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Abstract. Meta-analysis is a powerful statistical tool to combine re-
sults from a set of studies. When image data is available for each study, a
number of approaches have been proposed to perform such meta-analysis
including combination of standardised statistics, just effect estimates or
both effects estimates and their sampling variance. While the latter is the
preferred approach in the statistical community, often only standardised
estimates are shared, reducing the possible meta-analytic approaches.
Given the growing interest in data sharing in the neuroimaging commu-
nity there is a need to identify what is the minimal data to be shared
in order to allow for future image-based meta-analysis. In this paper, we
compare the validity and the accuracy of eight meta-analytic approaches
on simulated and real data. In one-sample tests, combination of contrast
estimates into a random-effects General Linear Model or non-parametric
statistics provide a good approximation of the reference approach. If only
standardised statistical estimates are shared, permutations of z-score is
the preferred approach.

1 Introduction

A growing literature is focusing on the lack of statistical power in neuroimaging
studies (see, e.g. [2]), feeding the debate on the validity and reproducibility
of published neuroimaging results. Meta-analysis, by providing inference based
on the results of previously conducted studies, provides an essential method to
increase power and hence confidence in neuroimaging.

A number of methods have been proposed for neuroimaging meta-analysis
(see [10] for a review). As the results of neuroimaging studies are usually con-
veyed by providing a table of peak coordinate and statistics, most of these meta-
analyses are restricted to combining coordinate-based information. Nevertheless
the best practice method is an Intensity-Based Meta-Analysis (IBMA) that com-
bines the effect estimates and their standard errors from each study [1].

In order for IBMA to be possible in neuroimaging, tools for sharing 3D vol-
umes obtained as a result of a statistical analysis are needed. Various efforts are
currently underway to facilitate sharing of neuroimaging data but emphasis is
usually on statistical maps (see, e.g. [2]). There are three evident approaches to
sharing summary data from each study i:

1. the contrast estimates Yi and contrast variance estimates S2
i .
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Fig. 1. False positive rates of the meta-analytic estimators under the null hypothesis
for p < 0.05.

2. the contrast estimates Yi.
3. the standardized statistical maps Zi.

Depending on how much data is shared, different strategies can be used
to combine the available results into a meta-analysis. While the first option is
the best practice, leading to statistically optimal estimates [4], working with
contrasts requires fastidious tracking of data, model and contrast vector scaling.
Given the growing interest in data sharing in the neuroimaging community, and
the relative easiness of sharing just (unitless) statistic maps, there is a need to
identify what is the minimal data to be shared in order to allow for future IBMA.

Here we compare the use of IMBA using 9 meta-analytic approaches: 2 ap-
proaches use Yi’s and S2

i ’s, 2 Yi’s only and 5 Zi’s. We compare the validity and
the accuracy of the eight meta-analytic approaches on simulated and real data
including 21 studies of pain in control subjects.

Section 2 describes the meta-analytic estimates along with the experiments
undertaken on simulated and real data to assert their validity. The results are
described in section 3. Finally, we conclude in section 4.

2 Methods

2.1 Theory

For study i = 1, . . . , k we have contrast estimate Yi, its contrast variance estimate
S2
i (i.e. squared standard error), its statistic map Zi and its sample size ni.

Combining contrast estimates and their standard error The gold standard ap-
proach is to fit contrast estimates and their standard error with a hierarchical
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)
/
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Table 1. Statistics for one-sample meta-analysis tests and their sampling distribu-
tions under the null hypothesis H0. Empirical null distributions are determined using
permutations with sign flipping.

general linear model (GLM) [4], creating a third-level (level 1: subject; level 2:
study; level 3: meta-analysis). The general formulation for the study-level data
is:

Y = Xβ + ε (1)

where β is the meta-analytic parameter to be estimated, Y = [Y1 . . . Yk]T is the
vector of contrast estimates, X is the k × p study-level matrix (typically just
a column of ones) and ε ∼ N (0,W ) is the residual error term. Eq. (1) can be
solved by weighted least square giving:

β̂ = (XTW−1X)−1XTW−1Y (2)

Var(β̂) = (XTW−1X)−1 (3)

In a meta-analysis random-effects (RFX) model, we have W = diag(σ2
1 +

τ2, . . . , σ2
k + τ2) where τ2 denotes the between-study variance. Approximating

σ2
i by S2

i and given τ̂2 an estimate of τ2 we obtain the statistics detailed in
Table 1 for one-sample tests. This reference approach will be referred to as
Mixed-effects (MFX) GLM. In a fixed-effects (FFX) GLM (i.e. assuming
no or negligible between-study variance), we have W = diag(σ2

1 . . . σ
2
k) where σ2

i

denotes the contrast variance for study i.

Combining contrast estimates If the S2
i are unavailable, the contrast estimates Yi

can be combined by assuming that the within-study variance σ2
i is roughly con-

stant (σ2
i ' σ2) or negligible in comparison to the between-study variance(σ2

i �
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τ2). Then W = diag(σ2
C , . . . , σ

2
C) where σ2

C is the combined within and between-
subject variance, i.e. σ2

C ' τ2 or σ2
C ' τ2 +σ2 (note, however, in this setting we

do not separately estimate τ2 or σ2). Under these assumptions, Eq. (1) can be
solved by ordinary least squares giving:

β̂ = (XTX)−1XTY (4)

Var(β̂) = (XTX)−1σ2
C (5)

Given σ̂2
C an estimate of σ2

C we obtain the statistics presented in Table 1 for
one sample tests. This approach will be referred to RFX GLM in the following.

As an alternative to parametric approaches, non-parametric inference [6, 9]
can be performed by comparing the RFX GLM T-statistic to the distribution
obtained “sign flipping”, i.e. randomly multiplying each study’s data by 1 or -1,
justified by an assumption of independent studies and symmetrically distributed
random error. This approach will be referred to as Contrast permutation.

Combining standardised statistics When only test statistic images are avail-
able there are a several alternate approaches available. Fisher’s meta-analysis
provide a statistic to combine the associated p-values [5]. Stouffer’s approach
combines directly the standardised statistic [13]. In [14] following [7], the author
proposed a weighted method that weights each study’s Zi by the square root of
its sample size [3,7]. This approach will be referred to as Weighted Stouffer’s.
All these meta-analytic statistics assumes no or negligible between-study vari-
ance and are suited only for one-sample tests. The corresponding statistics are
presented in Table 1. As suggested in [1], to get a kind of MFX with Stouffer’s
approach, the standardised statistical estimates Zi can be combined in an OLS
analysis. The corresponding estimate, referred as Z MFX is also provided in 1

With contrasts, non-parametric inference [6, 9] can be obtained by sign flip-
ping on the Zi’s. This approach will be referred to as Z permutation.

Approximations In practice, all of the methods based on contrast data have ap-
proximate parametric null distributions. The nominal distributions listed in Ta-
ble 1 are under the (unrealistic) assumption of homogeneous standard errors over
studies; even if all studies are ‘clean’ and conducted at the same center, variation
in sample size will induce differences in S2

i ’s. Further, even under homoscedas-
ticity, MFX GLM’s null is approximate due to iterative estimation of τ̂2.

2.2 Experiments

Simulations Due to the approximate nature of the sampling distributions,
we conduct simulations to evaluate the validity of each estimator under inho-
mogeneity of contrast variances S2

i and under the presence of non-negligible
between-study variance.
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Fig. 2. False positive rates of the RFX meta-analytic estimators under H0 for p < 0.05
as a function of the number of studies and the within-study variance.

To verify the validity of each estimator under the null hypothesis we esti-
mated the false positive rate at p < 0.05 uncorrected. For each meta-analysis,
we simulated Yi and S2

i such as:

Yi ∼ N (0,
σ2
i

ni
+ τ2) (6)

S2
i ∼

σ2
i

ni − 1
χ2
(ni−1) (7)

where σ2
i ∈ [1/2, 1, 2, 4] is the within-study variance, τ2 ∈ [0, 1/20] is the

between-study variance (fixed-effects models are strictly only appropriate for
τ2 = 0). For different number of studies per meta-analysis we used: k ∈ [5, 10, 25, 50],
and set the number of subjects per studies ni to vary across the common range of
sample sizes in neuroimaging studies. In each simulated meta-analysis we sim-
ulated one study with exactly 20, 25, 10 and 50 subjects. For the remaining
studies 1/4 of the ni’s were drawn from U(11, 20), 1/4 from U(26, 50) and the
remaining from U(21, 25), where U(a, b) is the discrete uniform distribution on
the integers a to b inclusive. A total of 32 parameter sets (4 σ2

i x 2 τ2 x 4 k) was
therefore tested and a total of 713 realisations were created.

Real data We then compared the 8 meta-analytic estimators to the reference
approach, MFX GLM, on a dataset of 21 studies of pain. Comparability of con-
trast estimates depends on equivalent scaling of the data, models, and contrast
vectors. Data scaling was consistently performed by FSL, setting median brain
intensity to 10,000; model were all created by FSL’s Feat tool; and contrasts
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Fig. 3. Histogram of the between-study variance to the sum of the between-subject
variance and the mean within-study variance.

were constructed to preserve units, with sum of positive elements equal to 1,
sum of negative elements equal to -1.

To investigate the presence of between-study variation, we computed the ratio
of the between-study variance (estimated using FSL’s FLAME [12]) to the total
variance (sum of between- and within-study variances), as suggested in [3]. Here
we use the average (across study) within-study variance as an estimate of within-

study variance in the denominator: τ̂2/(τ̂2 +
∑k

i=1 S
2
i ). Using this metric, voxels

with values close to 0 present negligible between-study variance and values close
to 1 outline appreciable study heterogeneity and the importance of RFX models.

Then for each estimator we compared the standardised meta-analytic statistic
to the z-statistic obtained with the reference approach. Overestimation of z-
statistic leads to overly optimistic detections while underestimation outline a
reduced sensitivity of the approach.

3 Results

3.1 Simulations

Fig. 1 displays the false positive rate at p < 0.05 obtained for the eight esti-
mators over all set of parameters in the absence and presence of between-study
variation. As expected, the fixed-effects meta-analytic summary statistics, i.e.
Fisher’s, Stouffer’s and weighted Stouffer’s estimates, are liberal in the presence
of study heterogeneity. The original Fisher’s approach is the most invalid. More
surprising, FFX GLM is also invalid with homogeneous studies. The explana-
tion is over-estimation of degrees-of-freedom (DF); while DF is computed as
(
∑
n− 1)− 1, under heteroscasdicity (from σi or ni) it will be much lower [11].

Z MFX and GLM RFX provide valid estimates, and the permutation estimates
are valid but tend to be conservative with greater variation in false positive rates.

The impact of the number of studies involved in the meta-analysis and of the
size of the within-study variance are investigated in Fig. 2. Permutation inference
is valid but conservative when 5 studies are used; this is because there are only
25 = 32 possible permutations and thus 1/32 = 0.03125 is largest attainable
valid P-value. All approaches perform equally as soon as 10 or more studies are
included in the meta-analysis.
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Fig. 4. Difference between the z-score estimated from each meta-analytic approach and
the reference z-score from MFX GLM as a function of reference z-score.

3.2 Real data

The histogram of the ratio of between-subject variance to total variance is dis-
played in Fig. 3. From this graph it is clear that for most of the voxels the esti-
mated between-study variance is greater than the within-study variance. We can
therefore suppose the presence of study heterogeneity (non negligible between-
study variance) in this collection of studies.

Fig. 4 plots the difference between the z-score estimated by each meta-
analytic approach against the reference z-score computed with MFX GLM. All
FFX statistics provide overly optimistic z-estimate suggesting, again, that study
heterogeneity is present in the studied dataset. Among the RFX meta-analytic
approaches, GLM RFX and contrast permutations provide z-scores estimate that
are equal or smaller than the reference. Z permutation provides slightly larger
z-scores between 1 and 3 (reference p-values between 0.16 and 0.0013) but is
mostly in agreement with the reference z-scores. On the other hand, Z MFX is
more liberal than the reference for z-score ranging from 3 to 5 (reference p-values
between 0.0013 and 2.9e-07) and more stringent for z-scores smaller than 5.
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4 Conclusion

We have compared eight meta-analytic approaches in the context of one-sample
test. Through simulations, we found the expected invalidity of standard FFX
approaches in the presence of study heterogeneity, but also of FFX GLM even
with no between-study variation. In a real dataset of 21 studies of pain, there was
evidence for substantial between-study variation that supports the use of RFX
meta-analytic statistics. When only contrast estimates are available, RFX GLM
was valid. This is in line with previous results on within-group one-sample t-tests
studies [8]. When only standardised estimates are available, permutation is the
preferred option as the one providing the most faithful results. Further investi-
gations are needed in order to assess the behaviour of these estimators in other
configurations, including meta-analyses focusing on between-study differences.
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