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Abstract

One of the hallmarks of cancer genome is aneuploidy, resulting in abnormal copy numbers of alleles. Struc-
tural variations (SVs) can further modify the aneuploid cancer genomes into a mixture of rearranged ge-
nomic segments with extensive range of somatic copy number alterations (CNAs). Indeed, aneuploid cancer
genomes have significantly higher rate of CNAs and SVs. However, although methods have been developed
to identify SVs and allele-specific copy number of genome (ASCNG) separately, no existing algorithm can
simultaneously analyze SVs and ASCNG. Such integrated approach is particularly important to fully un-
derstand the complexity of cancer genomes. Here we introduce a new algorithm called Weaver to provide
allele-specific quantification of SVs and CNAs in aneuploid cancer genomes. Weaver uses a probabilistic
graphical model by utilizing cancer whole genome sequencing data to simultaneously estimate the digital
copy number and inter-connectivity of SVs. Our simulation evaluation, comparison with single-molecule
Optical Mapping analysis, and real data applications (including MCF-7, HeLa, and TCGA whole genome
sequencing samples) demonstrated that Weaver is highly accurate and can greatly refine the analysis of
complex cancer genome structure.

1 Introduction

Genome aneuploidy, in which abnormal copy numbers of alleles are present, is a hallmark of cancer [1, 2]. A
large proportion of tumors are aneuploid and have undergone either arm-level somatic copy number alterations
(CNAs) or even whole-genome duplications (WGD) [1, 3, 4]. In some types of cancer such as bladder cancer,
ovarian cancer, and lung cancer, more than 50% of the tumors have undergone WGD [4]. Structural variations
(SVs), including deletions, insertions, duplications, and rearrangements, can further modify the aneuploid can-
cer genome into a mixture of rearranged genomic segments with extensive range of CNAs. Indeed, aneuploid
cancer genomes have significantly higher rate of CNAs as well as SVs [4]. A comprehensive and precise char-
acterization of these changes is critical in understanding the evolution of cancer genome [5] and in interpreting
cancer-specific gene expression and epigenetic alterations using high-throughput next-generation sequencing
(NGS) data [6].

Allele-specific copy number of genome (ASCNG) analysis has been performed for SNP array data [13, 14]
and recently for NGS data as well [9–12]. Separately, SV identification methods have also been developed
for NGS data, such as [5, 6, 9, 11]. It is essential to ask how SVs interact with ASCNG and how different
SVs interact with each other. The answers to such questions can help unravel the detailed cancer genome
structure and its evolutionary history. However, integrative method specifically for simultaneously analyzing
SVs and ASCNG has not been developed. Indeed, except arm-level gain/loss, the majority of somatic CNAs
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are associated with SVs [17]. It has been reported that analyzing CNAs around SV breakpoints can reveal the
mutational forces causing particular cancer subtype [17–19]. Moreover, the integrated approach can further
assist the variants phasing in different scales (both SNPs and SVs) in the context of complex cancer genome
architecture.

In this paper, we introduce a novel computational method Weaver to identify allele-specific copy number of
SVs (ASCNS) as well as the inter-connectivity of them in aneuploid cancer genomes. To our knowledge, this is
the first method that can simultaneously analyze SVs and ASCNG. Under the same method framework, Weaver
also provides base-pair resolution ASCNG. Note that in this paper we specifically focus on the quantification
of SV copy numbers, which is also the key novelty of our method. Our framework is flexible to allow users to
choose their own variant calling (including SV) tools. We use the variant calling results to build cancer genome
graph, which is subsequently converted to a pair-wise Markov Random Field (MRF). In the MRF, the ASCNS
and SV phasing configuration, together with genomic ASCNG, are hidden states in nodes and the observations
contain all sequencing information, including coverage, read linkage between SNPs as well as between SV
and SNPs. Therefore, our goal of finding the ASCNS and SV phasing together with ASCNG is formulated
as searching the maximum a posteriori (MAP) solution for MRF. We apply Loopy Belief Propagation (LBP)
framework to solve the problem.

Being an integrative graphical model to analyze SVs and CNAs that fits well with the complex nature
of cancer genomes with reorganized chromosomes, Weaver’s novel contribution is trifold: (i) The method
provides a quantitative measurement of SVs in cancer genome; (ii) It estimates the phasing/linkage information
of different SVs using NGS data; (iii) The method generates the highly accurate base-pair resolution (note that
all previous methods can only provide rough estimate of CNA boundaries, as in Appendix Fig. 1) ASCNG
profiling in aneuploid cancer genomes, by simultaneously achieving (i) and (ii). Our simulation evaluation,
comparison with single-molecule Optical Mapping analysis, and real data applications (on MCF-7, HeLa, and
TCGA whole-genome sequencing datasets) demonstrated that Weaver is highly accurate and can significantly
refine the analysis of complex cancer genomes.

2 Methods

The overview of the Weaver algorithm is shown in Fig. 1. The input of Weaver is the BAM file of aligned and
unaligned reads from a particular tumor sample. If there is matched normal sample available, it will also be
used (details in Section 2.3). The first step is to call variants (including both SNPs and SVs) based on the BAM
file. Users can choose their own variant calling methods. The detailed description for preparing Weaver input
is in the Appendix. In the Methods section here, we focus on the most important aspects of our work.

Using the intermediate results (yellow boxes in Fig. 1) including the cancer genome graph construction
(Section 2.1), the Weaver MRF model will be built. By solving the MRF MAP function (Equation 4), Weaver
generates output as shown in the green boxes in Fig. 1 (see Fig. 2E for example). Weaver source code is freely
available and can be downloaded from: https://github.com/ma-compbio/Weaver.

2.1 Genome partitioning and cancer genome graph construction
We first select a default size W (e.g., 5kb) and partition the genome into non-overlapping regions as follows:
(i) Breakpoints in the input SV set C must be on region boundaries; (ii) Each region may contain no more
than one SNP; (iii) The size of each region must be ≤ W . The number of regions from initial segmentation
in Weaver ranges from 1.7 million to 2 million based on various datasets in this work, depending on the size
of loss of heterozygosity (LOH) regions and the number of SVs. This is a combined strategy that utilizes both
fixed window size and SV boundaries for segmentation. Since SV breakpoints and CNV boundaries do not
always match, our proposed MRF models this probabilistically. Overall, this approach has the advantage to
provide base-level ASCNG boundaries as compared to existing genome segmentation methods in copy number
analysis, which typically use fixed segmentation size.

Given the segmentation of the genome and SV set C, we then build cancer genome graph G := {R,E}
(Fig. 2B), with nodes representing genomic region sets (R) and edges representing reference adjacencies (Er)
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Figure 1: The method overview of Weaver. Red
boxes represent input and green boxes represent
output. Yellow boxes show intermediate results.
Dark green boxes show the primary goals of Weaver
that are novel and have never been tackled by other
methods, while light green ones show ‘by-products’
of Weaver that have also been demonstrated to per-
form better in Weaver as compared to existing meth-
ods for these outputs.

(solid lines in the figure) if two nodes are adjacent in the normal genome and cancer adjacencies (Ec) (dashed
lines in the figure) if two nodes are adjacent in the cancer genome by SV c linkage. Edge configurations E
between nodeRi andRj can be represented as: (δiRi ∼ δjRj), δ ∈ {+,−}, with + and− representing the tail
(right) and head (left) of a given genomic region R, e.g., (+Ri ∼ −Ri+1) ∈ Er, if Ri and Ri+1 are adjacent
regions from the same chromosome in the normal genome.

We then convert the original cancer genome graph G := {R,E} into Markov Random Field (MRF, M :=
{R,Rc,Er,Ec}), which is a widely used probabilistic graphical model to estimate joint probabilities. The
MRF can be viewed as an undirected graph and the aggregated inference problem in Weaver given sequencing
data can be viewed as a maximum a posteriori (MAP) problem with hidden states and observations explained
in the following sections. Unlike conventional methods for estimating copy number changes based on hidden
Markov models (HMMs), which are designed for sequential data and only consider the dependencies between
‘local’ variables, MAP solution of MRF model provides the most probable configuration of aneuploid cancer
genomes with complex SVs, involving ‘global’ variable dependencies defined by long-range SVs (i.e., distal
connections of variants). This is the main rationale of using MRF for our problem. In the following sections,
we describe hidden states, observations, and formal function of the MRF MAP problem. Details on potential
functions on nodes and edges are provided in the Appendix.

2.2 Hidden states H
For ith genome node Ri ∈R ⊂M, the hidden states are Hi={Ca

i ,C
b
i , G

a
i , G

b
i}, where Ca

i = {Cai,0, ..., Cai,K}
and Cb

i = {Cbi,0, ..., Cbi,K} are vectors of non-negative integer numbers representing copy numbers for allele a
and b of kth population on Ri, respectively. When k = 0, it stands for the fraction of normal cells. Note that
although the Weaver algorithm is generic and in principle can be applied for multiple subclones (K > 1), in
our current implementation, Weaver only processes tumor samples without significant subclonal structure (i.e.,
K = 1). We leave the cases for K > 1 with tumors with complex subclonal structure as future work.

Gai and Gbi represent the genotype of allele a and b of Ri, which is independent from subclone structure
since only germline SNPs are considered. For convenience, we also set variableCi,k as the overall copy number
of kth population on Ri (Ci,k = Cai,k + Cbi,k). In our analysis of cancer genomes, which typically have highly
amplified regions, we do not have a limit for Ci,k, as done by previous CNA methods. The hidden copy number
is bounded by the observation of sequencing depth on each region. Note that for regions with low mappability
or extreme GC content, it is not reliable to infer hidden state space with observed local sequencing coverage;
instead, we search the closest region and inherit its hidden state space setting, assuming that there is no dramatic
state change between them. The hidden states on cancer nodes Rc are discussed in Appendix 5.4.

2.3 Observations O
For observation on R ⊂M, on ith genomic region Ri ∈ R, the observation from the hidden state is the raw
read coverage Oi on entire Ri, which can be estimated by tools such as BEDTools [20] based on BAM file. For
tumor sample with matched normal genome sequenced, we calculateONormi for the sameRi and normalize the
Oi using: Onewi = ONorm ×Oi/ONormi , where ONorm is the median coverage of the entire normal genome.

3

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 13, 2016. ; https://doi.org/10.1101/048207doi: bioRxiv preprint 

https://doi.org/10.1101/048207


If Ri has SNP, Oai and Obi are the number of reads containing the SNP based on a/b allele, respectively,
which can be obtained from SNP calling pipelines such as [21]. In practice, neither sequencing nor mapping
is uniform across the genome. Here we consider two widely used factors, the GC-content and short read
mappability (from UCSC). Using two HapMap samples NA18507 and NA12878, we split the human genome
into consecutive 100bp bins and calculated the average mapping coverage on each bin. Among the bins that
have unexpected low or high coverage as compared to the rest of the genome, more than 91% have either
mappability < 0.6 or GC-content < 0.2 or > 0.6. Therefore, we label all Ri as not read-depth informative, if
mappability < 0.6 or GC-content < 0.2 or > 0.6. The read depth of those uninformative regions are inherited
from neighboring regions.

Regarding observation on Er ⊂ M, within two adjacent genomic regions Ri, Ri+1 ∈ R, there are two
independent observations for their genotype linkage.

(i) We assume the genotypes on i and i+1 areGai /G
b
i andGai+1/G

b
i+1, respectively. We define the Linkage

Disequilibrium (LD) score for the phasing configuration Gai , G
a
i+1/G

b
i , G

b
i+1 as:

LD(Gai , G
a
i+1/G

b
i , G

b
i+1)

=
NLD(Gai , G

a
i+1)×NLD(Gbi , G

b
i+1)

NLD(Gai , G
a
i+1)×NLD(Gbi , G

b
i+1) +NLD(Gai , G

b
i+1)×NLD(Gbi , G

a
i+1)

(1)

where NLD(Gai , G
a
i+1) is the number of phased haplotypes (total number 1092 × 2 in phase 1) in 1KGP with

genotype (Gai , G
a
i+1). Other genotype configurations can be similarly calculated.

(ii) Similarly, we define the read linkage score for the phasing Gai , G
a
i+1/G

b
i , G

b
i+1 as:

RL(Gai , G
a
i+1/G

b
i , G

b
i+1) =

NRL(Gai , G
a
i+1) +NRL(Gbi , G

b
i+1)

NRL(Ri, Ri+1)
(2)

where NRL(Ri, Ri+1) is the total number of reads covering genomic regions (Ri, Ri+1) and NRL(Gai , G
a
i+1)

is total number of reads covering (Gai , G
a
i+1). If there are no reads covering (Ri, Ri+1) (NRL(i, i + 1) = 0),

RL = 0.
Therefore, we define genotype linkage as

GL(Gai , G
a
i+1/G

b
i , G

b
i+1) = log(LD(Gai , G

a
i+1/G

b
i , G

b
i+1)×RL(Gai , G

a
i+1/G

b
i , G

b
i+1)) (3)

In real data application, we have found that RL and LD correlate very well. For example, in the MCF-7
genome analysis (see Results section), when we chose SNP pairs with 100% RL support as gold standard, we
found AUC= 0.9964 using LD scores.

2.4 Markov Random Field model M
After we convert G into MRF M using steps in Appendix 5.6, the MRF MAP problem is given by:

Ĥ = argmaxH

∑
i∈R

ΘR(O|Hi) +
∑
c∈C

ΘC(O|Hc) +
∑
i∈R

ΨR(O|Hi, Hi+1) +
∑
c∈C

∑
i∈N (c)

ΨC(Hi, Hc)


(4)

where ΘR(O|Hi) is the genome node (green box in Fig. 2C, Appendix 5.2) potential function. ΘC(O|Hc)
denotes constraint function in cancer nodes (red box in Fig. 2C, Appendix 5.4). ΨR(O|Hi, Hi+1) is the genome
edge (link between green boxes in Fig. 2C, Appendix 5.3) function, providing pairwise constraints of hidden
states of neighboring nodes Ri, Ri+1. ΨC(Hi, Hc) is the cancer edge (link between green and red box in
Fig. 2C, Appendix 5.5) potential function. N (c) stands for the index of genome nodes linked to SV c.

The general MRF MAP problem is computationally intractable [22]. Several approximation approaches
have been proposed to solve this problem. Here we utilize Belief Propagation (BP) to solve the MRF MAP
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Figure 2: MRF model details. (A) Hy-
pothetical cancer chromosomes with rear-
rangement structure hidden. Orange and
blue segments represent paternal/maternal
allele. Red dashed line represent linkages
by SVs. (B) The cancer genome graph, con-
structed from (A), with nodes (boxes) rep-
resenting genomic regions and edges rep-
resenting reference (solid lines) or cancer
(dashed lines) adjacencies. (C) MRF repre-
sentation in Weaver. Red boxes represent
cancer nodes(Rc) that have included SVs in-
formation; green boxes are the same with
(B) and representing genome nodes(R); the
lines between genome nodes are genome
edges(Er); the lines between cancer nodes
and genome nodes are cancer edges(Ec). (D)
Blue boxes represent supernodes by cluster-
ing blue shaded chains of genome nodes as
shown in (C). (E) Input and output of MRF
are separated into genomic regions and SVs.
For region R1, the input is observed coverage
30 and allele frequency 0.33; the output is 2
copies on allele 1 and 1 copy on allele 2. n
is a post-aneuploid deletion with 1 copy and
both breakpoints are on allele 1 of chrA. t is a
pre-aneuploid deletion with 2 copies and both
breakpoints are on allele 1 of chrB. SV m, p,
q and s are from the allele that has not been
duplicated.

problem. BP was originally proposed for graphs without cycle [23], in which case the fixed point of max-
product belief propagation algorithm are also the assignment of MAP [24]. When applying on graph with arbi-
trary topology, the Loopy Belief Propagation (LBP) can still approximate well to the MAP configuration [25].
With Ĥ estimated, the Ĥi on genome node provides base-pair resolution ASCNG and Ĥc on cancer node
provides estimation of ASCNS.

We use LBP to find the MAP configuration of MRF [25]. The message updating rule from node Rj to node
Ri (as illustrated in Fig. 2D) at (t+ 1)th iteration is:

m
(t+1)
j→i (Hi) ∝ maxHj

ΨR(Hj , Hi) + ΘR(Hj) +
∑

s∈N (j)\i

m
(t)
s→j(Hj)

 (5)

where N (j) \ i stands for index of all the nodes linked to node j, except for node i. Note that the max-product
form of message passing is used to get state configuration with MAP. The above function assumes Ri and Rj
are genome nodes, corresponding potential will be replaced if Ri or Rj is cancer node.

The belief vector (max-marginal) is computed for each node at tth iteration:

b
(t)
i (Hi) = ΘR(Hi) +

∑
j∈N (i)

m
(t)
j→i(Hj) (6)

If convergence (b
(T )
i (Hi) = b

(T−1)
i (Hi)) or the maximum iteration number is reached at T th iteration, the final

belief vector for each node is b(T )
i (Hi). The set of Ĥ that provides the largest belief: b(T )

i (Ĥi) = max(b
(T )
i (Hi))

will be the MAP result for our problem. Since the message passing in BP is proportional to the number of
nodes, we reduce the number of nodes using a procedure described in Appendix 5.7 in order to make the
overall computation more efficient.

5

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 13, 2016. ; https://doi.org/10.1101/048207doi: bioRxiv preprint 

https://doi.org/10.1101/048207


1 2 3 4
84

86

88

90

92

94

96

98

100

θ=1

θ=2

θ=3

ASCNS

S
en

si
tiv

ity

1 2 3 4
90

91

92

93

94

95

96

97

98

99

100

θ=1

θ=2

θ=3

S
pe

ci
fic

ity

1:1 2:2 3:2 2:1 4:2 3:1 4:1
0

0.005

0.01

0.015

0.02

0.025

0.03

Allele ratio

S
w

itc
h 

er
ro

r r
at

e BEAGLE

Weaver

(A)

(B) (D)

(C)

94

95

96

97

98

99

100

0 1 2 3 4

SN

SP

ASCNG

Figure 3: In (A) and (B), SN and SP
based on results from Weaver are cal-
culated for each ASCNS under differ-
ent sequencing coverage dispersions
(θ) using simulation. Random fluctua-
tions are imposed onto initial simula-
tion dataset to create testing dataset
with specific dispersion. Both SN and
SP decrease with increasing SV CN
and dispersion. From observation on
real cancer sequencing data, real dis-
persion is slightly higher than one. (C)
SN/SP is summarized for each AS-
CNG from Weaver. (D) Switch error
rate of Weaver and BEAGLE on simu-
lated datasets with different allele ra-
tios. With imbalanced dataset, error
rate of Weaver decreases to less than
0.5%.

As illustrated in Fig. 2E, the final output of Weaver has three major parts: (i) the purity (µ0 and µ1) and
haplotype level coverage b; (ii) ASCNG; (iii) ASCNS, as well as the timing of SVs with respect to chromosome
amplification or deletion (aneuploid).

3 Results

3.1 Evaluation by simulation
We first evaluated the performance of Weaver on simulated datasets. The detailed steps on how the simulated
data were generated are described in Appendix 5.8.

3.1.1 Accuracy of estimating ASCNS in Weaver
Overall, Weaver identified 97.1% SVs with correct copy number and 95.7% of SVs were phased to correct
allele. The timing of SV can be inferred with pre- and post-aneuploid SVs. We have correctly detected 97.3%
pre- and 98.7% post-aneuploid SVs. SN and SP of reporting SV with specific copy numbers are summarized
in Fig. 3A-B. The dispersion parameter φ is approximated by adding various degrees of random noises on
original coverage from simulation data. With increasing noise level (larger dispersion φ), both SN and SP
drop. However, based on our observation on the real datasets, the dispersion is typically a bit greater than 1,
suggesting that Weaver should perform well on real cancer genome data.

3.1.2 Comparison with other ASCNG methods
All CNA methods based on high-throughput technologies including array CGH, SNP arrays and NGS adopt a
similar workflow for detection of CNVs and the segmentation is the core part. Signals are used in segmenta-
tion, including the signal intensity in array or read counts in NGS, and the b-allele frequency in array or allele
frequency in NGS. We first compared Weaver with CNVnator [26] and HMMcopy [27], both designed for par-
titioning normal genome sequenced by NGS, ignoring allele information. The output of both tools is segmented
genome regions with gain, loss or neutral labels, without exact copy numbers. The segmentation results from all
three tools were compared to simulation gold standard (if an identified breakpoint is within [-1, 1]kb region of
simulated ones, that breakpoint are considered as correct) with both SN (percentage of correctly identified gold
standard breakpoints within all reported breakpoints) and SP (percentage of correctly identified gold standard
breakpoints within all gold standard breakpoints) calculated. When SV information is omitted (SV ratio = 0),
Weaver achieved an average of 80.6% sensitivity and 92.5% specificity in finding copy number change points
(Appendix Fig. 2), with increasing SV information, the performance of Weaver gradually improved, suggesting
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that the advancement of considering CNA together with SV. Even with false SV predictions (SV ratio > 1),
Weaver still had accurate results. Also, CNVnator is consistently better than HMMcopy for both SN and SP.

To evaluate the performance on identifying exact ASCNG, we compared Weaver with ASCAT [13] and
CNVnator [26]+ThetA [28] (ThetA needs a third party tool to perform segmentation). We converted our se-
quencing data to logR and BAF values for SNP positions from Illumina HumanOmni2.5 BeadChip (2,015,318
SNP positions genome wide). Overall 43,758 SNPs are within the simulated region. CNVnator+ThetA works
on NGS data, but only reports overall copy number. Weaver identified that 97.2% genomic regions have the
same copy number with simulation gold standard, while both ASCAT and CNVnator+ThetA had much lower
consistency (<20%). These simulation results suggest that it is important to simultaneously consider CNAs
and SVs, especially in highly rearranged cancer genomes.

3.1.3 Comparison with other SNP phasing tools
BEAGLE [29] is a statistical phasing method based on a population reference-panel of phased chromosomes.
We evaluated Weaver using switching error rate, which is the standard metric for phasing accuracy [30]. The
switching error is the proportion of switches in the inferred haplotypes to recover the correct phase in an
individual. In our evaluation, we left the phasing information of the testing individual out, and used the rest
1KGP individuals as reference-panel. Overall, Weaver reported an average switching error rate 0.2%, while
BEAGLE had an error rate of 3% on regions with imbalanced allele ratio. We have also observed a clear
decrease of switching rate for Weaver on dataset with increasing allele imbalance (Fig. 3D). We also attempted
to compare with a recently published method HARSH [31]. But HARSH did not finish even on one simulated
dataset after more than two weeks, making the comparison difficult to perform.

3.1.4 Simulation from whole chromosomes
We also tested Weaver on simulation dataset derived from whole chr4, chr17 and chr19. Overall, all 52 sim-
ulated SVs have been identified by Weaver, with 49 of exact base-pair resolution breakpoint boundaries. The
remaining 3 SVs have their breakpoints within low complexity regions and the ‘soft-clip’ strategy (Appendix
5.1.4) failed to identify the detailed breakpoints. However, ‘discordant paired-end’ strategy (Appendix 5.1.4)
still identified these 3 SVs with a rough estimation of their breakpoint locations. 100% ASCNS reported by
Weaver are consistent with simulation gold-standard.

In terms of relative timing comparing with aneuploidy, all 36 pre-aneuploid SVs in this randomly generated
dataset were correctly identified. Weaver labeled 10 SVs as post-aneuploid and 2 of them were incorrect since
they were assigned to wrong alleles. These 2 false positive post-aneuploid SVs were actually on the alleles
which were not amplified, therefore no timing information would be inferred from them. On ASCNG level,
out of 330,988,351bp regions simulated, 2,829,832bp regions (0.85%) had incorrect ASCNG. On the level of
overall copy number, ignoring allele information, 1,257,919bp regions (0.38%) had incorrect copy number.

3.2 Application to the MCF-7 genome compared with Optical Mapping analysis
We applied Weaver to the whole-genome DNA sequencing data of the MCF-7 breast cancer cell line, with
approximately 100X overall coverage and 20X haplotype level coverage. Genome-wide ASCNS and AS-
CNG are shown in Fig. 4A. 68.3% of MCF-7 genome have imbalanced ASCNG, enabling accurate phasing
of SNPs and distal SVs. Weaver identified 546 SVs with 83.3% have copy number greater than 1. Moreover
Weaver found 276 post-aneuploid SVs, especially two deletions, Del1 (chr9:21,837,011-22,081,282) and Del2
(chr9:21,819,514-21,989,631), within the MTAP-CDKN2A/B region (Appendix Fig. 3), where deletions have
been frequently observed in various cancers [4, 32]. Weaver found that the short arm of chr9 is triplicated with
LOH, having mutually exclusive Del1 and Del2, with copy number 2 and 1, respectively. The copy number
of deletions implies the region has been amplified twice. Before the first amplification, which changed copy
number from one to two, no deletion occurred. After the first amplification and before the second amplification,
Del1 emerged on one chromosome, which was then duplicated in the second round of amplification, leading to
two copies of Del1. Independent from Del1, Del2 was formed in approximately the same region of the other
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Figure 4: (A) Overview of the
genomic landscape of MCF-7
cell line. Inter-chromosomal and
intra-chromosomal SVs with size
larger than 10Mbp are illustrated
as red (one copy) and purple
(>one copy) lines. Short range
deletions, duplications and inver-
sions (imbalanced) are presented
as blue, red, and green ver-
tical bars, respectively. chr1,
chr3, chr17 and chr20 have inter-
connected focal amplifications.
ASCNGs are plotted as blue and
green segments. (B) Distribution
of allelic expression ratio mea-
sured by RNA-seq for different al-
lele copy number categories. Red
stars indicate allele copy ratio.

chromosome after the first amplification. Such evolutionary information cannot be revealed without SV copy
number quantification.

The ASCNG generated by Weaver in MCF-7 demonstrated that detailed cancer genome analysis could help
better interpret cancer functional genomic sequencing data. The recent work in HeLa cells has also suggested
the need of allele-specific analysis of transcriptome and epigenome data [6]. Fig. 4B shows that ASCNG
predicted by Weaver correlates well with the allele-specific expression in MCF-7.

We used Optical Mapping (OM) analysis to compare with the results from Weaver. OM [33–36] is a single-
molecule system that directly constructs large datasets comprising ordered restriction maps (Rmaps; 1 Rmap
is 1 mapped DNA molecule) from individual genomic DNA molecules (300kb-2,000kb). After assembly of
Rmap datasets into Optical Maps (Rmap contigs), automated detection of structural variants (2kb to multiple
megabases) can be discovered spanning large region of genome [37–40], which provides long range linkage
information that current NGS approaches are not able to achieve. We selected 268 long range MCF-7 SVs
detected by Weaver and built in silico ‘cancer reference map’ from these SVs by piecing together 300kbp
flanking regions of two breakpoints for each SV. By comparing to the OM result, 235 of the Weaver detected
SVs are consistent with OM analysis, suggesting high accuracy of Weaver in identifying SVs. Note that the 33
missed by OM result may not be false positives from Weaver, it is also possible that no Rmaps captured that
SV.

An example of OM supporting a tandem duplication (TD) detected by NGS, is shown in Appendix Fig. 4.
Two OM Rmaps are shown as blue lines, with red dots represent theoretical cutting cites of restriction enzymes
on reference genome and purple dots represent cutting sites that missed by OM. Black number on each segment
of OM Rmaps shows the expected length (kb) of OM Rmaps between two cutting sites on the reference and
blue number under each segment shows the observed length (kb) of OM Rmaps. As in Appendix Fig. 4, the
expected length of OM Rmap covering the TD breakpoint is 23.7kb, while the observed lengths of two OM
Rmaps are 22.4kb and 23.1kb, respectively. The strong concordance between expected and observed OM Rmap
length on multiple OM Rmaps serves as an independent validation of this TD initially detected by NGS.

3.3 Application to the HeLa CCL-2 genome
We applied Weaver to the whole genome sequencing data of the HeLa cells CCL-2 generated by [6]. Haplotype
level coverage is approximately 28X. The original study by Adey et al. [6] reported 12 inter-chromosomal
SVs, and no large scale intra-chromosomal SV was reported (only deletions and inversions with size < 10kb
are reported). However, from our analysis on the same data, we have identified 8 inter-chromosomal and 86
intra-chromosomal SVs (if intra-chromosomal SVs are deletion or tandem duplication type, only those with
size > 20kb are reported). Overall, there are 62 genes harboring SV breakpoints.
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Genome-wide representation of the Weaver results on HeLa is in Fig. 5A. The large-scale aneuploidy and
LOH region is very consistent with [6]. Comparing Weaver’s result with [6], for all genomic regions with copy
number profiled, 96.1% have consistent overall copy number estimation between two studies. For ASCNG, the
consistency is 97.3% by comparing Weaver output with Table S13 in [6] (and also Fig.1a in [6] for visual
inspection of the consistency). Those copy number inconsistent regions include the deletion of FHIT gene [41]
(Fig. 5B), which is a tumor suppressor gene frequently to have no expression in various human tumors including
the HeLa cell line [41–43].

Chr11 and chr19 have undergone extensive amount of SVs (Fig. 5A,C), which have also been reported
by [44] in HeLa Kyoto cell line. The SVs are likely to be formed by chromothripsis [45]. With Weaver, we
were able to assign different timing for the two chromothripsis events on chr11 and chr19. The chromothripsis
on chr11 happened before aneuploidy (since most of the breakpoints have copy number > 1)(Fig. 5C), while
chromothripsis on chr19 happened after aneuploidy (since most of the breakpoints have copy number = 1).

3.4 Application to 44 TCGA ovarian cancer whole genome sequencing samples
Previous studies have shown that ovarian cancers (OVs) are featured with genetic instability, including recurrent
nonrandom chromosomal abnormalities, multiple chromosomal losses and gains, and the presence of marker
chromosomes [46–49]. TCGA provided a detailed catalogue of genomic aberrations in OV [50], suggesting
that the degree of somatic CNAs in OV is strikingly high comparing with other tumors. We applied Weaver on
44 high coverage (>15X on haplotype level) TCGA OV samples. We found that these samples typically do not
have complex subclones, suggesting the feasibility of applying Weaver. The overall rearrangement maps for all
the samples is in Appendix Fig. 5.

Genome-wide representation of Weaver result on one sample, TCGA-36-1571, is in Appendix Fig. 6A.
There are two groups of highly inter-connected chromosomes: chr4-chr22 and chr6-chr14 (Appendix Fig. 6B-
C). By calculating the detailed copy number of involved SVs and genomic regions, the chr4-chr22 group showed
signatures of chromothripsis of multiple chromosomes, while chr6-chr14 group showed extensive focal copy
number gains and is most likely to be formed by progressive process other than a single catastrophic chromo-
some shattering event. Indeed, chr6-chr14 region has high number of fold-back inversions, which are funda-
mental to progressive rearrangements driven by breakage-fusion-bridge (BFB) repair [17, 51, 52]. Interestingly,
FOXG1 gene is proximal to the BFB fold-back inversion site on chr14 and highly amplified (Appendix Fig. 6C).
It was reported that the over-expression of FOXG1 contributes to TGF-β resistance in OV, leading to loss of
growth inhibitory response to TGF-β, a common feature of epithelial cancers [53].
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Fig. 6A shows the overall copy number profile of chr19 across 44 OV samples. Gene CCNE1 is within
the most significantly amplified region. Amplification of CCNE1, which encodes cyclin E1, is associated with
primary treatment failure in women with OV. CCNE1 copy number is validated as a dominant marker of patient
outcome in OV [54]. Previous studies have reported that CCNE1 amplification is one of the most common focal
copy number change events in OV [50, 55].

One small region on 19p13.3 (4.6M-6.7M) is enriched with fold-back inversions that lead to amplification of
19p13.2. Especially TCGA-04-1514, TCGA-24-1552, TCGA-13-1491 and TCGA-13-0727 (4 out of 44 deep
sequencing OV samples analyzed) have FBIs with breakpoints within a < 60kbp region, as shown in Fig. 6B.
Interestingly, the breakpoints are right around KDM4B from KDM4 protein family which are demethylases that
target histone H3 on lysines 9 and 36 and histone H1.4 on lysine 26 [56]. Various studies have shown that
KDM proteins, including KDM4B, are over-expressed in different types of tumors and are required for efficient
cancer cell growth.

Taken together, our results demonstrated the potential of Weaver to refine the analysis SVs and CNAs in
complex cancer genomes using whole-genome sequencing data.

4 Discussion

Genomes of somatic cells undergo dramatic and complex genetic changes during cancer development, includ-
ing point mutations, SVs, large-scale gain or loss, and even aneuploidy. Genome aneuploidy is a common
feature of cancer cells. Recent pan-cancer analysis based on whole-genome sequencing data estimated that
over one third of the tumors have whole-genome duplication, and the proportion can reach over 60% in some
types of cancer [4]. In addition, genome aberrations caused by SVs and copy number changes are a common
feature of a wide variety of neoplastic lesions. Recent advances in NGS technologies have provided us with
an unprecedented opportunity to better characterize these different genomic changes in cancer. However, even
though methods have been separately developed to identify SVs and CNVs using NGS reads [5, 6, 9, 11, 57–
59], no algorithm is currently available to simultaneously study SVs and CNVs in aneuploid cancer genomes.
Therefore, Weaver represents the first method that quantifies allele-specific copy numbers of SVs in cancer
genomes and provides a more integrative solution to study complex cancer genomic alterations.

We expect that Weaver will be very useful to refine the analysis of the existing datasets in large-scale projects
such as TCGA and ICGC, which were mostly sequenced using short read NGS technology. The algorithm in
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Weaver is not restricted to short reads and can adapt to data from longer read sequencing technology. However,
it will remain difficult to completely elucidate those very large complex SVs in cancer genomes, especially
when the breakpoint regions caused by SVs contain highly repetitive sequences.

There are a number of areas that the Weaver algorithm can be further improved. Copy number neutral
events such as balanced inversions are not currently handled in Weaver. Although Weaver sets no limit on
maximum CN, its accuracy in quantification SVs is naturally hampered in highly repetitive regions, either in
the reference genome or in the cancer genome. In the case of MCF-7 genome, chromosomes 3, 17 and 20 have
regions with higher than 100X copies, and the estimation on CN and phasing of SVs within those regions may
be less reliable. In addition, even though the probabilistic graphical model employed in Weaver is generic to
consider complex tumor subclones caused by intra-tumor heterogeneity, current version of Weaver only works
for samples with a dominating tumor cell population (which can be estimated by tools such as ABSOLUTE)
with possible normal cell contamination. However, recently a number of new algorithms have been developed
to specifically identify subclonal structure of tumor cell populations [28, 60–65]. Method like TITAN [66]
was also developed to estimate ASCN alterations in the a mixture of tumor cell population, although TITAN
does not handle complex SVs. Nevertheless, the results from these algorithms that identify tumor subclone
architecture are complementary to what Weaver can achieve. However, new methods are needed to quantify
ASCN of SVs and understand how complex SVs interact in the context of a mixture of aneuploid tumor cell
population to reconstruct the evolutionary history of tumor genomes.
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