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ABSTRACT 

Background: Discovering patient subtypes and molecular drivers of a subtype are difficult and driving 
problems underlying most modern disease expression studies collected across patient populations. 
Expression patterns conserved across multiple expression datasets from independent disease studies are 
likely to represent important molecular events underlying the disease.  

Methods: We present the INSPIRE (INferring Shared modules from multiPle gene expREssion datasets) 
method to infer highly coherent and robust modules of co-expressed genes and the dependencies among 
the modules from multiple expression datasets. Focusing on inferring modules and their dependencies 
conserved across multiple expression datasets is important for several reasons. First, using multiple 
datasets will increase the power to detect robust and relevant patterns (modules and dependencies among 
modules). Second, INSPIRE enables the use of multiple datasets that contain different sets of genes due to, 
e.g., the difference in microarray platforms. Many methods designed for expression data analysis cannot 
integrate multiple datasets with variable discrepancy to infer a single combined model, whereas INSPIRE 
can naturally model the dependencies among the modules even when a large proportion of genes are not 
observed on a certain platform. 

Results: We evaluated INSPIRE on synthetically generated datasets with known underlying network 
structure among modules, and gene expression datasets from multiple ovarian cancer studies. We show 
that the model learned by INSPIRE can explain unseen data better and can reveal prior knowledge on 
gene functions more accurately than alternative methods. We demonstrate that applying INSPIRE to nine 
ovarian cancer datasets leads to the identification of a new marker and potential molecular driver of 
tumor-associated stroma - HOPX.  We also demonstrate that the HOPX module strongly overlaps with the 
genes defining the mesenchymal patient subtype identified in The Cancer Genome Atlas (TCGA) ovarian 
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cancer data. We provide evidence for a previously unknown molecular basis of tumor resectability 
efficacy involving tumor-associated mesenchymal stem cells represented by HOPX. 

Conclusions: INSPIRE extracts a low-dimensional description from multiple gene expression data, 
which consists of modules and their dependencies. The discovery of a new tumor-associated stroma 
marker, HOPX, and its module suggests a previously unknown mechanism underlying tumor-associated 
stroma. 

 

Keywords: Gene expression, variable discrepancy, low-dimensional representation, module, conditional 
dependence, latent variable, HOPX, tumor-associated stroma 

BACKGROUND 

Introduction 

As datasets increase in size, scope, and generality, the possibility to infer potentially relevant and robust 
features from data increases. Extracting a biologically intuitive low-dimensional representation (LDR) of 
data in an unsupervised fashion (i.e., based on the underlying structure in the data, not with respect to a 
particular prediction task) has become an important step to identify robust and relevant information from 
data. Development of unsupervised LDR learning methods is a very active area of modern research in 
machine learning and high dimensional data analysis1–3. Specific machine learning domains to see noted 
success recently include the development of deep learning algorithms3, where authors demonstrate 
enormous increases in performance on difficult tasks such as image and text classification4,5. Analogously, 
in cancer transcriptomics unsupervised LDR learning has seen success on very difficult problems, such as 
predicting patient outcome in breast cancer in the DREAM7 breast cancer prognosis challenge6. The 
winning team leveraged an unsupervised LDR extraction method on independent transcriptomic data 
from multiple cancer types, and significantly outperformed the other contestants in the challenge by a 
large margin7 along with all other known prognostic signatures in breast cancer.   

There are three main challenges with applying existing unsupervised LDR learning approaches to cancer 
transcriptomic data. First, any one study may not be generalizable in that there will be either technical (e.g. 
sample ascertainment) or experimental (e.g. batch effects) confounders that make an LDR of data 
extracted from an individual dataset in a naïve way not necessarily generalizable to other datasets. Second, 
identifying simple modules (co-expressed sets of genes) using methods such as WGCNA8 or simple 
clustering approaches9,10 will not necessarily capture complex dependence structures among the modules. 
Appropriately accounting for rich dependencies among these modules will improve their biological 
coherence. It has been shown that modeling the dependencies among modules improves the quality of the 
inferred modules from gene expression data11. Finally, and most importantly, most cancer transcriptomic 
data is within the  � � � regime (high-dimensional), i.e. we usually have tens of thousands of genes, but 
only hundreds of samples at most. This means that a successful method must include a very aggressive 
dimensionality reduction mechanism that allows generalization across datasets, since the potential for 
overfitting is high.  This implies that models that allow for arbitrarily rich dependencies among variables 
(such as those used in deep learning methods) cannot necessarily be applied without overfitting the data. 

We present a novel unsupervised LDR learning method, called INSPIRE (INferring Shared modules from 
multiPle gene expREssion datasets), to infer highly coherent and robust modules of genes and their 
dependencies on the basis of gene expression datasets from multiple independent studies (Figure 1). 
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INSPIRE is an unconventional and aggressive data dimensionality reduction approach that extracts highly 
biologically relevant and coherent modules from gene expression data, where the number of samples is 
much less than the number of observed genes – the norm for cancer expression data. INSPIRE addresses 
the three aforementioned challenges.  First, INSPIRE naturally integrates many datasets by modeling the 
latent (hidden, unobserved) variables in a probabilistic graphical model12, where the latent variables are 
modeled as a Gaussian graphical model, the most commonly used probabilistic graphical model for 
continuous-valued variables (Figure 1). Each observed gene is treated as a noisy and independent 
observation of these underlying latent variables. By jointly inferring the assignment of observed genes to 
latent variables and the structure of the Gaussian graphical model among these latent variables, we can 
naturally capture both modules and their dependencies that generalize across multiple datasets (Figure 1). 
This addresses the issue with generalizability of modules across datasets. Second, our method naturally 
models the dependencies among the modules, which allows us to capture more complicated dependencies 
among pathways, cell populations, or other biologically driven modules than naïve approaches such as 
hierarchical clustering. In a previous study11, we have shown that modeling the dependencies among 
modules directly improves the biological coherence of the modules we learn, and their generalizability 
across datasets. Finally, by modeling the data as noisy observations from a much lower dimensional 
subset of modules, we are able to overcome the curse of dimensionality, and have better power to both 
learn the modules and their dependencies, even when the number of genes is much greater than the 
samples size. Through extensive simulated and real data analysis (Figure 2) we demonstrate our approach 
is a great practical tradeoff between model complexity and model parsimony when understanding 
biological pathways characterizing the cancer transcriptome across ovarian cancer patients. 

When we apply INSPIRE to nine gene expression datasets from ovarian cancer studies (Figure 2C), we 
identify a novel tumor-associated stromal marker HOPX, which additional analyses suggest may be a 
molecular driver for a conserved module in the network that contains known epithelial-mesenchymal 
transition (EMT) inducers and is significantly associated with percent stroma in ovarian tumors from The 
Cancer Genome Atlas (TCGA). This module is one of the two modules that best represent one of the 
predominant subtypes of ovarian cancer, ‘mesenchymal’ subtype identified in the TCGA ovarian cancer 
study13. These multiple lines of evidence suggest that HOPX may be a great target for further functional 
validation to understand the maintenance of tumor-associated stroma along with understanding the 
clinically relevant ‘mesenchymal’ subtype in ovarian cancer. 

The implementation of INSPIRE, the data used in the study, and the resulting INSPIRE models are freely 
available on our website14. 

Literature overview 

INSPIRE extracts a low-dimensional representation (LDR) of multiple expression datasets, by fitting a 
probabilistic model with latent variables and their dependencies into the input data (Figure 1). Previous 
approaches can be divided into two categories; 1) supervised methods that extract an LDR that is 
discriminative of different class labels in the training samples, and 2) unsupervised methods (including 
INSPIRE) that extract an LDR purely based on the underlying structure of the data. 

A supervised method aims to extract an LDR that is discriminative between class labels in a particular 
prediction problem.  Several authors developed methods that use known pathways or biological networks 
along with gene expression data to extract an LDR ( “pathway markers”) whose activity is predictive of a 
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given phenotype15–18. Chuang et al.15 proposed a greedy search algorithm to detect subnetworks in a given 
protein-protein interaction (PPI) network, such that each subnetwork contains genes whose average 
expression level is highly correlated with class labels (metastatic/non-metastatic) measured by the mutual 
information. The authors claim that subnetwork markers outperform individual genes for predicting breast 
cancer metastasis. Lee et al.16 developed a similar algorithm to select subsets of genes from MSigDB 
(Molecular Signatures Database) C2 (curated) pathways that give the optimal discriminative power for 
the classification of leukemia/ breast cancer phenotypes. Both Chuang et al.15 and Lee et al.16 determined 
LDR as the average expression levels of genes in each subnetwork and pathway, respectively. Taylor et 
al.17 proposed a similar approach that uses a PPI network, but instead of computing the LDR by averaging 
gene expression levels within a subnetwork (or a pathway), they compute the expression difference 
between a hub protein and all of its neighbors in the PPI network. Ravasi et al.18  used a similar approach 
to extract subnetwork features as hub TFs from TF PPI networks in human and mouse. Besides the 
methods that infer an LDR by averaging (or aggregating) expression levels of subsets of genes, there have 
been methods to select a subset of genes. For example, Herschkowitz et al.19 used 106 genes selected by 
the intrinsic analysis for a classification problem (122 mouse breast tumors/232 human breast tumors). 
The intrinsic analysis aims to select genes that are relevant to tumor classification by identifying genes 
whose expression show relatively low within-group variation and high between-group variation for 
known groups of tumors in each of human and mouse datasets19. Although supervised methods would be 
useful to infer an LDR relevant to a particular prediction problem, there are several disadvantages over 
unsupervised methods. First, we need to have a particular prediction problem with class labels, which 
may not be available. Second, they usually rely on the assumption that the same genes are differentially 
expressed in all samples within a class, which is unlikely to be true in heterogeneous diseases such as 
cancer. 

On the other hand, unsupervised LDR learning methods extract an LDR without knowing about the class 
labels, while the learned LDR can be used for classification purposes later. One of the most commonly 
used methods is the principal component analysis (PCA)20 which sequentially extracts most of the 
variance (variability) of the data. However, each PC (principal component - or eigengene) is a linear 
combination of all genes not a small subset of genes, which makes it difficult to biologically characterize 
it. Clustering algorithms21, on the other hand, generate explicit gene clusters, and they define an LDR as a 
set of mean or median expression levels of the genes in each cluster. In the seminal work by 
Langfelder and Horvath (a technique called WGCNA)8, the adjacencies retrieved from Pearson’s 
correlation of the expression levels of the gene pairs is transformed into topological overlap measure 
(TOM), namely network interconnectivity that takes into account the shared neighbors of each gene pair, 
which is then used in a hierarchical clustering to define modules. While WGCNA8 defines its similarity 
measure (i.e., TOM) based on the marginal correlations between genes, other authors have used  partial 
correlations (conditional dependencies) to model gene relationships11,22,23. Chandrasekaran et al.22 
incorporated latent variables into a Gaussian graphical model among individual genes, while Celik et al.11 
divided variables into modules and learned a module-level dependencies (module graphical lasso - MGL). 
He et al.23 defined an LDR as a set of latent factors, and modeled each latent factor as a linear 
combination of genes (structured latent factor analysis - SLFA). While similar to Celik et al.11 in 
modeling a higher-level dependency structure, He et al.23 does not form explicit clusters. Finally, Cheng 
et al.7 identified 12 metagenes, each of which is a weighted average of the genes that are co-expressed 
across multiple cancer types. They showed that the prediction model they derived based on these 
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metagenes is highly predictive of survival in breast cancer within the context of the DREAM7 Challenge, 
leading to the top scoring model6. 

There are three major differences between INSPIRE and previous approaches. First, none of the previous 
methods to learn LDR can accommodate multiple datasets containing different sets of genes (e.g., 
different microarray platforms), while INSPIRE directly addresses this challenge. One naïve way to run 
previous methods on datasets that contain different sets of genes with a partial overlap is to treat the 
values on the genes that are not observed in each dataset as missing data. We could use missing value 
imputation techniques to fill in missing data and learn a single statistical model from the imputed data. 
However, most imputation methods perform poorly when a large number of values are missing (Figure 1). 
We demonstrate that INSPIRE outperforms the imputation-based approaches (methods named ‘Imp--’ in 
Figures 3 and 4). Second, INSPIRE uses a novel probabilistic model that can describe more complex 
relationships (i.e., conditional dependencies) than pairwise marginal correlations among genes. We show 
that INSPIRE outperforms a correlation-based method, WGCNA. Finally, INSPIRE uses a novel learning 
algorithm to make use of all samples in multiple datasets, which increases the statistical power to detect a 
statistical robust model (Figure 1). Our extensive experiments show that these key properties of INSPIRE 
lead to biologically more relevant and statistically more robust features than alternative methods. 

RESULTS 

Overview of the INSPIRE framework 

INSPIRE extracts a low-dimensional representation (LDR) from multiple gene expression datasets by 
inferring k latent (unobserved) variables and the dependencies among the latent variables captured by a 
probabilistic graphical model (Figure 1). INSPIRE uses a standard iterative learning algorithm to optimize 
the joint log-likelihood objective function, Equation (1), by iteratively updating its model parameters until 
convergence (see Methods for details). INSPIRE iterates the following three steps until convergence: i) 
inferring the values of latent variables with all the other parameters held fixed, as described in Equation 
(3), ii) assigning genes into latent variables as described in Equation (4), and iii) learning a network of 
latent variables as described in Equation (5). In each iteration, latent variables are computed based on the 
current assignment of genes into modules and the estimated dependency network among the latent 
variables, as described in Equation (3). If there are no dependencies among latent variables, each latent 
variable would be an average expression level of the genes in the module. Thus, latent variables can be 
viewed as module centers adjusted for the estimated dependency network among latent variables.  

A set of genes assigned to the same latent variable is referred to as a module (Figure 1). To focus on 
identifying a parsimonious, independent set of modules from high-dimensional gene expression data, we 
design our model such that each gene is assigned to only one module, although it would be a simple 
extension to assign each gene to multiple modules. However, when we implemented an extension of 
INSPIRE which allows each gene to be assigned to more than one module, the functional coherence of 
modules significantly decreased (Figure S7). This could be because the model with genes assigned to 
multiple modules has a significantly increased number of parameters. 

The number of modules k is determined based on the standard Bayesian Information Criterion (BIC), 
although users can determine k in a different way depending on the problem. INSPIRE framework 
simultaneously infers the assignment of genes into k latent variables and the dependency network among 
k latent variables by fitting the probabilistic model across multiple gene expression datasets that can 
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potentially have different sets of genes (e.g., different platforms) (see Methods). The INSPIRE model 
provides a biologically intuitive LDR model for gene expression data where many biological networks are 
modular and genes involved in similar functions are likely to be connected more densely with each other. 
How genes are organized into modules and how these modules are connected with each other would 
provide improved insights into the underlying disease process, as discussed below. 

After evaluating INSPIRE by comparing with alternative methods on simulated data and a small set of 
genome-wide expression datasets (Figure 2A-B), we applied INSPIRE to many ovarian cancer expression 
datasets, which lead to a novel marker and potential driver of tumor-associated stroma (Figure 2C). 

INSPIRE learns underlying modules and their dependencies from simulated data more accurately 
than 13 other methods 

We first evaluate INSPIRE on data simulated using a probabilistic model of (unobserved) latent variables, 
gene expression levels, and the dependencies among the latent variables captured by a probabilistic 
graphical model (Figure 1). To simulate the situation in which we are given expression datasets that 
contain different sets of genes (e.g., different microarray platforms), we generated two datasets (Dataset1 
and Dataset2) with the same genes and included all genes in Dataset1 and varying percentages of the 
genes in Dataset2 such that varying numbers of genes are present in the overlapping portion of the 
datasets. This leads to three settings (Figure S1A, Figure 3A (ii)-(iv) left): (ii) 60% of the genes are 
present in Dataset2, (iii) 80% of the genes are present in Dataset2; and (iv) all genes are present in 
Dataset2. The total number of genes in each of these settings is 250, and the number of modules is 10, 
with an average of 25 genes in a module datasets (see Methods for details of synthetic data generation). 

We compare INSPIRE with the following five state-of-the-art methods: i) GLasso - standard graphical 
lasso24 that learns a gene-level conditional dependence network with no LDR or module assumption; ii) 
UGL - unknown group �� regularization25 that learn sparse block-structured inverse covariance matrices 
with unknown block structure; iii) SLFA - structured latent factor analysis23 that learn an LDR of the data 
as well as the relationship between the latent factors; iv) WGCNA - weighted gene co-expression 
network analysis8 that allows to define modules based on a special metric derived from the correlations of 
the gene pairs; v) MGL - module graphical lasso11 which simultaneously learns an LDR and the 
conditional dependencies among the latent variables (Table 1). Since all those methods work on a single 
dataset, to enable the application of these methods to multiple datasets with variable discrepancy, we 
adapt the input data to those five methods in three ways (Figure S1B): 1) using only Dataset1 that 
contains all genes, 2) using data on the genes that are present in both datasets (blue-shaded region in 
Figure 1), and assigning the rest of the genes to the learned modules based on the Euclidean distance 
between the gene’s expression and the expression of each of the modules, and 3) imputing missing values 
in Dataset2 and using both datasets as if they were a single dataset. This leads to 13 methods (Table 1). 
InterMGL, ImpMGL and INSPIRE represent different ways of handling missing data: INSPIRE uses a 
novel learning algorithm that does not require the missing portion when learning; ImpMGL imputes 
missing variables in the datasets before learning; and InterMGL ignores missing variables in the datasets. 
We run each method on 20 different instantiations of the synthetic data, and present the average results 
with � -values of significance of the difference with INSPIRE (Methods; Figure 3). We evaluated 
INSPIRE and 13 competitors in terms of how well they explain unseen data measured by the test-set log-
likelihood, gene-module assignment accuracy, and the module dependency network accuracy. In order to 
make comparison with WGCNA variant methods possible, we applied a standard graphical lasso 
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algorithm to the modules learned by a WGCNA variant method. INSPIRE, SLFA and MGL are iterative 
algorithms with non-convex objective functions, so their results may depend on the initialization of the 
parameters. To rule out the possibility to make a conclusion based on a particular set of initial parameters, 
we performed the variants of those algorithms multiple times with different starting points (see Methods 
for details on initialization). 

Table 1. Methods we compared with the INSPIRE framework: To our knowledge, there are no 
published methods for learning modules and their dependencies that can handle variable discrepancy. We 
adapted the following five state-of-the-art methods that can run on a single dataset: GLasso - standard 
graphical lasso24, UGL - unknown group ��  regularization25, SLFA - the structured latent factor 
analysis23, WGCNA - weighted gene co-expression network analysis8, and MGL - module graphical 
lasso11 (see Methods for details). We adapted the input datasets such that we can apply these methods to 
datasets with variable discrepancy (Figure S1B):  ‘---1’ - learning a model from only Dataset1 that 
contains all genes; ‘Inter---’ - learning a model from the data on the overlapping genes (blue-shaded 
region in Figure 1) and assigning the rest of the genes to learned modules by using the �-nearest neighbor 
approach (i.e., based on the Euclidean distance between the gene’s expression and the expression of each 
of the modules), and ‘Imp---’ - imputing missing values in Dataset2 and learning a model from the 
imputed data (see Methods for details on imputation) (Figure S1B). These adaptations lead to 13 
competitors: 1) GLasso1, 2) ImpGLasso, 3) UGL1, 4) ImpUGL, 5) WGCNA1, 6) InterWGCNA, 7) 
ImpWGCNA, 8) SLFA1, 9) InterSLFA, 10) ImpSLFA, 11) MGL1, 12) InterMGL, and 13) ImpMGL. In 
the experiments on synthetic data, we compared to all 13 methods, while in the experiments with two 
genome-wide ovarian cancer gene expression datasets which we will discuss in the subsequent sections, 
we only used the methods that are scalable (see Figure S9) These methods are indicated by the purple-
shaded region in the table. The ‘Inter---’ method is not applicable to GLasso and UGL, because GLasso 
and UGL learn a network of genes, not modules, and it is not obvious how to connect the genes that are 
present only in Dataset1 to the learned network. We do not consider an adaptation that applies the 
methods to Dataset2 only (‘---2’). This is because, other than the genes in the overlap, Dataset2 has no 
genes (in the synthetic data experiments) or a very small number of genes (in the experiments with 
genome-wide expression data), which makes ‘---2’ that uses only the samples from Dataset2 unlikely to 
outperform ‘Inter---’ that uses all samples. 

 

Method Description 
Different ways to deal with missing 

data  
Scalability 

(see Figure S9) 
---1 Inter--- Imp--- 

GLasso standard graphical lasso24 GLasso1 X ImpGLasso No 

UGL unknown group �� regularization25 UGL1 X ImpUGL No 

SLFA structured latent factor analysis23 SLFA1 InterSLFA ImpSLFA No 
WGCNA weighted gene co-expression 

network analysis8 
WGCNA

1 
InterWGC

NA 
ImpWGCNA Yes 

MGL module graphical lasso11 MGL1 InterMGL ImpMGL Yes 
 

Test log-likelihood. The test log-likelihood that measures how well the learned models fit unseen data is 
a widely used evaluation metric on probabilistic models11,25,26. We generated test data � containing 100 
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samples, which was created in the same way as the training data � (see Methods). The 13 learned models 
are tested based on the same unseen data �. Each method selects its own regularization parameter using 
the standard cross-validation (CV) test27 selecting � with the best average CV test log-likelihood 
measured on Dataset1 in � (see Methods). We used the test set of Dataset1 to compute the test log-
likelihoods for all methods since Dataset1 contains all genes. Figure 3A shows the average negative test 
log-likelihood per sample (lower the better) in (i) - (iv): (i) shows the methods that use only Dataset1, and 
(ii)-(iv) show Imp---, Inter--- and INSPIRE methods that use Dataset2 as well with varying numbers of 
genes in Dataset2 (Figure S1A). Each bar (except INSPIRE) displays a �-value from Wilcoxon signed 
rank test that measures how significantly INSPIRE is better than the corresponding method across 20 
instantiations of the data (see Methods). The bars for the methods that use only Dataset1 display three �-
values, each for comparison to INSPIRE in (ii) - (iv). INSPIRE has significantly better test log-
likelihoods than the methods that utilize one dataset (� 
  2.4 � 10��) and all the other 8 methods that 
can utilize multiple datasets (� 
  4.3 � 10��). This indicates that making use of multiple datasets by 
using INSPIRE has a great potential to increase the chance to infer the true underlying model. In (iv), 
ImpMGL, InterMGL and INSPIRE perform similarly as expected, and they are better than the other 
methods that utilize multiple datasets. The methods that utilize only Dataset1 (i) achieve worse average 
test log-likelihood than their multiple-dataset counterparts (ii)-(iv); and the test log-likelihood of most 
methods increase with the increasing number of overlapping variables, from (i) to (iv).  

Module recovery. We then evaluated based on how well important aspects of the true underlying model 
are recovered by each method. We first checked whether pairs of genes that are assigned to the same 
module in the true model are in the same modules in the learned model. We used the rand index28 that 
measures how well pair of genes agree on being in the same or different modules between two models - 
the true model and a learned model. The rand index of 0 means that none of the genes agree on being in 
the same/different groups, while 1 means a perfect recovery of the modules. The evaluation based on 
module recovery is not applicable for GLasso1 and ImpGLasso, since they do not learn modules. As 
shown in Figure 3B, the module recovery performance of INSPIRE is significantly better than its 13 
competitors. INSPIRE has significantly higher rand index than (i) the methods that utilize a single dataset 
(� 
  4.9 � 10��), and (ii)-(iv) the methods that use multiple datasets (� 
  6.6 � 10��). 

Module dependencies. Then, we evaluated based on how well the inferred modules dependencies by 
each method are consistent with those in the true model. Since it is not clear how to map a module in the 
true model to the corresponding module in the learned model, we converted each module-based network 
model into the equivalent gene-based probabilistic model, using a well-established method11. It is not 

enough to get only high precision or recall, so we used the F-measure � 2 ���	
��	
�

���	

�	
�
 as an evaluation 

metric. As shown in Figure 3C, INSPIRE has the highest average F-measure that measures the accuracy 
of the dependencies learned by each method in all (i)–(iv). INSPIRE is significantly better than methods 
that utilize a single dataset (� 
  2.4 � 10��) and other methods that use multiple datasets (� 
  2.7 �10��). 

The methods that use only one dataset tend to have lower average rand-index (modules) and F-measure 
(module dependencies) than their multiple-dataset counterparts; and as the number of genes shared across 
datasets increases, the overall performance of the methods that utilize multiple datasets increases. This 
indicates that combining multiple datasets reveal underlying modules and their dependencies better, and 
INSPIRE is better than 13 alternative approaches in revealing underlying model. 
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Evaluation on two genome-wide ovarian cancer expression datasets 

Next, we evaluate INSPIRE based on the statistical robustness and biological relevance of the learned 
modules on two publicly available ovarian cancer gene expression datasets29 (Figure 4A): 1) OV1 that 
contains 18,113 genes and 28 patients (Affy U133 Plus 2.0 platform), and 2) OV2 that contains 8,331 
genes in a total of 42 patients (Affy U95Av2 platform) (see Methods; Table S1). 

We compared INSPIRE with six alternative methods that are scalable to genome-wide data (Table 1; 
Figure S9).  The runtime of all the other methods when p=3, 000 is >10 hours, which means that running 
these methods on genome-wide data would be too slow to be used. 8,234 genes are presented in both 
datasets (rows in the blue-shared region in Figure 4A). As a preprocessing step, we standardized each 
dataset so that each gene has zero mean and unit variance across the samples within each dataset (See 
Methods). We used k = 91, where k is the number of modules, as selected by BIC on the k-means 
clustering applied to the imputed data matrix. We also present the results when k = 182 based on the 
biological plausibility of having on average 100 genes per module, in order to show that the 
outperformance of INSPIRE does not depend on one specific k value (Figure S2).  

In the next three subsections, we show the results of the following evaluations (Figure 2B): 1) how well 
the INSPIRE model fits unseen data measured by test log-likelihood, 2) the statistical significance of the 
overlap between the learned modules (i.e., gene-module assignment) and known functional gene sets, and 
3) how well the learned modules reflect putative regulatory relationships between transcription factors 
(TFs) and targets based on the ChEA database30.  

INSPIRE learns a statistically more robust low-dimensional representation model than alternative 
approaches 

We first evaluated the learned low-dimensional representation (LDR) model based on the test-set log-
likelihoods that measure how well the learned model can explain left-out test data in OV1 through the 
standard 5-fold cross-validation (CV) tests (see Methods). We used the test set of OV1 for computing the 
test log-likelihoods for all compared methods since OV1 contains almost all of the genes contained by 
either of the datasets. In Figure 4B, the best average test log-likelihood per sample across the tested λ 
values is plotted for each method. As can be seen in Figure 4B, INSPIRE achieves better test log-
likelihood than six alternative methods, WGCNA1, InterWGCNA, ImpWGCNA, MGL1, InterMGL and 
ImpMGL (Table 1) for both k = 91 chosen by the BIC score (left panel), and k = 182, an alternative k 
value that results in modules with average size of 100 (right panel). Since MGL and INSPIRE may 
depend on the initialization of the model, the standard deviation across 10 runs of those methods with 
different initializations are represented by the error bars on the bottom panel in Figure 4B.  

 

INSPIRE modules are more significantly enriched for functional gene sets than alternative methods  

INSPIRE uses a biologically intuitive low-dimensional representation (LDR) model for expression data, 
in which genes are assigned to k modules, and each module can be interpreted as biological processes 
performed by the genes in that module.  Thus, whether each module is enriched for the genes that are 
known to be in the same functional categories can be a way to evaluate the biological relevance of the 
LDR inferred by INSPIRE. Here, we evaluated INSPIRE based on whether the learned modules are 
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significantly enriched for known pathways from MSigDB31. We compared INSPIRE with six alternative 
methods, WGCNA1, InterWGCNA, ImpWGCNA, MGL1, InterMGL and ImpMGL (Table 1), using k = 
91 chosen by the BIC score and k = 182, an alternative k value that results in modules with average size 
of 100. For each method, we chose λ that achieves the best CV test log-likelihood, a standard technique27.  

We considered 1,077 GeneSets (pathways) from the C2 collection (curated gene sets from online pathway 
databases) of the current version of the MSigDB31 based on Reactome32, BioCarta and KEGG33. We 
excluded the pathways based on computational predictions from this collection. We computed the 
significance of the overlap between each GeneSet and each module measured by the Fisher’s exact test �-
value, followed by the Bonferroni multiple hypothesis correction. Figure 4C and Figure S2A show the 
results of the functional enrichment analysis for k = 91 (chosen based on BIC) and k = 182, respectively. 
In each scatter plot, a larger portion of the dots lie above the diagonal, which implies that the INSPIRE 
modules are more significantly enriched for known pathways than those inferred by the alternative 
approaches. This indicates that the INSPIRE is better at identifying biologically coherent modules based 
on prior knowledge more accurately than the alternative methods. 

 

INSPIRE modules are more significantly enriched for putative targets of the same transcription 
factor than alternative approaches 

As an alternative way to evaluate the biological coherence of the learned modules, we checked how 
significantly the modules are enriched for the genes that have been shown to be bound by the same 
transcription factors (TFs). The ChEA database30 provides a large collection of TF-target interactions 
captured in previously published ChIP-chip, ChIP-seq, ChIP-PET and DamID (referred herein as ChIP-
X) data. For each of 107 TFs in the ChEA database30, we computed the significance of the overlap 
between each module and each TF’s putative targets from ChEA database measured by the Fisher’s exact 
test �-value followed by the Bonferroni correction. Figure 4D and Figure S2B show the results of our 
ChEA enrichment analysis for k = 91 (chosen based on BIC) and k = 182, respectively. In each scatter 
plot, a much larger portion of the dots lie above the diagonal, which indicates that INSIRE modules are 
biologically more coherent, i.e., more significantly enriched for putative targets of the same TF. In Figure 
4D and Figure S2B, we indicate with a blue dot a TF that resides in the same module as the module that is 
enriched for the TF’s putative targets. We do not expect all dots to be blue-colored (i.e., all TFs being in 
the same modules as their putative targets), because the protein level of TF may not be correlated with its 
mRNA expression level. It is still interesting to see that INSPIRE modules are more significantly 
enriched for the genes that have been shown to be bound by the same TFs in ChIP-X data. 

 

Application to nine genome-wide ovarian cancer expression datasets 

Encouraged by the in-depth evaluation described above, we applied INSPIRE to nine expression datasets 
that comprise 1,498 ovarian cancer patient samples downloaded from the TCGA project website and the 
Gene Expression Omnibus (GEO)34

 (Figure 2C). This corpus of data consists of publically available 
transcriptomic characterizations of ovarian cancer across nine distinct studies where gene expression data 
collected in different studies come from distinct platforms. This data is therefore a perfect corpus to apply 
the INSPIRE method for a variety of reasons. First, there is a sufficient sample size across studies to 
resolve distinct modules that are robust across datasets. Second, our method will outperform more naïve 
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approaches by imputing missing genes through leveraging shared structure across the data, and will 
therefore increase the resolution to detect robust modules. Finally, there are known subtypes in ovarian 
cancer as identified by the TCGA ovarian cancer study13, and we anticipate that our approach will not 
only re-identify these subtypes based on the expression of our inferred modules, but will also further 
resolve potential molecular drivers of these subtypes through ancillary analyses of the INSPIRE inferred 
modules. These ancillary analyses are described below. We repeated our analyses for this application 
using varying module counts � � �90, 129, 181� that correspond to the average number of 200, 140 and 
100 genes respectively in each module and for varying sparsity tuning parameters � � �0.01, 0.03, 0.1�; 
and we observed that all results were highly robust for the varying values of � and �. We reported results 
from our biological analysis for � � 90, as selected by BIC for the k-means clustering applied to the 
imputed data matrix, and � � 0.1 which leads to the sparsest network of modules, given that sparsity is of 
key importance in learning and the interpretation of a high-dimensional conditional dependence network.  

We evaluated the learned low-dimensional representation (LDR) consisting of 90 modules and the 
corresponding latent variables based using three evaluation metrics: 

1) We performed gene set enrichment analysis to characterize each module based on its associated genes 
(see Table S3 for the gene set enrichment analysis results together with the significance). 

2) We analyzed the associations between the learned latent variables, each representing a module, and six 
important phenotypes in cancer, including resectability which was defined by the residual tumor size after 
surgery, survival, and four histopathological phenotypes manually curated based on the histopathology in 
the TCGA ovarian cancer data (see Table S3), and we used inferred INSPIRE latent variables as features 
for predicting those phenotypes. Figure 5A shows the association between the learned latent variables 
with the six important phenotypes, and Figure 5B compares INSPIRE to the following based on the 
prediction of those phenotypes: i) principal component analysis (PCA)20 – an unsupervised LDR method; 
ii) subnetwork analysis15 – a supervised LDR method; and iii) all genes when no LDR is learned. The 
histopathological phenotypes are provided as a resource for this paper (Table S4), and residual tumor size 
and survival are available on the TCGA web site. 

 3) We used the inferred latent variables to identify new subtype definitions in ovarian cancer. We 
compared INSPIRE subtypes to i) the subtypes recently described by the TCGA ovarian cancer study13, 
and ii) the subtypes learned by a method that uses mutation profiles for the network-based stratification of 
cancer patients (NBS)35, based on how relevant they are to genomic abnormalities in ovarian cancer. 
Detailed information concerning expression datasets used in the INSPIRE analysis is presented in Table 
S2, and the processing of the expression data is described in Methods. 

4) We perform both statistical and biological experiments to show that HOPX is a potential molecular 
driver from tumor-associated stroma in a module that differentiates the patients with increased percent 
stroma, infiltrative stroma, and desmoplastic stroma. 

 

Negatively correlated modules show distinct pathways and potential regulatory TFs enrichment 

We emphasize that the key goal of INSPIRE is to reduce the dimensionality of expression data in a 
biologically intuitive way and in such a way as to capture important dependencies. Given that the gene 
regulatory network is known to be highly modular36 and dimensionality reduction is the key goal, we 
chose to focus on module-level dependencies rather than gene-level dependencies.  The ability to capture 
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the high-level abstraction of the dependencies among gene expression levels is a key goal and advantage 
of INSPIRE. As a result of the INSPIRE model assumptions, expression of genes in the same INSPIRE 
module would tend to be positively correlated, and positive correlation in expression levels across 
patients is an important property - expression activated or deactivated within similar sets of patients. 
Genes with strong negative correlations are likely to be highly related functionally, however they would 
have completely different regulatory mechanisms (e.g., different transcription factor binding) and 
biological interpretation. In Figure S8, we show scatter plots in which each dot corresponds to a GeneSet 
(from the pathway databases or transcription factor (TF) binding information) and we plot the maximum 
–log10(p) obtained by each model (axis). 

Figure S8A (top) demonstrates that the modules that are strongly negatively correlated with each other 
show very distinct pathway (left) enrichment as well as TF binding enrichment (right).  In Table S9, the 
significance of enrichment from five negatively correlated module pairs with the biggest absolute 
correlation listed for five pathways or transcription factors for which the highest enrichment difference 
between the negatively correlated modules is observed. 

We also compared between following two models in terms of functional enrichment of the modules: I) 
two negatively correlated modules are defined as two separate modules as in the original work; and II) 
instead of the two negatively correlated module, there is one hypothetical module that contains all genes 
in the two negatively correlated modules. Figure S8A (bottom) compares between model I (y-axis) and 
model II (x-axis) in terms of functional coherence based on the pathway database (left) and putative TF 
binding targets (right).  Model I reveals more functionally coherent modules than model II, which justifies 
our modeling assumption that negatively correlated genes need to be in separate modules. 

 

INSPIRE latent variables are significantly associated with clinical and histologic phenotypes in 
cancer 

To gain relevant biological insight from ovarian cancer (OV) transcriptome data, we used the 90 inferred 
latent variables from the INSPIRE model as a lower dimensional representation (LDR) of transcriptomic 
profiles across patients (Figure 2C), that captures robust cross dataset patterns of gene expression. We 
evaluated the clinical relevance of these latent variables by measuring the statistical association between 
these latent variables and histopathological phenotypes of tumor. The morphological interpretation of 
histologic sections of tumor forms the basis of diagnosis, aggressiveness assessment, and prognosis 
prediction. Pathologists examine the tumor diagnostic images based on semi-quantitative histologic 
phenotypes of the tumor such as invasion pattern and percent stroma to predict the aggressiveness of 
cancer. Identifying the molecular basis for these histologic phenotypes will advance the understanding of 
the molecular biology of ovarian cancer. We manually examined five histologic phenotypes for 98 
randomly selected patient images from TCGA: percent stroma, percent tumor, vessel formation, stroma 
type, and invasion pattern (details in Methods; Table S4). For each pair of a histologic phenotype and a 
latent variable from the INSPIRE model, we performed the Pearson’s correlation test that produces a 
correlation coefficient and a p-value. Table S3 lists the p-values from these association tests of INSPIRE 
latent variables, with each of the five histologic phenotypes. Figure 5A shows the correlation of each 
latent variable with each of the histologic phenotypes. Since percent stroma and percent tumor 
phenotypes are almost perfectly (anti-) correlated, we only included percent stroma in Figure 5A. We 
used � -values from a likelihood ratio test for a Cox proportional hazards model to determine the 
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significance of association of a gene with patient survival, and we used �-values from the Pearson’s 
correlation test for tumor resectability. 

Modules 5 and 6 show high correlations with the histopathological phenotypes, such as percent stroma, 
stroma type and invasion pattern. As shown in Figure 5A, those modules are also associated with patient 
survival and tumor resectability. We observed that the quantity of residual tumor after surgery is 
positively correlated with the amount of tumor-associated stroma, where increased residual tumor, i.e. 
low resectability, is an important and a previously known indicator of poor patient prognosis. Although 
the latent variables of module 5 and module 6 show high expression correlation (the correlation 
coefficient between the module 5 latent variable and the module 6 latent variable is 0.84), these two 
modules are functionally fairly different. Figure S8B compares module 5 and module 6 in terms of the 
pathways and putative TF targets that are enriched in these modules. There are handful of dots that are 
distant from the diagonal line implying that module 5 and module 6 exhibit several unique biological 
properties. In Table S10, the significance of enrichment from module 5 and 6 are listed for five pathways 
or transcription factors for which the highest enrichment difference between the modules is observed.  

To examine the difference between module 5 and module 6 in terms of phenotypes associated with them, 
we compared between the following two models in an experiment where the latent variables are used as 
features in predicting six different phenotypes (percent stroma, stroma type, vessel formation, invasion 
pattern, resectability and survival): I) module 5 and module 6 exist as two separate modules as in the 
original work; and II) instead of module 5 and module 6, there is one hypothetical module that contains 
all genes in modules 5 and 6.  As shown in Table S11, we observed that module 5 and module 6 are 
significantly predictive of distinct sets of phenotypes, and interestingly, either module 5 or module 6 is 
always better in terms of predictability of phenotypes than the hypothetical module containing all genes in 
modules 5 and 6, which means model I is a better predictor of all six phenotypes than model II. Thus, 
even if modules 5 and 6 are highly correlated with each other, the genes in these modules need to be 
separated into the two modules. 

 

INSPIRE latent variables are more predictive of clinical and histologic phenotypes in cancer than 
other kinds of LDRs and all genes 

Many biological processes are performed by a group of genes rather than individual genes, and as a result, 
many complex phenotypes and clinical outcomes can be explained based on module activity levels rather 
than individual genes. Moreover, expression level of an individual gene is often noisy and even if it was 
not, it still may not be perfectly correlated with a protein level of a true regulator for a phenotype. 

To test this hypothesis and further demonstrate the effectiveness of INSPIRE as an LDR of gene 
expression data, we used the INSPIRE latent variables as features in prediction tasks, and we compared 
INSPIRE with the following methods: i) principal component analysis (PCA)20 – the most widely used 
unsupervised LDR method; ii) subnetwork analysis15 – a powerful supervised LDR method that extracts 
network markers; and iii) all genes when no LDR is learned. The subnetwork analysis method15 learns 
small sub-networks of genes in a given large PPI network, based on expression data and a particular 
prediction task. For example, for a stroma type prediction (fibroblast/desmoplastic), it learns sub-
networks of genes in a given PPI network such that the average expression level of each sub-network 
significantly differentiates the two patient groups based on the classes of stroma type. This method is a 
supervised method in that the subnetworks are learned such that they can explain a particular phenotype 
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well. On the other hand, INSPIRE is an unsupervised method in that the result does not depend on a 
particular prediction task. Each of INSPIRE latent variables, subnetworks, principal components, and all 
genes is considered as a set of features in predicting six different phenotypes; percent stroma, stroma type, 
vessel formation, invasion pattern, resectability and survival (see Methods for details). The result of the 
comparison shows that the features learned by INSPIRE show the best prediction performance measured 
among all methods considered (Figure 5B). This result strengthens our claim that the INSPIRE latent 
variables provide informative lower-dimensional features for prediction tasks. 

Because INSPIRE groups genes in multiple datasets into a set of modules, most modules may include a 
significant number of genes whose expression is not correlated with the predicted phenotype. In order to 
examine the effect of those genes in phenotype prediction tasks, we generated four hypothetical module 
sets by excluding 20%, 40%, 60%, and 80% of the genes whose expression levels in training samples are 
least significantly associated with the respective phenotype from each of 90 modules, and repeated the 
phenotype prediction experiments for those four hypothetical module sets. Table S12 shows that the 
original INSPIRE latent variables which correspond to the module set including non-discriminative genes 
perform the best and in most cases, the performance even decreases when top 20% of the most 
discriminative genes are left.  This result indicates that latent variables resulting from the contribution of 
all genes make robust features informative of the phenotypes. 

 

Subtypes inferred based on INSPIRE latent variables are highly relevant to genomic abnormalities 
in ovarian cancer  

Cancer is a heterogeneous disease with multiple distinct genetic drivers, where identifying subtypes of 
cancer relevant to potential genetic drivers is a primary goal of the field of cancer biology. Here, we 
cluster ovarian cancer patients from the TCGA study13 (560 samples) into four subtypes by using the 
latent variables learned by the INSPIRE method as features for clustering patients (details in Methods). 
Table S7 lists the assignment of the patients in the TCGA ovarian cancer data to the four INSPIRE 
subtypes. 

To examine the relevance of the INSPIRE-based subtypes to the potential drivers of ovarian tumor, we 
checked the significance of the association between the subtypes with copy-number variation (CNV) of 
genes, an important genomic abnormality that can drive cancer (Figure 5C and Figure S3A). We focused 
on CNV for this test instead of mutation since ovarian cancer has been characterized as a c-class cancer 
(as opposed to m-class, where ‘m’ represents mutation) in which CNV is more prevalent than mutations37. 
For each CNV (as quantified by the CNV level), we performed a multivariate linear regression using the 
INSPIRE subtypes, where we computed a �-value (from the regression �-statistic) to ascertain how well 
the INSPIRE subtype regression model fits a given CNV. We then compared the number of CNVs with 
significant INSPIRE �-values (determined by varying thresholds; see Figure 5C) to the number of CNVs 
with significant �-values from the following two approaches: 1) the subtypes learned by using a method 
that uses mutation profiles for the network-based stratification (NBS) of cancer patients35, and 2) the 
subtypes inferred from a recent TCGA ovarian cancer study13. Figure 5C shows that INSPIRE results in 
subtypes that are more associated with CNV based genomic abnormalities than alternative approaches. In 
Figure S3A, we show the comparison for varying numbers of modules (k), for varying sparsity tuning 
parameters (�), and for varying �-value thresholds, which shows that the results are robust to varying 
hyper-parameters. Figure 5C and Figure S3A indicate that INSPIRE further resolves subtypes as defined 
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by the potential genomic drivers of ovarian cancer when compared to alternative approaches. In the 
Supplementary Note 1, we list the CNV levels that are significantly correlated with each of the four 
subtypes. The enrichments of those CNV levels with the MSigDB31 C2 (curated gene sets) categories and 
the corresponding � log�� � are also listed for each subtype. 

 

Subtypes revealed by INSPIRE and their relationships with the TCGA subtypes 

Figure 5D reveals a sub-network learned by modules from an INSPIRE model using parameters � �  .1 
and � � 90 (chosen based on BIC). This subnetwork contains modules that are differentially expressed in 
one of the four subtypes, as represented by the heatmaps in Figure 5D. The differentially expressed 
modules, termed marker modules, are determined for each subtype by comparing the subtype versus the 
other three subtypes, using the Significance Analysis of Microarrays (SAM) algorithm38 implemented in 
the R package siggenes. Table S8 lists the enrichment of the marker modules with the MSigDB31 C5 (GO 
gene sets) and the corresponding � log�� �. We observed that the set of marker modules (Table S8) have 
a significant overlap (� � 2.4 � 10��) with the set of modules that have significant associations with at 
least three of the six phenotypes (the modules colored in red in Figure 5A and Table S3 except module 
30). Not surprisingly, the INSPIRE subtypes show diverse histologic features across subtypes, and we 
accordingly termed the INSPIRE subtypes ‘vascular’, ‘stromal’, ‘immunoresponsive’, and ‘fibrous’. See 
Figure 5D and Table S8, where the marker modules for the vascular, stromal, immunoresponsive, and 
fibrous subtypes are colored in green, blue, red and orange, respectively. 

Table S5 shows a confusion matrix that describes the overlap between the INSPIRE subtype assignments 
and the TCGA subtype assignments13 together with the �-values for the significance of the overlap for the 
highly-overlapping subtypes. There is a more significant overlap for the vascular-proliferative pairs and 
stromal-mesenchymal pairs, which implies that the proliferative-like and mesenchymal-like subtypes are 
highly conserved across different OV datasets, which is consistent with the finding of Way et al.39. 
Although the INSPIRE subtypes have a statistically significant overlap with the TCGA subtypes, the 
INSPIRE subtypes show much stronger association with genomic abnormalities, as mentioned above (see 
Figure 5C). We further include the description of the stromal subtype here since it is characterized by the 
high expression of modules 5 and 6, which are strongly associated with the six important phenotypes in 
cancer (Figure 5A). See the Supplementary Note 2 for the characterization of the other three (‘vascular’, 
‘immunoresponsive’ and ‘fibrous’) subtypes. 

The stromal subtype is characterized by high expression of modules 5, 6 and 86 (Figure 5D) and 
associated increased percent stroma, infiltrative growth pattern, and desmoplastic stroma (Figure S3B (i), 
(ii), (iii)). Modules 5 and 6 are significantly enriched for proteinaceous extracellular matrix gene sets 
(Table S8), which is likely due to increased percent stroma. In Figure 5D, there are quite a few edges 
between modules associated with the vascular subtype and those associated with stromal subtype, which 
suggests a strong association between the increased stromal components and neovascularization of the 
tumor. This likely reflects the known tumor neovascular niche in cancer that involves proangiogenic 
factors release from tumor stroma along with the vasculature itself40. This is supported by multipotent 
mesenchymal stromal cells having unique immunoregulatory and regenerative properties41. A substantial 
amount of the tumor stroma is composed of immune cells, and the net effect of the interactions between 
these various immune cell types and the stroma participates in determining anti-tumor immunity and 
neovascularization potential42. We note that the immune system modules 78 and 81 that are connected to 
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extracellular matrix modules 5 and 6 are also up-regulated in the stromal subtype (Figure 5D). Stromal 
subtype is a significant predictor of poor patient survival (Cox proportional hazards model log-rank � � 8.8 � 10�� ) with a median survival of 914 days. Cancers associated with a reactive stroma is 
typically diagnostic of poor prognosis43, and we observed that median survival of the stromal subtype is 
the smallest among all subtypes. Stromal subtype has a significant overlap (� = 1.03 � 10���) with the 
mesenchymal subtype discovered by TCGA13 (Table S5). 

 

INSPIRE provides novel insights into molecular basis for ovarian tumor resectability 

Riester et al. identified POSTN as a candidate marker for tumor resectability in ovarian cancer44, where 
the resectability phenotype was defined by the residual tumor size after surgery. The authors showed that 
high POSTN expression is strongly associated with poor tumor resectability, even more so than a multi-
gene model chosen by leave one out cross-validation across 1,061 samples in 8 datasets including the 
TCGA13 and Tothill45 datasets. POSTN is a member of module 6 that shows the most significant 
association with resectability among all 90 modules (Figure 5A). We, therefore, compared our supervised 
prediction model using the INSPIRE latent variables corresponding to modules 5 and/or 6 to a model that 
contains just POSTN to determine whether the genes in module 5 and the genes in module 6 other than 
POSTN provide any information to the prediction of resectability in addition to the information provided 
by the POSTN expression. We observed that when training on TCGA data13 including the clinical 
covariates, the models trained using 1) modules 5 and 6 together, 2) module 6 only, 3) module 5 and 
POSTN together, and 4) module 5 only, outperformed the model with the known marker for resectability, 
POSTN, when tested in the Tothill45 dataset (see AUC values in Figure 7). TCGA data13 was used for 
training because of its large sample size. Tothill45 was used for testing, because it has the largest sample 
size except TCGA data (Table S2) and contains the most fine-grained information on the residual tumor 
size. Additionally, the proportion of optimally and sub-optimally debulked patients was similar between 
TCGA and Tothill data. We used a stringent definition of resectability (0 cm vs. >0 cm) (see Methods).  

Since module 6 contains POSTN, outperformance of 1)-3) means that the modules 5 and 6 representing 
the expression of genes in module 5 and/or module 6, which are significantly predictive of stromal 
histology features and resectability, add information to the prediction of resectability by POSTN in a 
cross-dataset analysis. Outperformance of 4) means that the module 5 representing the gene expression 
levels in module 5, which does not contain POSTN, is a better predictor of resectability than POSTN. 
When we repeated this experiment with no clinical covariates (age and stage) in the training, the models 
including module 6 outperformed the model that includes only POSTN, which means the genes in module 
6 other than POSTN add information to the prediction of resectability by POSTN (see AUC values in 
Figure S5). The modules 5 and 6 with strong stromal and mesenchymal properties (see below) provide 
potential novel molecular basis for tumor resectability. 

INSPIRE modules and the conditional dependence network among them 

Here, we discuss the modules that show significant correlations with many of the histological and clinical 
phenotypes in the TCGA ovarian cancer data or that achieve the only significant correlation with a 
phenotype among all modules (see Figure 5A and Table S3). 
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Module 5 contains known EMT inducers ZEB1, SNAI2 and TCF4 (E2.2)46, as well as multiple other 
genes known to be important in focal adhesion47, extracellular matrix interaction48, extracellular matrix 
organization49, and markers of cancer-associated fibroblasts (PDGFRB, PDGFRA)50 (see Table S3). 
Similarly, module 6 contains EMT inducer TWIST146, many extracellular matrix genes, as well as genes 
associated with senescence and autophagy, collagen genes, and the well validated predictor of tumor 
resectability, POSTN44 (see Table S3).  These two modules are prime candidates for genes driving EMT 
associated tumor aggression. Although modules 5 and 6 have many shared GO categories and pathways, 
they are likely to represent fairly different biological processes (Figure S8B). When we combined these 
two modules and used one latent variable that represents the two modules, the overall prediction results 
became worse (Table S11). 

While modules 5 and 6 contain known drivers of EMT and extracellular matrix genes and these modules 
are also associated with tumor-associated stroma/mesenchymal phenotypes, we found other modules with 
significant correlations with most the histological and clinical phenotypes. Additionally, active area of 
research in cancer biology is to identify pathways and genes driving tumor aggression. This includes 
genes associated with cancer stem cells (i.e., tumor-initiating cells)51–54. Module 78 contains genes 
indicative of hematopoietic cell lineages likely because it includes many innate immune response genes, 
as well as multiple innate immune response signaling pathways including cytokine cytokine receptors, 
toll like receptors, and TCR signaling.  Module 78 also contains a known EMT inducer ZEB246. This 
indicates that module 78 may capture aspects of tumor associated inflammation, a known contributing 
factor to EMT55. Module 81 includes genes that regulate the MAPK and ERK cascades, signal 
transduction pathways that are known to be upstream of multiple oncogenic process56. Module 54 
represents genes involved in pro-apoptotic and cell cycle regulation. GADD45 genes, known to be 
upstream of JNK signaling57, are present along with JUN and FOS. In addition, this module contains 
KLF4 and KLF6, which like GADD45, are known to repress cell cycle arrest and associated cyclin-
dependent kinase inhibitors58. Modules 30 and 54 are indicative of the likely metabolic shift that cancers 
cells undergo as these modules are enriched in metabolic and biosynthesis pathways. When considering 
these modules jointly, we get a picture of multiple processes (Figure S6), and potential tumor cell 
subpopulations, that populate the tumor microenvironment and perpetuate aggressive tumor states in sub-
populations of patients.  

One of the advantages of the INSPIRE framework over naïve clustering algorithms is that it suggests 
potentially biologically relevant interactions or couplings between the modules. These interactions can be 
used to motivate higher-level hypotheses about the coupling of disease specific processes. 

INSPIRE reveals a previously unknown stroma-associated marker HOPX 

Given the association of the genes in the modules 5 and 6 with aggressive stroma and patient prognosis, 
and the significance of the modules 5 and 6 in differentiating the stromal subtype, we were interested in 
understanding if the modules 5 and 6 capture a prognostic signature that generalizes across other cancers.  
Prognostic genes are more likely to be shared by distinct tumor types than would be expected by random 
chance likely because of prognostic mechanisms that generalize across cancers (e.g. metastatic potential 
or immune system evasion), and conversely, cancer-specific prognostic genes are less frequent than 
would be expected by random chance59. Therefore, to further annotate modules 5 and 6, we performed a 
pan-cancer analysis to check whether the genes contained in those modules are significantly associated 
with survival in six publicly available datasets6,45,54,60–62 from five cancer types: ovarian cancer, breast 
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cancer, acute myeloid leukemia, glioblastoma and lung cancer (see Table S6 for the details of these 
datasets). We used �-values from the likelihood ratio test for a Cox proportional hazards model to 
determine the significance of association of a gene with patient survival, and we considered a �-value 
 0.05  to be significant. We observed that the genes in module 5 and the genes in module 6 are 
significantly associated with survival in at least three of the six datasets (Fisher’s test statistic �-value �1.68 � 10�� for module 5 and � 4.44 � 10�� for module 6). For breast cancer, we used the Osloval (the 
test data) but not Metabric (the training data with 1981 samples from the same study6 with Osloval) for 
breast cancer because we need the sample sizes to be similar across datasets such that the meta-analysis is 
not dominated by a single cancer type. 

To further investigate the specific genes that are associated with patient survival across cancer types in 
these modules, we computed a combined �-value statistic using Fisher’s combined probability test for the 
association of each gene with patient survival in a meta-analysis of the six datasets from these five cancer 
types. HOPX, which is in module 5 achieved the lowest combined p-value among all genes in module 5 
or module 6, and the third lowest combined �-value genome-wide (� �  1.32 � 10���). The top two 
genes that yield smaller �-values than HOPX genome-wide are CD109 (� �  2.49 � 10���) and SKAP2 
(� �  3.55 � 10���) neither of which is in the module 5 or module 6 (Figure 6A). As shown in the 
previous sections, module 5 (containing 183 genes) is highly associated with percent stroma (Figure 5A), 
and is significantly enriched (� � 8 � 10��) for the known drivers of EMT that has been shown to 
contribute to poor patient survival. Not all 183 genes in module 5 would play a key role in the formation 
of tumor-associated stroma or EMT, and in fact, many of the genes in module 5 would simply have 
correlated expression pattern with key genes in these processes. We hypothesize that such genes have 
robust association with survival enough to be conserved across different cancer types, given the 
previously known association between tumor-associated stroma and patient survival. We note that known 
EMT drivers ZEB1, SNAI2 and TCF4 in module 5 have significant associations with survival in our pan-
cancer analysis (p-values 8.5 � 10��, 5.3 � 10��, 1.3 � 10��  and rankings 153, 749 and 1098 
respectively out of 11119 total genes). Thus, our pan-cancer analysis that highlights HOPX in module 5 
led to us to consider HOPX as a potential molecular marker strongly associated with percent stroma and 
tumor aggression. Additionally, HOPX is one of the 15 genes in module 5 (out of 183 genes) that have 
been classified as ‘candidate regulators’63. Gentles et al. have defined a list of about 3,000 genes as 
candidate regulators, those that have a potential regulatory role in the broad sense (not specific to cancer): 
transcription factors, signaling proteins and translational initiation factors that may have transcriptional 
impact63. This implies that HOPX could be a regulator in the stroma-associated processes. 

 

HOPX is a putative driver for the tumor-associated stroma/mesenchymal module (module 5) 

HOPX is an unusual HOX protein that does not contain a DNA binding domain, and has been implicated 
in multiple aspects of cardiac and skeletal muscle development through recruitment of histone 
deacetylases64–66. It has been suggested to have tumor suppressive function in other cancer types67–69, 
which confounds how its expression in OV is associated with several poor outcomes. This may also 
reflect different roles for HOPX in ovarian tumor-associated stromal tissue. 

Previous studies characterize HOPX as a mediator of canonical Wnt and Bmp signaling, and may play 
key roles in maintaining a stem cell like state70.  In our further analysis of HOPX, we observed that HOPX 
is one of the top candidate expression regulators for ovarian cancer63,71. To understand how HOPX is 
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associated with the genes in the tumor-associated stroma/mesenchymal module (module 5), we compared 
these genes with those down-regulated in HOPX−/− mice compared to HOPX+/− control mice70 and found 
a significant enrichment based on the Fisher’s exact test (� � 1.5 � 10�� . Those two results together 
suggest HOPX is a good candidate driver for the tumor-associated stroma/mesenchymal module, as many 
of the other genes in module are putative downstream targets of HOPX, either directly or indirectly. 
Figure S4C shows the enrichment p-value and the fold enrichment of the genes in the tumor-associated 
stroma/mesenchymal module with the down-regulated genes in HOPX−/− mice for varying fold change of 
expression of the down-regulated genes (x-axis). 

Furthermore, genes down-regulated in HOPX−/− mice after addition of XAV939, a potent inhibitor of Wnt 
signaling to HOPX−/− mice70, are even more significantly enriched ( � � 1 � 10��  for genes in the 
tumor-associated stroma/mesenchymal module.  The HOPX protein is a potent Wnt inhibitor 70, therefore 
in the HOPX−/− mice Wnt is activated, and genes inhibited by Wnt are also turned off.  When the Wnt 
inhibitor is applied to the HOPX−/− mice the genes inhibited by Wnt are no longer turned off, and the 
down-regulated genes are more specific to genes specifically activated by HOPX, instead of being a 
mixture of genes activated by HOPX and inhibited by Wnt.  In addition, it is not surprising to see a higher 
enrichment upon Wnt inhibition, because canonical Wnt signaling has been implicated in the regulation 
of the stromal activity of MSCs72,73. Figure S4D shows the enrichment p-value and the fold enrichment of 
the stroma/mesenchymal module genes that are down-regulated in Wnt-inhibited HOPX−/− mice for 
varying fold change of expression of the down-regulated genes (x-axis). 

These results suggest that the genes in the tumor-associated stroma/mesenchymal module which are 
down-regulated in both HOPX−/− mice and Wnt-inhibited HOPX−/− mice are good candidates as 
downstream targets of HOPX. Figure 6D shows those 32 potential targets of HOPX. The purple-colored 
genes are the targets that are down-regulated in HOPX−/−, and their expression does not change 
significantly (|"# change| 
 0.55) upon Wnt inhibition. On the other hand, the red-colored genes are the 
targets of HOPX which are down-regulated in HOPX−/−, and they are down-regulated further upon Wnt 
inhibition (|"# change| )  0.93). It is highly likely that the expression of the red-colored genes in Figure 
6D are driven by both HOPX and Wnt signaling pathway. We note that HOPX is, therefore, a potential 
driver for SNAI2, which is involved in EMT74 and AEBP1, which is a stromal adipocyte enhancer-binding 
protein. 

HOPX is a molecular marker of aggressive tumor stroma  

To further disentangle the molecular underpinnings of the tumor-associated stroma/mesenchymal module, 
we stained tumor sections with antibodies against HOPX. We co-stained with E cadherin, a tumor 
epithelial cell marker. Patient samples were selected based on patient survival and optimal debulking (see 
Methods for details). As shown in Figure 6B, there is no overlap between HOPX and E cadherin. Given 
localization outside of epithelial regions, we tested if there was overlap with stromal tissue. To do so, we 
co-stained with CD73, a known mesenchymal stem cell (MSC) marker, as MSCs play an important role 
in the generation of cancer-associated fibroblasts and stroma75. Combining these results with 
corresponding tumor sections with H-E staining indicate that HOPX and CD73 are uniquely localized to 
the tumor stroma. Representative images depicting HOPX, CD73 and HOPX, E cadherin staining for 
additional samples are shown in Figures S4A and S4B. 
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It is not surprising that HOPX potentially marks MSCs. Several recent studies have shown HOPX to be 
associated with other stem cell populations and to play a role in their hierarchy and more importantly 
maintenance of a stem-cell like state through integration of canonical Wnt and Bmp signaling70,76,77. 
Nonetheless, these results indicate HOPX as a putative novel marker for tumor-associated MSCs.  In the 
patients with poor tumor resectability and prognosis, CD73 and HOPX expression is riddled throughout 
the tumor tissue (Figure 6B). A typical patient with optimal resectability and low HOPX expression is 
shown on the left in Figure 6C, whereas a patient with low resectability and high HOPX expression is 
shown on the right. As can be seen, the tumors with strong evidence of HOPX have very distinct 
histopathology from those without. This aggressive stromal tumor phenotype provides evidence that 
patients with poorly resectable tumors have higher levels of stroma that cannot be disentangled from the 
tumor tissue itself. This suggests one histopathological mechanism for why some tumors are harder to 
remove from the surrounding stromal tissue. Additionally, the HOPX-CD73 staining indicates that the 
presence of tumor-associated MSC populations are highly informative of the development of an 
aggressive stromal phenotype. 

 

DISCUSSION 

We propose the INSPIRE (INferring Shared modules from multiPle gene expREssion datasets) 
framework for learning a low-dimensional representation (LDR) of multiple gene expression datasets. 
INSPIRE infers a conserved set of modules and their dependencies across multiple molecular datasets 
(e.g., gene expression datasets) that contain different sets of genes with a small overlap. We show that 
INSPIRE outperforms alternative approaches in both synthetically generated datasets and gene expression 

datasets from ovarian cancer patients. When we applied INSPIRE to nine expression datasets from 
ovarian cancer studies, which comprises 1,498 patient samples, we identified the stroma/mesenchymal 
module highly associated with percent stroma and patient survival in the TCGA samples. Our follow-up 
analysis on this module identifies the HOPX gene, which we experimentally validated to be expressed in 
mesenchymal stem cells (MSCs). HOPX is an unusual HOX protein that does not contain a DNA binding 
domain, and has been implicated in multiple aspects of cardiac and skeletal muscle development through 
recruitment of histone deacetylases64–66. HOPX has recently emerged as a marker of numerous stem cell 
types70,76,77. Our results indicate that MSCs are yet another stem cell population marked by HOPX. It has 
been shown that in response to inflammatory cytokines, MSCs release a myriad of growth factors 
including FGF, EGF, PDGF, and VEGF, which promote fibroblasts and endothelial cell differentiation 
and growth78. The tumor MSCs are known contributors to tumor-associated stroma via differentiation to 
cancer-associated fibroblasts (CAFs)75, and may also promote metastasis79. HOPX could play an 
important role in this process by acting as a driver given that expression data from HOPX knockout mice 
reveals that many genes in the tumor-associated stroma/mesenchymal module are downstream of HOPX. 
Given the importance of HOPX in maintaining a stem cell like state70, it is suggestive that HOPX 
expression in the cancer-associated stroma may be maintaining the cancer-associated stroma niche, and 
could be an attractive target for further functional validation and therapeutic intervention – e.g. if loss of 
HOPX expression in the tumor stroma leads to differentiation of the cancer-associated mesenchymal stem 
cells. 

INSPIRE is a general computational framework, and can be applied to various diseases and different 
types of molecular data. For example, such as we used applied to integrate mRNA expression datasets 
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from different studies, we can apply it to integrate proteomic data from multiple studies. A future work is 
to extend INSPIRE such that it can integrate different types of molecular data such as transcriptomic, 
proteomic, epigenomic and metabolomics data in the same model. In this manuscript, we are applying 
INSPIRE to integrate microarray data. Since RNA-Seq has been emerging as an important platform for 
gene expression data profiling, one may want to combine microarray data and RNA-Seq data using 
INSPIRE. We recommend applying the voom normalization method80 to read counts when RNA-Seq data 
are used as input.  The voom method estimates the mean-variance relationship of the log-counts, generates 
a precision weight for each observation and enters these into the limma (Linear Models for Microarray 
and RNA-Seq Data) empirical Bayes analysis pipeline. This makes the distributions of the read count data 
more like a normal distribution, and will make it possible to combine array data with RNA-Seq data using 
INSPIRE. The authors have shown that the voom normalization method has improved statistical 
properties when applying correlation or linear modeling, which are assumptions in most of the methods 
being applied to the processed microarray data80. 

INSPIRE provides a great, effective starting point to learn complex dependencies between genes, because 
we can learn a gene-level conditional dependence network by using for example the graphical lasso24 
algorithm within each module. There are several other potential next steps to make technical 
improvement on the proposed INSPIRE framework. One of those is to extend INSPIRE to the case where 
the latent network is not perfectly conserved across the datasets. We could allow for structured 
differences characterized by a small subset of modules while we encourage the latent network estimates 
to be quite similar to each other across datasets. This could be appropriate in many problems where 
different datasets involve biologically meaningful differences. Another technical improvement is to 
extend INSPIRE to the setting in which there are no overlapping genes across datasets. For example, one 
dataset measures the mRNA expression levels of genes and the other dataset measures the protein levels. 
In this case, we will need to develop a novel method for discovering the correspondences between 
variables/modules across datasets. Finally, we could exploit the INSPIRE module network information 
inferred by INSPIRE for imputing the missing variable values in the datasets. 

CONCLUSIONS 

In this work, we demonstrate thorough multiple analyses that modules identified by INSPIRE are more 
biologically coherent across a wide battery of tests of biological significance, including MSigDB pathway 
enrichment, ChEA transcription factor regulatory networks, and enrichment for known OV CNV tumor 

drivers. Importantly, the INSPIRE latent variables can be used to predict disease phenotypes or 
clinical outcome, identify patient subtypes, and when integrated with multiple data modalities, resolve 
the importance of a specific gene expression module for understanding the mesenchymal subtype in 
ovarian cancer. Furthermore, when integrated with functional studies of HOPX in mice along with 
immunohistochemistry on multiple patient samples, our analysis suggests an important role for the HOPX 
associated module in maintaining a population of tumor associated mesenchymal stem cells in patients 
with aggressive stromal components to their tumors. 

The effective joint learning strategy of the INSPIRE algorithm makes it possible to integrate datasets 

containing different sets of genes into a single network framework, which was impossible in the existing 
network inference approaches. This component of INSPIRE should greatly increase the applicability of 
LDR learning algorithms to genomics problems where sample size provided by a single dataset is not 
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large enough to learn a robust set of modules and module dependencies. In addition, inferring a network 
structure among pathways from high-dimensional molecular data is an important and open problem in 
biology, but is hampered by the need for very large sample sizes. INSPIRE would increase the 
applicability of network analysis by leveraging existing data, and eliminate the cost of regenerating data 
from the same samples using different platforms. 

 
METHODS 

Expression data preprocessing 

We downloaded the gene level processed expression data (level 3) for TCGA ovarian cancer from the 
Firehose pipeline as of the March, 2014 analysis freeze81 for all three platforms available for ovarian 
cancer (Affymetrix U133A, Agilent g4502, Human Exon array). We first removed potential plate level 
batch effects with ComBat82 for all expression datasets. As was done in the TCGA ovarian cancer study13, 
we combined the three separate expression measurements for each of 11864 genes to produce a single 
estimate of gene expression level by performing a factor analysis across the three studies. All data are log 
transformed. For other datasets, we downloaded the raw cell intensity files (CEL) for Affymetrix U133 
Plus 2.0 and U133A arrays (Affymetrix, Santa Clara, CA, USA) from the Gene Expression Omnibus34 for 
accessions: GSE1476483, GSE2671284, GSE600885, GSE1852086, GSE1982929, GSE2056587, 
GSE3016188, GSE989945. Expression data were then processed using MAS5.0 normalization with the 
‘Affy’ Bioconductor package89 and mapped to Entrez gene annotations90 using custom chip definition 
files (CDF)91 which was followed by natural log transformation of MAS5.0 normalized intensities. The 
expression data was then Z-transformed so that each gene has zero mean and unit variance across the 
samples within each dataset. As stated in Tibshirani (1996)92, Z-transformation of expression data is a 
standard practice for any method that uses a sparsity tuning parameter so that the sparsity tuning 
parameter is invariant to the scale of the variables, particularly before applying a penalized regression 
technique such as lasso (�� penalty) or ridge (�� penalty)92–96. Since the graphical model likelihood is 
indeed equivalent to multiple coupled regression likelihoods, this is generalized to the network estimation 
problem where we optimize a graphical model likelihood11,36,97–102. 

Copy number variation (CNV) data processing 

We downloaded the CNV data from 488 ovarian cancer patients in the TCGA cohort from the cBio 
Cancer Genomics Portal web page103. We used R package cgdsr to download the data. The 16,597 CNV 
levels in the downloaded data were derived from the copy-number analysis algorithm GISTIC104, and 
indicate the copy-number level per gene. CNV level ‘-2’ is a deep loss, possibly a homozygous deletion, 
‘-1’ is a shallow loss (possibly heterozygous deletion), ‘0’ is diploid, ‘1’ indicates a low-level gain, and 
‘2’ is a high-level amplification. 

INSPIRE learning algorithm 

We present the INSPIRE (INferring Shared modules from multiPle gene expREssion datasets) method to 
extract a compact description of high-dimensional gene expression data by learning a set of k modules 
and their dependencies from Q gene expression datasets.  The technical novelty of the INSPIRE is that it 
provides a flexible model that does not require the Q datasets to have exactly the same set of genes (e.g., 
different microarray platforms). INSPIRE takes Q expression matrices as input and learns how genes are 
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assigned to modules, the latent (unobserved) variables each representing a module, and the dependencies 
among the latent variables, through an iterative procedure described in detail below. Each latent variable 
represents the activity level of a certain biological process or a regulatory module. In the sections that 
describe the probabilistic model and the learning algorithm, we will refer them to as ‘latent variables’ 
because that is a commonly used term to refer to hidden, unobserved variables in the statistical domain. 
Inferring the latent variables by using the INSPIRE method is an effective way to obtain a low-
dimensional features for prediction tasks (e.g., predicting histopathological phenotypes) or clustering 
(e.g., patient stratification) (Figure 1).  

INSPIRE uses a formal probabilistic graphical model, specifically the Gaussian graphical model (GGM), 
to model the relationships between genes and latent variables, and the conditional dependence 
relationships among the latent variables. A GGM is a popular probabilistic graphical model for 
representing the conditional dependency network among a set of continuous-valued random variables. In 
a GGM, the variables connected by an edge are conditionally dependent to each other given all the other 
variables in the model105,106. For example, in a simple latent network shown in Figure 1, five latent 
variables (��, … , ��) have mutual dependencies. So, let L � ���, … , ��� ~-.0, Σ� , then non-zero pattern 

of Σ�
�� corresponds to the conditional dependencies among the latent variables, namely the topology of 

the network. That means, since ��  and ��  are connected to each other for example, knowing �� ’s 
expression level gives information about ��’s expression level, even when we know the expression levels 
of all the other latent variables, which indicates a direct dependency between �� and ��. We refer to the 
observed variables that stem from the same latent variable as a module. As an example, genes 0� , 0� , 0� 
in Figure 1 form a module since they are associated with the same latent variable ��. Below, we provide a 
mathematical formulation of the INSPIRE probabilistic model and the learning algorithm.  

Let ��, … , �� be a set of Q expression datasets where the qth dataset �� � 1��
� , … , ���

� 2 contains the 

expression levels of �� genes across ��  samples and each of ��
�  is a row vector of size �� .  Let �� , … , �� 

be a set of matrices where each �� is associated with a dataset and consists of k latent variables. �� �3��
� , … , ��

� 4  ~ -.0, Σ� , where Σ� is a � � � covariance matrix. These latent variables can be viewed as a 

lower-dimensional representation (LDR) of expression data and Σ� represents the dependencies among 
the features. We assume that Σ� is conserved across the 5 datasets. Each gene is associated with exactly 
one of the � latent variables as represented by the directed edge between a gene and a latent variable in 
Figure 1. The total number of unique genes across all Q datasets is ��; and each data matrix �� contains 
samples from a different subset of �� genes (�� 
 ��). Let Z be a �� � � matrix indicating which of the k 

modules each of ��  genes belongs to, such that 67, 8 9�� : �0, 1� and67, ∑ 9�
 � 1
��

�� . Each observed 

dataset ��  is generated by the multivariate Gaussian distribution �� | Z��� , =� ~ -.Z��� , =� , where 9� 
is a �� � � matrix composed of the rows of 9 corresponding to the �� genes contained by the dataset �� . 

Here, we refer to a set of genes that correspond to the same latent variable as a module where = 
determines the module tightness. As an example, the 8 th module >�  can be defined as >� � ?�����

� {��
�  | 9��

� � 1}. Thus, 9  defines the module assignment of all unique genes in all 5 datasets 

into �  modules. Each gene belongs to exactly one module. We choose hard assignment of genes to 
modules (67, @! B C 9�
 � 1) to reduce the number of parameters. Soft assignment is a straightforward 
extension where we relax the constraint 67, 8 9��  : �0, 1� to 67, 8 0 
 9��  
 1. 
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INSPIRE jointly learns the latent variables � � D�� , … , ��E each corresponding to a module; the module 
assignment indicator Z; and the feature dependence network Σ�

�� . Given 5  datasets ��, … , �� , where ��.: F���� �!  contains ��  observations on ��  genes and �� �  ∑ ��
���
��� , INSPIRE aims to learn the 

following: 

- �� : F��� �! for each G .: �1, … , 5�  containing the values on � features in ��  samples in ��  

- 9 | ∑ 9� � 1, a binary vector for each 7 (: �1, … , ���) specifying the module membership of the 7th 
gene in one of the � modules; and 

- H"  (: F�����) denoting the estimate of the inverse covariance matrix of the features, i.e. Σ�
�� . 

We address our learning problem by finding the joint maximum a posteriori (MAP) assignment to all of 
the optimization variables – �, 9, and H" . This means that we optimize the joint log-likelihood function 
of the 5 data matrices, with respect to �, 9, and H".I 0 . Given the statistical independence assumption 
that genes in a dataset ��  are statistically independent to one another given the latent variables �� , the 
joint log likelihood can be decomposed as follows: log PKX�, … , X�, L�, … , �� , Z, H" ; �, =N 

� O log P.��|�� , 9�  �

���

Q O log P.��|H" �

���

Q  log P.H" Q log P.9  

�   �
�

�RST UVW H" � WX .Y"H" � �  � O Z.H" �� ′Z �  
� $� ′

�

�
∑ %&�� '�"�%�

� 

(�

�
��� Q BS�[W, 

(1) 

where Y" � �

 �
∑  �� ������

��� is the empirical estimate of the covariance matrix Σ"  and �  is a positive 

tuning parameter that adjusts the sparsity of H" . We assume a uniform prior distribution over 9, which 
makes log P.9  constant.  

We use a coordinate ascent procedure over three sets of optimization variables – �, 9, and H" . We 
iteratively estimate each of the optimization variables until convergence.  

Learning \ To estimate �� , … , �� from Equation 1 given 9 and H" , we solve the following problem: 

max"� 1�WXK�� ���H"N � %&�� '�"�%�
� 

(�
2. (2) 

Setting the derivative of the objective function in Equation 2 to zero with respect to ��  leads to: 

�� � K9��9� Q =�Θ"N��9���� . (3) 

Learning ` In order to estimate 9 given �� , … , ��, we solve the following optimization problem: min'�…'��
∑ b�� �  9��� b�

� �
��� . (4) 

In the hard assignment paradigm that we follow throughout this paper, Equation 4 assigns gene ��  to 
module B : �1, … , �� that minimizes the Euclidean distance computed using all samples from the datasets 
containing the gene �� . 

Learning c* To estimate H"  given �� , … , �� , we solve the following optimization problem: 
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max  +�,� dlog det H" � WX.Y"H" �  � O g.H" ���  g  
� $��

h, (5) 

where the constraint H" I 0 restricts the solution to the space of positive definite matrices of size � �  �, 

and Y" � �

 �
∑  ���� ����

���  is the empirical covariance matrix of � . Based on the estimated value of �, 

Equation 5 can be solved by the graphical lasso24, a well-known algorithm for learning the structure of a 
Gaussian graphical model (GGM). 

We iteratively estimate each of the optimization variables until convergence. Since our objective is 
continuous on a compact level set, based on Theorem 4.1 in Tseng (2001)107, the solution sequence is 
defined and bounded. Every coordinate group reached by the iterations is a stationary point of INSPIRE 
objective function. We also observed that the value of the objective likelihood function monotonically 
increases. 

Data imputation  

To our knowledge, there are no published methods for learning modules and their dependencies from 
multiple datasets that contain different sets of genes (Figure 1).  Thus, we adapted the state-of-the-art 
methods (which can run on a single dataset) by imputing the missing values on genes that are not 
presented in each of the datasets, and applied these methods to the imputed data.  These are the ‘Imp--’ 
methods in Table 1.  We employed the iterative PCA algorithm to generate the imputed data for all ‘Imp--
’ methods and initializing INSPIRE. The results were robust to the imputation method; INSPIRE method 
consistently outperformed alternative approaches when other imputation methods were used. We used 
CRAN R package missMDA108 to generate the imputed data. 

Initialization of the INSPIRE latent variables 

INSPIRE is an iterative learning algorithm that consists of three update steps, Equations (3)-(5), to learn 
the following sets of parameters: L – values on the latent variables, Z – gene-module assignments, and θL 
– the dependency network among the latent variables.  So we need to have some starting point, i.e., initial 
values on any of these three sets of parameters.  SLFA and MGL are also iterative learning algorithms 
that require a starting point.  Therefore, for INSPIRE, SLFA and MGL, we used the same initial gene-
module assignments obtained by running the k-means clustering algorithm on the imputed data (see 
above) because the imputed data contain all genes and all samples. 

To be more specific, the authors of the MGL algorithm suggested to initialize MGL with k-means 
centroids, and we followed that approach for the MGL variants (MGL1, ImpMGL, and InterMGL) in our 
experiments. Given that INSPIRE is an extension to MGL for multi-data setting, to directly test whether 
the INSPIRE outperforms MGL, we used the output of MGL as a starting point for INSPIRE.  The 
authors of the SLFA algorithm did not specify any initialization method; so for a fair comparison among 
all these methods, we used the same initial gene-module assignments for SLFA and MGL - the centroids 
obtained by running the k-means clustering algorithm on the imputed data. The result of the k-means 
clustering algorithm also depends on the initial clusters which are randomly determined.  So, to rule out 
the possibility to make a conclusion based on a particular set of initial parameters, for every experiment 
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on comparison across methods, we performed 10 runs with different initial parameters (i.e., different 
random initial clusters in the k-means clustering algorithm) and presented the average results. 

Runtime of INSPIRE on gene expression datasets 

Running INSPIRE with the module count parameter � �  90 and the sparsity tuning parameter � �  0.1 
in our application on nine datasets (Table S2) with a total number of � i 20,000 genes and � i 1,500 
samples took 13.7 minutes on a machine with an Intel(R) Xeon(R) E5645 2.40GHz CPU and 24GB 
RAM, once the latent variables are initialized. As mentioned above, for initialization of the latent 
variables, we used the module graphical lasso (MGL)11 method on the imputed data, which took 10.2 
minutes on the same machine. 

Synthetic data generation 

We synthetically generated data based on the joint distribution in Equation 1. We first generated the 
sparse � � � inverse covariance matrix Σ"

�� by creating a � � � matrix G as 
 
                                       67, 0�� � 0, 

0��  .7 k 8  ~ l  0                 w. prb.  .1 � U Uniform distribution .0, 0.5     w. prb.  -

�Uniform distribution .0.5, 1     w. prb.  -

�

u   , 
 

and letting  Σ"
�� � 0 Q 0� so that Σ"

�� is symmetric. We set 67, 0��  � v afterwards by selecting v such 
that the resulting matrix Σ"

�� is positive definite. U : D0,1E controls the density of Σ"
�� and the results we 

reported from synthetic data experiments were generated using k = 10 and U �  0.2. The results were 
consistent for varying values of � and d. 

Then, we generated the latent variables � � ���, … , ��� from � ~ -.0, Σ"  and we randomly generated a 
binary �� � � matrix 9 of module assignments which randomly assigns each of �� genes to exactly one 
of the latent variables. Then we generated a high-dimensional data matrix �  of ��  genes from the 
distribution � | 9�, =� ~ -.9�, =� , and selected a portion of the samples and genes in �  to form a 
smaller dataset that we call ‘Dataset1’. Then we selected the remaining samples and a portion of the genes 
from � to form a second ‘Dataset2’. 

We considered three simulated settings that correspond to different amount of overlapping genes (Figure 
S1A). Each setting is characterized by Dw�, x1, x2E  where w�  denotes the number of genes that are 
present in both Dataset1 and Dataset2, x1 is the number of genes that are present only in Dataset1, and x2  means the number of genes that are present only in Dataset2. The settings we consider are D150, 100, 0E, D200, 50, 0E and D250, 0, 0E, where the sample sizes of Dataset1 and Dataset2 are 20 and 
30, respectively (Figure S1A). D250, 0, 0E means that all genes are shared between the two datasets. We 
repeated the generation of data � 20 times in each of the three settings, and presented the mean of the 
results for each method in (Figure 3A-C). We show the �-values on the bars that represent the statistical 
significance of the difference between each method and INSPIRE across 20 different data instantiations. 
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Figure S1A illustrates the two datasets in each of these three settings. In each rectangle, each row 
represents a variable, and each column represents a sample. For simplicity in presentation of the 
evaluation results, we set x2 � 0. The results were consistent for varying x2. We note that x2 i 0 
assumption holds in many real-world settings we are interested in, where the newer technology contains 
almost all of the genes in the older technology. We demonstrate this real-world situation in the second set 
of experiments on the ovarian cancer expression data (Figure 4B). 

Comparison of the scalability across all six methods in simulation experiment 

We precisely measured the runtimes of six methods – GLasso, UGL, SLFA, WGCNA, MGL (Table 1) 
and INSPIRE – when running on the synthetic data with varying numbers of genes (�); � � 300 , � � 1,500, � � 3,000. We generated the data exactly the same way as in the simulation experiments. We 
used 50 as sample size (20 samples in Dataset1 and 30 samples in Dataset2). We tested these methods on 
the ‘Imp---’ setting where we imputed the missing data before applying the algorithms, because 5 of these 
methods (except INSPIRE) cannot accommodate multiple datasets. We used varying sparsity tuning 
parameters in the interval of ..5, .0001 , exactly the same set of values that we used for choosing λ (via 
cross-validation tests) in our experiments. The runtimes of these methods are known to grow cubically or 
at least quadratically depending on the availability of a special efficient technique for the method109 with 
increasing �  (when gene-level dependencies are learned – GLasso and UGL), or � (when module level 
dependencies are learned – SLFA and MGL). Also, WGCNA grows quadratically with increasing � since 
it includes correlation computation and hierarchical clustering. Therefore, we determined that the methods 
whose runtime is >10 hours for � � 3,000 are not scalable enough to be useful on genome-wide analysis.  
Since the runtimes of the methods except MGL, WGCNA and INSPIRE already exceeded 10 hours at � � 3,000 (Figure S9A), it is clear that all methods other than MGL, WGCNA and INSPIRE are too slow 
to be used when � k 3,000 and >500 hours when � is near 20,000 (see the trend line in Figure S9B). We 
note that we increased the module count (�) with increasing � such that the average number of genes in a 
module is always 30, and SLFA was unable to run for � k 1,500 where the module count (�) exceeded 
the sample size (50). Figure S9A-B indicate that GLasso, UGL and SLFA are not practically useful to be 
used on genome-wide expression datasets, and furthermore, they do not perform well on smaller synthetic 
data on which we ran all six methods (Figure 3). Thus, we excluded GLasso, UGL and SLFA for the 
evaluation on the genome-wide expression datasets. The runtime measurements were done on a very 
powerful machine with an Intel(R) Xeon(R) E7-8850 v2 @ 2.30GHz CPU and 528 GB RAM. 

Computing the cross validation test log-likelihood  

We performed a 5-fold CV to choose �  for INSPIRE and each of the competing methods in our 
experiments to evaluate INSPIRE (synthetic data experiments and the experiments with two gene 
expression datasets). We measured the CV test log-likelihood on the test data portion of the first dataset 
(Dataset1 or OV1 which contains all or almost all genes) in each fold, which was common test data across 
all methods. For each of the 5 test folds, we computed the test data log-likelihood of the � �  � gene-
level dependency matrix that is computed using the dependencies among the latent variables (representing 
modules) inferred by each of the INSPIRE and its competitors, where � is the total number of genes in the 
two datasets. For the methods that optimize a non-convex objective function, we averaged the CV test 
log-likelihoods across multiple runs with different initial assignment of genes to modules. We tested a 
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range of sparsity tuning parameter values (λ), and observed the “cup-shaped” underfitting/overfitting 
pattern in the λ (x-axis) vs. average CV test log-likelihood (y-axis) curves for all methods, as expected. 

Evaluation of learned network in synthetic data experiments 

In the synthetic data experiments, the correspondence between the modules in a learned model and the 
modules in the true model is not clear because each method can end up having different optimal number 
of modules, even if they started with the same number of initial modules. Therefore, we compared the 
methods in terms of the accuracy of the � �  � gene-level dependency matrix that is computed using the 
dependencies among the modules inferred by each of the INSPIRE and its competitors, where � is the 
total number of genes in the two datasets. 

Measuring the significance of difference between INSPIRE and 13 competing methods 

We repeated the synthetic data generation 20 times in each of the three settings, and presented the average 
results with the Wilcoxon signed rank test p-value measuring the significance of differences based on the 
Wilcoxon signed rank test. More specifically, it measures the probability that the corresponding method 
gave a better result in terms of mean rank than INSPIRE across 20 different data instantiations. 

Comparison of the prediction performance with alternative methods 

We compared INSPIRE with principal component analysis (PCA) and subnetwork analysis method15 
based on how well each method can predict each of the six phenotypes (resectability as defined by 0 cm 
of residual tumor vs. >0 cm of residual tumor after surgery, survival time, and four manually curated 
histologic phenotypes) from The Cancer Genome Atlas (TCGA) data. We used the lasso110 (L1 
regularized linear regression) for predicting the continuous-valued phenotype (percent stroma), L1 
regularized logistic regression for predicting binary phenotypes (stroma type, vessel formation, invasion 
pattern, and residual tumor), and L1 regularized Cox regression for predicting survival. The prediction 
performance was measured in left-out data via leave-one-out cross validation (LOOCV) tests for 
histologic phenotypes that have relatively less number of samples (~100), and 50-fold cross-validation for 
resectability and survival that have larger number of samples (~500). The sparsity tuning parameter λ was 
chosen within training data by performing LOOCV tests, which is a standard way of choosing λ110.  For a 
fair comparison with PCA20 and the subnetwork method15, we used top 90 principal components, and 90 
subnetworks that are most correlated with the phenotype, respectively.  The subnetwork analysis method 
runs on binary phenotypes, but ‘percent stroma’ is continuous-valued; so, to make the subnetwork method 
work on this phenotype, we binarized the values by making >50% to be 1 and >50% be 0.  

Learning subtypes based on the INSPIRE latent variables 

We used the �-means clustering algorithm on the INSPIRE latent variables, each of which corresponds to 
a module, to cluster patients into four subtypes. We chose four as the number of subtypes to make it 
comparable to alternative subtyping methods (TCGA study13 and the NBS method35). Since �-means is 
non-deterministic, the resulting subtypes could depend on the starting point of the subtype assignments. 
In order to get the most coherent groups of patients, we ran k-means 10 times with different random initial 
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assignments of the patients into subtypes, and chose the clustering which gives the lowest within cluster 
sum of squares. 

Supervised model to predict tumor resectability 

We trained supervised models of tumor resectability using different combinations of the POSTN 
expression and the latent variables corresponding to module 5 and module 6 in TCGA ovarian cancer data 
for 489 patients to predict 0 cm of residual tumor vs. >0 cm of residual tumor. The proportion of the sub-
optimally debulked patients was 62% (= 139/223) in Tothill45 and was 77% (= 378/489) in TCGA13. 
Logistic regression was used to train the models. Five distinct models were constructed: 1) a model with 
only the POSTN expression, 2) a model with only the latent variable corresponding to module 5, 3) a 
model with only the latent variable corresponding to module 6, 4) a model with POSTN expression and 
the latent variable corresponding to module 5, and 5) a model with the latent variables corresponding to 
module 5 and module 6. We trained each of those models along with (Figure 7) and without (Figure S5) 
the clinical covariates of age and stage. Performance was determined based on the results of each fitted 
model in the Tothill45 data in terms of the Area Under the Curve (AUC) measure from a Receiver 
Operator Characteristic (ROC) curve (Figure 7 and Figure S5).  

Extraction of tumor histologic phenotypes from TCGA images 

We manually curated multiple tumor histopathology features from image data on H-E staining of ovarian 
tumor section from TCGA. We primarily used 98 randomly sampled patients to test the association 
between tumor histopathology features and the latent variables learned by INSPIRE. Features were 
curated in a blinded fashion. Five histopathological features were evaluated including percent stroma, 
percent tumor, vessel formation, stroma type, and pattern of invasion. Percent tumor was defined as the 
percent area involved by viable neoplastic cells across the entire slide while percent stroma was the 
percent area of fibrous tissue (fibroblasts and collagen). Vessel formation was scored as minimal, 
moderate, or abundant based on the number of formed vessels identified at 100X magnification. Stroma 
type was defined as fibrous (dense collagen with relatively fewer fibroblasts) or desmoplastic (many 
fibroblasts embedded in a loose, myeloid extracellular matrix). Pattern of invasion related to how the 
neoplastic cells interacted with the surrounding stroma and was scored as expansile, infiltrative, papillary, 
or mixed. Expansile invasion was characterized by cohesive tumor cells growing in a cluster with 
relatively well-circumscribed borders with the surrounding stroma while infiltrative invasion included 
tumor cells which grew in small nests or tentacles with abundant stroma surrounding the individual tumor 
cells. Tumors classified as having papillary invasion had abundant fibro-vascular cores upon which the 
neoplastic cells grew in arborizing branches. Mixed invasion patterns were identified and classified as 
such. 

Immunohistochemistry 

Ten patients were sampled for staining based on either having good tumor resection and survival (> 3 
year survival, optimal debulking with residual tumor < 1cm) vs. poor tumor resection and survival (< 3 
years survival, > 1 cm residual tumor). Tissue and clinical information were collected with patient 
consent by the University of Washington Gynecologic Oncology Tissue Bank under approval from the 
human subjects division (IRB 27077). Tumor tissue was collected at the time of primary surgery and flash 
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frozen in liquid nitrogen, transported to the lab and stored at -80 C. The 17 frozen block was cryo-
sectioned and one 8 mm section placed on a charged slide for IHC testing and H-E staining. 

Frozen tissue slices fixed to glass slides were allowed to thaw at room temp for ten min. Slides were fixed 
in a Coplin jar in cold acetone for ten min at -20C. Slides were removed from acetone and placed tissue 
side up on a shaker. PBS was added to the slide (1mL, enough to cover tissue slice) for five min shaking. 
PBS wash was repeated for a total of two five min washes. After final wash, PBS was poured off the slide 
and tissues were blocked with 2% milk/PBS (Carnation Instant Nonfat Dry Milk dissolved in PBS) for 
one hour at room temperature, while shaking. Blocking solution was removed and primary antibody 
added, diluted in 1% milk. Antibody dilutions were per manufacturers recommendations. Slides were 
allowed to incubate overnight at 4°C while shaking with primary antibody. If primary antibody was 
conjugated to fluorescent molecule, slides were also incubated in the dark overnight. Slides were washed 
three times with PBS at room temperature. Secondary antibody was diluted in 1% milk/PBS and 
incubated at room temperature for 30 min, shaking. Slides were then washed with PBS for 10 min, three 
times. Nuclear stain diluted in PBS was added to tissues. Either Dapi (300ng/mL, Sigma-Aldrich, catalog 
# D9542) or Sytox Green Nuclear Stain (Life Technologies, catalog # S7020) was used depending on the 
secondary antibodies used for staining. Last PBS wash was done at room temperature for 5min. 
Coverslips were mounted to slides using Fluoroshield (Sigma-Aldrich, catalog # F6182) and sealed with 
clear nail polish. Images were taken on a Nikon TiE Inverted Widefield Fluorescence High Resolution 
Microscope. 

Primary Antibodies used: Anti-E Cadherin antibody conjugated to Allophycocyanin (Abcam, catalog # 
ab99885), Hop Antibody (Santa Cruz, catalog # sc-30216), Anti-CD73 antibody (Abcam, catalog # 
ab54217), GCS-a-1 Antibody (Santa Cruz, sc-23801) 

Secondary Antibodies used: CD73 antibody was detected with Goat anti-mouse IgG-FITC (Santa Cruz, 
catalog # sc-2010). When co-stained with CD73, HOPX was detected with Donkey anti-rabbit IgG-CFL 
647 (Santa Cruz, catalog # sc-362291). When co-stained with E Cadherin, HOPX antibody was detected 
with Chicken anti-rabbit IgG H&L FITC (Abcam, catalog # ab6825). 

Analysis of immunohistochemistry 

Fluorescence images were analyzed using ImageJ111 and the plugin JACoP was used for co-localization 
analysis. 
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FIGURE LEGENDS 

Figure 1. Overview the INSPIRE framework. INSPIRE takes as input multiple expression datasets that 
potentially contain different sets of genes and learns a network of expression modules (i.e., co-expressed 
sets of genes) conserved across these datasets. INSPIRE is a general framework that can take any number 
of datasets as input; two datasets (X1 and X2) are shown in representation for simplicity. Top left: Two 
input datasets are represented by rectangles with black solid lines. Rows represent genes and columns 
represent samples. The blue region contains the data for the genes that are contained in both datasets. The 
pink and green regions contain the data for the genes which are contained by only one of the datasets. 
Top right: The features (latent variables), each corresponding to a module, are shown by the orange 
matrix as learned by INSPIRE. These are used as a low-dimensional representation of the expression 
datasets. Top middle: As an example, five INSPIRE features ��, … , �� (orange-shaded circles), 12 genes 0� , … , 0�� associated with those features, and the conditional dependency network among the INSPIRE 
features are represented. The dependencies among features are conserved across the datasets. Bottom 
middle: Five modules, each corresponding to an INSPIRE feature, and the dependency network among 
them are represented as the interpretation of the INSPIRE features and their conditional dependencies. 

 

Figure 2. Overview of the evaluation and application of INSPIRE procedure. The procedure takes as 
input z ) 2 datasets, and the method is an iterative procedure that determines both the assignment of the 
genes to modules, the features each corresponding to a module, and the dependencies among the features 
which are conserved across the datasets. (A) Evaluation of INSPIRE using simulated data. Two simulated 
datasets in four settings corresponding to different amount of gene overlap are provided as input to the 
INSPIRE learning algorithm, and the learned modules and network are evaluated in terms of three 
different metrics. (B) Evaluation of INSPIRE using two ovarian cancer expression datasets. Two 
expression datasets from different platforms are provided as input to the learning algorithm and the 
learned modules and network are evaluated in terms of three different metrics. (C) Application of 
INSPIRE on nine real-world ovarian cancer expression datasets. As an application of INSPIRE, we first 
check the association of the learned INSPIRE features with six histological and clinical phenotypes, 
which is followed by subtyping the patients into groups based on the learned INSPIRE features. 
Observing that INSPIRE features have high association with the histological and clinical phenotypes in 
cancer, and the subtypes learned based on the features can predict CNV abnormalities well leads us to do 
a deeper analysis of two modules (modules 5 and 6), which are good predictors of many phenotypes and 
good differentiators of learned ovarian cancer subtypes. 
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Figure 3. Illustration of the synthetic data, aligned with four groups of bars in each of (A)-(C). Rows 
represent genes and columns represent samples. (A) Negative test log-likelihood per instance averaged 
over 20 different instantiations of the synthetic data (lower is better). (B) Rand index for module recovery 
averaged over 20 different instantiations of the synthetic data. (C) F-measure for feature dependency 
recovery averaged over 20 different instantiations of the synthetic data. The Wilcoxon signed rank test p-
value represented on each bar (except the bars for INSPIRE) measures the statistical significance of the 
difference between the method and INSPIRE. 

 

Figure 4. (A) Illustration of the two OV datasets used for evaluating INSPIRE. Rows represent genes and 
columns represent samples. (B) For � � 91 (left) and � � 182 (right), INSPIRE is compared to WGCNA 
variants (top) and MGL variants (bottom) in terms of the best CV negative test log-likelihood (lower is 
better) across all tested sparsity tuning parameters (�) (C) For � � 91, INSPIRE (y-axis) is compared to 
each of the six competing methods (x-axes) in terms of the best � log�� � from the functional enrichment 
of the learned modules. Each dot is a KEGG, Reactome or BioCarta GeneSet, and only the GeneSets with 
a Bonferroni corrected � {  .05 in at least one of the compared two methods are shown on each plot. For 
MGL variants and INSPIRE, results from multiple runs are shown. We only considered the GeneSets 
with sufficiently different significance between the two methods, i.e., |log�� �.|-YP|}~ �log�� �.���~}-��|�~_>~��wx | ) �. � � 6 here and the results were consistent for varying �. (D) 
For � � 91, INSPIRE (y-axis) is compared to each of the six competing methods (x-axes) in terms of the 
best � log�� � from the ChEA enrichment of the learned modules. Each dot is for a gene set composed of 
a TF and its targets, and only the sets with a Bonferroni corrected � {  .05 in at least one of the compared 
two methods are shown on each plot. For MGL variants and INSPIRE, results from multiple runs are 
shown. We only considered the TFs with sufficiently different significance between the two methods, i.e., |log�� �.|-YP|}~ � log�� �.���~}-��|�~_>~��wx | ) � . � � 3  here and the results were 
consistent for varying �. Each blue dot corresponds to a TF which sits in the INSPIRE module that is 
significantly enriched for its targets, and each red dot corresponds to a TF which sits in an INSPIRE 
module different than the one that is significantly enriched for its targets. 
 

Figure 5. (A) For each of 90 INSPIRE modules (x-axis), the � log�� � from the Pearson’s correlation is 
shown (y-axis) for six different histological and clinical phenotypes. The p-value threshold (shown by red 
dotted horizontal lines) is 5 � 10�� for histological phenotypes, and 5 � 10��  for clinical phenotypes, 
which are harder to predict. We highlight modules 5, 6, 53, 54, 60, 78 and 81 that are significantly 
correlated with at least three of the six phenotypes by red. We also highlight module 30 by red since it is 
the only module that has a significant correlation with the vessel formation phenotype. Modules 5 and 6 
achieve the first or second rank in terms of the significance of correlation with five of the six phenotypes. 
(B) For four different methods (the subnetwork markers, principal components, all genes and INSPIRE 
latent variables, the prediction performance is compared for six prediction tasks in cross-validation 
setting. (C) For three different Pearson’s correlation p-value thresholds (10��, 10��, 10�� respectively 
from left to right), the number of CNV levels that are significantly associated with the learned subtypes 
are shown for two published methods and INSPIRE. (D) The modules that differentiate the subtypes that 
are learned using INSPIRE features and the interactions among those modules as learned by INSPIRE. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 13, 2016. ; https://doi.org/10.1101/048215doi: bioRxiv preprint 

https://doi.org/10.1101/048215
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

42 

 

The modules are grouped and colored according to the subtypes they differentiate. Next to each one of the 
four module groups, there is the heat map of the features corresponding to the modules in this module 
group. 

 

Figure 6. (A) Fisher’s combined p-values for survival (y-axis) are shown for the top 300 genes (x-axis) 
which achieve the most significant survival association in the pan-cancer survival analysis. Module 5 
genes are shown by red and module 6 genes are shown by blue. (B) Fluorescent staining of ovarian 
tumors from sub-optimally bulked and optimally debulked patients. Each row is a single patient. HOPX is 
localized to the stroma and does not overlap with E Cadherin positive cancer cells. HOPX does however 
overlap with CD73, a mesenchymal stem cell marker (C) Left: Expansile growth pattern of high-grade 
serous carcinoma associated with optimal resectability and low HOPX expression from the TCGA 
ovarian cancer study.  Note high percentage of carcinoma (red arrow) and low percentage of stroma 
(black arrow).  Hematoxylin and Eosin, 100X. Right: Infiltrative growth pattern of high grade serous 
carcinoma associated with low resectability and high HOPX expression from the TCGA ovarian cancer 
study. Note high percentage of stroma (black arrows) compared with carcinoma (red arrows).  
Hematoxylin and Eosin, 100X. (D) A total of 32 genes that are potential targets of HOPX are shown. The 
purple-colored genes are the targets whose expression does not depend on Wnt signaling, and the red-
colored genes are the targets of HOPX which are down-regulated in HOPX−/−, and further down upon 
Wnt inhibition in HOPX−/−. It is highly likely that the expression of the red-colored genes are driven by 
both HOPX and Wnt signaling pathway. 

Figure 7. ROC curve of the supervised models for resectability prediction trained in TCGA and tested in 
Tothill data. Different combinations of POSTN and the INSPIRE features corresponding to modules 5 
and 6 are used for training each model. The clinical covariates age and stage are also included in all 
models. AUC of each model is shown in the legend. 
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