaGAP calculator helps researchers to gauge

how sensitive their results will be to heterogeneity in genetic effects across studies. If strong heterogeneity is

expected, random- instead of fixed-effects meta-analysis methods should be used.
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Introduction 1

Large-scale GWAS efforts are rapidly elucidating the genetic architecture of polygenic traits, including 2

anthropometrics [1,2] and diseases [3–5], as well as behavioral and psychological outcomes [6–8]. These efforts 3

have led to new biological insights, therapeutic targets, and polygenic scores (PGS), and help to understand 4

the complex interplay between genes and environments in shaping individual outcomes [7,9,10]. However, 5

GWAS results do not yet account for a large part of the estimated heritability [1,2,7, 8]. This dissonance, 6

which is referred to as the ‘missing heritability’, has received broad attention [11–17]. Missing heritability can 7

be divided into two parts: ‘still-missing heritability’ [15–17] – defined as the difference between the estimate 8

of heritability based on family data (h2) and the SNP-based estimate (h2
SNP), where h2>h2

SNP – and ‘hiding 9

heritability’ [15–17] – defined as the difference between h2
SNP and the estimate based on genetic variants 10

that reach genome-wide significance in a GWAS (h2
GWAS), where h2

SNP>h2
GWAS. 11

Amongst others, four factors have been proposed to explain the missing heritability. First, standard 12

genotyping techniques overlook some genetic variation explained by poorly tagged rare variants [18]. Second, 13

non-additive genetic effects (e.g., epistasis) may inflate h2, creating so-called ‘phantom heritability’ [14]. 14

Third, GWAS sample sizes are not large enough to fully capture h2
SNP [18,19]. Fourth, differences across 15

strata (e.g., studies) in genetic effects, phenotype measurement, and phenotype accuracy lead to loss of 16

signal [20–22], attenuating both the power of a GWAS [17, 20, 23, 24] and the predictive accuracy of the 17

PGS in a hold-out sample [25]. We focus on the contribution of one such form of heterogeneity to missing 18

heritability, viz., heterogeneity across studies. 19

Bearing the aforementioned attenuation of statistical power and PGS accuracy in mind, cross-study 20

heterogeneity decreases the chances of a study to yield meaningful results [24, 26]. Therefore, the precise 21

attenuation arising from such heterogeneity should be well understood. Nevertheless, a theoretical multi-study 22

framework, relating statistical power and predictive accuracy to cross-study heterogeneity, is still absent. 23

We bridge this gap by developing a Meta-GWAS Accuracy and Power (MetaGAP) calculator (available at 24

www.devlaming.eu) that accounts for the cross-study genetic correlation (CGR). This calculator infers the 25

statistical power to detect associated SNPs and the predictive accuracy of the PGS in a meta-analysis of 26

GWAS results from genetically and phenotypically heterogeneous studies. Using simulations, we show that 27

the MetaGAP calculator is accurate under a wide range of genetic architectures, even when the assumptions 28

of the calculator are violated. 29

Although meta-analysis methods accounting for heterogeneity exist [27–31], large-scale GWAS results are 30

typically still obtained from fixed-effects meta-analysis methods [32,33] such as implemented in METAL [34]. 31

Therefore, it is important to infer the attenuation in statistical power and PGS accuracy when applying 32
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such a fixed-effects meta-analysis method. Hence, the MetaGAP calculator assumes the use of a fixed- 33

effects meta-analysis method. Consequently, the calculator will help researchers to assess the merits of an 34

intended fixed-effects meta-analysis of GWAS results and to gauge whether it is more appropriate to apply a 35

meta-analysis method that accounts for heterogeneity. 36

Since heterogeneity can lead to differences in heritability between studies, this raises the important 37

question which ‘target heritability’ we are referring to, when considering the proportion of hiding heritability 38

explained by heterogeneity. For statistical power, we define the target heritability as the sample-size weighted 39

average of the within-study estimates of SNP heritability for the studies included in the meta-analysis. For 40

PGS accuracy, we set SNP heritability in the hold-out study as target. Under these definitions, we posit 41

that the expected statistical power and PGS accuracy in the presence of heterogeneity fall short of what is 42

expected under homogeneity. 43

In an empirical application, we use genomic-relatedness-matrix restricted maximum likelihood (GREML) 44

to estimate the SNP-based heritability and CGR of several polygenic traits across three distinct studies: the 45

Rotterdam Study (RS), the Swedish Twin Registry (STR), and the Health and Retirement Study (HRS). For 46

self-rated health, years of education, BMI, and height, we obtain point-estimates of CGR between 0.47 and 47

0.97, suggesting that even extremely large GWAS meta-analyses will fall short of explaining the full h2
SNP for 48

these traits. We use the estimates of SNP heritability and CGR to quantify the expected number of hits and 49

the predictive accuracy of the PGS in recent GWAS efforts for these traits. Our theoretical predictions align 50

with empirical observations. By comparing these figures to the predicted number of hits and PGS accuracy 51

under perfect CGRs, we show that imperfect CGRs lead to considerable attenuation of both (e.g., for height 52

under an estimated CGR of 0.97, the expected relative loss in the number of hits is 8–9% and the relative loss 53

in PGS R2 is 6–7%, whereas for years of education under an estimated CGR of 0.78, we expect a relative loss 54

of 51–62% in the number of genome-wide significant loci and a relative loss in polygenic score R2 of 36–38%). 55

Hence, heterogeneity can explain a considerable part of the hiding heritability. 56

Materials and Methods 57

Definitions and assumptions The MetaGAP calculator is based on theoretical expressions for statistical 58

power and PGS accuracy, derived in S1 Derivations Power and S2 Derivations Accuracy. In these expressions, 59

within-study estimates of SNP heritability (e.g., inferred using GCTA [35]) are important input parameters. 60

Estimates of CGR (e.g., inferred as genetic correlations across studies using pairwise bivariate methods 61

implemented in GCTA [35] and LD-score regression [36]) also play a central role in those expressions. Importantly, 62

as we show in S3 Note on Genetic Correlations, such estimates of CGR are affected by the cross-study overlap 63
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in trait-affecting loci as well as the cross-study correlation in the effects of these overlapping loci. In our 64

derivations, we assume that the set of trait-affecting loci is the same across all studies and that, consequently, 65

CGRs are shaped solely by cross-study correlations in the effects. Using simulation studies, discussed in S4 66

Simulation Studies, we assess how violations of this assumption affect our results. 67

In line with other work, we define the effective number of SNPs, S, as the number of haplotype blocks 68

(i.e., independent chromosome segments) [37], where variation in each block is tagged by precisely one 69

genotyped SNP. By genotyped SNPs we also mean imputed SNPs. Hence, in our framework, there are S 70

SNPs contributing to the polygenic score. Due to linkage disequilibrium (LD) this number is likely to be 71

substantially lower than the total number of SNPs in the genome [38], and is inferred to lie between as little 72

as 60,000 [15] and as much as 5 million [38]. 73

In terms of trait-affecting variants, we consider a subset of M SNPs from the set of S SNPs. Each SNP in 74

this subset tags variation in a segment that bears a causal influence on the phenotype. We refer to M as 75

the associated number of SNPs. We assume that the M associated SNPs jointly capture the full SNP-based 76

heritability for the trait of interest and, moreover, that each associated SNP has the same theoretical R2 with 77

respect to the phenotype. In the simulation studies, we also assess the impact of violations of this ‘equal-R2’ 78

assumption. 79

By considering only independent genotyped SNPs that are assumed to fully tag the causal variants, we can 80

ignore LD among genotyped variants and between the causal variant and the genotyped variants. Thereby, 81

we can greatly reduce the theoretical and numerical complexity of the MetaGAP calculator. However, a 82

genotyped tag SNP does not necessarily capture the full variation of the causal variant present in that 83

independent segment. Nevertheless, the inputs for SNP heritability used in the MetaGAP calculator are 84

within-study GREML estimates of heritability, based on the available (common) SNPs. Therefore, if these 85

genotyped SNPs are in imperfect LD with the causal variants, this will lead to a downward bias in the 86

SNP-based heritability estimates [39]. Hence, the imperfect tagging of the causal variants is already absorbed 87

by downward bias in the SNP-based heritability estimates. 88

Power of a GWAS meta-analysis under heterogeneity 89

The theoretical distribution of the Z statistic, resulting from a meta-analysis of GWAS results under imperfect 90

CGRs, can be found in S1 Derivations Power. These expressions allow for differences in sample size, h2
SNP, 91

and CGR across (pairs of) studies. For intuition, we here present the specific case of a meta-analysis of results 92

from two studies with CGR ρG, with equal SNP-based heritability h2
SNP, and equal sample sizes (i.e., N in 93

Study 1 and N in Study 2). Under this scenario, we find that under high polygenicity, the Z statistic of an 94
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associated SNP k is normally distributed with mean zero and the following variance: 95

Var (Zk) = E
[
Z2
k

]
≈ 1 + h2

SNP
M

N (1 + ρG) . (1)

Fixed-effects meta-analysis approaches are still frequently used in large-scale GWAS efforts. Therefore, 96

we consider statistical power when applying this type of meta-analysis, while assuming that the actual 97

data-generating process follows a random-effects model, where cross-study correlations in SNP effects shape 98

the inferred CGRs. When one has random effects, under the null hypothesis a SNP effect follows a degenerate 99

distribution with all probability mass at zero, whereas under the alternative hypothesis a SNP effect follows a 100

distribution with mean zero and a finite non-zero variance. Bearing in mind that we can write a meta-analysis 101

Z statistic as weighted a average of true effects across studies and noise terms, the null hypothesis leads to a 102

Z statistic with a mean equal to zero and a variance equal to one, whereas the alternative hypothesis does not 103

lead to a non-zero mean in the Z statistic, but rather to excess variation (i.e., a variance larger than one). 104

The larger the variance in the Z statistic, the higher the probability of rejecting the null. The ratio of 105

h2
SNP and M can be regarded as the theoretical R2 of each associated SNP with respect to the phenotype. 106

Eq. 1 reveals that (i) when sample size increases, power increases, (ii) when h2
SNP increases, the R2 per 107

associated SNP increases and therefore power increases, (iii) when the number of associated SNPs increases, 108

the R2 per associated SNP decreases and therefore power decreases, (iv) when the CGR is zero the power of 109

the meta-analysis is identical to the power obtained in each of the two studies when analyzed separately, 110

yielding no strict advantage to meta-analyzing, and (v) when the CGR is plus one the additional variance in 111

the Z statistic relatively to the variance under the null is twice the additional variance one would have when 112

analyzing the studies separately, yielding a strong advantage to meta-analyzing. 113

Notably, our expression for E
[
Z2
k

]
bears a great resemblance to expressions for the expected value of the 114

squared Z statistic when accounting for LD, population stratification, and polygenicity [36, 40, 41]. Consider 115

the scenario where the CGR equals one between two samples of equal size. Based of Eq. 1, we then have 116

that E
[
Z2
k

]
≈ 1 + Ntotal

h2
SNP
M for a trait-affecting haplotype block, where N total = 2N. This expression is 117

equivalent to the expected squared Z statistic from the linear regression analysis for a trait-affecting variant 118

reported in Section 4.2 of the Supplementary Note to [41] as well as the first equation in [36] when assuming 119

that confounding biases and LD are absent. 120

In order to compute statistical power in a multi-study setting, we first use the generic expression for 121

the variance of the GWAS Z statistic derived in S1 Derivations Power to characterize the distribution of 122

the Z statistic under the alternative hypothesis. Given a genome-wide significance threshold (denoted by α; 123

usually α = 5 · 10−8), we use the normal cumulative distribution function under the alternative hypothesis to 124
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quantify the probability of attaining genome-wide significance for an associated SNP. This probability we 125

refer to as the ‘power per associated SNP’ (denoted here by β). Given that we use SNPs tagging independent 126

haplotype blocks, we can calculate the probability of rejecting the null for at least one SNP and the expected 127

number of hits, true positives, false positives, false negatives, and positive negatives, as functions of α, β, 128

the number of truly associated SNPs (denoted by M), and the number of non-associated SNPs (denoted by 129

S −M). Specifically, 130

P [#true positives ≥ 1] = 1− (1− β)M ,

P [#hits ≥ 1] = 1−
[
(1− β)M (1− α)S−M

]
,

E [#hits] = βM + α(S −M),

E [#true positives] = βM,

E [#false positives] = α(S −M),

E [#false negatives] = (1− β)M, and

E [#true negatives] = (1− α) (S −M).

R2 of a polygenic score under heterogeneity 131

In S2 Derivations Accuracy we derive a generic expression for the theoretical R2 of a PGS in a hold-out 132

sample, with SNP weights based on a meta-analysis of GWAS results under imperfect CGRs. We consider a 133

PGS that includes all the SNPs that tag independent haplotype blocks (i.e., there is no SNP selection). 134

For intuition, we here present an approximation for prediction in a hold-out sample, with SNP weights 135

based on a GWAS in a single discovery study with sample size N, where both studies have SNP heritability 136

h2
SNP, and with CGR ρG, between the studies. Under high polygenicity, the R2 of the PGS in the hold-out 137

sample is then given by the following expression: 138

R2 ≈ h2
SNPρ

2
G

h2
SNP

S
N + h2

SNP
. (2)

In case the CGR is one, and we consider the R2 between the PGS and the genetic value (i.e., the genetic 139

component of the phenotype) instead of the phenotype itself, the first two terms in Eq. 2 disappear, yielding 140

an expression equivalent to the first equation in [37]. Assuming a CGR of one and that all SNPs are associated, 141

Eq. 2 is equivalent to the expression in [25] for the R2 between the PGS and the phenotype in the hold-out 142

sample. 143

From Eq. 2, we deduce that (i) as the effective number of SNPs S increases, the R2 of the PGS deteriorates 144
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(since every SNP-effect estimate contains noise, owing to imperfect inferences in finite samples), (ii) given 145

the effective number of SNPs, under a polygenic architecture, the precise fraction of effective SNPs that is 146

associated does not affect the R2, (iii) R2 is quadratically proportional to ρG, implying a strong sensitivity to 147

CGR, and (iv) as the sample size of the discovery study grows, the upper limit of the R2 is given by h2
SNPρ

2
G, 148

implying that the full SNP heritability in the hold-out sample cannot be entirely captured as long as CGR is 149

imperfect. 150

Online power and R2 calculator 151

An online version of the MetaGAP calculator can be found at www.devlaming.eu. This calculator computes 152

the theoretical power per trait-affecting haplotype block, the power to detect at least one of these blocks, and 153

the expected number of (a) independent hits, (b) true positives, (c) false positives, (d) false negatives, and (e) 154

true negatives, for a meta-analysis of GWAS results from C studies. In addition, it provides the expected R2
155

of a PGS for a hold-out sample, including all GWAS SNPs, with SNP weights based on the meta-analysis 156

of the GWAS results from C studies. Calculations are based on the generic expressions for GWAS power 157

derived in S1 Derivations Power and PGS R2 derived in S2 Derivations Accuracy. 158

The calculator assumes a quantitative trait. Users need to specify either the average sample size per study 159

or the sample size of each study separately. In addition, users need to specify either the average within-study 160

SNP heritability or the SNP heritability per study. The SNP heritability in the hold-out sample also needs to 161

be provided. Users are required to enter the effective number of causal SNPs and the effective number of 162

SNPs in total. The calculator assumes a fixed CGR between all pairs of studies included in the meta-analysis 163

and a fixed CGR between the hold-out sample and each study in the meta-analysis. Hence, one needs to 164

specify two CGR values: one for the CGR within the set of meta-analysis studies and one to specify the 165

genetic overlap between the hold-out sample and the meta-analysis studies. 166

Finally, a more general version of the MetaGAP calculator is provided in the form of MATLAB code 167

(www.mathworks.com), also available at www.devlaming.eu. This code can be used in case one desires to 168

specify a more versatile genetic-correlation matrix, where the CGR can differ between all pairs of studies. 169

Therefore, this implementation requires the user to specify a full (C+1)-by-(C+1) correlation matrix. 170

Calculations in this code are fully in line with the generic expressions in S1 Derivations Power and S2 171

Derivations Accuracy. 172
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Assessing validity of theoretical power and R2
173

We simulate data for a wide range of genetic architectures in order to assess the validity of our theoretical 174

framework. As we show in S4 Simulation Studies, the theoretical expressions we derive for power and R2
175

are accurate, even for data generating processes substantially different from the process we assume in our 176

derivations. Our strongest assumptions are that all truly associated SNPs have equal R2 with respect to the 177

phenotype regardless of allele frequency and that genome-wide CGRs are shaped solely by the cross-study 178

correlations in the effects of causal SNPs. When we simulate data where the former assumption fails and 179

where – in addition – allele frequencies are non-uniformly distributed and different across studies, the 180

root-mean-square prediction error of statistical power lies below 3% and that of PGS R2 below 2%. Moreover, 181

when we simulate data where the CGR is shaped by both non-overlapping causal loci across studies and the 182

correlation of the effects of the overlapping loci, the RMSE is less than 2% for both statistical power and 183

PGS R2. 184

Estimating SNP heritability and CGR 185

Using 1000 Genomes-imputed (1kG) data from the RS, STR, and HRS, we estimate SNP-based heritability 186

and CGR respectively by means of univariate and bivariate GREML [35,42] as implemented in GCTA [35]. In 187

our analyses we consider the subset of HapMap3 SNPs available in the 1kG data. In S5 Data and Quality 188

Control we report details on the genotype and phenotype data, as well as our quality control (QC) procedure. 189

After QC we have a dataset, consisting of ≈ 1 million SNPs and ≈ 20,000 individuals, from which we infer 190

h2
SNP and CGR. In S6 GREML Estimation we provide details on the specifications of the models used for 191

GREML estimation. 192

Results 193

Determinants of GWAS power and PGS R2
194

Using the MetaGAP calculator, we assessed the theoretical power of a meta-analysis of GWAS results from 195

genetically heterogeneous studies and the theoretical R2 of the resulting PGS in a hold-out sample, for various 196

numbers of studies and sample sizes, and different values of CGR and h2
SNP. 197

Sample size and CGR Fig. 1 shows contour plots for the power per truly associated SNP and R2, for a 198

setting with 50 studies, for a trait with h2
SNP = 50%, for various combinations of total sample size and CGR. 199

Increasing total sample size enhances both power and R2. When the CGR is perfect, power and R2 (relative 200
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to h2
SNP) have a near-identical response to sample size. This similarity in response gets distorted when the 201

CGR decreases. For instance, in the scenario of 100k SNPs of which a subset of 1k SNPs is causal with 202

h2
SNP = 50%, in a sample of 50 studies with a total sample size of 10 million individuals, a CGR of one yields 203

94% power per causal SNP and an R2 of 49%, which is 98% of the SNP heritability, whereas for a CGR of 204

0.2 the power is still 87% per SNP, while the R2 of the PGS is 8.5%, which is only 17% of h2
SNP. Thus, R2

205

is far more sensitive to an imperfect CGR than the meta-analytic power is. This finding is also supported 206

by the approximations of power in in Eq. 1 and of PGS R2 in Eq. 2; these expressions show that, for two 207

discovery studies, the CGR has a linear effect on the variance of the meta-analysis Z statistic, whereas, for 208

one discovery and one hold-out sample, the PGS R2 is quadratically proportional to the CGR. 209

SNP heritability and CGR Fig. 2 shows contour plots for the power per truly associated SNP and R2 for 210

a setting with 50 studies, with a total sample size of 250,000 individuals, for 1k causal SNPs and 100k SNPs 211

in total, for various combinations of h2
SNP and CGR. The figure shows a symmetric response of both power 212

and R2 to CGR and h2
SNP. For instance, when h2

SNP = 25% and CGR = 0.5 across all studies, the power is 213

expected to be around 34% and the R2 3.0%. When these numbers are interchanged (i.e., h2
SNP = 50% and 214

CGR = 0.25), similarly, the power is expected to be 35% and the R2 2.9%. Hence, in terms of both R2 and 215

power, a low heritability can be compensated by a high CGR (e.g., by means of homogeneous measures across 216

studies) and a low CGR can be compensated by high heritability. When either CGR or heritability is equal 217

to zero, both power and R2 are decimated in the multi-study setting. However, when both are moderately 218

low but still substantially greater than zero, neither power nor R2 are completely diminished. 219

Number of studies and CGR Fig. 3 shows contour plots for the power per truly associated SNP and 220

R2 for a trait with h2
SNP = 50%, 1k causal SNPs, 100k SNPs in total, and a fixed total sample size of 250,000 221

individuals. In this figure, various combinations of the CGR and the number of studies are considered. 222

Logically, when there is just one study for discovery, CGR does not affect power. However, even for two 223

studies, the effect of CGR on power is quite pronounced. For instance, when CGR is a half, the power per 224

causal SNP is 63% for one study, 58% for two studies, 51% for ten studies, and 50% for 100 studies. Thus, 225

when the number of studies is low, increasing the number of studies makes the effect of CGR on power more 226

pronounced rapidly. When the number of studies is large, further increases in the number of studies hardly 227

make the effect of CGR on power more pronounced. 228

For a given number of studies, we observed that the effect CGR has on R2 is stronger than the effect it 229

has on power. This observation is in line with the approximated theoretical R2 in Eq. 2, indicating that R2 is 230

quadratically proportional to CGR. However, an interesting observation is that this quadratic relation lessens 231
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Figure 1. Theoretical predictions of power per causal SNP (upper panel) and out-of-sample
R2 of the PGS (lower panel), for total sample size (x-axis) and cross-study genetic correlation
(y-axis). Factor levels: 50 studies, 100k independent SNPs, and h2

SNP = 50% arising from a subset of 1k
independent SNPs.
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Figure 2. Theoretical predictions of power per causal SNP (upper panel) and out-of-sample
R2 of the PGS (lower panel), for a trait that across studies has SNP heritability (x-axis) and
cross-study genetic correlation (y-axis). Factor levels: 50 studies, sample size 5,000 individuals per
study, 100k independent SNPs, and heritability arising from a subset of 1k independent SNPs.
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Figure 3. Theoretical predictions of power per causal SNP (upper panel) and out-of-sample R2

of the PGS (lower panel), for a trait with GWAS results from the number of studies (x-axis)
with cross-study genetic correlation (y-axis). Factor levels: total sample size 250,000 individuals, 100k
independent SNPs, and heritability h2

SNP = 50% arising from a subset of 1k independent SNPs.
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as the number of studies grows large, despite the total sample size being fixed. For instance, at a CGR of a 232

half, the R2 in the hold-out sample is expected to be 6.9% when there is only one discovery study. However, 233

the expected R2 is 8.1% for two discovery studies, 9.3% for ten discovery studies, and 9.6% for 100 discovery 234

studies. The reason for this pattern is that, in case of one discovery study, the PGS is influenced relatively 235

strongly by the study-specific component of the genetic effects. This idiosyncrasy is not of relevance for the 236

hold-out sample. As the number of studies increases – even though each study brings its own idiosyncratic 237

contribution – each study consistently conveys information about the part of the genetic architecture which 238

is common across the studies. Since the idiosyncratic contributions from the studies are independent, they 239

tend to average each other out, whereas the common underlying architecture gets more pronounced as the 240

number of studies in the discovery increases, even if the total sample size is fixed. 241

SNP heritability in the hold-out sample Fig. 4 shows a contour plot for the PGS R2 based on a 242

meta-analysis of 50 studies with a total sample size of 250,000 individuals, with 1k causal SNPs and 100k 243

SNPs in total, and a CGR of 0.8 between both the discovery studies and the hold-out sample. In the plot, 244

various combinations of h2
SNP in the discovery samples and h2

SNP in the hold-out sample are considered. The 245

response of PGS R2 to heritability in the discovery sample and the hold-out sample is quite symmetric, in 246

the sense that a low h2
SNP in the discovery samples and a high h2

SNP in the hold-out sample yield a similar R2
247

as a high h2
SNP in the discovery sample and a low h2

SNP in the hold-out sample. However, R2 is slightly more 248

sensitive to h2
SNP in the hold-out sample than in the discovery samples. For instance, when SNP heritability 249

in the discovery samples is 50% and 25% in the hold-out sample, the expected R2 is 10%, whereas in case the 250

SNP heritability is 25% in the discovery samples and 50% in the hold-out sample, the expected R2 is 13%. 251

CGR between sets of studies Fig. 5 shows a contour plot for the power per truly associated SNP in 252

a setting where there are two sets consisting of 50 studies each. Within each set, the CGR is equal to 253

one, whereas between sets the CGR is imperfect. Consider, for example, a scenario where one wants to 254

meta-analyze GWAS results for height from a combination of two sets of studies; one set of studies consisting 255

primarily of individuals of European ancestry and one set of studies with mostly people of Asian ancestry 256

in it. Now, one would expect CGRs close to one between studies consisting primarily of individuals of 257

European ancestry and the same for the CGRs between studies consisting primarily of people of Asian 258

ancestry. However, the CGRs between those two sets of studies may be less than one. 259

As is shown in S1 Derivations Power, in case the CGR between the two sets of studies, C1 and C2, is 260

zero, meta-analyzing the two sets jointly yields power βC1∪C2 ≤ max {βC1 , βC2} and βC1∪C2 ≥ min {βC1 , βC2}, 261

where βA denotes the power in set of studies A. In particular, when βC1 = βC2 we have under a CGR of zero 262
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Figure 4. Theoretical predictions of out-of-sample R2 of the PGS, for the SNP heritability
in the hold-out sample (x-axis) and the SNP heritability in the discovery samples (y-axis).
Factor levels: 50 studies, sample size 5,000 individuals per study, cross-study genetic correlation 0.8, 100k
independent SNPs, and heritability arising from a subset of 1k independent SNPs.

Figure 5. Theoretical predictions of power per causal SNP, for total sample size (x-axis) and
CGR between two sets of studies (y-axis). Factor levels: 2 sets of 50 studies, CGR equal to 1 within
both sets, 100k independent SNPs, and heritability h2

SNP = 50% arising from a subset of 1k independent
SNPs.
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between the sets, that βC1∪C2 = βC1 = βC2 . Since in Fig. 5 we considered two equally-powered sets, the power 263

of a meta-analysis using both sets, under zero CGR between sets, is identical to the power obtained when 264

meta-analyzing, for instance, only the first set. However, as CGR between sets increases, so does power. For 265

instance, when a total sample size of 250,000 individuals is spread across 2 clusters, each cluster consisting 266

of 50 studies (i.e., sample size of 125,000 individuals per cluster and 2,500 individuals per study), under 267

h2
SNP = 50% due to 1k causal SNPs, a CGR of one within each cluster, and CGR of zero between clusters, 268

the power is expected to be 49%, which is identical to the power of a meta-analysis of either the first or the 269

second cluster. However, if the CGR between clusters is 0.5 instead of zero, the power goes up to 58%. In 270

terms of the expected number of hits, this cross-ancestry meta-analysis yields an expected 82 additional hits, 271

compared to a meta-analysis considering only one ancestry. 272

Alternatively, one could carry out a meta-analysis in each set of studies and pool the hits across these sets. 273

However, this would imply more independent tests being carried out, and, hence, the need for a more stringent 274

genome-wide significance threshold, in order to keep the false-postive rate fixed. Therefore, this route may 275

yield less statistical power than a meta-analysis of merely one of the two sets or a joint analysis of both. 276

Ideally, in the scenario where between-population heterogeneity is likely, one should apply a meta-analysis 277

method that accounts for the heterogeneity (e.g., [27–31]). By applying such a method, one can consider all 278

GWAS results from different ancestry groups in one analysis. 279

Empirical results for SNP-based heritability and CGR 280

In Table 1 we report univariate GREML estimates of SNP heritability and bivariate GREML estimates of 281

genetic correlation for traits that attained a pooled sample size of at least 18,000 individuals, which gave us 282

at least 50% power to detect a genetic correlation near one for a trait that has a SNP heritability of 10% or 283

more [43]. The smallest sample size is N = 19,184 for self-rated health. Details per phenotype (i.e., sample 284

size, univariate estimates of SNP heritability, and bivariate estimates of genetic correlation, stratified across 285

studies and sexes, as well as cross-study and cross-sex averages) are provided in S7 GREML Results. 286

The univariate estimates of SNP heritability based on the pooled data assume perfect CGRs. Therefore, 287

such estimates of SNP heritability are downwards biased when based on data from multiple studies with 288

imperfect CGRs. To circumvent this bias, we estimated SNP heritability in each study separately, and focused 289

on the sample-size-weighted cross-study average estimate of SNP heritability. 290

For both height and BMI, we observed genetic correlations close to one across pairs of studies and between 291

females and males. For years of schooling (EduYears) we found a CGR around 0.8 when averaged across 292

pairs of studies. Similarly, the genetic correlation for EduYears in females and males lies around 0.8. The 293
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Table 1. GREML estimates of SNP heritability (h2
SNP) and genetic correlation across studies and sexes.

Phenotype N Estimates SNP heritability1,2 Estimates genetic correlation1

pooled study sexes RS–STR RS–HRS STR–HRS Females–Males

Height 20,458 43.3% (1.8%) *** 44.9% 44.0% 0.976 (0.102) *** 0.954 (0.095) *** 0.967 (0.106) *** 0.981 (0.067) ***
BMI 20,449 20.9% (1.7%) *** 21.9% 22.8% 1.000 (0.269) *** 0.914 (0.172) *** 0.847 (0.246) *** 0.794 (0.122) *** †
EduYears 20,619 16.4% (1.7%) *** 18.2% 18.4% 0.690 (0.233) *** 0.659 (0.224) *** † 1.000 (0.263) *** 0.832 (0.162) ***
CurrCigt 20,686 18.2% (4.0%) *** 19.1% 24.2% 1.000 (0.643) *** 0.611 (0.448) * 1.000 (0.607) *** 0.543 (0.257) *** †
CurrDrinkFreq 20,072 7.0% (2.6%) *** 10.3% 8.3% 1.000 (0.666) *** 0.298 (0.670) -0.056 (0.647) 1.000 (2.068) *
Self-rated health 19,184 10.3% (1.8%) *** 15.7% 9.5% 0.626 (0.439) ** 0.363 (0.223) ** †† 0.447 (0.278) ** 1.000 (0.349) ***
* h2

SNP and/or genetic correlation > 0 at 10% sign. †genetic correlation < 1 at 10% sign. ‡genetic correlation < 0 at 10% sign.
** h2

SNP and/or genetic correlation > 0 at 5% sign. ††genetic correlation < 1 at 5% sign. ‡‡genetic correlation < 0 at 5% sign.
*** h2

SNP and/or genetic correlation > 0 at 1% sign. †††genetic correlation < 1 at 1% sign. ‡‡‡genetic correlation < 0 at 1% sign.
1 Standard errors between parentheses.
2 pooled: univariate estimate from pooled data, study: sample-size weighted average of univariate estimates across studies, and sexes: sample-size
weighted average of univariate estimates across sexes.

CGR of self-rated health is substantially below one across the pairs of studies, whilst the genetic correlation 294

between females and males seems to lie around one. The reason for this difference in the genetic correlation 295

of self-rated health between pairs of studies and between females and males may be due to the difference in 296

the questionnaire across studies, discussed in S5 Data and Quality Control. The questionnaire differences 297

can yield a low CGR, while not precluding the remaining genetic overlap for this measure across the three 298

studies, to be highly similar for females and males. For CurrCigt and CurrDrinkFreq, the estimates of CGR 299

and of genetic correlation between females and males are non-informative. For these two traits the standard 300

errors of the genetic correlations estimates are large, mostly greater than 0.5. In addition, for CurrDrinkFreq 301

there is strong volatility in the CGR estimate across pairs of studies. 302

Attenuation in power and R2 due to imperfect CGR 303

Considering only the traits for which we obtained accurate estimates of CGR and SNP heritability (i.e., with 304

low standard errors), we used the MetaGAP calculator to predict the number of hits in a set of discovery 305

samples and the PGS R2 in a hold-out sample, in prominent GWAS efforts for these traits. Details and 306

notes on the results from existing studies, used as input for the MetaGAP calculations, can be found in S8 307

Large-scale GWAS efforts. Importantly, for the traits under consideration here, all large-scale GWAS results 308

obtained using a meta-analysis, use a fixed-effects meta-analysis. 309

Since we only had accurate estimates for height, BMI, EduYears, and self-rated health, we focused on these 310

four phenotypes. For these traits, we computed sample-size-weighted average CGR estimates across the pairs 311

of studies. Table 2 shows the number of hits and PGS R2 reported in the most comprehensive GWAS efforts 312

to date for the traits of interest, together with predictions from the MetaGAP calculator. We tried several 313

values for the number of independent haplotype blocks (i.e., 100k, 150k, 200k, 250k) and for the number of 314

trait-associated blocks (i.e., 10k, 15k, 20k, 25k). Overall, 250k blocks of which 20k trait-affecting yielded 315
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Table 2. Predicted and observed number of genome-wide-significant hits and PGS R2, for large-scale GWAS efforts
to date for height, BMI, EduYears, and self-rated health, assuming 250k effective SNPs (i.e., independent haplotype
blocks) of which 20k trait-affecting, using averaged GREML estimates from Table 1 for setting SNP heritability
and CGR. Notes on the sources for the large-scale GWAS efforts are listed in Table 10.
Phenotype Main studies Architecture Number of hits PGS R2 using all SNPs

Theory|CGR Atten- Theory|CGR Atten-
Study N C** h2

SNP CGR Study <1 =1 uation* Study <1 =1 uation*

Wood et al. (2014) [1] 253,288 79 44.9% 0.965 697 647.26 700.24 8% 13.5% 13.2% 14.0% 6%
Height Allen et al. (2010) [44] 183,727 61 44.9% 0.965 180 292.03 320.77 9% 10.0% 10.5% 11.1% 6%

Weedon et al. (2008) [45] 13,665 5 44.9% 0.965 7 0.00 0.00 n.a. 2.9% 1.0% 1.1% 7%
Locke et al. (2015) [2] 339,224 125 21.9% 0.917 97 188.52 241.07 22% 6.5% 4.3% 5.0% 14%

BMI Speliotes et al. (2010) [46] 123,865 46 21.9% 0.917 19 5.48 7.64 28% 2.5% 1.8% 2.1% 15%
Willer et al. (2008) [47] 32,387 15 21.9% 0.917 1 0.01 0.02 65% n.a. 0.5% 0.6% 16%
Okbay et al. (2016) [7] 405,072 65 18.2% 0.783 162 115.28 235.90 51% n.a. 2.7% 4.1% 36%

EduYears Okbay et al. (2016) [7] 293,723 64 18.2% 0.783 74 39.30 88.93 56% 3.9% 2.0% 3.2% 36%
Rietveld et al. (2013) [48] 101,069 42 18.2% 0.783 1 0.63 1.64 62% 2.5% 0.8% 1.2% 38%

Self-rated health Harris et al. (2015) [49] 111,749 1 15.7% 0.468 13 1.35 1.35 0% n.a. 0.2% 1.0% 78%
* Attenuation measures the relatively loss in expected power and R2 due to a CGR in accordance with averaged GREML estimates from Table 1.
** C denotes the number of studies in the meta-analysis.

theoretical predictions in best agreement with the empirical observations; we acknowledge the potential for 316

some overfitting (i.e., two free parameters set on the basis of 17 data points; 10 data points for the reported 317

number of hits and 7 for PGS R2). 318

For height – the trait with the lowest standard error in the estimates of h2
SNP and CGR – the predictions 319

of the number of hits and PGS R2 for the two largest GWAS efforts are much in line with theoretical 320

predictions. For the smaller GWAS of 13,665 individuals [45], our estimates seem slightly conservative; 0 321

hits expected versus the 7 reported. However, in our framework, we assumed that each causal SNP has the 322

same R2. Provided there are some differences in R2 between causal SNPs, the first SNPs that are likely to 323

reach genome-wide significance in relatively small samples, are the ones with a comparatively large R2. This 324

view is supported by the fact that a PGS based on merely 20 SNPs already explains 2.9% of the variation in 325

height. Hence, for relatively small samples our theoretical predictions of power and R2 may be somewhat 326

conservative. In addition, the 10k SNPs with the lowest meta-analysis p-values can explain about 60% of 327

the SNP heritability [1]. If the SNPs tagging the remaining 40% each have similar predictive power as the 328

SNPs tagging the first 60%, then the number of SNPs needed to capture the full h2
SNP would lie around 329

10k/0.6=17k, which is somewhat lower than the 20k which yields the most accurate theoretical predictions. 330

However, as indicated before, the SNPs which appear most prominent in a GWAS are likely to be the ones 331

with a greater than average predictive power. Therefore, the remaining 40% of h2
SNP is likely to be stemming 332

for SNPs with somewhat lower predictive power. Hence, 20k associated independent SNPs is not an unlikely 333

number for height. 334
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The notion of a GWAS first picking up the SNPs with a relatively high R2 is also supported by the 335

predicted and observed number of hits for the reported self-rated-health GWAS [49]; given a SNP heritability 336

estimate between 10% [49] and 16% (Table 2), according to our theoretical predictions, a GWAS in a sample 337

of around 110k individuals is unlikely to yield even a single genome-wide significant hit. Nevertheless, this 338

GWAS has yielded 13 independent hits. This finding supports the idea that for various traits, some SNPs 339

with a relatively high R2 are present. However, there is uncertainty in the number of truly associated loci. 340

More accurate estimates of this number may improve the accuracy of our theoretical predictions. 341

For BMI our predictions of PGS R2 were quite in line with empirical results. However, for the number of 342

hits, our predictions for the largest efforts seemed overly optimistic. We therefore suspect that the number of 343

independent SNPs associated with BMI is higher than 20k; as a higher number of associated SNPs would 344

reduce the GWAS power, while preserving PGS R2, yielding good agreement with empirical observation. 345

Nevertheless, given the limited number of data points, this strategy of setting the number of causal SNPs 346

would increase the chance of overfitting. 347

For EduYears we observed that the reported number of hits is in between the expected number of hits 348

when the CGR is set to the averaged GREML estimate of 0.783 and when the CGR is set to one. Given the 349

standard errors in the CGR estimates for EduYears, the CGR might very well be somewhat greater than 350

0.783, which would yield a good fit with the reported number of hits. However, as with the number of truly 351

associated SNPs for BMI, in light of the risk of overfitting, we can make no strong claims about a slightly 352

higher CGR of EduYears . 353

Overall, our theoretical predictions of the number of hits and PGS R2 are in moderate agreement with 354

empirical observations, especially when bearing in mind that we are looking at a limited number of data 355

points, making chance perturbations from expectation likely. In addition, regarding the number of hits, the 356

listed studies are not identical in terms of the procedure to obtain the independent hits. Therefore, the 357

numbers could have been slightly different, had the same pruning procedure been used across all reported 358

studies. 359

Regarding attenuation, we observed a substantial spread in the predicted number of hits and PGS R2
360

when assuming either a CGR equal to one, or a CGR in accordance with empirical estimates, with traits 361

with lower CGR suffering from stronger attenuation in power and predictive accuracy. In line with theory, 362

R2 falls sharply with CGR. For instance, for self-rated health, the estimate CGR of about 0.5, would – in 363

expectation – yield a PGS that retains only 0.52=25% of the R2 it would have had under a CGR of one. 364

This is supported by the reported attenuation of roughly 80%. 365

Given our CGR estimates, we expect a relative loss in PGS R2 of 6% for height, 14% for BMI, 36% for 366

EduYears, and 78% for self-rated health, compared to the R2 of a PGS under perfect CGRs (Table 2). This 367
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loss in R2 is unlikely to be reduced by larger sample sizes and denser genotyping. 368

Somewhat contrary to expectation, the number of hits seems to respond even more strongly to CGR than 369

PGS R2. However, since in each study under consideration the average power per associated SNP is quite 370

small, a small decrease in power per SNP in absolute terms can constitute a substantial decrease in relative 371

terms. For instance, when one has 2% power per truly associated SNP, an absolute decrease of 1% – leaving 372

1% power – constitutes a relative decrease of 50% of power per causal SNP, and thereby a 50% decrease in 373

the expected number of hits. This strong response shows, for example, in the case of EduYears, where the 374

expected number of hits drop by about 37% when going from a CGR of one down to a CGR of 0.783. 375

Discussion 376

We aimed to answer the question whether imperfect cross-study genetic correlations (CGRs) help to explain a 377

part of the ‘hiding heritability’ for traits such as height. We showed that imperfect CGRs are indeed likely to 378

contribute to the gap between the phenotypic variation accounted for by all SNPs jointly and by the leading 379

GWAS efforts to date. We arrived at this conclusion in five steps. 380

First, we developed a Meta-GWAS Accuracy and Power (MetaGAP) calculator that accounts for the CGR. 381

This online calculator relates the statistical power to detect associated SNPs and the R2 of the polygenic 382

score (PGS) in a hold-out sample to the number of studies, sample size and SNP heritability per study, and 383

the CGR. The underlying theory shows that there is a quadratic response of the PGS R2 to CGR. Moreover, 384

we showed that the power per associated SNP is also affected by CGR. 385

Second, we used simulations to demonstrate that our theory is robust to several violations of the 386

assumptions about the underlying data-generating process, regarding the relation between allele frequency 387

and effect size, the distribution of allele frequencies, and the factors contributing to CGR. Further research 388

needs to assess whether our theoretical predictions are also accurate under an even broader set of scenarios 389

(e.g., when studying a binary trait). 390

Third, we used a sample of unrelated individuals from the Rotterdam Study, the Swedish Twin Registry, 391

and the Health and Retirement Study, to estimate SNP-based heritability as well as the CGR for traits such 392

as height and BMI. Although our CGR estimates have considerable standard errors, the estimates make it 393

likely that for many polygenic traits the CGR is positive, albeit smaller than one. 394

Fourth, based on these empirical estimates of SNP heritability and CGR for height, BMI, years of 395

education, and self-rated health, we used the MetaGAP calculator to predict the number of expected hits and 396

the expected PGS R2 for the most prominent studies to date for these traits. We found that our predictions 397

are in moderate agreement with empirical observations. Our theory seems slightly conservative for smaller 398
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GWAS samples. For large-scale GWAS efforts our predictions were in line with the outcomes of these efforts. 399

More accurate estimates of the number of truly associated loci may further improve the accuracy of our 400

theoretical predictions. 401

Fifth, we used our theoretical model to assess statistical power and predictive accuracy for these GWAS 402

efforts, had the CGR been equal to one for the traits under consideration. Our estimates of power and 403

predictive accuracy in this scenario indicated a strong decrease in the PGS R2 and the expected number of 404

hits, due to imperfect CGRs. Though these observations are in line with expectation for predictive accuracy, 405

for statistical power the effect was larger than we anticipated. This finding can be explained, however, by the 406

fact that though the absolute decrease in power per SNP is small, the relative decrease is large, since the 407

statistical power per associated SNP is often low to begin with. 408

Overall, our study affirms that although PGS accuracy improves substantially with further increasing 409

sample sizes, in the end PGS R2 will continue to fall short of the full SNP-based heritability. Hence, this 410

study contributes to the understanding of the hiding heritability reported in the GWAS literature. 411

Regarding the etiology of imperfect CGRs, the likely reasons are heterogeneous phenotype measures across 412

studies, gene–environment interactions with underlying environmental factors differing across studies, and 413

gene–gene interactions where the average effects differ across studies due to differences in allele frequencies. 414

Our study is not able to disentangle these different causes; by estimating the CGR for different traits we 415

merely quantify the joint effect these three candidates have on the respective traits. 416

However, in certain situations it may be possible to disentangle the etiology of imperfect CGRs to some 417

extent. For instance, in case one considers a specific phenotype that is usually studied by means of a commonly 418

available but relatively heterogeneous and/or noisy measure, while there also exists a less readily available 419

but more accurate and homogeneous measure. If one has access to both these measures in several studies, one 420

can compare the CGR estimates for the more accurate measure and the CGR estimates for the less accurate 421

but more commonly available measure. Such a comparison would help to disentangle the contribution of 422

phenotypic heterogeneity and genetic heterogeneity to the CGR of the more commonly available measure. 423

In considering how to properly address imperfect CGRs, it is important to note that having a small set of 424

large studies, rather than a large set of small studies, does not necessarily abate the problem of imperfect 425

genetic correlations. Despite the fact that having fewer studies can help to reduce the effects of heterogeneous 426

phenotype measures, larger studies are more likely to sample individuals from different environments. If 427

gene–environment interactions do play a role, strong differences in environment between subsets of individuals 428

in a study can lead to imperfect genetic correlations within that study. The attenuation in power and accuracy 429

resulting from such within-study heterogeneity may be harder to address than cross-study heterogeneity. 430

Our findings stress the importance of considering the use more sophisticated meta-analysis methods that 431
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account for cross-study heterogeneity [27–31]. We believe that the online MetaGAP calculator will prove to 432

be an important tool for assessing whether an intended fixed-effects meta-analysis of GWAS results from 433

different studies is likely to yield meaningful outcomes. 434

Supporting Information 435

S1 Derivations Power 436

In this section, we derive an expression for the power of a meta-analysis of GWAS results, under a design with 437

many studies, with arbitrary sample sizes, SNP-based heritability, and cross-study genetic correlation (CGR). 438

First, the underlying assumptions are presented. Second, we write the GWAS Z statistics in terms of 439

the true SNP effect and noise. Third, we incorporate cross-study genetic correlations by assuming a model 440

with random SNP effects that are correlated imperfectly across studies. Using the Cholesky decomposition 441

of the cross-study genetic correlation matrix, we write the correlated SNP effects in terms of a weighted 442

sum of independent genetic factors. By means of this decomposition into independent factors, we derive the 443

distribution of the Z statistic in a given study, as well as the distribution of the multi-study meta-analysis Z 444

statistic. From the latter distribution we obtain a framework for performing multi-study power calculations. 445

It is important to note that models which incorporate random SNP effects have been widely used, for 446

instance, to estimate variance components [35] and genetic correlations across traits and samples [42], to 447

control for cryptic relatedness and population structure in a GWAS [41], and to distill the constituents of 448

genomic inflation [36, 40]. Hence, the novelty in our work lies not in using random SNP-effect models to 449

incorporate imperfect genetic correlations across studies. Instead the novelty lies in the subsequent step, viz., 450

to use such models in order to perform power calculations under the presence of imperfect CGRs. 451

Assumptions We derive an expression of statistical power for a quantitative trait in sample-size weighted 452

meta-analysis [34]. In order to arrive at a tractable expression of statistical power, we make the following 453

assumptions. 454

1. When considering a given SNP in the GWAS, any phenotypic variance due to other SNPs gets absorbed 455

by the normally, independent, and identically distributed residual term (which is what happens when 456

studying a sample of unrelated individuals, and which is in line with assumptions underlying most GWAS 457

packages, except for family-based and mixed-linear-model-type GWAS software). This assumption 458

keeps the algebra simple at the cost of a small loss in generality. In S4 Simulation Studies we show that 459

violations of this assumption do not affect results. 460
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2. The regressors (i.e., SNP data) in the meta-analysis studies are fixed (i.e., non-stochastic)—this 461

assumption is equivalent to conditioning on the genotype data. This assumption also keeps the algebra 462

simple at the cost of a small loss in generality. In S4 Simulation Studies we show that violations of this 463

assumption do not affect results. 464

3. Each causal locus is shared across all studies. This assumption enables us to consider CGRs as a 465

one-dimensional factor that is shaped solely by the cross-study correlation of the effects of trait-affecting 466

haplotype blocks. In S4 Simulation Studies we show that violations of this assumption hardly affect 467

results. 468

4. The genome can be divided into independent haplotype blocks, where for each block we have precisely 469

one SNP that tags all the variation within this block. By means of this assumption, we can ignore 470

linkage disequilibrium, thereby strongly reducing the complexity of our derivations. In addition, we 471

assume that the effects of trait-affecting haplotype blocks are independent. The former assumption 472

would imply that all trait-affecting variation in a haplotype block can be captured by the single tag 473

SNP for that block. Although we make no claim that common SNPs perfectly tag all trait affecting 474

variants, we do claim that a relatively small set of common SNPs can tag the heritability as estimated 475

using common SNPs. Consequently, when using estimates of SNP heritability based on common SNPs, 476

we deem this assumption and its implications to generate little bias in our theoretical predictions. 477

5. The effect sizes of SNPs are inversely related to SNP variance (i.e., rare variants have larger effects than 478

common variants, such that the expected R2 of each causal SNP, with respect to the phenotype, is equal 479

regardless of allele frequency). This assumption makes it possible to compute statistical power without 480

having to specify the allele frequency and an a priori unknown effect size. Under this assumption, SNP 481

heritability and the number of trait-affecting haplotype blocks replace a SNP-specific effect size and 482

allele frequency. In S4 Simulation Studies we show that violations of this assumption hardly affect 483

results. 484

Single-SNP model Here, we write the GWAS Z statistic in a given study for a given SNP, as a function 485

of the true effect and noise. This decomposition into true effect and noise helps to derive the distribution of 486

the Z statistic. 487

For studies j = 1, . . . , C and SNPs k = 1, . . . , S, let the model for a quantitative trait with a single SNP 488

as predictor (Assumption 1) for the mean-centered phenotype yj be given by 489
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yj = xjkβjk + εj , (3)

εj ∼ N
(
0, σ2

εjINj
)

(4)

where xjk denotes the mean-centered genotype vector of SNP k in study j, scaled such that (x>jkxjk)/Nj = 1. 490

In Eq. 3, βjk is the effect of SNP k in study j. In Eq. 4, εj is the residual and INj the Nj × Nj identity 491

matrix, where Nj denotes the sample size of study j. 492

The GWAS estimate of βjk for a quantitative trait is usually obtained by applying OLS. Hence, it can be 493

written as 494

β̂jk =
(

1
Nj

x>jkxjk
)−1 1

Nj
x>jkyj (5)

= 1
Nj

x>jkyj (6)

= 1
Nj

x>jkxjkβjk + 1
Nj

x>jkεj (7)

= βjk + 1
Nj

x>jkεj . (8)

Using standard results from regression theory assuming fixed regressors (Assumption 2) and the aforemen- 495

tioned scaling of the genotype vector, the theoretical variance of the OLS-estimate of the SNP effect is given 496

by 497

Var
(
β̂jk

)
= σ2

εj

(
x>jkxjk

)−1

=
σ2

εj

Nj
.

Therefore, the standard error of the OLS estimate is given by 498

s.d.
(
β̂jk

)
=

σεj√
Nj

. (9)

By taking the ratio of Eq. 8 and 9 we obtain the Z statistic (instead of the commonly used and highly 499

similar t-test statistics) for SNP k in study j. That is, 500

Zjk = β̂jk

s.d.
(
β̂jk

) (10)

=
√
Nj

σεj

βjk +
x>jkεj
σεj

√
Nj

. (11)
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Let vjk denote the last term in the right-hand side of Eq. 11. Under the aforementioned scaling of the 501

regressor and the distribution of εj , it follows from standard properties of the multivariate normal distribution 502

that vjk ∼ N (0, 1). 503

Modelling cross-study genetic correlation We incorporate cross-study genetic correlations by consid- 504

ering a model with random SNP effects, correlated across studies. For ease of derivations, we assume that 505

each causal SNP contributes across all studies (Assumption 3). In order to simplify further derivations, we 506

use a Cholesky decomposition to write correlated SNP effects in terms of independent underlying factors. 507

Using this independent-factor representation, we derive the distribution of a GWAS Z statistic, in terms of 508

the study-specific noise and contributions of the underlying genetic factors. 509

Genetic correlation can be conceptualized as the correlation between SNP effects across different strata 510

(e.g., across populations, studies, age groups, etc.). Taking studies as ‘strata’, a group of C studies has C ×C 511

genetic correlation matrix, denoted by PG. 512

When effects are normally distributed, a given correlation structure between effects is most straightforwardly 513

obtained by constructing the Cholesky decomposition of the correlation matrix, and multiplying independent 514

standard-normal random variables by this decomposition. An interpretation of this decomposition is that 515

it provides a set of weights that transform a set of independent underlying genetic factors into correlated 516

genetic effects. 517

First, we formalize how to transform independent standard-normal random variables into correlated 518

normal random variables. Let ΓG be the lower-triangular Cholesky decomposition of the genetic correlation 519

matrix, such that ΓGΓG
> = PG, let M denote the set of M causal SNPs, let E be an C -by-M matrix 520

of independent standard normal draws from different genetic factors (rows) for the different causal SNPs 521

(columns), and let ηk be the column of E corresponding to causal SNP k. Then 522

ηk =


η1k
...

ηCk

 ∼ N (0, IC) ,

where ηk is independent of ηl for l 6= k (Assumption 4). Now, for SNP k in the set of causal SNPs, we 523

can define the vector of effects across studies for the given SNP, such that it has correlation matrix PG, as 524

follows: 525
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βk =


β1k

...

βCk

 = diag (σβ1 , . . . σβC ) ΓGηk,

where diag() is a diagonal matrix with specified elements as diagonal entries, and 526

σβj =

√
h2
jσ

2
yj

M
,

with h2
j (resp. σ2

yj ) denoting the SNP heritability (phenotypic variance) in study j. Under this design of 527

study-specific SNP effects, we attain a CGR structure in line with PG and the desired study-specific SNP 528

heritabilities. 529

Using this approach for constructing correlated SNP effects, we can write the effect of SNP k in study j 530

(i.e., βjk) as a linear combination of the independent underlying N (0, 1) distributed random variables. That 531

is, 532

βjk = σβj

j∑
i=1

γjiηik, (12)

where γji denotes element in row j column i of Γ and ηik the i-th element of ηk. Given our scaling of SNPs, 533

the R2 of each causal SNP in study j is given by σ2
βj

, regardless of the allele frequency of the SNP of interest 534

(Assumption 5). 535

We can now write the GWAS Z statistic for a given SNP in a given study, as a linear combination 536

of independent random variables. For SNP k in the set of P non-causal SNPs, denoted by P (such that 537

M∩P = ∅), we have for all studies j that βjk = 0. By substituting β in Eq. 11 according to Eq. 12 for 538

causal SNPs and the preceding equality for non-causal SNPs, we obtain the following expression for the Z 539

statistic of SNP k in study j: 540

Zjk =

 vjk +
√
Nj

σβj
σεj

∑j
i=1 γjiηik for k ∈M, and

vjk for k ∈ P.
(13)

Distribution meta-analysis Z statistic Here, we derive the distribution of the meta-analysis Z statistic 541

and reduce the number of input parameters by appropriate substitutions. Finally, for intuition, we present 542

the distribution of Z statistics from a meta-analysis of GWAS results from two studies. 543

For any SNP k in the set S =M∪P of S = M + P causal and non-causal SNPs, we use the sample-size- 544

weighted meta-analysis Z statistic [34], defined as follows: 545
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Zk =
C∑
j=1

√
Nj√
N
Zjk, (14)

where N = N1 + . . .+NC denotes the total sample size. Plugging Eq. 13 for k ∈M into Eq. 14, yields an 546

expression for the meta-analysis Z statistic in terms of independent random variables. That is, 547

Zk =


∑C
j=1

√
Nj√
N
vjk +

∑C
j=1

∑j
i=1

Nj√
N

σβj
σεj

γjiηik for k ∈M, and∑C
j=1

√
Nj√
N
vjk for k ∈ P.

(15)

As the vjk terms in the preceding expression are independent standard-normal draws, it follows that 548

vk =
C∑
j=1

√
Nj√
N
vjk ∼ N (0, 1) .

In Eq. 15 we have a double sum over random variables. However, by changing the order of summation, 549

this double sum can be rewritten as follows: 550

C∑
j=1

j∑
i=1

Nj√
N

σβj
σεj

γjiηik =
C∑
i=1

ηik

C∑
j=i

Nj√
N

σβj
σεj

γji.

Therefore, we can rewrite Eq. 15 as follows: 551

Zk =

 vk +
∑C
i=1 ηik

∑C
j=i

Nj√
N

σβj
σεj

γji for k ∈M, and

vk for k ∈ P,
(16)

where the inner sum yields the weight for the random variable of interest. 552

Exploiting the fact that ηik and vk are independent standard-normal draws, the variance of the sum of 553

terms is equal to the sum of the variance of the respective terms. Hence, we have that 554

Zk ∼

 N (0, 1 + d) for k ∈M, and

N (0, 1) for k ∈ P,

where 555

d =
C∑
i=1

 C∑
j=i

Nj√
N

σβj
σεj

γji

2

(17)

= 1
N

C∑
i=1

 C∑
j=i

Nj
σβj
σεj

γji

2

(18)
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The quantity d we refer to as the ‘power parameter’. Since this parameter is a sum of squares, it is 556

non-negative. The greater the power parameter is, the higher statistical power the meta-analysis of GWAS 557

results has. Note that in case σβj = 0 for all j (i.e., the trait is not heritable in any study), that d = 0, and 558

hence the meta-analysis Z statistic reverts to a standard-normal test statistic, which matches the distribution 559

under the null. However, as σβj increases, d becomes larger, yielding a meta-analysis with higher statistical 560

power. 561

Given SNP-based heritability, phenotypic variation, and the number of causal variants, we have that 562

the effect size per causal SNP in a study is given by σ2
βj

=
h2
jσ

2
yj

M , and the residual variance, absorbing the 563

variance due to the omitted M −1 SNPs (Assumption 1), is given by σ2
εj = σ2

yj −σ
2
βj

. Using these expressions, 564

we can write the ratio of σβj and σεj , appearing in Eq. 18, as a function of only heritability and the number 565

of causal SNPs. That is, 566

σβj
σεj

=

√√√√√ h2
j
σ2

yj
M

σ2
yj −

h2
j
σ2

yj
M

(19)

=

√
h2
j

M − h2
j

. (20)

Plugging the last expression into Eq. 18 yields 567

d = 1
N

C∑
i=1

 C∑
j=i

Nj

√
h2
j

M − h2
j

γji

2

(21)

This expression for the power parameter shows that it is not affected by scaling due to phenotypic variance; 568

the parameter is only affected by the cross-study genetic correlation matrix, the SNP-based heritability per 569

study, and the sample size per study. 570

In case the number of studies is two, with sample size N in Study 1 and N in Study 2, SNP heritability 571

h2
SNP, and a genetic correlation ρG between the two studies, we have that the meta-analysis Z statistic, of a 572

trait-affecting SNP k, is normally distributed with mean zero and 573

Var (Zk,C=2) = 1 + h2
SNP

M − h2
SNP

N (1 + ρG) .

Bearing in mind that the number of causal SNPs M � 1 under a highly polygenic model, while h2 ∈ [0, 1], 574

we have that under high polygenicity M − h2
SNP ≈M . Hence, an easy approximation of the variance of Zk is 575

given by 576
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Var (Zk,C=2,high polygenicity) ≈ 1 + h2
SNP
M

N (1 + ρG) .

In the scenario where the cross-study genetic correlations equals one, we have that Var (Zk) ≈ 1+Ntotal
h2

SNP
M 577

for a trait-affecting haplotype block and Var (Zk) = 1 for a non-causal haplotype block, where N total = 2N. 578

These expressions are equivalent to the expected value of the squared Z statistics from the linear regression 579

analysis reported in Section 4.2 of the Supplementary Note to [41], as well as the first equation in [36] when 580

assuming that confounding biases and linkage disequilibrium are absent. 581

Adding genetically uncorrelated studies to the meta-analysis Here, we consider what happens to 582

statistical power of a meta-analysis of GWAS results from several sets of studies, with genetic correlations 583

between the studies within each set, but with no genetic correlation between the different sets. We first 584

consider a scenario with one set consisting of C − 1 studies and one other set consisting of only one study. 585

We then generalize to a setting with multiple sets, each set containing at least one study. We show that the 586

power parameter for a meta-analysis of several sets of studies with no genetic correlations between sets, can 587

be written as a sample-size weighted sum of the power parameters within the respective sets. 588

In case one has C−1 studies with associated CGR matrix, the associated Cholesky decomposition denoted 589

by Γ(C), and an additional study indexed by C, which is genetically uncorrelated to the C − 1 other studies, 590

then the C × C Cholesky decomposition of the full CGR matrix is given by 591

ΓG =

 Γ(C) 0

0> 1

 ,

where 0 denotes a column vector of zeros. 592

Now, the quantity d in Eq. 21 can be decomposed as follows. 593

d = 1
N

C−1∑
i=1

C−1∑
j=i

Nj

√
h2
j

M − h2
j

γji

2

+ 1
N

(
NC

√
h2
C

M − h2
C

)2

(22)

=
N(C)

N

1
N(C)

C−1∑
i=1

C−1∑
j=i

Nj

√
h2
j

M − h2
j

γji

2

+ NC
N

1
NC

(
NC

√
h2
C

M − h2
C

)2

(23)

=
N(C)

N
d(C) + NC

N
dC , (24)

where dC denotes the power parameter in Eq. 21 had only study C (with sample-size NC) be considered, and 594

d(C) the power parameter in Eq. 21 had only the first C − 1 studies (with total corresponding sample-size 595

N (C)) be considered. Hence, the power parameter in this scenario is the sample-size-weighted sum of the 596
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power parameter of the first C − 1 studies jointly and the power parameter of the last study. 597

Eq. 24 can be generalized, to reflect a situation where there are P disjoint sets of studies, denoted by 598

C1, . . . , CP , with genetic correlation within each set, but no genetic correlation between the sets. In this 599

scenario, the power parameter d in Eq. 21 for a joint meta-analysis of all sets is given by 600

dC1∪C2∪...∪CP =
P∑
p=1

NCp
N

dCp , (25)

where NCp denotes the total sample size in study-set Cp and dCp the power parameter in Eq. 21 for the 601

meta-analysis of all studies in set Cp, and N the total sample size when aggregating over all study sets. This 602

equation states that power parameter for a meta-analysis of several sets of studies with CGR within each set, 603

but no CGR between sets, is a weighted average of the power parameters in the underlying sets. 604

Since the statistical power is a monotonically increasing function of the power parameter d, Eq. 25 leads 605

to two corollaries under CGR equal to zero between sets of studies, namely that 606

βC1∪C2∪...∪CP ≤ max
{
βCp
}
p=1,...,P and (26)

βC1∪C2∪...∪CP ≥ min
{
βCp
}
p=1,...,P , (27)

where βA denotes the power in set of studies A. 607

The implication of Eq. 25 is simple yet powerful; when several sets of studies with genetic correlation 608

within each set, but no genetic correlation between sets, are considered for meta-analysis, one should not 609

meta-analyze sets C1, . . . CP jointly, but rather meta-analyze only the set of studies which has the largest 610

power parameter according to Eq. 21. 611

Only when dC1∪C2∪...∪CP > max {dC1 , . . . , dCP }, does the meta-analysis of all sets jointly have higher 612

statistical power than a meta-analysis based on only one set of studies. 613

S2 Derivations Accuracy 614

This section extends the theoretical framework for meta-analytic power. Derivations are based on the same 615

assumptions as in S1 Derivations Power. We consider the predictive accuracy of the polygenic score (PGS) 616

including all S independent SNPs, with SNP-weights based on the meta-analysis results from the set of C 617

study, in a hold-out sample indexed as ‘study’ C + 1. In this hold-out sample, we focus exclusively on the 618

theoretical R2 of the PGS; instead of considering NC+1 realizations of the stochastic processes underlying 619

the genotypes and treating these as fixed explanatory variables, we treat the phenotype, the PGS, and the 620

underlying genotypes as random variables, and use probability theory to derive R2. The hold-out sample is 621
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also allowed a study-specific SNP-based heritability, h2
C+1, and genetic-correlations with the other C studies 622

(thus extending both the CGR matrix and its Cholesky decomposition to (C + 1)× (C + 1) matrices). 623

First, we write the phenotype in hold-out sample as a function of noise and the independent genetic 624

factors discussed in the preceding section. Second, we derive an expression for the PGS as a function of 625

the genetic factors. Third, using this representation we derive the theoretical covariance between the PGS 626

and the phenotype. Fourth, using the theoretical variances and covariance, we obtain an expression for the 627

theoretical R2. 628

Polygenic model Here, we derive an expression for the phenotype in the hold-out study as a function of 629

independent genetic factors and an expression for the phenotypic variance. 630

Aggregating across causal SNP set M and the noise, the phenotype in study C + 1 can be written as 631

follows: 632

YC+1 =
∑
k∈M

XC+1,kβC+1,k + εC+1,

where, analogous to Eq. 12, 633

βC+1,k = σβC+1,k

C+1∑
i=1

γC+1,iηik,

where ηik now indicates the i-th element of the now (C + 1)-dimensional vector of independent normal draws, 634

ηk, and where γC+1,i describes an element of the Cholesky decomposition ΓG of the (C + 1) × (C + 1) 635

cross-study genetic correlation matrix, incorporating the hold-out sample. Hence, the phenotype can be 636

written as 637

YC+1 = εC+1 +
∑
k∈M

(
XC+1,kσβC+1,k

C+1∑
i=1

γC+1,iηik

)
.

Analogous to the scaling of SNPs in S1 Derivations Power here, with genotypes treated as random variables, 638

we assume 639

E [XC+1,k] = 0 and Var (XC+1,k) = 1, for k ∈ S, and

Cov (XC+1,k, XC+1,l) = 0 for k 6= l.

Consequently, the phenotypic variance in the hold-out sample is given by 640
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Var (YC+1) = Mσ2
βC+1

+ σ2
εC+1

. (28)

Polygenic score Here, we derive an expression for the PGS as a function of independent genetic factors, 641

an expression for the PGS variance, and its covariance with the phenotype in the hold-out sample. 642

Since each SNP in each study in the meta-analysis has been scaled such that its dot product equals the 643

sample size of that study, by analogy of the standard error of the SNP effect estimate in a single study, the 644

standard-error of the meta-analytic effect estimate β̂meta for study C + 1 can be approximated by 645

s.d.
(
β̂meta

)
∝ 1√

N
∝ 1.

Hence, the meta-analytic effect estimate is proportional to the meta-analysis Z statistic. Since any scalar 646

multiple of the PGS will not affect its R2 with respect to the phenotype, the Z statistics of the meta-analysis 647

can be applied as SNP weights directly. Therefore, the PGS in the hold-out sample, including all SNPs, is 648

given by 649

ŶC+1 =
∑
k∈S

XC+1,kZk. (29)

Plugging the expression for Zk from Eq. 16 into Eq. 29, and substitution of terms by means of the square 650

root of Eq. 20, the PGS is given by 651

ŶC+1 =
(∑
k∈S

XC+1,kvk

)
+

∑
k∈M

XC+1,k

C∑
i=1

ηik

C∑
j=i

Nj√
N

√
h2
j

M − h2
j

γji

 .

Exploiting the fact that ηik, vk, and XC+1,k are all independent random variables, with mean zero and 652

variance one, we find that the variance of the PGS is given by 653

Var
(
ŶC+1

)
= S +M

C∑
i=1

 C∑
j=i

Nj√
N

√
h2
j

M − h2
j

γji

2

. (30)

Again exploiting independence, zero mean, and unit variance of the respective terms, the covariance 654

between the PGS and the phenotype is given by 655
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Cov
(
YC+1, ŶC+1

)
= E

[
YC+1ŶC+1

]
(31)

=
E
[(∑

k∈MXC+1,kσβC+1,k

∑C+1
i=1 γC+1,iηik

)
. . .

·
(∑

k∈MXC+1,k
∑C
i=1 ηik

∑C
j=i

Nj√
N

√
h2
j

M−h2
j
γji

)] (32)

= E

∑
k∈M

X2
C+1,kσβC+1,k

 C∑
i=1

γC+1,iη
2
ik

C∑
j=i

Nj√
N

√
h2
j

M − h2
j

γji

 (33)

= σβC+1,kM

 C∑
i=1

C∑
j=i

Nj√
N

√
h2
j

M − h2
j

γC+1,iγji

 . (34)

Theoretical R2 Here, we derive the theoretical R2 between the PGS and the phenotype in a hold-out 656

study. For intuition, we present the theoretical R2 for a scenario with one study for discovery and one study 657

as hold-out sample. 658

By combining Eq. 28, 30, and 34, the R2, defined as the squared correlation of the outcome and the PGS 659

in the hold-out sample, is now given by 660

R2
(
YC+1, ŶC+1

)
=

(
Cov

(
YC+1, ŶC+1

))2

Var (YC+1) Var
(
ŶC+1

)

=
σ2
βC+1,k

M2
(∑C

i=1
∑C
j=i

Nj√
N

√
h2
j

M−h2
j
γC+1,iγji

)2

(
Mσ2

βC+1
+ σ2

εC+1

)(
S +M

∑C
i=1

(∑C
j=i

Nj√
N

√
h2
j

M−h2
j
γji

)2) .

This expression can be simplified as follows: 661

R2
(
YC+1, ŶC+1

)
= h2

C+1
n

S
M + d

, (35)

where d is the meta-analysis power parameter given in Eq. 21 and numerator n is given by 662

n = 1
N

 C∑
i=1

C∑
j=i

Nj

√
h2
j

M − h2
j

γC+1,iγji

2

,

where N is the total sample size in the meta-analysis. 663

The expression for R2 in Eq. 35 is such that, in addition to the parameters needed for the power calculation, 664

one only needs the genetic correlation between the hold-out sample and the meta-analysis samples and the 665

heritability in the hold-out sample. 666

In case the number of studies for discovery is one (i.e., C = 1), with a total sample size N, and with a 667
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genetic correlation ρG between the hold-out and discovery sample, we have that 668

R2
C=1 = h2

2ρ
2
G

Nh2
1

M−h2
1

S
M + Nh2

1
M−h2

1

.

As in S1 Derivations Power, we have that under high polygenicity M − h2
1 ≈ M . Therefore, an easy 669

approximation of R2 in this scenario is given by 670

R2
C=1,high polygenicity ≈ h2

2ρ
2
G

h2
1

S
N + h2

1
.

When ρ2
G = 1, S=M, and h2

1 = h2
2, we obtain a known expression for PGS R2 in terms of sample size, 671

heritability, and the number of SNPs [25]. In case ρ2
G = 1 and we consider the R2 between the PGS and 672

genetic value (i.e., the genetic component of the phenotype), both ρ2
G and h2

2 can be ignored, thereby making 673

the last expression equivalent to the first equation in [37]. 674

S3 Note on Genetic Correlations 675

Consider, without loss of generality, a model for two phenotypes, y1 and y2. In line with Assumption 5 in S1 676

Derivations Power, let each causal variant, for the phenotype of interest, have the same R2 with respect to 677

that phenotype. 678

In line with the random effects model, adopted in S1 Derivations Power and S2 Derivations Accuracy, we 679

can write the data-generating processes of the respective phenotypes as 680

y1 =
∑
k∈M1

xk,1βk,1 + ε1 and

y2 =
∑
p∈M2

xp,2βp,2 + ε2,

where M1 (resp. M2) denotes the set of causal SNPs for y1 (y2) and where βk,1 (resp. βp,2) the effect of 681

xk,1 (xp,2), that is, standardized SNP k (p), on phenotype 1 (2). 682

The genetic correlation at the genome-wide level can now be conceptualized as the correlation in the true 683

genetic value for both phenotypes. That is 684

34

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 13, 2016. ; https://doi.org/10.1101/048322doi: bioRxiv preprint 

https://doi.org/10.1101/048322
http://creativecommons.org/licenses/by-nc-nd/4.0/


ρG = Corr

 ∑
k∈M1

xk,1βk,1,
∑
p∈M2

xp,2βp,2


=

Cov
(∑

k∈M1
xk,1βk,1,

∑
p∈M2

xp,2βp,2

)
√

Var
(∑

k∈M1
xk,1βk,1

)
Var

(∑
p∈M2

xp,2βp,2

)
Assuming independent haplotype blocks with independent effects (Assumption 4), where the effects have 685

mean zero, this expression for the genetic correlation at the genome-wide level can be rewritten as 686

ρG =
∑
k∈{M1∩M2} E [βk,1βk,2]√
|M1|σ2

β1
|M2|σ2

β2

= |M1 ∩M2|√
|M1||M2|

σβ1,2√
σ2
β1
σ2
β2

,

where |A| denotes the number of elements in set A. 687

Hence, the genetic correlation at the genome-wide level can be written as the product of overlap in causal 688

loci between the two traits and the cross-trait correlation of the effects of these overlapping loci. That is, 689

ρG = |M1 ∩M2|√
|M1||M2|

ρβ . (36)

Eq. 36 is a generalization of the ‘common-elements formula’ [50], describing a correlation as a function of the 690

number of overlapping elements and unique elements. 691

In particular, when |M1| = |M2|, we have that 692

ρG = O

O +N
ρβ ,

where O denotes the number of overlapping causal loci and N the number of idiosyncratic causal loci per 693

trait. 694

We assume throughout the paper that all causal loci are shared across traits and studies (Assumption 3 695

in S1 Derivations Power). That is, 696

|M1 ∩M2|√
|M1||M2|

= 1,

and that, consequently, the genetic correlation at the genome-wide level is equal to the correlation in the 697

effects of overlapping causal SNPs. That is, 698
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ρG = ρβ .

As we show in S4 Simulation Studies, the theoretical predictions of GWAS power and predictive accuracy 699

obtained under this assumption are quite accurate, even when an imperfect genetic correlation at the genome- 700

wide level is shaped primarily by lack of overlap in causal loci, rather than a poor correlation in the effects of 701

overlapping loci. 702

S4 Simulation Studies 703

Using five simulation studies, we assess the accuracy of the MetaGAP calculator, which is based on the 704

expressions for GWAS power and PGS R2 derived in S1 Derivations Power and S2 Derivations Accuracy. 705

Since the calculator is based on specific assumptions regarding the data-generating process, an important 706

question is whether the calculator still provides accurate predictions of power and R2 when the underlying 707

assumptions are violated. 708

Hence, each simulation study has a different underlying data-generating process. The first study, Simulation 709

1, assumes that rare variants have larger effects than common variants to such an extent that each causal SNP, 710

regardless of allele frequency, is expected to have the same R2 with respect to the phenotype (Assumption 5 711

in S1 Derivations Power). This simulation is entirely in line with the assumptions underlying the MetaGAP 712

calculator. In the second study, Simulation 2, common variants have effects of the same magnitude as rare 713

variants (leading a common causal variant to explain a larger proportion of the phenotypic variation that 714

a rare causal variant). The third study, Simulation 3, also allows for differential R2 between SNPs and, in 715

addition, does not assume that SNP allele frequencies are uniformly distributed. Instead, the third study 716

assumes that there are more variants in the lower minor allele frequency bins than in the higher minor allele 717

frequency bins. In addition to the deviations from assumptions made in Simulations 2 and 3, Simulation 4 718

allows allele frequencies to be completely independent across studies. Finally, in Simulation 5, we go back to a 719

data-generating process in line with the assumptions underlying the MetaGAP calculator, with one important 720

difference; in Simulation 5, the genetic correlation as inferred at the genome-wide level is not only shaped 721

by the correlation of SNP effects, but also by the degree of overlap of causal loci across studies. Thereby, 722

Simulation 5 violates the assumption discussed in S3 Note on Genetic Correlations, that the estimated CGR 723

is shaped only by imperfect correlations of SNP effects across studies. 724

For each simulation study there are 100 independent runs. In each run data is simulated for C = 3 distinct 725

samples for discovery as well as a fourth sample used as hold-out sample for prediction. The sample sizes 726

of the respective studies are given by N1 = 20, 000, N2 = 15, 000, N3 = 10, 000, and N4 = 1, 000, where N4 727
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denotes the sample size of the hold-out sample. For Simulations 1–4, an 11× 11 grid of equispaced values of 728

h2
SNP ∈ [0, 1] and ρβ ∈ [0, 1] is considered. Similarly, for Simulation 5, an 11× 11 grid of equispaced values 729

of s ∈ [0, 1] and ρβ ∈ [0, 1] is considered. Here, s denotes the fraction of causal SNPs that overlaps across 730

studies and ρβ the cross-study correlation of the effects of SNPs that are overlapping. In Simulations 1–4 731

we have that s = 1 and in Simulation 5 we have that h2
SNP = 0.5. In all simulations there are S = 100, 000 732

independent SNPs of which M = 1, 000 have a causal influence. Moreover, when computing theoretical power 733

and predictive accuracy, in line with S3 Note on Genetic Correlations, we use ρG = s · ρG as value of the 734

input parameter CGR. A detailed description of the data-generating process in each simulation study can be 735

found in Table 3. 736

For every run, data is simulated in accordance with the underlying data-generating process. Next, a 737

GWAS is carried out in each of the three discovery samples. GWAS results are then meta-analyzed using 738

sample-size weighting. The fraction of causal SNPs reaching genome-wide significance in the meta-analysis is 739

the estimate of statistical power per SNP. The squared correlation between the meta-analysis-based PGS for 740

the hold-out sample and the corresponding phenotype is the estimate of the PGS R2. 741

Final estimates of power per causal SNPs and PGS R2 are obtained by averaging the estimates across the 742

runs. Fig. 6–7, show the resulting estimates of power per causal SNP in the meta-analysis and the R2 of the 743

PGS, for both Simulations 1–4 and Simulation 5. In addition, both figures report the power per causal SNP 744

and R2 predicted by the theoretical model, derived under the assumptions discussed in S1 Derivations Power. 745

Inspection of Fig. 6 shows that there is no qualitative difference between the contour plots. Moreover, when 746

computing the root-mean-square error (RMSE) between the theoretical predictions and the simulation-based 747

estimates of power and R2, even for the most extreme departures from our assumptions regarding allele 748

frequencies and effects sizes (Simulations 3–4), the RMSE in power remains below 3% and the RMSE in R2
749

of the PGS below 2%. Hence, the theoretical predictions of GWAS power and predictive accuracy – derived 750

under assumptions of equal true R2 of causal SNPs, with uniformly distributed allele frequencies that are 751

equal across studies – are robust to violations of these assumptions. 752

Inspection of Fig. 7 shows that when CGRs are being shaped by a combination of poor overlap and poorly 753

correlated effects of overlapping loci, there are some qualitative differences between predicted power and 754

predictive accuracy compared to simulation-based estimates. However, the RMSE of theoretical power is only 755

1.2% with respect to the power estimated from simulations. Similarly, the RMSE of theoretical predictive 756

accuracy is only 1.3%. Hence, the quantitative differences are small. 757

Simulation 5 shows that when low CGRs are induced by poor overlap of causal loci across studies instead 758

of low correlations of the effects of overlapping loci, this leads to a slight downwards bias in our theoretical 759

predictions (i.e., making our theory conservative). Hence, we argue that if our calculator deems a study design 760
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Figure 6. Power and polygenic score R2 contour plots, with in each plot h2 on the x-axis and
cross-study genetic correlation on the y-axis. The first row shows predictions from the theoretical
model. Subsequent rows show estimates based on respective simulation studies. The first column shows
power per causal SNP. The second column the R2 of a polygenic score in a hold-out sample. Above each plot,
the root-mean-square error (RMSE) is reported for the difference between predictions from the theoretical
model and the simulation-based estimates. 39
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Figure 7. Power and polygenic score R2 contour plots, with in each plot the fraction of causal
loci that overlaps across studies on the x-axis and the cross-study correlation of the effects of
overlapping loci on the y-axis. The first row shows predictions from the theoretical model. The second
row shows estimates based on a simulation study. The first column shows power per causal SNP. The second
column the R2 of a polygenic score in a hold-out sample. Above each plot, the root-mean-square error
(RMSE) is reported for the difference between predictions from the theoretical model and the simulation-based
estimates.
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well-powered, the analyses will be well powered, potentially even more so than what our theory predicts (e.g., 761

if some of the imperfect CGR can be attributed to causal loci that are not shared across studies). 762

S5 Data and Quality Control 763

Genotype data In the bivariate and univariate genomic-relatedness-matrix restricted maximum likelihood 764

(GREML) analyses we use genotype data from the Rotterdam Study (RS; Ergo waves 1-4 sample denoted 765

by RS-I, Ergo Plus sample denoted by RS-II, and Ergo Jong sample denoted by RS-III), the Swedish Twin 766

Registry (STR; TwinGene sample), and the Health and Retirement Study (HRS). For each study, details on 767

the genotyping platform, quality control (QC) prior to imputation, the reference sample used for imputation, 768

and imputation software, are listed in Table 4.

Table 4. Genotyping and imputation
Study Genotyping platform SNP exclusions Subject exclusions* Imputation**

MAF < Call rate < HWE p-val. < Call rate < Software
RS-I Illumina 550K 0% 97.5% 10-7 97.5% MaCH/Minimac
RS-II Illumina 550K 0% 97.5% 10-7 97.5% MaCH/Minimac
RS-III Illumina 610K 0% 97.5% 10-7 97.5% MaCH/Minimac
STR HumanOmniExpress 12v1A 1% 97.0% 10-7 97.0% MaCH/Minimac
HRS Illumina Omni2.5 1% 98.0% 10-4 98.0% IMPUTE2
* Individuals are also excluded on the basis of sex mismatch, close relatives, duplicates and ancestry outliers (STR excepted),
or autosomal heterozygosity outliers (HRS excepted)
** All samples have been imputed against the 1000Genomes, Phase 1, Version 3 haplotypes of all ancestries.

769

To increase the overlap of SNPs across studies, we use genotypes imputed on the basis of the 1000 Genomes, 770

Phase 1, Version 3 reference panel [51]. We only consider the subset of HapMap3 SNPs available in the 1kG 771

data. By using this subset we substantially reduce the computational burden of the analyses, while preserving 772

overlap between the SNP-sets in the studies and still having a sufficiently dense set of both common and 773

more rare SNPs (# SNPs after QC ≈ 1 million). 774

Quality control Prior to QC, we extract HapMap3 SNPs (source: http://hapmap.ncbi.nlm.nih.gov/ 775

downloads/genotypes/hapmap3_r3/plink_format/, accessed: December 11, 2014) from the imputed geno- 776

type data of each study and convert the allele dosages to best-guess PLINK [52,53] binary files by rounding 777

dosages using GCTA [35]. Subsequently, we perform QC on the best-guess genotypes in two stages. In the first 778

stage, we clean and harmonize the imputed genotype data at the study level. The cleaned and harmonized 779

study genotypes are then merged into a pooled dataset. The second round of QC is aimed at cleaning the 780

pooled dataset, on the basis of the samples for which the phenotype is available. Hence, the first QC stage is 781

phenotype-independent, whereas the second stage depends on the phenotype of interest. 782

In the first QC stage (prior to merging), we filter out the following markers and individuals: 783
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1. SNPs with imputation accuracy below 70%. 784

2. Non-autosomal SNPs. 785

3. SNPs with minor-allele frequency below 1%. 786

4. SNPs with Hardy-Weinberg-Equilibrium p-value below 1%. 787

5. SNPs with missingness greater than 5%. 788

6. Individuals with missingness greater than 5%. 789

7. SNPs that are not present in all studies. 790

8. SNPs whose alleles cannot be aligned across studies. 791

Prior to the first QC stage, we apply the following two additional steps in HRS: 792

1. Switch alleles to address a strand-flip error due to incorrect annotation. 793

2. Drop individuals of non-European ancestry. 794

After the first round of QC, a set of roughly 1 million overlapping SNPs, available for about 30,000 795

individuals is left. Panel I in Table 5 shows, for each study, the number of SNPs and individuals before and 796

after the first round of QC. 797

The second QC stage, applied to the pooled data set, comprises the following steps: 798

1. Keep only individuals for whom the phenotype of interest and all corresponding control variables are 799

available. 800

2. Drop SNPs with a minor-allele frequency below 1%. 801

3. Drop SNPs with Hardy-Weinberg-Equilibrium p-value below 1%. 802

4. Drop SNPs with missingness greater than 5%. 803

5. Drop individuals with missingness greater than 5%. 804

6. Keep only one individual per pair of individuals with a genomic relatedness greater than 0.025. 805

Since the data in STR consists of twins and having highly related individuals can bias estimates of SNP-based 806

heritability due to environment-sharing, we randomly select only one individual per twin pair after Step 1 in 807

the second QC stage. 808
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Table 5. Number of individuals and SNPs be-
fore and after quality control (QC) at the study
level (Panel I) and at the pooled level (Panel
II).

Panel I: study-level QC

Study N # SNPs
pre-QC post-QC pre-QC post-QC

RS-I 6,291 6,291 31,337,615 1,062,589
RS-II 2,157 2,157 31,337,615 1,062,589
RS-III 3,048 3,048 31,337,615 1,062,589
STR 9,617 9,617 31,326,389 1,062,589
HRS 12,454 8,652 21,632,048 1,062,589
Total 29,765 1,062,589

Panel II: pooled-level QC

Phenotype N # SNPs
pre-QC post-QC pre-QC post-QC

Height 29,765 20,458 1,062,589 1,052,572
BMI 29,765 20,449 1,062,589 1,052,600
EduYears 29,765 20,619 1,062,589 1,052,626
CurrCigt 29,765 20,686 1,062,589 1,052,524
CurrDrinkFreq 29,765 20,072 1,062,589 1,052,958
Self-rated health 29,765 19,184 1,062,589 1,053,190

Panel II in Table 5 shows the sample size and the number of SNPs in the pooled dataset for each phenotype. 809

We only consider phenotypes that attain a sample size of at least 18,000 individuals after all QC steps. The 810

lowest sample size after QC is 19,184 for self-rated-health and the highest is 20,686 for CurrCigt. For all 811

phenotypes, the number of SNPs is slightly greater than one million. 812

Phenotype data For HRS, we use the RAND HRS data, version N, to obtain the phenotypes of interest. 813

These data consist of measurements from eleven waves. RS-I consists of four data waves (Ergo 1-4). In both 814

HRS and RS-I, data for some phenotypes are only available in a subset of the waves. RS-II, RS-III and STR 815

do not have multiple measures over time for the phenotypes considered in this study. Table 6 describes how 816

the phenotypes are constructed in each of the five studies. 817

As Table 6 shows, height, BMI, EduYears, and CurrCigt are measured quite consistently across waves. 818

The self-rated health phenotype is also measured quite consistently, although in RS respondents are asked 819

about health compared to members of the same age group, whereas a more absolute question is posed in STR 820

and HRS. The drinking measure CurrFreqDrink is also measured somewhat heterogeneously; the threshold 821

for what we treat as ‘frequent drinking’ is determined by how fine-grained the drinking frequency measure is 822

in the respective studies. 823
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Table 6. Study-level phenotype measures.
Phenotype Survey instrument in

RS-I RS-II RS-III STR HRS

Years of Constructed in line with [48] in all studies.
education
(EduYears)

Height Median height across Height Height Height Median height across
waves 1-4. waves 1-11

BMI Median BMI across BMI BMI BMI Median BMI across
waves 1-4. waves 1-11

Currently 1 if stated to be a current 1 if stated to be a Same as RS-II. 1 if stated to be a current 1 if responded positively to
smoking smoker of cigarettes in the current cigarette smoker. cigarette smoker. “currently smokes
cigarettes latest available measurement cigarettes?” in the latest
(CurrCigt) across waves 1-4. available measurement

across waves 1-11.

Currently 1 if indicated to “drink one 1 if indicated to “drink 1 if indicated to “have 1 if indicated to “have 1 if indicated to “drink
drinking or more alcoholic beverages one or more alcoholic drunk at least two drunk at least two alcohol once per week or
frequently per week” in the latest beverages per week”. alcoholic beverages alcoholic beverages more” in the latest available
(CurrDrinkFreq) available measurement a month during the in the past month”. measurement across waves

across waves 1-4. the past year.” 3-11.

Self-rated health Only available in wave 1: Same as RS-I. n.a. Rate their general health. Mode of the 4-point self-
“How is your general health Response categories re- reported health measure in
compared to members of coded such that 0=bad, HRS across waves 1-11.
your age group?” 1=not so good, Responses reverse-coded
Response categories reverse- 2=average, 3=good, such that 0=poor, 1=fair,
coded such that 0=worse, 4=excellent. 2=good, 3=very good, and
1=same, and 2=better. 4=excellent.

S6 GREML Estimation 824

Height, BMI, EduYears, and self-rated health are treated as quantitative traits. CurrCigt and CurrDrinkFreq 825

are treated as binary outcomes. In each study, (after aggregating across waves, if applicable) we regress 826

quantitative phenotypes on age, squared age, sex, and an intercept. The residuals from the regression are 827

standardized to have a sample-mean equal to zero and variance equal to one. For both binary and quantitative 828

traits, the aforementioned covariates are also included in the GREML estimation. In addition, in bivariate 829

GREML and pooled GREML estimation (i.e., considering multiple studies jointly), the intercept is replaced 830

by indicator variables for the respective studies, capturing study-specific fixed effects. Finally, 20 principal 831

components from the phenotype-specific genomic-relatedness matrix are added to the set of control variables 832

in the GREML estimation, in order to correct for population stratification [54]. 833

S7 GREML Results 834

Details per phenotype on sample size, univariate estimates of SNP heritability, and bivariate estimates of 835

genetic correlation, stratified across studies, and cross-study averages, are provided in Table 7. Results 836

stratified across sexes are listed in Table 8. 837

44

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 13, 2016. ; https://doi.org/10.1101/048322doi: bioRxiv preprint 

https://doi.org/10.1101/048322
http://creativecommons.org/licenses/by-nc-nd/4.0/


T
ab

le
7.

G
R

E
M

L
es

ti
m

at
es

of
SN

P
he

ri
ta

bi
lit

y
(h

2 SN
P
)

an
d

ge
ne

ti
c

co
rr

el
at

io
n

(ρ
G

)
ac

ro
ss

st
ud

ie
s.

P
h

en
ot

y
p

e
N

U
n

iv
ar

ia
te

es
ti

m
at

es
h

2 S
N

P
1

B
iv

ar
ia

te
es

ti
m

at
es

ρ
G

1

R
S

S
T

R
H

R
S

T
ot

al
R

S
S

T
R

H
R

S
A

ve
ra

ge
2

R
S

–S
T

R
R

S
–H

R
S

S
T

R
–H

R
S

A
ve

ra
ge

3

H
ei

gh
t

6,
78

0
5,

34
2

8,
33

6
20

,4
58

48
.9

%
(4

.9
%

)
**

*
50

.8
%

(6
.0

%
)

**
*

37
.9

%
(4

.1
%

)
**

*
44

.9
%

0.
97

6
(0

.1
02

)
**

*
0.

95
4

(0
.0

95
)

**
*

0.
96

7
(0

.1
06

)
**

*
0.

96
5

B
M

I
6,

77
5

5,
34

1
8,

33
3

20
,4

49
28

.9
%

(4
.9

%
)

**
*

16
.4

%
(6

.1
%

)
**

*
19

.6
%

(4
.1

%
)

**
*

21
.9

%
1.

00
0

(0
.2

69
)

**
*

0.
91

4
(0

.1
72

)
**

*
0.

84
7

(0
.2

46
)

**
*

0.
91

7
E

du
Y

ea
rs

6,
73

5
5,

54
3

8,
34

1
20

,6
19

17
.5

%
(4

.8
%

)
**

*
20

.6
%

(5
.8

%
)

**
*

17
.3

%
(4

.0
%

)
**

*
18

.2
%

0.
69

0
(0

.2
33

)
**

*
0.

65
9

(0
.2

24
)

**
*†

1.
00

0
(0

.2
63

)
**

*
0.

78
3

C
ur

rC
ig

t
6,

80
3

5,
57

9
8,

30
4

20
,6

86
17

.8
%

(1
0.

1%
)

**
18

.7
%

(1
3.

8%
)

*
20

.4
%

(1
1.

2%
)

**
19

.1
%

1.
00

0
(0

.6
43

)
**

*
0.

61
1

(0
.4

48
)

*
1.

00
0

(0
.6

07
)

**
*

0.
85

8
C

ur
rD

ri
nk

Fr
eq

6,
17

2
5,

56
4

8,
33

6
20

,0
72

13
.5

%
(8

.7
%

)
*

14
.1

%
(9

.5
%

)
*

5.
3%

(6
.3

%
)

10
.3

%
1.

00
0

(0
.6

66
)

**
*

0.
29

8
(0

.6
70

)
-0

.0
56

(0
.6

47
)

0.
38

1
Se

lf-
ra

te
d

he
al

th
5,

26
4

5,
57

7
8,

34
3

19
,1

84
13

.5
%

(6
.2

%
)

**
9.

4%
(5

.7
%

)
**

21
.3

%
(4

.0
%

)
**

*
15

.7
%

0.
62

6
(0

.4
39

)
**

0.
36

3
(0

.2
23

)
**

††
0.

44
7

(0
.2

78
)

**
0.

46
8

*
h

2 S
N

P
an

d/
or

ge
ne

ti
c

co
rr

el
at

io
n
>

0
at

10
%

si
gn

.
†g

en
et

ic
co

rr
el

at
io

n
<

1
at

10
%

si
gn

.
‡g

en
et

ic
co

rr
el

at
io

n
<

0
at

10
%

si
gn

.
**

h
2 S

N
P

an
d/

or
ge

ne
ti

c
co

rr
el

at
io

n
>

0
at

5%
si

gn
.

††
ge

ne
ti

c
co

rr
el

at
io

n
<

1
at

5%
si

gn
.

‡‡
ge

ne
ti

c
co

rr
el

at
io

n
<

0
at

5%
si

gn
.

**
*
h

2 S
N

P
an

d/
or

ge
ne

ti
c

co
rr

el
at

io
n
>

0
at

1%
si

gn
.†

††
ge

ne
ti

c
co

rr
el

at
io

n
<

1
at

1%
si

gn
.‡

‡‡
ge

ne
ti

c
co

rr
el

at
io

n
<

0
at

1%
si

gn
.

1
St

an
da

rd
er

ro
rs

be
tw

ee
n

pa
re

nt
he

se
s.

2
Sa

m
pl

e-
si

ze
w

ei
gh

te
d

av
er

ag
e

of
un

iv
ar

ia
te

es
ti

m
at

es
ac

ro
ss

st
ud

ie
s.

3
Sa

m
pl

e-
si

ze
w

ei
gh

te
d

av
er

ag
e

of
bi

va
ri

at
e

es
ti

m
at

es
ac

ro
ss

pa
ir

s
of

st
ud

ie
s.

T
ab

le
8.

G
R

E
M

L
es

ti
m

at
es

of
SN

P
he

ri
ta

bi
lit

y
(h

2 SN
P
)

an
d

ge
ne

ti
c

co
rr

el
at

io
n

(ρ
G

)
ac

ro
ss

se
xe

s.
P

h
en

ot
y

p
e

N
E

st
im

at
es

h
2 S

N
P

1
E

st
im

at
e
ρ

G
1

F
em

al
es

M
al

es
T

ot
al

F
em

al
es

M
al

es
A

ve
ra

ge
2

F
em

al
es

–M
al

es

H
ei

gh
t

11
,5

53
8,

90
5

20
,4

58
43

.2
%

(3
.0

%
)

**
*

45
.1

%
(3

.8
%

)
**

*
44

.0
%

0.
98

1
(0

.0
67

)
**

*
B

M
I

11
,5

42
8,

90
7

20
,4

49
22

.1
%

(2
.9

%
)

**
*

23
.8

%
(3

.8
%

)
**

*
22

.8
%

0.
79

4
(0

.1
22

)
**

*
†

E
du

Y
ea

rs
11

,6
53

8,
96

6
20

,6
19

18
.1

%
(2

.9
%

)
**

*
18

.9
%

(3
.7

%
)

**
*

18
.4

%
0.

83
2

(0
.1

62
)

**
*

C
ur

rC
ig

t
11

,7
06

8,
98

0
20

,6
86

22
.3

%
(7

.1
%

)
**

*
26

.7
%

(9
.1

%
)

**
*

24
.2

%
0.

54
3

(0
.2

57
)

**
*

†
C

ur
rD

ri
nk

Fr
eq

11
,3

12
8,

76
0

20
,0

72
14

.1
%

(4
.6

%
)

**
*

0.
9%

(6
.0

%
)

8.
3%

1.
00

0
(2

.0
68

)
*

Se
lf-

ra
te

d
he

al
th

10
,8

66
8,

31
8

19
,1

84
8.

6%
(3

.1
%

)
**

*
10

.8
%

(4
.0

%
)

**
*

9.
5%

1.
00

0
(0

.3
49

)
**

*
*
h

2 S
N

P
an

d/
or

ge
ne

ti
c

co
rr

el
at

io
n
>

0
at

10
%

si
gn

.
†g

en
et

ic
co

rr
el

at
io

n
<

1
at

10
%

si
gn

.
‡g

en
et

ic
co

rr
el

at
io

n
<

0
at

10
%

si
gn

.
**

h
2 S

N
P

an
d/

or
ge

ne
ti

c
co

rr
el

at
io

n
>

0
at

5%
si

gn
.

††
ge

ne
ti

c
co

rr
el

at
io

n
<

1
at

5%
si

gn
.

‡‡
ge

ne
ti

c
co

rr
el

at
io

n
<

0
at

5%
si

gn
.

**
*
h

2 S
N

P
an

d/
or

ge
ne

ti
c

co
rr

el
at

io
n
>

0
at

1%
si

gn
.†

††
ge

ne
ti

c
co

rr
el

at
io

n
<

1
at

1%
si

gn
.‡

‡‡
ge

ne
ti

c
co

rr
el

at
io

n
<

0
at

1%
si

gn
.

1
St

an
da

rd
er

ro
rs

be
tw

ee
n

pa
re

nt
he

se
s.

2
Sa

m
pl

e-
si

ze
w

ei
gh

te
d

av
er

ag
e

of
un

iv
ar

ia
te

es
ti

m
at

es
ac

ro
ss

st
ud

ie
s.

45

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 13, 2016. ; https://doi.org/10.1101/048322doi: bioRxiv preprint 

https://doi.org/10.1101/048322
http://creativecommons.org/licenses/by-nc-nd/4.0/


S8 Large-scale GWAS efforts 838

Table 9 shows the meta-analysis packages, and the assumptions underlying those packages, used in large-scale 839

GWAS efforts for the traits considered in our attenuation study, reported in Table 2. Similarly, Table 10 shows 840

details and notes on the results from large-scale GWAS efforts that are used as input in the aforementioned 841

attenuation study. 842
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