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Abstract

Large-scale GWAS results are typically obtained by meta-analyzing GWAS results from multiple studies

spanning different regions and/or time periods. This approach averages the estimated effects of individual

genetic variants across studies. In case genetic effects are heterogeneous across studies, the statistical power of

a GWAS and the predictive accuracy of polygenic scores are attenuated, contributing to the so-called ‘missing’
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heritability. However, a theoretical multi-study framework, relating statistical power and predictive accuracy

to cross-study heterogeneity, is not available. We address this gap by developing an online Meta-GWAS

Accuracy and Power calculator that accounts for the cross-study genetic correlation. This calculator enables

to explore to what extent an imperfect cross-study genetic correlation (i.e., less than one) contributes to the

missing heritability. By means of simulation studies, we show that under a wide range of genetic architectures,

the statistical power and predictive accuracy inferred by this calculator are accurate. We use the calculator to

assess recent GWAS efforts and show that the effect of cross-study genetic correlation on statistical power and

predictive accuracy is substantial. Hence, cross-study genetic correlation explains a considerable part of the

missing heritability. Therefore, a priori calculations of statistical power and predictive accuracy, accounting

for heterogeneity in genetic effects across studies, are an important tool for adequately inferring whether an

intended meta-analysis of GWAS results is likely to yield meaningful outcomes.

Author Summary

Large-scale genome-wide association studies are uncovering the genetic architecture of traits which are

affected by many genetic variants. Such studies typically meta-analyze association results from multiple

studies spanning different regions and/or time periods. These efforts do not yet capture a large share of the

total proportion of trait variation attributable to genetic variation. The origins of this so-called ‘missing’

heritability have been strongly debated. One factor exacerbating the missing heritability is heterogeneity in

the effects of genetic variants across studies. Its influence on statistical power to detect associated genetic

variants and the accuracy of polygenic predictions, is poorly understood. In the current study, we derive

the precise effects of heterogeneity in genetic effects across studies on both the statistical power to detect

associated genetic variants as well as the accuracy of polygenic predictions. We provide an online calculator,

available at www.devlaming.eu, which accounts for these effects. By means of this calculator, we show that

imperfect genetic correlations between studies substantially decrease statistical power and predictive accuracy

and, thereby, contribute to the missing heritability. We argue that researchers should account for genetic

heterogeneity across studies, when assessing whether a proposed large-scale genome-wide association study is

likely to yield meaningful results.

Introduction 1

Large-scale GWAS efforts are rapidly elucidating the genetic architecture of polygenic traits, including 2

anthropometrics [1], [2], diseases [3], [4], [5], and behavioral and psychological outcomes [6], [7], [8]. These 3
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efforts have led to new biological insights, therapeutic targets, and individual-level polygenic scores (PGS), 4

and help to understand the complex interplay between genes and environments in shaping individual 5

outcomes [7], [9], [10]. However, GWAS results for polygenic traits do not yet account for a large part of the 6

heritability [1], [2], [7], [8]. This dissonance, which is referred to as the ‘missing’ heritability, has received 7

broad attention [11], [12], [13], [14], [15], [16], [17]. 8

The missing heritability can be split into two parts. The first part, the ‘still-missing’ heritability [15], 9

[16], [17], is defined as the difference between the estimate of heritability based on family data (h2) and 10

the SNP-based estimate (h2
SNP). The second part, the ‘hiding’ heritability [15], [16], [17], is defined as the 11

difference between the h2
SNP and the estimate of heritability based on genetic variants that reach genome-wide 12

significance in a GWAS (h2
GWS). Hence, h2 >h2

SNP >h2
GWS [15]. 13

Four important factors have been proposed to explain the missing heritability. First, conventional 14

genotyping is not sufficiently dense across the whole genome. Therefore, genotyping fails to capture rare 15

variants that explain a non-negligible fraction of trait variation [18]. Second, gene–gene interactions inflate 16

h2, creating so-called ‘phantom’ heritability [14]. Third, sample sizes of GWAS efforts are not large enough 17

to fully capture h2
SNP [18], [19]. Fourth, differences across strata (e.g., studies, ancestry groups, and sexes) 18

in phenotypic measurement, in measurement accuracy, and in genetic effects, can all introduce additional 19

noise and loss of signal [20], [21] and, hence, attenuate statistical power of a GWAS [17], [22], [23]. The first 20

two factors lead primarily to still-missing heritability [14], [17], [18], while the latter two contribute foremost 21

to hiding heritability [17], [18], [19], [23]. 22

Recent work has demonstrated the feasibility of denser genotyping [24], [25] and larger GWAS samples 23

[1], [2], [5], [26]. Hence, these two causes of the missing heritability can be amended. Moreover, the issue of 24

phantom heritability is primarily of importance to the discussion about the still-missing heritability [14], [17]. 25

In the current study, we focus on one important remaining factor in the hiding heritability discussion: 26

heterogeneity of measures and/or heterogeneity of genetic effects across different strata, and, in particular, 27

across studies. 28

Large-scale GWAS results are typically obtained by meta-analyzing GWAS results from multiple studies 29

spanning different regions and/or time periods. This approach averages the estimated effects of individual 30

genetic variants across studies. In case genetic effects are heterogeneous across studies (e.g., due to gene– 31

environment interactions and heterogeneity in phenotypic measurement) at least three important quantities 32

are decreased: the estimate of SNP-heritability [17], [20], the statistical power of a GWAS [17], [22], [23], and 33

the predictive accuracy of the PGS [26]. The decrease in these quantities not only explains why heterogeneity 34

contributes to the missing heritability but also shows that heterogeneity decreases the chances of a study to 35

yield meaningful results [23], [27]. Therefore, the precise attenuation due to genetic heterogeneity should 36
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be well understood, in order to make an informed decision whether to pursue a proposed meta-analysis of 37

GWAS results. 38

Others have already pointed at the issue of genetic heterogeneity across studies [21], [23], [28]. In particular, 39

it has been shown theoretically that misclassification between two diseases tends to deflate heritability estimates 40

and decrease statistical power to detect trait-associated SNPs [20]. In addition, empirical applications show 41

that SNP-heritability estimates are attenuated when pooling across studies [21], [29]. Moreover, simulations 42

have shown that phenotypic and genetic heterogeneity decrease statistical power [22]. Finally, a strong 43

theoretical decrease in statistical power has been shown to exist under genetic heterogeneity of another sort, 44

viz., when different intermediate phenotypes contribute to a single composite phenotype [17]. Finally, a 45

theoretical reduction of PGS predictive accuracy has been shown for a scenario with one discovery study and 46

one study used as hold-out sample for prediction [26]. Overall, findings from simulations, empirical work, and 47

theory suggest attenuation due to genetic and phenotypic heterogeneity. Despite these efforts, a theoretical 48

multi-study framework, relating statistical power and predictive accuracy to cross-study heterogeneity, is still 49

absent. 50

In the current study, we address the absence of a general multi-study framework by developing a Meta- 51

GWAS Accuracy and Power (MetaGAP) calculator that accounts for the cross-study genetic correlation 52

(CGR). Moreover, by means of simulation studies, we show that under a wide range of genetic architectures, 53

the statistical power and predictive accuracy inferred by this calculator are accurate. The calculator requires 54

users to specify the number of studies, the sample size of each study, the SNP-based heritability per study, 55

and the CGR. From these input parameters, the calculator infers the statistical power to detect associated 56

SNPs and the predictive accuracy of the PGS in a meta-analysis of GWAS results from genetically and 57

phenotypically heterogeneous studies. The MetaGAP calculator enables to explore to what extent an imperfect 58

CGR (i.e., less than one) contributes to the hiding heritability. 59

As an empirical application of the proposed calculator, we estimate the SNP-based heritability and CGR 60

of several polygenic traits across three distinct studies: the Rotterdam Study (RS), the Swedish Twin Registry 61

(STR), and the Health and Retirement Study (HRS). For height, BMI, years of education, and self-rated 62

health, we obtain point-estimates of CGR between 0.47 and 0.97, suggesting that even extremely large GWAS 63

meta-analyses will fall short of explaining the full h2
SNP for these traits. Using the MetaGAP calculator, we 64

quantify the expected number of hits and the predictive accuracy of the PGS in recent GWAS efforts for 65

these traits. Our theoretical predictions align with empirical observations. Finally, by comparing these figures 66

to the predicted number of hits and PGS accuracy under perfect CGRs, we show that there is considerable 67

attenuation due to imperfect CGRs; even for height (CGR point-estimate of 0.97) the expected relative loss 68

in the number of hits is 8% and the relative loss in PGS R2 is 6%. 69
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Importantly, the MetaGAP calculator has two desirable properties compared to other calculators. In 70

other calculators one often needs to specify some true value of the SNP effect [30] (e.g., by taking the effect 71

estimates of the most significant SNPs from an earlier GWAS, to which one first applies a ‘winner’s curse’ 72

correction [23]). Instead of requiring the input of an a priori unknown effect, our method incorporates a tacit 73

assumption regarding the relation between allele frequency and effect size, such that each trait-affecting SNP 74

has an equal R2 with respect to the phenotype (e.g., [31]). Therefore, our method merely requires the h2
SNP 75

and the number of independent haplotype blocks harboring trait-affecting variation. The ratio of these two 76

quantities fully specifies the proportion of phenotypic variance which can be explained by a ‘representative’ 77

associated SNP. In addition, other calculators usually require not only the true effect of a SNP as input 78

parameter but also the allele frequency [30], [32], [33]. By focusing on a ‘representative’ associated SNP, we 79

also eliminate the allele frequency from our power calculator. In our simulations, we show that a violation of 80

this equal-R2 assumption hardly affects the quality of the predicted statistical power and PGS accuracy. 81

To summarize, the current study aims to formulate precise relations between genetic heterogeneity across 82

studies on the one hand and statistical power and predictive accuracy, for a meta-analysis of GWAS results, 83

on the other. This aim is achieved, and substantiated in the form of an online calculator, available at 84

www.devlaming.eu, which accounts for the effect of genetic and phenotypic heterogeneity across studies. The 85

calculator does not require a priori knowledge about the magnitude of the true association between the SNP 86

and trait of interest. By means of this calculator, it can be shown to what degree CGR affects statistical 87

power and predictive accuracy. By using the calculator to assess recent GWAS efforts, we show that the effect 88

of CGR on statistical power and predictive accuracy is substantial. Hence, CGR explains a considerable 89

part of the hiding heritability. Therefore, a priori calculations of statistical power and predictive accuracy, 90

accounting for heterogeneity in genetic effects across studies, are an important tool for assessing whether an 91

intended meta-analysis of GWAS results is likely to yield meaningful outcomes. 92

Materials and Methods 93

Definitions In our framework, we consider only the SNP-based heritability, as estimated based on the 94

set of SNPs of interest. In line with others, we define the effective number of SNPs, S, as the number of 95

haplotype blocks (i.e., independent chromosome segments) [34], where variation in each block is tagged by 96

precisely one SNP. Hence, in our framework, there are S SNPs contributing to the polygenic score. Due to 97

linkage disequilibrium this number is likely to be substantially lower than the total number of SNPs in the 98

genome [35], and is inferred to lie between as little as 60,000 [15] and as much as 5 million [35]. In terms of 99

trait-affecting variants, we consider a subset of M SNPs. Each SNP in this subset tags variation in a segment 100
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that bears a causal influence on the phenotype. We refer to M as the associated number of SNPs. We assume 101

that the M associated SNPs capture the full SNP-based heritability for the trait of interest. 102

Power of a GWAS meta-analysis under heterogeneity 103

Generic expressions for the theoretical distribution of the Z statistic, resulting from a meta-analysis of GWAS

results under imperfect CGRs, can be found in S1 Derivations Power. For intuition, we here present the

specific case of a meta-analysis of results from two studies with CGR ρG, with equal SNP-based heritability

h2
SNP, and equal sample sizes (i.e., N in Study 1 and N in Study 2). Under this scenario, we find that under

high polygenicity, the Z statistic of an associated SNP k is normally distributed with mean zero and the

following variance:

Var (Zk) ≈ 1 + h2
SNP
M

N (1 + ρG) . (1)

The larger the variance in the Z statistic, the higher the probability of rejecting the null. The ratio of h2
SNP 104

and M can be regarded as the theoretical R2 of each associated SNP with respect to the phenotype. Eq. 1 105

reveals that (i) when sample size increases, power increases, (ii) when h2
SNP increases, the R2 per associated 106

SNP increases and therefore power increases, (iii) when the number of associated SNPs increases, the R2
107

per associated SNP decreases and therefore power decreases, (iv) when the CGR is minus one, the studies 108

perfectly cancel each other’s genetic effects, thereby eliminating the power of the meta-analysis and reducing 109

the distribution of the Z statistic for an associated SNP to a standard-normal distribution, yielding a strong 110

disadvantage to meta-analyzing in this scenario, (v) when the CGR is zero the power of the meta-analysis 111

is identical to the power obtained in each of the two studies when analyzed separately, yielding no strict 112

advantage to meta-analyzing, and (vi) when the CGR is plus one the additional variance in the Z statistic 113

relatively to the variance under the null is twice the additional variance one would have when analyzing the 114

studies separately, yielding a strong advantage to meta-analyzing. 115

Others have focused on the highly related χ2 statistics, defined as the squared Z statistics. In particular, 116

it has been shown that the χ2 statistics are influenced by linkage disequilibrium, population stratification, 117

and polygenicity [36], [37], [38]. Although we focus on CGR and how it affects Z statistics rather than the 118

χ2 statistics, the factors that appear in our expressions of the variance of the GWAS Z statistics are highly 119

similar to the factors that appear in work aiming to dissect the expected value of the GWAS χ2 statistics. 120

As an illustration of the similarity in expressions, consider the scenario where the CGR equals one between 121

two samples of equal size. Based of Eq. 1, we then have that Var (Zk) ≈ 1 +Ntotal
h2

SNP
M for a trait-affecting 122

haplotype block, where N total = 2N. This expressions for the variance of the Z statistic of a trait-affecting 123
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haplotype block is completely equivalent to the expected χ2 statistic from the linear regression analysis for a 124

trait-affecting variant reported in Section 4.2 of the Supplementary Note to [37] as well as Equation 1 in [38] 125

when assuming that confounding biases and linkage disequilibrium are absent. However, under a scenario 126

with two or more studies with imperfect CGR, this overlap breaks down. 127

In order to compute statistical power in a multi-study setting, we first use the generic expression for the

variance of the GWAS Z statistic derived in S1 Derivations Power to characterize the distribution of the Z

statistic under the alternative hypothesis. We then use the inverse normal cumulative distribution function

to quantify the probability of attaining genome-wide significance for an associated SNP. This probability we

refer to as the ‘power per associated SNP’. Moreover, given that we use SNPs tagging independent haplotype

blocks, we calculate the probability of rejecting the null for at least one of the associated SNPs and the

expected number of independent hits as follows:

power to detect at least one SNP = 1− [1− (power per associated SNP)]M and

E [number of hits] = M · (power per associated SNP).

R2 of a polygenic score under heterogeneity 128

In S2 Derivations Accuracy we derive a generic expression for the theoretical R2 of a PGS in a hold-out 129

sample, with SNP weights based on a meta-analysis of GWAS results under imperfect CGRs. We consider a 130

PGS that includes all the SNPs that tag independent haplotype blocks (i.e., there is no SNP selection). 131

For intuition, we here present an approximation for prediction in a hold-out sample, with SNP weights

based on a GWAS in a single discovery study with sample size N, where both studies have SNP-heritability

h2
SNP, and with CGR ρG, between the studies. Under high polygenicity, the R2 of the PGS in the hold-out

sample is then given by the following expression:

R2 ≈ h2
SNPρ

2
G

h2
SNP

S
N + h2

SNP
. (2)

In case the CGR is one, and we consider the R2 between the PGS and the genetic value (i.e., the genetic 132

component of the phenotype) instead of the phenotype itself, the first two terms in Eq. 2 disappear, yielding 133

an expression equivalent to Equation 1 in [34]. Assuming a CGR of one and that all SNPs are associated, 134

Eq. 2 is equivalent to the expression in [26] for the R2 between the PGS and the phenotype in the hold-out 135

sample. 136

From Eq. 2, we deduce that (i) as the effective number of SNPs S increases, the R2 of the PGS deteriorates 137
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(since every SNP-effect estimate contains noise, owing to imperfect inferences in finite samples), (ii) given 138

the effective number of SNPs, under a polygenic architecture, the precise fraction of effective SNPs that is 139

associated does not affect the R2, (iii) R2 is quadratically proportional to ρG, implying a strong sensitivity to 140

CGR, and (iv) as the sample size of the discovery study grows, the upper limit of the R2 is given by h2
SNPρ

2
G, 141

implying that the full SNP-heritability in the hold-out sample cannot be entirely captured so long as CGR is 142

imperfect. 143

Online power and R2 calculator 144

An online version of the MetaGAP calculator can be found at www.devlaming.eu. This calculator computes 145

the theoretical power per trait-affecting haplotype block, the power to detect at least one of these blocks, and 146

the expected number of independent hits for a meta-analysis of GWAS results from C studies. In addition, it 147

provides the expected R2 of a PGS for a hold-out sample, including all GWAS SNPs, with SNP-weights based 148

on the meta-analysis of the GWAS results from C studies. Calculations are based on the generic expressions 149

for GWAS power derived in S1 Derivations Power and PGS R2 derived in S2 Derivations Accuracy. 150

The calculator assumes a quantitative trait. Users need to specify either the average sample size per 151

study or the sample size of each study separately. In addition, users need to specify either the average 152

SNP-heritability across studies or the SNP-heritability per study. The SNP-heritability in the hold-out sample 153

also needs to be provided. Users are required to enter the effective number of causal SNPs and the effect 154

number of SNPs in total. The calculator assumes a fixed CGR between all pairs of studies included in the 155

meta-analysis and a fixed CGR between the hold-out sample and each study in the meta-analysis. Hence, 156

one needs to specify two CGR values: one for the CGR within the set of meta-analysis studies and one to 157

specify the genetic overlap between the hold-out sample and the meta-analysis studies. 158

Finally, a more general version of the MetaGAP calculator is provided in the form of MATLAB code, also 159

available at www.devlaming.eu. This code can be used in case one desires to specify a more versatile genetic- 160

correlation matrix, where the CGR can differ between all pairs of studies. Therefore, this implementation 161

requires the user to specify a full (C+1)-by-(C+1) correlation matrix. Calculations in this code are fully in 162

line with the generic expressions in S1 Derivations Power and S2 Derivations Accuracy. 163

Assessing validity of theoretical power and R2
164

We simulate data for a wide range of genetic architectures in order to assess the validity of our theoretical 165

framework. As we show in S3 Simulation Study, the theoretical expressions we derive for power and R2
166

are accurate, even for data generating processes substantially different from the process we assume in our 167
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derivations. Our strongest assumption is that SNPs have equal R2 with respect to the phenotype regardless 168

of allele frequency. When we simulate data where this assumption fails and where allele frequencies are 169

non-uniformly distributed, the root-mean-square prediction error of statistical power lies below 3% and that 170

of PGS R2 below 0.12%. 171

Estimating SNP-heritability and CGR 172

Using 1000 Genomes-imputed (1kG) data from the RS, STR, and HRS, we estimate SNP-based heritability 173

and CGR respectively by means of univariate and bivariate genomic-relatedness-matrix restricted maximum 174

likelihood (GREML) [31], [39] as implemented in GCTA [31]. In our analyses we consider the subset of 175

HapMap3 SNPs available in the 1kG data. In S4 Data and Quality Control we report details on the genotype 176

and phenotype data, as well as our quality control (QC) procedure. After QC we have a dataset, consisting of 177

≈ 1 million SNPs and ≈ 20,000 individuals, from which we infer h2
SNP and CGR. In S5 GREML Estimation 178

we provide details on the specifications of the models used for GREML estimation. 179

Results 180

Determinants of GWAS power and PGS R2
181

Using the MetaGAP calculator, we assessed the theoretical power of a meta-analysis of GWAS results from 182

genetically heterogeneous studies and the theoretical R2 of the resulting PGS in a hold-out sample, for various 183

numbers of studies and sample sizes, and different values of CGR and h2
SNP. 184

Sample size and CGR Fig. 1 shows heat maps for the power per truly associated SNP and R2 for a 185

setting with 50 studies, for a trait with h2
SNP = 50%, for various combinations of total sample size and CGR. 186

Increasing total sample size enhances both power and R2. When the CGR is perfect, power and R2 (relative 187

to h2
SNP) have a near-identical response to sample size. This similarity in response gets distorted when the 188

CGR decreases. For instance, in the scenario of 100k SNPs of which a subset of 1k SNPs is causal with 189

h2
SNP = 50%, in a sample of 50 studies with a total sample size of 10 million individuals, a CGR of one yields 190

94% power per causal SNP and an R2 of 49%, which is 98% of the SNP-heritability, whereas for a CGR of 191

0.2 the power is still 87% per SNP, while the R2 of the PGS is 8.5%, which is only 17% of h2
SNP. Thus, R2

192

is far more sensitive to an imperfect CGR than the meta-analytic power is. This finding is also supported 193

by the approximations of power in in Eq. 1 and of PGS R2 in Eq. 2; these expressions show that, for two 194

discovery studies, the CGR has a linear effect on the variance of the meta-analysis Z statistic, whereas, for 195

one discovery and one hold-out sample, the PGS R2 is quadratically proportional to the CGR. 196
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Figure 1. Theoretical predictions of power per causal SNP (upper
panel) and out-of-sample R2 of the PGS (lower panel), for total
sample size (x-axis) and cross-study genetic correlation (y-axis).
Factor levels: 50 studies, 100k independent SNPs, and heritability h2

SNP =
50% arising from a subset of 1k independent SNPs.
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Figure 2. Theoretical predictions of power per causal SNP (upper
panel) and out-of-sample R2 of the PGS (lower panel), for a trait
that across studies has SNP-heritability (x-axis) and cross-study
genetic correlation (y-axis). Factor levels: 50 studies, sample size 5,000
individuals per study, 100k independent SNPs, and heritability arising from
a subset of 1k independent SNPs.
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Figure 3. Theoretical predictions of power per causal SNP (upper
panel) and out-of-sample R2 of the PGS (lower panel), for a trait
with GWAS results from the number of studies (x-axis) with cross-
study genetic correlation (y-axis). Factor levels: total sample size
250,000 individuals, 100k independent SNPs, and heritability h2

SNP = 50%
arising from a subset of 1k independent SNPs. For R2 a discontinuous color
map is used to make salient details visible.
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SNP-heritability and CGR Fig. 2 shows heat maps for the power per truly associated SNP and R2 for 197

a setting with 50 studies, with a total sample size of 250,000 individuals, for 1k causal SNPs and 100k SNPs 198

in total, for various combinations of h2
SNP and CGR. The figure shows a symmetric response of both power 199

and R2 to CGR and h2
SNP. For instance, when h2

SNP = 25% and CGR = 0.5 across all studies, the power 200

is expected to be around 34% and the R2 3.0%. When these numbers are interchanged (i.e., h2
SNP = 50% 201

and CGR = 0.25), similarly, the power is expected to be 35% and the R2 2.9%. Hence, in terms of both R2
202

and power, a low heritability can be compensated by a high CGR (e.g., by means of homogeneous measures 203

across studies) and a low CGR can be compensated by high heritability. 204

When looking at two points with the same power (resp. R2), any other point on a straight line between 205

these points has a higher power (R2), than at the end-points of the line. For instance, when both h2
SNP and 206

CGR lie at the midpoint between the 0.25 and 0.5 considered before (i.e., h2
SNP = 37.5% and CGR = 0.375), 207

the expected power is 37% > 35% and the expected R2 3.6% > 3.0%. 208

When either CGR or heritability is (close to) zero, both power and R2 are decimated in the multi-study 209

setting. Hence, least power and R2 can be found when h2
SNP, CGR, or both are low. However, when both are 210

moderately low but still substantially greater than zero, neither power nor R2 are completely diminished. 211

Number of studies and CGR Fig. 3 shows heat maps for the power per truly associated SNP and R2
212

for a trait with h2
SNP = 50%, 1k causal SNPs, 100k SNPs in total, and a fixed total sample size of 250,000 213

individuals. In this figure, various combinations of the number of studies and CGR are considered. The color 214

map used for R2 is discontinuous, in order to make salient details visible. Logically, when there is just one 215

study for discovery, CGR does not affect power. However, even for two studies, the effect of CGR on power is 216

quite pronounced. For instance, when CGR is a half, the power per causal SNP is 63% for one study, 58% for 217

two studies, 51% for ten studies, and 50% for 100 studies. Thus, when the number of studies is low, increases 218

in the number of studies make the effect of CGR on power more pronounced rapidly. When the number of 219

studies is large, increases in the number of studies hardly make the effect of CGR on power more pronounced. 220

For a given number of studies, we observed that the effect CGR has on R2 is stronger than the effect 221

it has on power. This observation is in line with the approximated theoretical R2 in Eq. 2, indicating that 222

R2 is quadratically proportional to CGR. However, an interesting observation is that this quadratic relation 223

lessens as the number of studies grows large, despite the total sample size being fixed. For instance, at 224

a CGR of a half, the R2 in the hold-out sample is expected to be 6.9% when there is only one discovery 225

study. However, the expected R2 is 8.1% for two discovery studies, 9.3% for ten discovery studies, and 9.6% 226

for 100 discovery studies. The reason for this pattern is that, in case of one discovery study, the PGS is 227

influenced relatively strongly by the study-specific component of the genetic effects. This idiosyncrasy is not 228
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of relevance for the hold-out sample. As the number of studies increases, even though each study brings its 229

own idiosyncratic contribution, each study also consistently conveys information about the part of the genetic 230

architecture which is common across the studies. Now, since the idiosyncratic contributions from the studies 231

are independent, they tend to average each other out, whereas the common underlying architecture gets more 232

pronounced as the number of studies in the discovery increases, even if the total sample size is fixed. 233

SNP-heritability in the hold-out sample Fig. 4 shows a heat map for the PGS R2 based on a meta- 234

analysis of 50 studies with a total sample size of 250,000 individuals, with 1k causal SNPs and 100k SNPs 235

in total, and a CGR of 0.8 between both the discovery studies and the hold-out sample. In the heat maps 236

various combinations of h2
SNP in the discovery samples and h2

SNP in the hold-out sample are considered. The 237

response of PGS R2 to heritability in the discovery sample and the hold-out sample is quite symmetric, in 238

the sense that a low h2
SNP in the discovery samples and a high h2

SNP in the hold-out sample yield a similar 239

R2 as a high h2
SNP in the discovery sample and a low h2

SNP in the hold-out sample. However, overall R2 is 240

slightly more sensitive to h2
SNP in the hold-out sample than in the discovery samples. For instance, when 241

SNP-heritability in the discovery samples is 50% and 25% in the hold-out sample, the expected R2 is 10%, 242

whereas in case the SNP-heritability is 25% in the discovery samples and 50% in the hold-out sample, the 243

expected R2 is 13%. 244

CGR between sets of studies Fig. 5 shows a heat map for the power per truly associated SNP in a setting 245

where there are two sets consisting of 50 studies each. Within each set, the CGR is equal to one, whereas 246

between sets the CGR is imperfect. Consider, for example, a scenario where one wants to meta-analyze 247

GWAS results for height from a combination of two sets of studies; one set of studies consisting primarily of 248

individuals of European ancestry and one set of studies with mostly people of Asian ancestry in it. Now, one 249

would expect CGRs close to one between studies consisting primarily of individuals of European ancestry 250

and the same for the CGRs between studies consisting primarily of people of Asian ancestry. However, the 251

CGRs between those two sets of studies might be lower than one, though probably greater than zero. 252

As is shown in S1 Derivations Power, in case the CGR between the two sets is zero, meta-analyzing the 253

two sets jointly is sub-optimal; the power of such a meta-analysis lies in between the power obtained by either 254

of these sets when meta-analyzed separately. Since in Fig. 5 we considered two equally-powered sets, the 255

power of a meta-analysis using both sets, under zero CGR between sets, is identical to the power obtained 256

when meta-analyzing, for instance, only the first set. However, as CGR between sets increases so does power. 257

For instance, when a total sample size of 250,000 individuals is spread across 2 clusters, each cluster consisting 258

of 50 studies (i.e., sample size of 125,000 individuals per cluster and 2,500 individuals per study), under 259
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Figure 4. Theoretical predictions of out-of-sample R2 of the PGS,
for the SNP-heritability in the hold-out sample (x-axis) and the
SNP-heritability in the discovery samples (y-axis). Factor levels:
50 studies, sample size 5,000 individuals per study, cross-study genetic
correlation 0.8, 100k independent SNPs, and heritability arising from a
subset of 1k independent SNPs.

Figure 5. Theoretical predictions of power per causal SNP, for
total sample size (x-axis) and CGR between two sets of studies
(y-axis). Factor levels: 2 sets of 50 studies, CGR equal to 1 within both
sets, 100k independent SNPs, and heritability h2

SNP = 50% arising from a
subset of 1k independent SNPs.
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Table 1. GREML estimates of SNP-heritability (h2
SNP) and genetic correlation across studies and sexes.

Phenotype N Estimates SNP-heritability1,2 Estimates genetic correlation1

pooled study sexes RS–STR RS–HRS STR–HRS Females–Males

Height 20,458 43.3% (1.8%) *** 44.9% 44.0% 0.976 (0.102) *** 0.954 (0.095) *** 0.967 (0.106) *** 0.981 (0.067) ***
BMI 20,449 20.9% (1.7%) *** 21.9% 22.8% 1.000 (0.269) *** 0.914 (0.172) *** 0.847 (0.246) *** 0.794 (0.122) *** †
EduYears 20,619 16.4% (1.7%) *** 18.2% 18.4% 0.690 (0.233) *** 0.659 (0.224) *** † 1.000 (0.263) *** 0.832 (0.162) ***
CurrCigt 20,686 18.2% (4.0%) *** 19.1% 24.2% 1.000 (0.643) *** 0.611 (0.448) * 1.000 (0.607) *** 0.543 (0.257) *** †
CurrDrinkFreq 20,072 7.0% (2.6%) *** 10.3% 8.3% 1.000 (0.666) *** 0.298 (0.670) -0.056 (0.647) 1.000 (2.068) *
Self-rated health 19,184 10.3% (1.8%) *** 15.7% 9.5% 0.626 (0.439) ** 0.363 (0.223) ** †† 0.447 (0.278) ** 1.000 (0.349) ***
* h2

SNP and/or genetic correlation > 0 at 10% sign. †genetic correlation < 1 at 10% sign. ‡genetic correlation < 0 at 10% sign.
** h2

SNP and/or genetic correlation > 0 at 5% sign. ††genetic correlation < 1 at 5% sign. ‡‡genetic correlation < 0 at 5% sign.
*** h2

SNP and/or genetic correlation > 0 at 1% sign. †††genetic correlation < 1 at 1% sign. ‡‡‡genetic correlation < 0 at 1% sign.
1 Standard errors between parentheses.
2 pooled: univariate estimate from pooled data, study: sample-size weighted average of univariate estimates across studies, and sexes: sample-size
weighted average of univariate estimates across sexes.

h2
SNP = 50% due to 1k causal SNPs, a CGR of one within each cluster, and CGR of zero between clusters, 260

the power is expected to be 49%, which is identical to the power of a meta-analysis of either the first or the 261

second cluster. However, if the CGR between clusters is 0.5 instead of zero, the power goes up to 58%. In 262

terms of the expected number of hits, this cross-ancestry meta-analysis yields an expected 82 additional hits, 263

compared to a meta-analysis considering only one ancestry. 264

Alternatively, one could pool hits from two meta-analyses (e.g., in our example one in the European- 265

ancestry set and one in the Asian-ancestry set). However, this would imply more independent tests being 266

carried out, and, hence, the need for a stronger Bonferroni correction in order to keep the false-positive rate 267

fixed, and, thus, a more stringent genome-wide significance threshold. Therefore, this route is likely to yield 268

less statistical power than a meta-analysis of merely one of the set of two or a joint analysis of both sets. 269

Empirical results for SNP-based heritability and CGR 270

In Table 1 we report univariate GREML estimates of SNP-heritability and bivariate GREML estimates of 271

genetic correlation for traits that attained a pooled sample size of at least 18,000 individuals, which gave us 272

at least 50% power to detect a genetic correlation near one for a trait that has a SNP-heritability of 10% or 273

more [40]. The smallest sample size is N = 19,184 for self-rated health. Details per phenotype (i.e., sample 274

size, univariate estimates of SNP-heritability, and bivariate estimates of genetic correlation, stratified across 275

studies and sexes, as well as cross-study and cross-sex averages) are provided in Tables 7-8 of S6 GREML 276

Results. 277

The univariate estimates of SNP-heritability based on the pooled data assume perfect CGRs. Therefore, 278

such estimates of SNP-heritability are downwards biased when based on data from multiple studies with 279

imperfect CGRs. To circumvent this bias, we estimated SNP-heritability in each study separately, and focused 280

on the sample-size-weighted cross-study average estimate of SNP-heritability. 281
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For both height and BMI, we observed genetic correlations close to one across pairs of studies and between 282

females and males. For years of schooling (EduYears) we found a CGR around 0.8 when averaged across 283

pairs of studies. Similarly, the genetic correlation for EduYears in females and males lies around 0.8. The 284

CGR of self-rated health is substantially below one across the pairs of studies, whilst the genetic correlation 285

between females and males seems to lie around one. The reason for this difference in the genetic correlation 286

between pairs of studies and between females and males may be due to the difference in the questionnaire 287

across studies, discussed in S4 Data and Quality Control. The questionnaire differences can yield a low 288

CGR, while not precluding the remaining genetic overlap for this measure across the three studies, to be 289

highly similar for females and males. For CurrCigt and CurrDrinkFreq, the estimates of CGR and of genetic 290

correlation between females and males are non-informative. For these two traits the standard errors of the 291

genetic correlations estimates are large, mostly greater than 0.5. In addition, for CurrDrinkFreq there is 292

strong volatility in the CGR estimate across pairs of studies. 293

Attenuation in power and R2 due to imperfect CGR 294

Considering only the traits for which we obtained accurate estimates of CGR and SNP-heritability (i.e., with 295

low standard errors), we used the MetaGAP calculator to predict the number of hits in a set of discovery 296

samples and the PGS R2 in a hold-out sample, in prominent GWAS efforts for these traits. 297

Since we only had accurate estimates for height, BMI, EduYears, and self-rated health, we focused on these 298

four phenotypes. For these traits, we computed sample-size-weighted average CGR estimates across the pairs 299

of studies. Table 2 shows the number of hits and PGS R2 reported in the most comprehensive GWAS efforts 300

to date for the traits of interest, together with predictions from the MetaGAP calculator. We tried several 301

values for the number of independent haplotype blocks (i.e., 100k, 150k, 200k, 250k) and for the number of 302

trait-associated blocks (i.e., 10k, 15k, 20k, 25k). Overall, 250k blocks of which 20k trait-affecting yielded 303

theoretical predictions in best agreement with the empirical observations; we acknowledge the potential for 304

some overfitting (i.e., two free parameters set on the basis of 17 data points; 10 data points for the reported 305

number of hits and 7 for PGS R2). 306

For height – the trait with the lowest standard error in the estimates of h2
SNP and CGR – the predictions of 307

the number of hits and PGS R2 for the two largest GWAS efforts are much in line with theoretical predictions. 308

For the smaller GWAS of 13,665 individuals [42], our estimates seem somewhat conservative; 0 hits expected 309

versus the 7 reported. However, in our framework, we assumed that each causal SNP has the same R2. 310

Provided there are some differences in R2 between causal SNPs, especially in smaller samples, the first SNPs 311

that are likely to reach genome-wide significance are the ones with a comparatively large R2. This view 312
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Table 2. Predicted and observed number of genome-wide-significant hits and PGS R2, for large-scale GWAS efforts
to date for height, BMI, EduYears, and self-rated health, assuming 250k effective SNPs (i.e., independent haplotype
blocks) of which 20k trait-affecting, using averaged GREML estimates from Table 1 for setting SNP-heritability and
CGR.
Phenotype Main studies Architecture Number of hits PGS R2 using all SNPs

Theory|CGR Atten- Theory|CGR Atten-
Study N C** h2

SNP CGR Study <1 =1 uation* Study <1 =1 uation*

Wood et al. (2014) [1] 253,288 79 44.9% 0.965 697 647.26 700.24 8% 13.5% 13.2% 14.0% 6%
Height Allen et al. (2010) [41] 183,727 61 44.9% 0.965 180 292.03 320.77 9% 10.0% 10.5% 11.1% 6%

Weedon et al. (2008) [42] 13,665 5 44.9% 0.965 7 0.00 0.00 n.a. ***2.9% 1.0% 1.1% 7%
Locke et al. (2015) [2] 339,224 125 21.9% 0.917 97 188.52 241.07 22% 6.5% 4.3% 5.0% 14%

BMI Speliotes et al. (2010) [43] 123,865 46 21.9% 0.917 19 5.48 7.64 28% 2.5% 1.8% 2.1% 15%
Willer et al. (2008) [44] 32,387 15 21.9% 0.917 1 0.01 0.02 65% n.a. 0.5% 0.6% 16%
Okbay et al. (2016) [7] 405,072 65 18.2% 0.783 162 115.28 235.90 51% n.a. 2.7% 4.1% 36%

EduYears Okbay et al. (2016) [7] 293,723 64 18.2% 0.783 74 39.30 88.93 56% 3.2% 2.0% 3.2% 36%
Rietveld et al. (2013) [45] 101,069 42 18.2% 0.783 1 0.63 1.64 62% 2.5% 0.8% 1.2% 38%

Self-rated health Harris et al. (2015) [46] 111,749 1 15.7% 0.468 13 1.35 1.35 0% n.a. 0.2% 1.0% 78%
* Attenuation measures the relatively loss in expected power and R2 due to a CGR in accordance with averaged GREML estimates from Table 1.
** C denotes the number of studies in the meta-analysis; C is slightly subjective (e.g., RS I, II, and III can be considered as one study or as three).
*** Based on 20 SNPs.

is supported by the fact that a PGS based on merely 20 SNPs already explains 2.9% of the variation in 313

height. Hence, for relatively small samples our theoretical predictions of power and R2 tend to be somewhat 314

conservative. In addition, for height the 10k SNPs with the lowest meta-analysis p-values can explain about 315

60% of the SNP-heritability [1]. If the SNPs tagging the remaining 40% each have similar predictive power as 316

the SNPs tagging the first 60%, then the number of SNPs needed to capture the full h2
SNP would lie around 317

10k/0.6=17k, which is somewhat lower than the 20k which yields the most accurate theoretical predictions. 318

However, as indicated before, the SNPs which appear most prominent in a GWAS are likely to be the ones 319

with a greater than average predictive power. Therefore, the remaining 40% of h2
SNP is likely to be stemming 320

for SNPs with somewhat lower predictive power, thereby potentially inflating the number of SNPs needed to 321

fully capture h2
SNP. Hence, 20k associated independent SNPs is not an unlikely number for height. 322

The notion of a GWAS first picking up the SNPs with a relatively high R2 is also supported by the 323

predicted and observed number of hits for the reported self-rated-health GWAS [46]; given a SNP-heritability 324

estimate between 10% [46] and 16% (Table 2), according to our theoretical predictions, a GWAS in a sample 325

of around 110k individuals is unlikely to yield even a single genome-wide significant hit. However, this GWAS 326

has yielded 13 independent hits. This finding supports the view that some relatively-high-R2 SNPs are 327

present in the genome. 328

For BMI our predictions of PGS R2 were quite in line with empirical results. However, for the number of 329

hits, our predictions for the largest efforts seemed overly optimistic. We therefore suspect that the number of 330

independent SNPs associated with BMI is higher than 20k; as a higher number of associated SNPs would 331
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reduce the GWAS power, while preserving PGS R2, yielding good agreement with empirical observation. 332

Nevertheless, given the limited number of data points, this strategy of setting the number of causal SNPs 333

would increase the chance of overfitting. 334

For EduYears we observed that the reported number of hits is in between the expected number of hits 335

when the CGR is set to the averaged GREML estimate of 0.783 and when the CGR is set to one. Given the 336

standard errors in the CGR estimates for EduYears, the CGR might very well be somewhat greater than 337

0.783, which would yield a good fit with the reported number of hits. However, as with the number of truly 338

associated SNPs for BMI, we can make no strong claims about a slightly higher CGR of EduYears due to the 339

risk of overfitting. 340

Overall, our theoretical predictions of the number of hits and PGS R2 are in moderate agreement with 341

empirical observations, especially when bearing in mind that we are looking at a limited number of data 342

points, making chance perturbations from expectation likely. In addition, regarding the number of hits, the 343

listed studies are not identical in terms of the procedure to obtain the independent hits. Therefore, the 344

numbers could have been slightly different, had the same pruning procedure been used across all reported 345

studies. Such differences in procedures introduce an additional element of chance. 346

Regarding attenuation, we observed a substantial spread in the predicted number of hits and PGS R2
347

when assuming either a CGR of one, or a CGR in accordance with empirical estimates, with traits with 348

lower CGR suffering from stronger attenuation in power and predictive accuracy. In line with theory, R2 falls 349

sharply with CGR. For instance, for self-rated health, the estimate CGR of about 0.5, would – in expectation 350

– yield a PGS that retains only 0.52=25% of the R2 it would have had under a CGR of one. This is supported 351

by the reported attenuation of roughly 80%. 352

Given our CGR estimates, we expect a relative loss in PGS R2 of 6% for height, 14% for BMI, 36% for 353

EduYears, and 78% for self-rated health, compared to the R2 of a PGS under perfect CGRs (Table 2). This 354

loss in R2 is unlikely to be reduced by larger sample sizes and denser genotyping. 355

Somewhat contrary to expectation, the number of hits seems to respond even more strongly to CGR than 356

PGS R2. However, since in each study under consideration the average power per associated SNP is quite 357

small, a small decrease in power per SNP in absolute terms can constitute a substantial decrease in relative 358

terms. For instance, when one has 2% power per truly associated SNP, an absolute decrease of 1% – leaving 359

1% power – constitutes a relative decrease of 50% of power per causal SNP, and thereby a 50% decrease in 360

the expected number of hits. This strong response shows, for example, in the case of EduYears, where the 361

expected number of hits drop by about 37% when going from a CGR of one down to a CGR of 0.783. 362
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Discussion 363

In this study we aimed to answer the question whether imperfect cross-study genetic correlations (CGRs) 364

help to explain a part of the ‘hiding’ heritability for highly polygenic traits such as height. We showed that 365

imperfect CGRs are indeed likely to contribute to the gap between the phenotypic variation accounted for by 366

all SNPs jointly and by the leading GWAS efforts to date. We arrive at this conclusion in five steps. 367

First, we developed a Meta-GWAS Accuracy and Power (MetaGAP) calculator that accounts for the CGR. 368

This online calculator relates the statistical power to detect associated SNPs and the R2 of the polygenic 369

score (PGS) in a hold-out sample to the number of studies, sample size and SNP-heritability per study, and 370

the CGR. The underlying theory shows that there is a quadratic response of the PGS R2 to CGR. Moreover, 371

we showed that the power per associated SNP is also influenced by CGR, although – in absolute terms – not 372

as strongly as the PGS R2. 373

Second, we used simulations to demonstrate that our theory is robust to several violations of the 374

assumptions about the underlying data-generating process, regarding the relation between allele frequency 375

and effect size, as well as the distribution of allele frequencies. Further research needs to assess whether out 376

theoretical predictions are also accurate under an even broader set of scenarios (e.g., when studying a binary 377

trait or when studying a trait for which there are relatively many rare variants with relatively small effects). 378

Third, we used a sample of unrelated individuals from the Rotterdam Study, the Swedish Twin Registry, 379

and the Health and Retirement Study, to estimate SNP-based heritability as well as the CGR for traits such 380

as height and BMI. Although our CGR estimates have considerable standard errors, the estimates make it 381

likely that for many polygenic traits the CGR is positive, albeit smaller than one. 382

Fourth, based on these empirical estimates of SNP-heritability and CGR for height, BMI, years of education, 383

and self-rated health, we used the MetaGAP calculator to predict the number of expected hits and the 384

expected PGS R2 for the most prominent studies to date for these traits. We found that our predictions are 385

in good agreement with empirical observations. Although our theory turned out to be somewhat conservative 386

for smaller GWAS samples, for large-scale GWAS efforts our predictions were in line with the outcomes of 387

these efforts. 388

Fifth, we used our theoretical model to assess statistical power and predictive accuracy for these GWAS 389

efforts, had the CGR been one for the traits under consideration. Our estimates of power and predictive 390

accuracy in this scenario indicated a strong decrease in the PGS R2 and the expected number of hits, due to 391

imperfect CGRs. Though these observations are in line with expectation for predictive accuracy, for statistical 392

power the effect was larger than we anticipated. This finding can be explained, however, by the fact that 393

though the absolute decrease in power per SNP is small, the relative decrease is large, since the statistical 394
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power per associated SNP is often low to begin with. 395

Overall, our study affirms that although PGS accuracy improves substantially with further increasing 396

sample sizes, in the end PGS R2 will continue to fall short of the full SNP-based heritability. Hence, this 397

study contributes to the understanding of the hiding heritability reported in the GWAS literature. 398

Regarding the etiology of imperfect CGRs, the likely reasons are heterogeneous phenotype measures across 399

studies, gene–environment interactions with underlying environmental factors differing across studies, and 400

gene–gene interactions where the average effects differ across studies due to differences in allele frequencies. 401

Our study is not able to disentangle these different causes; by estimating the CGR for different traits we 402

merely quantify the joint effect these three candidates have on the respective traits. 403

However, in certain situations it is possible to disentangle the etiology of imperfect CGRs to some extent. 404

For instance, in case one considers a specific phenotype that is usually studied by means of a commonly 405

available but relatively heterogeneous and/or noisy measure, while there also exists a less readily available 406

but more accurate and homogeneous measure. If one has access to both these measures in several studies, one 407

can compare the CGR estimates for the more accurate measure and the CGR estimates for the less accurate 408

but more commonly available measure. Such a comparison would help to get some sense of the relatively 409

contribution of phenotype heterogeneity to imperfect CGR in the heterogeneous measure. 410

In considering how to properly address imperfect CGRs, it is important to note that having a small set of 411

large studies, rather than a large set of small studies, does not by definition abate the problem of imperfect 412

genetic correlations. Despite the fact that having less studies can help to reduce the effects of heterogeneous 413

phenotype measures, larger studies are more likely to sample individuals from different environments. If 414

gene–environment interactions do play a role, strong differences in environment between subsets of individuals 415

in a study lead to imperfect genetic correlations within that study. The attenuation in power and accuracy 416

resulting from the imperfect genetic correlations within studies may prove hard to address. 417

In addition to studying the reduction in power and predictive accuracy due to CGR, we used our theoretical 418

framework to consider other factors influencing power and accuracy. We found that in terms of power, sample 419

size trumps a lot, even a relatively low CGR. Moreover, we observed – in line with our theoretical framework 420

– that PGS R2 is far more sensitive to CGR than absolute power per SNP. Also, we found that low CGR can 421

to some extent be leveraged by a high SNP-heritability and vice versa. However, it is better to have both at 422

a moderate level than one extremely high and the other extremely low; if either is zero the meta-analysis 423

approach will fail. 424

We observed – given a fixed total sample size – that the substantial effects of CGR on power and predictive 425

accuracy arise even for as few as two studies. Moreover, the CGR-power and CGR-accuracy relations do not 426

change much as the number of underlying studies keeps increasing. This finding is reassuring; given that 427
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some power in the meta-analysis is lost due to imperfect CGRs, whether the underlying data is then highly 428

fractured into many small studies or into a few big ones does not really matter for predictive accuracy or 429

statistical power. 430

For SNP-heritability in the discovery samples and in the hold-out samples, we found that the PGS accuracy 431

is slightly more affected by SNP-heritability in the hold-out sample than in the discovery samples. Hence, 432

when aiming at high PGS accuracy, we recommend to use the study with the highest SNP-heritability and 433

the highest CGR with the discovery samples as hold-out sample. 434

In addition to the number of studies, sample size and SNP-heritability per study, and CGR, our theoretical 435

model depends on the specification of the following two latent parameters: the number of independent 436

haplotype blocks (i.e., the ‘effective number of SNPs’) and the number of blocks containing trait-affecting 437

variation (i.e., the number of independent ‘causal’ SNPs). In our work, setting the independent number 438

of blocks at 250k and the number of trait-affecting blocks at 20k for all traits yielded the most accurate 439

predictions. 440

Regarding the response of PGS accuracy and statistical power to these two parameters, it is interesting 441

to note that our equations point to strongly opposed responses. Since effect sizes tend to decrease with an 442

increasing number of causal SNPs, the statistical power decreases as the number of causal SNPs increases. 443

The PGS R2, on the other hand, decreases with the effective number of SNPs, since each SNP in the 444

prediction model contributes some noise. By applying SNP-selection methods in the construction of a PGS, 445

one can reduce the number of SNPs entering the PGS, decreasing the amount of noise and improving R2. 446

However, such methods may also exclude associated regions, decreasing the amount of signal in the score 447

and attenuating R2. Hence, SNP-selection methods are only likely to improve PGS R2 when the selection is 448

based on sufficiently accurate inferences. 449

Finally, having shown the substantial effect of imperfect CGRs on GWAS power and PGS R2, we believe 450

that the online MetaGAP calculator will prove to be an important tool for assessing whether an intended 451

meta-analysis of GWAS results from different studies, is likely to yield meaningful outcomes. 452

Supporting Information 453

S1 Derivations Power 454

In this section, we derive an expression for the power of a meta-analysis of GWAS results, under a design with 455

many studies, with arbitrary sample sizes, SNP-based heritability, and cross-study genetic correlation (CGR). 456

First, the underlying assumptions are presented. Second, we write the GWAS Z statistics in terms of 457
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the true SNP effect and noise. Third, we incorporate cross-study genetic correlations by assuming a model 458

with random SNP effects that are correlated imperfectly across studies. Using the Cholesky decomposition 459

of the cross-study genetic correlation matrix, we write the correlated SNP effects in terms of a weighted 460

sum of independent genetic factors. By means of this decomposition into independent factors, we derive the 461

distribution of the Z statistic in a given study, as well as the distribution of the multi-study meta-analysis Z 462

statistic. From the latter distribution we obtain a framework for performing multi-study power calculations. 463

It is important to note that models which incorporate random SNP effects have been widely used, for 464

instance, to estimate variance components [31] and genetic correlations across traits and samples [39], to 465

control for cryptic relatedness and population structure in a GWAS [37], and to distill the constituents of 466

genomic inflation [36], [38]. Hence, the novelty in our work lies not in using random SNP-effect models to 467

incorporate imperfect genetic correlations across studies. Instead the novelty lies in the subsequent step, viz., 468

to use such models in order to perform power calculations under the presence of imperfect CGRs. 469

Assumptions We derive an expression of statistical power for a quantitative trait in sample-size weighted 470

meta-analysis [47]. In order to arrive at a tractable expression of statistical power, we make the following 471

assumptions. 472

1. When considering a given SNP in the GWAS, any phenotypic variance due to other SNPs gets absorbed 473

by the normally, independent, and identically distributed residual term (which is what happens when 474

studying a sample of unrelated individuals, which is in line with assumptions underlying most GWAS 475

packages, except for family-based and mixed-linear-model-type GWAS software). This assumption 476

keeps the algebra simple at the cost of a small loss in generality. 477

2. The genome can be divided into independent haplotype blocks, where for each block we have precisely 478

one SNP that tags the variation within this block. By means of this assumption, we can ignore linkage 479

disequilibrium, thereby strongly reducing the complexity of our derivations. In addition, we assume 480

that the effects of trait-affecting haplotype blocks are independent. 481

3. The SNP-effect-sizes are inversely related to SNP variance (i.e., rare variants have larger effects than 482

common variants, such that the expected R2 of each causal SNP, with respect to the phenotype, is equal 483

regardless of allele frequency. In S3 Simulation Study we show that violations of this assumption hardly 484

affect results). This assumption makes it possible to compute statistical power without having to specify 485

the allele frequency and an a priori unknown effect size. Under this assumption, SNP-heritability and 486

the number of trait-affecting haplotype blocks replace a SNP-specific effect size and allele frequency. 487
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4. The regressors (i.e., SNP data) in the meta-analysis studies are fixed (i.e., non-stochastic)—this 488

assumption is equivalent to conditioning on the genotype data (in S3 Simulation Study we show that 489

violations of this assumption do not affect results). This assumption also keeps the algebra simple at 490

the cost of a small loss in generality. 491

Single-SNP model Here, we write the GWAS Z statistic in a given study for a given SNP, as a function 492

of the true effect and noise. This decomposition into true effect and noise helps to derive the distribution of 493

the Z statistic. 494

For studies j = 1, . . . , C and SNPs k = 1, . . . , S, let the model for a quantitative trait with a single SNP

as predictor (Assumption 1) for the mean-centered phenotype yj be given by

yj = xjkβjk + εj , (3)

εj ∼ N
(
0, σ2

εjINj
)

(4)

where xjk denotes the mean-centered genotype vector of SNP k in study j, scaled such that (x>jkxjk)/Nj = 1. 495

In Eq. 3, βjk is the effect of SNP k in study j. In Eq. 4, εj is the residual and INj the Nj × Nj identity 496

matrix, where Nj denotes the sample size of study j. 497

The GWAS estimate of βjk for a quantitative trait is usually obtained by applying OLS. Hence, it can be

written as

β̂jk =
(

1
Nj

x>jkxjk
)−1 1

Nj
x>jkyj (5)

= 1
Nj

x>jkyj (6)

= 1
Nj

x>jkxjkβjk + 1
Nj

x>jkεj (7)

= βjk + 1
Nj

x>jkεj . (8)

Using standard results from regression theory assuming fixed regressors (Assumption 4) and the aforemen-

tioned scaling of the genotype vector, the theoretical variance of the OLS-estimate of the SNP effect is given

by

Var
(
β̂jk

)
= σ2

εj

(
x>jkxjk

)−1

=
σ2

εj

Nj
.
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Therefore, the standard error of the OLS estimate is given by

s.e.
(
β̂jk

)
=

σεj√
Nj

. (9)

By taking the ratio of Eq. 8 and 9 we obtain the Z statistic (instead of the commonly used and highly

similar t-test statistics) for SNP k in study j. That is,

Zjk = β̂jk

s.e.
(
β̂jk

) (10)

=
√
Nj

σεj

βjk +
x>jkεj
σεj

√
Nj

. (11)

Let vjk denote the last term in the right-hand side of Eq. 11. Under the aforementioned scaling of the 498

regressor and the distribution of εj , it follows from standard properties of the multivariate normal distribution 499

that vjk ∼ N (0, 1). 500

Modelling cross-study genetic correlation Here, we incorporate cross-study genetic correlations by 501

considering a model with random SNP effects, correlated across studies. In order to simplify further derivations, 502

we use a Cholesky decomposition to write correlated SNP effects in terms of independent underlying factors. 503

Using this independent-factor representation, we derive the distribution of a GWAS Z statistic, in terms of 504

the study-specific noise and contributions of the underlying genetic factors. 505

Genetic correlation can be conceptualized as the correlation between SNP effects across different strata 506

(e.g., across populations, studies, age groups, etc.). Taking studies as ‘strata’, a group of C studies has C ×C 507

genetic correlation matrix, denoted by PG. 508

When effects are normally distributed, a given correlation structure between effects is most straightforwardly 509

obtained by constructing the Cholesky decomposition of the correlation matrix, and multiplying independent 510

standard-normal random variables by this decomposition. An interpretation of this decomposition is that 511

it provides a set of weights that transform a set of independent underlying genetic factors into correlated 512

genetic effects. 513

First, we formalize how to transform independent standard-normal random variables into correlated

normal random variables. Let ΓG be the lower-triangular Cholesky decomposition of the genetic correlation

matrix, such that ΓGΓG
> = PG, let M denote the set of M causal SNPs, let E be an C -by-M matrix

of independent standard normal draws from different genetic factors (rows) for the different causal SNPs
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(columns), and let ηk be the column of E corresponding to causal SNP k. Then

ηk =


η1k
...

ηCk

 ∼ N (0, IC) , (12)

where ηk is independent of ηl for l 6= k (Assumption 2). Now, for SNP k in the set of causal SNPs, we

can define the vector of effects across studies for the given SNP, such that it has correlation matrix PG, as

follows:

βk =


β1k

...

βCk

 = diag (σβ1 , . . . σβC ) ΓGηk, (13)

where diag() is a diagonal matrix with specified elements as diagonal entries, and

σβj =

√
h2
jσ

2
yj

M
, (14)

with h2
j (resp. σ2

yj ) denoting the SNP-heritability (phenotypic variance) in study j. Under this design 514

of study-specific SNP effects, we attain a CGR structure in line with PG and the desired study-specific 515

SNP-heritabilities. 516

Using this approach for constructing correlated SNP effects, we can write the effect of SNP k in study j

(i.e., βjk) as a linear combination of the independent underlying N (0, 1) distributed random variables. That

is,

βjk = σβj

j∑
i=1

γjiηik, (15)

where γji denotes element in row j column i of Γ and ηik the i-th element of ηk. Given our scaling of SNPs, 517

the R2 of each causal SNP in study j is given by σ2
βj

, regardless of the allele frequency of the SNP of interest 518

(Assumption 3). 519

We can now write the GWAS Z statistic for a given SNP in a given study, as a linear combination

of independent random variables. For SNP k in the set of P non-causal SNPs, denoted by P (such that

M∩P = ∅), we have for all studies j that βjk = 0. By substituting β in Eq. 11 according to Eq. 15 for

causal SNPs and the preceding equality for non-causal SNPs, we obtain the following expression for the Z
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statistic of SNP k in study j:

Zjk =

 vjk +
√
Nj

σβj
σεj

∑j
i=1 γjiηik for k ∈M, and

vjk for k ∈ P.
(16)

Distribution meta-analysis Z statistic Here, we derive the distribution of the meta-analysis Z statistic 520

and reduce the number of input parameters by appropriate substitutions. Finally, for intuition, we present 521

distribution of Z statistics from a meta-analysis of GWAS results from two studies. 522

For any SNP k in the set S =M∪P of S = M + P causal and non-causal SNPs, we use the sample-size-

weighted meta-analysis Z statistic [47], defined as follows:

Zk =
C∑
j=1

√
Nj√
N
Zjk, (17)

where N = N1 + . . .+NC denotes the total sample size. Plugging Eq. 16 for k ∈M into Eq. 17, yields an

expression for the meta-analysis Z statistic in terms of independent random variables. That is,

Zk =


∑C
j=1

√
Nj√
N
vjk +

∑C
j=1

∑j
i=1

Nj√
N

σβj
σεj

γjiηik for k ∈M, and∑C
j=1

√
Nj√
N
vjk for k ∈ P.

(18)

As the vjk terms in the preceding expression are independent standard-normal draws, it follows that

vk =
C∑
j=1

√
Nj√
N
vjk ∼ N (0, 1) . (19)

In Eq. 18 we have a double sum over random variables. However, by changing the order of summation,

this double sum can be rewritten as follows:

C∑
j=1

j∑
i=1

Nj√
N

σβj
σεj

γjiηik =
C∑
i=1

ηik

C∑
j=i

Nj√
N

σβj
σεj

γji. (20)

Therefore, we can rewrite Eq. 18 as follows:

Zk =

 vk +
∑C
i=1 ηik

∑C
j=i

Nj√
N

σβj
σεj

γji for k ∈M, and

vk for k ∈ P,
(21)

where the inner sum yields the weight for the random variable of interest. 523

Exploiting the fact that ηik and vk are independent standard-normal draws, the variance of the sum of
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terms is equal to the sum of the variance of the respective terms. Hence, we have that

Zk ∼

 N (0, 1 + d) for k ∈M, and

N (0, 1) for k ∈ P,
(22)

where

d =
C∑
i=1

 C∑
j=i

Nj√
N

σβj
σεj

γji

2

(23)

= 1
N

C∑
i=1

 C∑
j=i

Nj
σβj
σεj

γji

2

(24)

The quantity d we refer to as the ‘power parameter’. Since this parameter is a sum of squares, it is 524

non-negative. The greater the power parameter is, the more statistical power the meta-analysis of GWAS 525

results has. Note that in case σβj = 0 for all j (i.e., the trait is not heritable in any study), that d = 0, and 526

hence the meta-analysis Z statistic reverts to a standard-normal test statistic, which matches the distribution 527

under the null. However, as σβj increases, d becomes larger, yielding a meta-analysis with more statistical 528

power. 529

Given SNP-based heritability, phenotypic variation, and the number of causal variants, we have that

the effect size per causal SNP in a study is given by σ2
βj

=
h2
jσ

2
yj

M , and the residual variance, absorbing the

variance due to the omitted M −1 SNPs (Assumption 1), is given by σ2
εj = σ2

yj −σ
2
βj

. Using these expressions,

we can write the following ratio, appearing in Eq. 24, as a function of only heritability and the number of

causal SNPs.

σ2
βj

σ2
εj

=
h2
jσ

2
yj

M

σ2
yj −

h2
j
σ2

yj
M

(25)

=
h2
j

M − h2
j

. (26)

Plugging the square root of this last expression into Eq. 24 yields

d = 1
N

C∑
i=1

 C∑
j=i

Nj

√
h2
j

M − h2
j

γji

2

(27)

This expression for the power parameter shows that it is not affected by scaling due to phenotypic variance; 530

the parameter is only affected by the cross-study genetic correlation matrix, the SNP-based heritability per 531

28

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 13, 2016. ; https://doi.org/10.1101/048322doi: bioRxiv preprint 

https://doi.org/10.1101/048322
http://creativecommons.org/licenses/by-nc-nd/4.0/


study, and the sample size per study. 532

In case the number of studies is two, with sample size N in Study 1 and N in Study 2, SNP-heritability

h2
SNP, and a genetic correlation ρG between the two studies, we have that the meta-analysis Z statistic, of a

trait-affecting SNP k, is normally distributed with mean zero and

Var (Zk,C=2) = 1 + h2
SNP

M − h2
SNP

N (1 + ρG) .

Bearing in mind that the number of causal SNPs M � 1 under a highly polygenic model, while h2 ∈ [0, 1],

we have that under high polygenicity M − h2
SNP ≈M . Hence, an easy approximation of the variance of Zk is

given by

Var (Zk,C=2,high polygenicity) ≈ 1 + h2
SNP
M

N (1 + ρG) .

In the scenario where the cross-study genetic correlations equals one, we have that Var (Zk) ≈ 1+Ntotal
h2

SNP
M 533

for a trait-affecting haplotype block and Var (Zk) = 1 for a non-causal haplotype block, where N total = 2N. 534

These expressions are equivalent to the expected χ2 statistics from linear regression analysis reported in 535

Section 4.2 of the Supplementary Note to [37], as well as Equation 1 in [38] when assuming that confounding 536

biases and linkage disequilibrium are absent. 537

Adding genetically uncorrelated studies to the meta-analysis Here, we consider what happens to 538

statistical power of a meta-analysis of GWAS results from several sets of studies, with genetic correlations 539

between the studies within each set, but with no genetic correlation between the different sets. We first 540

consider a scenario with one set consisting of C − 1 studies and one other set consisting of only one study. 541

We then generalize to a setting with multiple sets, each set containing at least one study. We show that the 542

power parameter for a meta-analysis of several sets of studies with no genetic correlations between sets, can 543

be written as a sample-size weighted sum of the power parameters within the respective sets. 544

In case one has C−1 studies with associated CGR matrix, the associated Cholesky decomposition denoted

by Γ(C), and an additional study indexed by C, which is genetically uncorrelated to the C − 1 other studies,

then the C × C Cholesky decomposition of the full CGR matrix is given by

ΓG =

 Γ(C) 0

0> 1

 , (28)

where 0 denotes a column vector of zeros. 545

29

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 13, 2016. ; https://doi.org/10.1101/048322doi: bioRxiv preprint 

https://doi.org/10.1101/048322
http://creativecommons.org/licenses/by-nc-nd/4.0/


Now, the quantity d in Eq. 27 can be decomposed as follows.

d = 1
N

C−1∑
i=1

C−1∑
j=i

Nj

√
h2
j

M − h2
j

γji

2

+ 1
N

(
NC

√
h2
C

M − h2
C

)2

(29)

=
N(C)

N

1
N(C)

C−1∑
i=1

C−1∑
j=i

Nj

√
h2
j

M − h2
j

γji

2

+ NC
N

1
NC

(
NC

√
h2
C

M − h2
C

)2

(30)

=
N(C)

N
d(C) + NC

N
dC , (31)

where dC denotes the power parameter in Eq. 27 had only study C (with sample-size NC) be considered, and 546

d(C) the power parameter in Eq. 27 had only the first C − 1 studies (with total corresponding sample-size 547

N (C)) be considered. Hence, the power parameter in this scenario is the sample-size-weighted sum of the 548

power parameter of the first C − 1 studies jointly and the power parameter of the last study. 549

Eq. 31 can be generalized, to reflect a situation where there are P disjoint sets of studies, denoted by

C1, . . . , CP , with genetic correlation within each set, but no genetic correlation between the sets. In this

scenario, the power parameter d in Eq. 27 for a joint meta-analysis of all sets is given by

dC1∪C2∪...∪CP =
P∑
p=1

NCp
N

dCp , (32)

where NCp denotes the total sample size in study-set Cp and dCp the power parameter in Eq. 27 for the 550

meta-analysis of all studies in set Cp, and N the total sample size when aggregating over all study sets. This 551

equation states that power parameter for a meta-analysis of several sets of studies with CGR within each set, 552

but no CGR between sets, is a weighted average of the power parameters in the underlying sets. 553

The implication of Eq. 32 is simple yet powerful; when several sets of studies with genetic correlation 554

within each set, but no genetic correlation between sets, are considered for meta-analysis, one should not 555

meta-analyze sets C1, . . . CP jointly, but rather meta-analyze only the set of studies which has the largest 556

power parameter according to Eq. 27. 557

Only when dC1∪C2∪...∪CP > max {dC1 , . . . , dCP }, does the meta-analysis of all sets jointly have more 558

statistical power than a meta-analysis based on only one set of studies. 559

S2 Derivations Accuracy 560

This section extends the theoretical framework for meta-analytic power. Derivations are based on the same 561

assumptions as in S1 Derivations Power. We consider the predictive accuracy of the polygenic score (PGS) 562

including all S independent SNPs, with SNP-weights based on the meta-analysis results from the set of C 563
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study, in a hold-out sample indexed as ‘study’ C + 1. In this hold-out sample, we focus exclusively on the 564

theoretical R2 of the PGS; instead of considering NC+1 realizations of the stochastic processes underlying 565

the genotypes and treating these as fixed explanatory variables, we treat the phenotype, the PGS, and the 566

underlying genotypes as random variables, and use probability theory to derive R2. The hold-out sample is 567

also allowed a study-specific SNP-based heritability, h2
C+1, and genetic-correlations with the other C studies 568

(thus extending both the CGR matrix and its Cholesky decomposition to (C + 1)× (C + 1) matrices). 569

First, we write the phenotype in hold-out sample as a function of noise and the independent genetic 570

factors discussed in the preceding section. Second, we derive an expression for the PGS as a function of 571

the genetic factors. Third, using this representation we derive the theoretical covariance between the PGS 572

and the phenotype. Fourth, using the theoretical variances and covariance, we obtain an expression for the 573

theoretical R2. 574

Polygenic model Here, we derive an expression for the phenotype in the hold-out study as a function of 575

independent genetic factors and an expression for the phenotypic variance. 576

Aggregating across causal SNP set M and the noise, the phenotype in study C + 1 can be written as

follows:

YC+1 =
∑
k∈M

XC+1,kβC+1,k + εC+1, (33)

where, analogous to Eq. 15,

βC+1,k = σβC+1,k

C+1∑
i=1

γC+1,iηik, (34)

where ηik now indicates the i-th element of the now (C + 1)-dimensional vector of independent normal draws,

ηk, and where γC+1,i describes an element of the Cholesky decomposition ΓG of the (C + 1) × (C + 1)

cross-study genetic correlation matrix, incorporating the hold-out sample. Hence, the phenotype can be

written as

YC+1 = εC+1 +
∑
k∈M

(
XC+1,kσβC+1,k

C+1∑
i=1

γC+1,iηik

)
. (35)

Analogous to the scaling of SNPs in S1 Derivations Power here, with genotypes treated as random variables,
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we assume

E [XC+1,k] = 0 and Var (XC+1,k) = 1, for k ∈ S, and

Cov (XC+1,k, XC+1,l) = 0 for k 6= l.

Consequently, the phenotypic variance in the hold-out sample is given by

Var (YC+1) = Mσ2
βC+1

+ σ2
εC+1

. (36)

Polygenic score Here, we derive an expression for the PGS as a function of independent genetic factors, 577

an expression for the PGS variance, and its covariance with the phenotype in the hold-out sample. 578

Since each SNP in each study in the meta-analysis has been scaled such that its dot product equals the

sample size of that study, by analogy of the standard error of the SNP effect estimate in a single study, the

standard-error of the meta-analytic effect estimate β̂meta for study C + 1 can be approximated by

s.e.
(
β̂meta

)
∝ 1√

N
∝ 1.

Hence, the meta-analytic effect estimate is proportional to the meta-analysis Z statistic. Since any scalar

multiple of the PGS will not affect its R2 with respect to the phenotype, the Z statistics of the meta-analysis

can be applied as SNP weights directly. Therefore, the PGS in the hold-out sample, including all SNPs, is

given by

ŶC+1 =
∑
k∈S

XC+1,kZk. (37)

Plugging the expression for Zk from Eq. 21 into Eq. 37, and substitution of terms by means of the square

root of Eq. 26, the PGS is given by

ŶC+1 =
(∑
k∈S

XC+1,kvk

)
+

∑
k∈M

XC+1,k

C∑
i=1

ηik

C∑
j=i

Nj√
N

√
h2
j

M − h2
j

γji

 . (38)

Exploiting the fact that ηik, vk, and XC+1,k are all independent random variables, with mean zero and

variance one, we find that the variance of the PGS is given by

Var
(
ŶC+1

)
= S +M

C∑
i=1

 C∑
j=i

Nj√
N

√
h2
j

M − h2
j

γji

2

. (39)
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Again exploiting independence, zero mean, and unit variance of the respective terms, the covariance

between the PGS and the phenotype is given by

Cov
(
YC+1, ŶC+1

)
= E

[
YC+1ŶC+1

]
(40)

=
E
[(∑

k∈MXC+1,kσβC+1,k

∑C+1
i=1 γC+1,iηik

)
. . .

·
(∑

k∈MXC+1,k
∑C
i=1 ηik

∑C
j=i

Nj√
N

√
h2
j

M−h2
j
γji

)] (41)

= E

∑
k∈M

X2
C+1,kσβC+1,k

 C∑
i=1

γC+1,iη
2
ik

C∑
j=i

Nj√
N

√
h2
j

M − h2
j

γji

 (42)

= σβC+1,kM

 C∑
i=1

C∑
j=i

Nj√
N

√
h2
j

M − h2
j

γC+1,iγji

 . (43)

Theoretical R2 Here, we derive the theoretical R2 between the PGS and the phenotype in a hold-out 579

study. For intuition, we present the theoretical R2 for a scenario with one study for discovery and one study 580

as hold-out sample. 581

By combining Eq. 36, 39, and 43, the R2, defined as the squared correlation of the outcome and the PGS

in the hold-out sample, is now given by

R2
(
YC+1, ŶC+1

)
=

(
Cov

(
YC+1, ŶC+1

))2

Var (YC+1) Var
(
ŶC+1

)

=
σ2
βC+1,k

M2
(∑C

i=1
∑C
j=i

Nj√
N

√
h2
j

M−h2
j
γC+1,iγji

)2

(
Mσ2

βC+1
+ σ2

εC+1

)(
S +M

∑C
i=1

(∑C
j=i

Nj√
N

√
h2
j

M−h2
j
γji

)2) .

This expression can be simplified as follows:

R2
(
YC+1, ŶC+1

)
= h2

C+1
n

S
M + d

, (44)

where d is the meta-analysis power parameter given in Eq. 27 and numerator n is given by

n = 1
N

 C∑
i=1

C∑
j=i

Nj

√
h2
j

M − h2
j

γC+1,iγji

2

, (45)

where N is the total sample size in the meta-analysis. 582

The expression for R2 in Eq. 44 is such that, in addition to the parameters needed for the power calculation, 583
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one only needs the genetic correlation between the hold-out sample and the meta-analysis samples and the 584

heritability in the hold-out sample. 585

In case the number of studies for discovery is one (i.e., C = 1), with a total sample size N, and with a

genetic correlation ρG between the hold-out and discovery sample, we have that

R2
C=1 = h2

2ρ
2
G

Nh2
1

M−h2
1

S
M + Nh2

1
M−h2

1

.

As in S1 Derivations Power, we have that under high polygenicity M − h2
1 ≈ M . Therefore, an easy

approximation of R2 in this scenario is given by

R2
C=1,high polygenicity ≈ h2

2ρ
2
G

h2
1

S
N + h2

1
.

When ρ2
G = 1, S=M, and h2

1 = h2
2, we obtain a known expression for PGS R2 in terms of sample size, 586

heritability, and the number of SNPs [26]. In case ρ2
G = 1 and we consider the R2 between the PGS and 587

genetic value (i.e., the genetic component of the phenotype), both ρ2
G and h2

2 can be ignored, thereby making 588

the last expression equivalent to Equation 1 in [34]. 589

S3 Simulation Study 590

Using a set of three simulation studies, we assess the accuracy of the Meta-GWAS Accuracy and Power 591

(MetaGAP) calculator, which is based on the expressions for GWAS power and PGS R2 derived in S1 592

Derivations Power and S2 Derivations Accuracy respectively. Since the calculator is based on specific 593

assumptions regarding the data-generating process, an important question is whether the calculator still 594

provides accurate predictions of power and R2 when the underlying assumptions are violated. 595

Hence, each simulation study has a different underlying data-generating process. The first study, Simulation 596

1, assumes that rare variants have larger effects than common variants to such an extent that each causal 597

SNP, regardless of allele frequency, is expected to have the same R2 with respect to the phenotype. However, 598

the second study, Simulation 2, assumes that common variants have effects of the same magnitude as rare 599

variants (leading a common causal variant to explain a larger proportion of the phenotypic variation that a 600

rare causal variant). Finally, the third study, Simulation 3, also allows for differential R2 between SNPs and, 601

in addition, does not assume that SNP allele frequencies are uniformly distributed. Instead, the third study 602

assumes that there are more variants in the lower minor allele frequency bins than in the higher minor allele 603

frequency bins. 604

For each simulation study there are 100 independent runs. In each run data is simulated for C = 3 distinct 605
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Table 3. Design of Simulations 1–3.
Data-generating process* Notation Simulation 1 Simulation 2 Simulation 3
#studies for meta-analysis C = 3 idem idem
Index prediction sample C + 1 = 4 idem idem
Sample size per study {N1, N2, N3, N4} = {20k; 15k; 10k; 1k} idem idem
# Effective SNPs |S| = S = 100k idem idem
# Effective causal SNPs** |M| = M = 1k idem idem
SNP-based heritability*** h2

SNP ∈ {0%, 1%, . . . , 100%} idem idem
CGR*** ρG ∈ {0, 0.01, . . . , 1} idem idem
Allele frequency SNP k ∈ S fk ∼ U (0.05, 0.95) U (0.05, 0.95) Beta(0.35,0.35)****
Genotype k, individual i, study j Gjik ∼ Binom(2, fk) idem idem
Effect SNP k /∈M, j βjk = 0 idem idem
Effect SNP k ∈M, j βjk ∼ N (0, 1) idem idem
Correlation SNP effect k, j 6= h corr(βjk, βhk) = ρG idem idem
Residual i, j εji ∼ N

(
0, 1− h2

SNP
)

idem idem
Genetic value i, j GVji =

∑
k∈M

Gjik−2fk√
2fk(1−fk)

βjk
∑
k∈M(Gjik − 2fk)βjk

∑
k∈M(Gjik − 2fk)βjk

GV coefficient j cj =
√
h2

SNP/M
√

h2
SNP

1
Nj

∑Nj

i=1
GV 2

ji

√
h2

SNP
1
Nj

∑Nj

i=1
GV 2

ji

Phenotype i, j Yji = GVjicj + εji idem idem
Number of runs R = 100 idem idem

* Correlations between all random quantities are zero unless otherwise specified
** Set of effective causal SNPs M⊂ S, the set of effective SNPs
*** For each combination of values of h2

SNP and CGR simulation analyses are performed
**** The Beta(0.35,0.35) distribution fits the empirical distribution of allele frequencies well

samples for discovery as well as a fourth sample used as hold-out sample for prediction. The sample sizes 606

of the respective studies are given by N1 = 20, 000, N2 = 15, 000, N3 = 10, 000, and N4 = 1, 000, where 607

N4 denotes the sample size of the hold-out sample. An 11× 11 grid of equispaced values of h2 ∈ [0, 1] and 608

ρG ∈ [0, 1] is considered. In all simulations there are S = 100, 000 independent SNPs of which M = 1, 000 609

have a causal influence. A detailed description of the data-generating process in each simulation study can 610

be found in Table 3. 611

For every run, data is simulated in accordance with the underlying data-generating process. Next, a 612

GWAS is carried out in each of the three discovery samples. GWAS results are then meta-analyzed using 613

sample-size weighting. The fraction of causal SNPs reaching genome-wide significance in the meta-analysis is 614

the estimate of statistical power per SNP. The squared correlation between the meta-analysis-based PGS for 615

the hold-out sample and the corresponding phenotype is the estimate of the PGS R2. 616

Final estimates of power per causal SNPs and PGS R2 are obtained by averaging the estimates across the 617

runs. Fig. 6 shows the resulting estimates of power per causal SNP in the meta-analysis and the R2 of the 618

PGS for Simulations 1–3. In addition, the figure reports the power per causal SNP and R2 predicted by the 619

theoretical model. Inspection of these figures shows that there is no qualitative difference between the plots. 620

Moreover, when computing the root-mean-square error (RMSE) between the theoretical predictions and the 621

simulation-based estimates of power and R2, even for the most extreme departure from the assumptions 622
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Figure 6. Power and polygenic score R2 plots, with in each plot h2

on the x-axis and cross-study genetic correlation on the y-axis. The
first row shows predictions from the theoretical model. Subsequent rows show
estimates based on respective simulation studies. The first column shows power
per causal SNP. The second column the R2 of a polygenic score in a hold-out
sample. Above each plot, the root-mean-square error (RMSE) is reported for the
difference between predictions from the theoretical model and the simulation-based
estimates.
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underlying our theory (Simulation 3), the RMSE in power remains below 3% and the RMSE in R2 of the 623

PGS below 0.2%. 624

S4 Data and Quality Control 625

Genotype data In the bivariate and univariate genomic-relatedness-matrix restricted maximum likelihood 626

(GREML) analyses we use genotype data from the Rotterdam Study (RS; Ergo waves 1-4 sample denoted 627

by RS-I, Ergo Plus sample denoted by RS-II, and Ergo Jong sample denoted by RS-III), the Swedish Twin 628

Registry (STR; TwinGene sample), and the Health and Retirement Study (HRS). For each study, details on 629

the genotyping platform, quality control (QC) prior to imputation, the reference sample used for imputation, 630

and imputation software, are listed in Table 4. 631

To increase the overlap of SNPs across studies, we use genotypes imputed on the basis of the 1000 Genomes, 632

Phase 1, Version 3 reference panel [48]. We only consider the subset of HapMap3 SNPs available in the 1kG 633

data. By using this subset we substantially reduce the computational burden of the analyses, while preserving 634

overlap between the SNP-sets in the studies and still having a sufficiently dense set of both common and 635

more rare SNPs (# SNPs after QC ≈ 1 million).

Table 4. Genotyping and imputation
Study Genotyping platform SNP exclusions Subject exclusions* Imputation**

MAF < Call rate < HWE p-val. < Call rate < Software
RS-I Illumina 550K 0% 97.5% 10-7 97.5% MaCH/Minimac
RS-II Illumina 550K 0% 97.5% 10-7 97.5% MaCH/Minimac
RS-III Illumina 610K 0% 97.5% 10-7 97.5% MaCH/Minimac
STR HumanOmniExpress 12v1A 1% 97.0% 10-7 97.0% MaCH/Minimac
HRS Illumina Omni2.5 1% 98.0% 10-4 98.0% IMPUTE2
* Individuals are also excluded on the basis of sex mismatch, close relatives, duplicates and ancestry outliers (STR excepted), or
autosomal heterozygosity outliers (HRS excepted)
** All samples have been imputed against the 1000Genomes, Phase 1, Version 3 haplotypes of all ancestries.

636

Quality control Prior to QC, we extract HapMap3 SNPs (source: http://hapmap.ncbi.nlm.nih.gov/ 637

downloads/genotypes/hapmap3_r3/plink_format/, accessed: December 11, 2014) from the imputed geno- 638

type data of each study and convert the allele dosages to best-guess PLINK [49], [50] binary files by rounding 639

dosages using GCTA [31]. Subsequently, we perform QC on the best-guess genotypes in two stages. In the first 640

stage, we clean and harmonize the imputed genotype data at the study level. The cleaned and harmonized 641

study genotypes are then merged into a pooled dataset. The second round of QC is aimed at cleaning the 642

pooled dataset, on the basis of the samples for which the phenotype is available. Hence, the first QC stage is 643

phenotype-independent, whereas the second stage depends on the phenotype of interest. 644

In the first QC stage (prior to merging), we filter out the following markers and individuals: 645
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1. SNPs with imputation accuracy below 70%. 646

2. Non-autosomal SNPs. 647

3. SNPs with minor-allele frequency below 1%. 648

4. SNPs with Hardy-Weinberg-Equilibrium p-value below 1%. 649

5. SNPs with missingness greater than 5%. 650

6. Individuals with missingness greater than 5%. 651

7. SNPs that are not present in all studies. 652

8. SNPs whose alleles cannot be aligned across studies. 653

Prior to the first QC stage, we apply the following two additional steps in HRS: 654

1. Switch alleles to address a strand-flip error due to incorrect annotation. 655

2. Drop individuals of non-European ancestry. 656

After the first round of QC, a set of roughly 1 million overlapping SNPs, available for about 30,000 657

individuals is left. Panel I in Table 5 shows, for each study, the number of SNPs and individuals before and 658

after the first round of QC. 659

The second QC stage, applied to the pooled data set, comprises the following steps: 660

1. Keep only individuals for whom the phenotype of interest and all corresponding control variables are 661

available. 662

2. Drop SNPs with a minor-allele frequency below 1%. 663

3. Drop SNPs with Hardy-Weinberg-Equilibrium p-value below 1%. 664

4. Drop SNPs with missingness greater than 5%. 665

5. Drop individuals with missingness greater than 5%. 666

6. Keep only one individual per pair of individuals with a genomic relatedness greater than 0.025. 667

Since the data in STR consists of twins and having highly related individuals can bias estimates of SNP-based 668

heritability due to environment-sharing, we randomly select only one individual per twin pair after Step 1 in 669

the second QC stage. 670
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Panel II in Table 5 shows the sample size and the number of SNPs in the pooled dataset for each phenotype. 671

We only consider phenotypes that attain a sample size of at least 18,000 individuals after all QC steps. The 672

lowest sample size after QC is 19,184 for self-rated-health and the highest is 20,686 for CurrCigt. For all 673

phenotypes, the number of SNPs is slightly greater than one million.

Table 5. Number of individuals and SNPs
before and after quality control (QC) at the
study level (Panel I) and at the pooled level
(Panel II).

Panel I: study-level QC

Study N # SNPs
pre-QC post-QC pre-QC post-QC

RS-I 6,291 6,291 31,337,615 1,062,589
RS-II 2,157 2,157 31,337,615 1,062,589
RS-III 3,048 3,048 31,337,615 1,062,589
STR 9,617 9,617 31,326,389 1,062,589
HRS 12,454 8,652 21,632,048 1,062,589
Total 29,765 1,062,589

Panel II: pooled-level QC

Phenotype N # SNPs
pre-QC post-QC pre-QC post-QC

Height 29,765 20,458 1,062,589 1,052,572
BMI 29,765 20,449 1,062,589 1,052,600
EduYears 29,765 20,619 1,062,589 1,052,626
CurrCigt 29,765 20,686 1,062,589 1,052,524
CurrDrinkFreq 29,765 20,072 1,062,589 1,052,958
Self-rated health 29,765 19,184 1,062,589 1,053,190

674

Phenotype data For HRS, we use the RAND HRS data, version N, to obtain the phenotypes of interest. 675

These data consist of measurements from eleven waves. RS-I consists of four data waves (Ergo 1-4). In both 676

HRS and RS-I, data for some phenotypes are only available in a subset of the waves. RS-II, RS-III and STR 677

do not have multiple measures over time for the phenotypes considered in this study. Table 6 describes how 678

the phenotypes are constructed in each of the five studies. 679

As Table 6 shows, height, BMI, EduYears, and CurrCigt are measured quite consistently across waves. 680

The self-rated health phenotype is also measured quite consistently, although in RS respondents are asked 681

about health compared to members of the same age group, whereas a more absolute question is posed in STR 682

and HRS. The drinking measure CurrFreqDrink is also measured somewhat heterogeneously; the threshold for 683

what we treat as ‘frequent drinking’ is determined solely by how fine-grained the drinking frequency measure 684

is in the respective studies. 685
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Table 6. Study-level phenotype measures.
Phenotype Survey instrument in

RS-I RS-II RS-III STR HRS

Years of Constructed in line with [45] in all studies.
education
(EduYears)

Height Median height across Height Height Height Median height across
waves 1-4. waves 1-11

BMI Median BMI across BMI BMI BMI Median BMI across
waves 1-4. waves 1-11

Currently 1 if stated to be a current 1 if stated to be a Same as RS-II. 1 if stated to be a current 1 if responded positively to
smoking smoker of cigarettes in the current cigarette smoker. cigarette smoker. “currently smokes
cigarettes latest available measurement cigarettes?” in the latest
(CurrCigt) across waves 1-4. available measurement

across waves 1-11.

Currently 1 if indicated to “drink one 1 if indicated to “drink 1 if indicated to “have 1 if indicated to “have 1 if indicated to “drink
drinking or more alcoholic beverages one or more alcoholic drunk at least two drunk at least two alcohol once per week or
frequently per week” in the latest beverages per week”. alcoholic beverages alcoholic beverages more” in the latest available
(CurrDrinkFreq) available measurement a month during the in the past month”. measurement across waves

across waves 1-4. the past year.” 3-11.

Self-rated health Only available in wave 1: Same as RS-I. n.a. Rate their general health. Mode of the 4-point self-
“How is your general health Response categories re- reported health measure in
compared to members of coded such that 0=bad, HRS across waves 1-11.
your age group?” 1=not so good, Responses reverse-coded
Response categories reverse- 2=average, 3=good, such that 0=poor, 1=fair,
coded such that 0=worse, 4=excellent. 2=good, 3=very good, and
1=same, and 2=better. 4=excellent.

S5 GREML Estimation 686

Height, BMI, EduYears, and self-rated health are treated as quantitative traits. CurrCigt and CurrDrinkFreq 687

are treated as binary outcomes. In each study, (after aggregating across waves, if applicable) we regress 688

quantitative phenotypes on age, squared age, sex, and an intercept. The residuals from the regression are 689

standardized to have a sample-mean equal to zero and variance equal to one. For both binary and quantitative 690

traits, the aforementioned covariates are also included in the GREML estimation. In addition, in bivariate 691

GREML and pooled GREML estimation (i.e., considering multiple studies jointly), the intercept is replaced 692

by indicator variables for the respective studies, capturing study-specific fixed effects. Finally, 20 principal 693

components from the phenotype-specific genomic-relatedness matrix are added to the set of control variables 694

in the GREML estimation, in order to correct for population stratification [51]. 695

S6 GREML Results 696

Details per phenotype on sample size, univariate estimates of SNP-heritability, and bivariate estimates of 697

genetic correlation, stratified across studies, and cross-study averages, are provided in Table 7. Results 698

stratified across sexes are listed in Table 8. 699
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Table 8. GREML estimates of SNP-heritability (h2
SNP) and genetic correlation (ρG) across

sexes.
Phenotype N Estimates h2

SNP
1 Estimate ρG

1

Females Males Total Females Males Average2 Females–Males

Height 11,553 8,905 20,458 43.2% (3.0%) *** 45.1% (3.8%) *** 44.0% 0.981 (0.067) ***
BMI 11,542 8,907 20,449 22.1% (2.9%) *** 23.8% (3.8%) *** 22.8% 0.794 (0.122) *** †
EduYears 11,653 8,966 20,619 18.1% (2.9%) *** 18.9% (3.7%) *** 18.4% 0.832 (0.162) ***
CurrCigt 11,706 8,980 20,686 22.3% (7.1%) *** 26.7% (9.1%) *** 24.2% 0.543 (0.257) *** †
CurrDrinkFreq 11,312 8,760 20,072 14.1% (4.6%) *** 0.9% (6.0%) 8.3% 1.000 (2.068) *
Self-rated health 10,866 8,318 19,184 8.6% (3.1%) *** 10.8% (4.0%) *** 9.5% 1.000 (0.349) ***

* h2
SNP and/or genetic correlation > 0 at 10% sign. †genetic correlation < 1 at 10% sign. ‡genetic correlation < 0 at 10% sign.

** h2
SNP and/or genetic correlation > 0 at 5% sign. ††genetic correlation < 1 at 5% sign. ‡‡genetic correlation < 0 at 5% sign.

*** h2
SNP and/or genetic correlation > 0 at 1% sign. †††genetic correlation < 1 at 1% sign. ‡‡‡genetic correlation < 0 at 1% sign.

1 Standard errors between parentheses.
2 Sample-size weighted average of univariate estimates across studies.
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