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Abstract 1!

 Plants obtain soil-resident elements that support growth and metabolism via water-2!

mediated flow facilitated by transpiration and active transport processes. The availability of 3!

elements in the environment interact with the genetic capacity of organisms to modulate element 4!

uptake through plastic adaptive responses, such as homeostasis. These interactions should cause 5!

the elemental contents of plants to vary such that the effects of genetic polymorphisms 6!

influencing elemental accumulation will be dramatically dependent on the environment in which 7!

the plant is grown. To investigate genotype by environment interactions underlying elemental 8!

accumulation, we analyzed levels of elements in maize kernels of the Intermated B73 x Mo17 9!

(IBM) recombinant inbred population grown in 10 different environments spanning a total of six 10!

locations and five different years. We identified quantitative trait loci controlling elemental 11!

accumulation by considering individual elemental accumulation measurements as traits and by 12!

mapping the loci responsible for variation in co-regulated multi-elemental traits identified using 13!

principle components analysis. These approaches detected partially overlapping sets of loci, 14!

many of which were found only in a single growout. We applied our multi-element approach 15!

across all of the growouts and found that the growth environment has a profound effect on the 16!

elemental profile and that some multi-element phenotypes correlate with specific environmental 17!

variables. We identified QTL by environment interactions (QEIs) through three methods: linear 18!

modeling with environmental covariates, QTL analysis on trait differences between growouts, 19!

and QTL analysis on factors obtained from a principle component derived model of ionome 20!

variation across environments. Overall, we were able to map 79 elemental QTL, 101 principal 21!

component QTL, and several instances of QEI, indicating that elemental profiles are highly 22!

heritable, interrelated, and responsive to the environment. 23!
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Author Summary 24!

Plants take up elements from the soil, a process that is highly regulated by the plant’s 25!

genome. In order to look at how maize alters its elemental uptake in response to different 26!

environments, we analyzed the kernel elemental content of a population derived from a cross 27!

grown 10 different times in six locations. We found that environment had a profound effect on 28!

which genetic loci were important for elemental accumulation in the kernel. We also found that 29!

the elements are not regulated independently and that mathematical combinations of elements 30!

will identify different genetic loci than single element approaches. The mathematical 31!

combinations of elements are correlated with environmental variables, suggesting that 32!

underlying the observed variation are interactions between genetically controlled factors and 33!

environmental variables. Our results suggest that to have a full understanding of elemental 34!

accumulation in maize kernels and other food crops, we will need to understand the interactions 35!

identified here at the level of the genes and the environmental variables that contribute to loading 36!

essential nutrients into seeds.  37!

Introduction 38!

 The intake, transport, and storage of elements are key processes underlying plant growth 39!

and survival. A plant must balance mineral levels to prevent accumulation of toxic 40!

concentrations of elements while taking up essential elements for growth. Food crops must strike 41!

similar balances to provide healthy nutrient contents of edible tissues. Adaptation to variation in 42!

soil, water, and temperature requires that plant genomes encode flexible regulation of mineral 43!

physiology to achieve homeostasis [1]. This regulation must be responsive both to the 44!

availability of each regulated element in the environment and to the levels of these elements at 45!

the sites of use within the plant. Understanding how the genome encodes responses to element 46!
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limitation or toxic excess in nutrient-poor or contaminated soils will help sustain our rapidly 47!

growing human population [2]. 48!

 The concentrations of elements in a plant sample provide a useful read-out for the 49!

environmental, genetic and physiological processes important for plant adaptation. We and 50!

others developed high-throughput and inexpensive pipelines to detect and quantitate 20 different 51!

elemental concentrations by inductively coupled plasma mass spectrometry (ICP-MS). This 52!

process, termed ionomics, is the quantitative study of the complete set of mineral nutrients and 53!

trace elements in an organism (its ionome) [3]. In crop plants such as maize and soybean, seed 54!

element profiles make an ideal study tissue as seeds provide a read-out of physiological status of 55!

the plant and are the food source.  56!

 There are many lines of evidence that elements covary with each other due to 57!

physiological, genetic or environmental factors. For example, a suite of elements responds to Fe 58!

deficiency in such a concerted manner that they can be used to predict the Fe status of the plant 59!

[4]. When A. thaliana recombinant populations were grown in multiple environments, genetic 60!

correlations among Li-Na, Mg-Ca, and Cu-Zn were observed across all environments while other 61!

pairs (Ca-Fe and Mg-Fe) were only correlated in a subset of environments [5]. These data 62!

indicate that, while understanding the factors driving individual element accumulation is 63!

important, it is also necessary to consider the ionome as a network of co-regulated and 64!

interacting traits [6]. Multivariate analysis techniques, such as principal components analysis 65!

(PCA), reduce multivariate data dimension by minimizing the variances of multiple input factors 66!

to new variables. When multiple phenotypes are correlated, such as for multiple elements in the 67!

ionome, this approach may prove to be complementary to single element approaches so as to 68!

better summarize these relationships.  69!
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 Quantitative genetics using structured recombinant inbred populations is a powerful tool 70!

for dissecting the factors underlying elemental accumulation and relationships. By breaking up 71!

linkage blocks through recombination and then fixing these new haplotypes of diverse loci into 72!

mosaic sets of lines, these populations allow similar sets of alleles to be repeatedly tested in 73!

diverse environments [7]. A variety of quantitative statistical approaches can then be used to 74!

identify QTL by environment interactions (QEI).  75!

Here, we used elemental profiling of a maize recombinant inbred population grown in 76!

multiple environments analyzed using both single and multivariate approaches to identify QTL 77!

and QEI underlying elemental accumulation. By seeking both environmental and genetic 78!

determinants, we detected loci controlling elemental accumulation, many of which were 79!

environment-specific. We also show that multivariate approaches can reveal environmental and 80!

genetic effects that cannot be detected using single element approaches. 81!

Results 82!

Genetic Regulation of Elemental Traits 83!

The data used for this study is comprised of 20 elements measured in the seeds from Zea 84!

mays L. Intermated B73 x Mo17 recombinant inbred line (IBM) populations grown in 10 85!

different location/year settings. The IBM population is a widely studied maize population of 302 86!

intermated recombinant inbred lines, each of which have been genotyped with a set of 4,217 bi-87!

allelic single nucleotide polymorphism (SNP) genetic markers [8]. The four rounds of 88!

intermating and subsequent inbreeding resulted in more recombination and a longer genetic map 89!

for the IBM than for typical biparental recombinant inbred line populations. The number of 90!

individuals, marker density, and greater recombination facilitates more precise QTL localization 91!

than a standard RIL population [9-14]. This greater resolution reduces the number of genes 92!
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within a QTL support interval and increases the utility of QTL mapping as a hypothesis test for 93!

shared genetic regulation of multiple traits and aids in the discovery of the molecular identity of 94!

genes affecting QTL. For this study, subsets of the IBM population were grown at Homestead, 95!

Florida in 2005 (FL05) and 2006 (FL06), West Lafayette, Indiana in 2009 (IN09) and 2010 96!

(IN10), Clayton, North Carolina in 2006 (NC06), Poplar Ridge, New York in 2005 (NY05), 97!

2006 (NY06), and 2012 (NY12), Columbia, Missouri in 2006 (MO06), and Ukilima, South 98!

Africa in 2010 (SA10) (Table S1). Single seeds were profiled for the quantities of 20 elements 99!

using ICP-MS and these measurements were normalized to seed weight and technical sources of 100!

variation using a linear model [15]. These normalized values are referred to as the elemental 101!

traits. 102!

Variation in the elemental traits was affected by both environment and genotype. All 103!

elemental traits exhibited greater variation among genotype replicates grown across multiple 104!

environments than among replicates within a single environment (Table 1). The broad-sense 105!

heritability of seed weight, 15 of 21 elements in NY05, 13 of 21 elements in NC06, and and 13 106!

of 21 elements in MO06 exceeded 0.60. Elements exhibiting low heritability within 107!

environments corresponded to the elements that are prone to analytical artifacts or present near 108!

the limits of detection by our methods, such as B, Al, and As. Seven elements had a broad sense 109!

heritability of at least 0.45 in a single environment (NY05, NC06, and NY06) but less than 0.1 110!

across all environments. This decrease in heritability across the experiment, which was 111!

particularly striking for Mg, P, S, and Ni, is consistent with strong genotype by environment 112!

interactions governing the accumulation of these elements.  113!

Table 1. Broad-sense heritability of element concentrations. 114!

Trait All 
env NY05 NC06 MO06 
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Seed 
Weight 0.51 0.59 0.69 0.89 

B 0.02 0.35 0.51 0.06 
Na 0.11 0.34 0.23 0.19 
Mg 0.04 0.77 0.69 0.75 
Al 0.10 0.39 0.50 0.08 
P 0.04 0.62 0.69 0.33 
S 0.05 0.73 0.77 0.51 
K 0.07 0.69 0.72 0.36 
Ca 0.15 0.65 0.63 0.77 
Mn 0.16 0.80 0.80 0.75 
Fe 0.07 0.76 0.73 0.63 
Co 0.08 0.65 0.54 0.42 
Ni 0.06 0.84 0.54 0.82 
Cu 0.20 0.80 0.75 0.92 
Zn 0.07 0.68 0.73 0.86 
As 0.02 0.37 0.45 0.01 
Se 0.04 0.32 0.35 0.68 
Rb 0.03 0.49 0.45 0.69 
Sr 0.07 0.61 0.48 0.53 
Mo 0.29 0.85 0.73 0.96 
Cd 0.55 0.71 0.69 0.24 

NY05: 50 lines with 2 reps, 199 lines with 3 reps 115!
NC06: 121 lines with 2 reps, 53 lines with 3 reps, 4 lines with 4 reps 116!
MO06: 50 lines with 2 reps, 18 lines with 3 reps 117!
*outliers for each element calculated with outlier removal function, designated as NA 118!
*for each single environment, for each trait, only lines w/o missing data and with reps >1 used to 119!
calculate heritability 120!
 121!

A stepwise algorithm, implemented via stepwiseqtl in the R package R/qtl [16], was used 122!

to map QTL for seed weight and 20 seed elemental phenotypes. The stepwise algorithm iterates 123!

through the genome and tests for significant allelic effects for each marker on a phenotype. 124!

Forward and backward regression was used to generate final genome-wide QTL models for each 125!

trait. This QTL mapping procedure was completed for each of the IBM populations from each of 126!

the 10 environments for all 21 traits as separate analyses. QTL significance were determined 127!

using a penalty score for adding QTL to the stepwise model derived by taking the 95th percentile 128!

of the highest LOD score achieved in 1000 runs of the scanone genome scan with random data 129!

[17]. 130!

 The environmental dependence on QTL detection was first estimated by identifying QTL 131!
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common to multiple environments. If QTL detected in two or more growouts affected the same 132!

element and localized less than 5 cM apart they were considered to be the same locus. A total of 133!

79 QTL were identified for seed weight and the 20 elemental traits across these 10 environments 134!

(Fig 1B &C). Of these, 63 were detected in a single environment and 16 QTL were detected in 135!

multiple environments.  The 16 QTL found in multiple environments included QTL detected in 136!

nearly all of the environments and QTL detected in only two. One QTL for Mo accumulation, on 137!

chromosome 1 in the genetic region containing the maize ortholog of the Arabidopsis 138!

molybdenum transporter MOT1 [4], was found in nine environments (Fig 1A). Another QTL 139!

affecting Cd accumulation, on chromosome 2 and without a clear candidate gene, was found in 140!

eight environments. Other QTL were only present in a smaller set of environments, such as the 141!

QTL for Ni accumulation on chromosome 9, which was found in five environments (Fig 1D). 142!

The strength of association and percent variance explained showed strong differences between 143!

environments even for these QTL that were detected in multiple environments (Table S2).   144!
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 145!

Fig 1. Ionome QTL from 10 Environments. QTL identified for seed weight and 20 element 146!
accumulation traits using the B73 x M017 intermated RIL population grown in 10 environments. 147!
(A) QTL on chromosome 1 affecting variation in molybdenum accumulation. An interval of 148!
Chr1 is shown on the x-axis (in centi-Morgans). The LOD score for the trait-genotype 149!
association is shown on the y-axis. The horizontal line is a significance threshold corresponding 150!
to the 95th percentile of highest LOD score from 1000 random permutations. The LOD profiles 151!
are plotted for all environments in which the highlighted QTL was detected. (B) Total number of 152!
QTL detected for each trait, colored by environment. (C) Significant QTL (loci with LOD scores 153!
at or above the 95th percentile of the highest LOD score achieved by running the stepwise QTL 154!
mapping algorithm on 1000 random permutation replicates) for each trait. QTL location is shown 155!
across the 10 maize chromosomes (in cM) on the x-axis. Dashes indicate QTL, with environment 156!
in which QTL was found designated by color. All dashes are the same length for visibility. The 157!
two black boxes around dashes correspond to LOD profiles traces in (A) and (D). (D) Stepwise 158!
QTL mapping output for nickel on chromosome 9. LOD profiles are plotted for all environments 159!
in which the QTL is significant. 160!
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 As seen in the full-genome view of all QTL colored by environment (Fig 1C), there is a 161!

high incidence of QTL found in single locations. There are three hypotheses that could explain 162!

the large proportion of QTL found only in a single location: 1) strong QTL by environment 163!

interaction effects, 2) false positive detection of a QTL in an individual location and 3) false 164!

negatives assessment of QTL absence due to genetic action but statistical assessment below the 165!

permutation threshold in other locations. To reduce the risk of false positives in a single 166!

environment’s QTL set, the significance threshold was raised to the 99th percentile, where 31 of 167!

the 63 location-specific QTL remained significant. Using a Bonferroni correction for 200 tests 168!

(20 traits in 10 environments), 10 QTL (95th percentile threshold) and two QTL (99th percentile 169!

threshold) should exceed this threshold. The presence of 63 and 31 QTL greatly exceeds these 170!

null approximations. To account for false negatives, we scanned for QTL using a more 171!

permissive 75th percentile cutoff. Of the 63 single-environment QTL, only nine had QTL in other 172!

environments by this more permissive threshold. Thus, the majority of the 63 single-environment 173!

QTL most likely result from environmentally contingent genetic effects on the ionome. 174!

Accounting for Element to Element Correlations 175!

 Previous elemental correlation studies and mutant phenotype analyses indicate extensive 176!

relationships between elements [4,6]. In this experiment, several elements were highly correlated 177!

across the dataset and nine loci were found with QTL for two or more different elements (Table 178!

2). Phosphorous exhibited the highest incidence of shared QTL with other elements, including 179!

shared QTL with the cations K and Mg and the only shared QTL found between more than two 180!

elements, between P, S, Fe, Mn, and Zn in NY05 (Fig 2). Shared QTL were also found between 181!

elements with similar structure, charge, and/or type, such as Ca and Sr or Fe and Zn.  182!

Table 2. QTL affecting variation for Multiple Elements in the same environment. 183!

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 14, 2016. ; https://doi.org/10.1101/048173doi: bioRxiv preprint 

https://doi.org/10.1101/048173
http://creativecommons.org/licenses/by-nc-nd/4.0/


! 11!

 184!

†Average position 185!

 186!

Fig 2. Multiple Element QTL. Stepwise QTL mapping output from the NY05 population for P, 187!
S, Fe, Mn, Zn, and PC1. Position in cM on chromosome 5 is plotted on the x-axis and LOD score 188!
is shown on the y-axis. 95th percentile of highest LOD score from 1000 random permutations is 189!
indicated as horizontal line.  190!
 191!

To better identify factors underlying multi-element correlation, principal components 192!

analysis (PCA) was used. This reduced correlated elements into principal components (PCs), 193!

orthogonal variables that account for variation in the original dataset, each having an associated 194!

set of rotations from the input variables. PCA was conducted in each of the 10 environments 195!

separately. Elements that were difficult to measure and potentially introduce artifacts (B, Na, Al, 196!

Environment Chr Pos (cM) 

† 
El 1 El 2 El 3 El 4 El 5 

NY05 1 400 Mn Ni --- --- --- 
NY05 3 323 Sr Ca --- --- --- 
NY05 5 201 Mn Zn P S Fe 
NY06 1 532 Mn Mg --- --- --- 
IN09 4 306 Fe K --- --- --- 
IN10 2 213 Mo Cd --- --- --- 
NY12 5 203 Zn Fe --- --- --- 
FL05 1 230 B Mn --- --- --- 
FL05 4 159 Fe Zn --- --- --- 
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As) were excluded, as their covariance due to shared technical variation is problematic. The 197!

remaining elemental data from lines within a single environment were transformed into 16 198!

principal components (Fig S1). These 10 sets of 16 PCs were then used as traits for QTL 199!

mapping. 200!

 QTL mapping using these derived traits yielded 101 QTL (Fig 3C). PC QTL overlapped 201!

with many single element QTL, consistently recapitulating strong single element QTL seen for 202!

elements such as Ni, Mo, and Cd. The PC QTL also capture previously observed multi-element 203!

QTL. For example, in NY05, a QTL for PC1 overlaps the QTL that were detected in the single 204!

element analyses of P, S, Fe, Mn, and Zn on chromosome 5 (Fig 2). The PC QTL in this case is 205!

as strong as the Fe QTL and much more significant than the P, S, Mn, and Zn elemental QTL, 206!

suggesting that a PC capturing multi-element variation may strengthen the signal acquired using 207!

a single-element approach. In addition, mapping with PCs allowed for identification of new loci 208!

not seen using single elements. QTL mapping on single elements may not have the power to 209!

detect loci with small effects on several elements, so the unique QTL detected using PCs as traits 210!

are of particular interest. For instance, two PC5 QTL from the NY06 growout on chromosome 1 211!

were distinct from any elemental QTL (Fig 3B). 42 PC-specific QTL, defined as QTL >25 cM 212!

away from any elemental QTL in the same environment, were detected. PCs are derived from 213!

combinations of elements, and as a result single elemental QTL were reproduced for several PCs 214!

within an environment. This is observed particularly for elements with strong single-element 215!

effects, such as Mo and Cd. For example, in IN10, PC2 and PC10 have QTL that co-localize 216!

with the same Cd QTL on chromosome 2. Likewise, in NY05, PC3, PC5, PC6, and PC9 all have 217!

QTL that overlap with a single chromosome 9 Ni QTL. This redundancy contributes to the 218!

higher number and proportion of detected PC QTL shared with element QTL (59/101) than 219!
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element QTL shared with PC QTL (28/79), although the same genomic locations underlie this 220!

overlap (Fig 3A). The identification of unique QTL through this multivariate approach 221!

demonstrates the complementary nature of working with trait covariance as well as the 222!

component traits and shows that elemental traits are mechanistically interrelated [6,18]. 223!

 224!

Fig 3. Principal Component QTL from 10 environments. PCs were derived from elemental 225!
data from the IBM mapping population lines separately in each of 10 environments. 10 sets of 16 226!
PCs, each set from a single environment, were used as traits for QTL mapping. (A) 180 total 227!
element and PC QTL were mapped. The two boxes represent the 79 and 101 elemental and PC 228!
QTL, respectively. 28 element QTL overlap with PC QTL from the same environment. 59 PC 229!
QTL overlap with element QTL from the same environment. These sets of non-unique QTL are 230!
shown in the box spanning both boxes. QTL unique to elements, 51, and to PCs, 42, are shown 231!
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outside of the shared box. (B) QTL mapping output for PC5 from the NY06 population. 232!
Chromosome 1 is shown on the x-axis (in cM), LOD score is on the y-axis. Significance 233!
threshold is calculated as 95th percentile of highest LOD score from 1000 random permutations. 234!
All significant NY06 element QTL on chromosome 1 are shown in grey. Two PC5 QTL, at 235!
169.7 and 271.2 cM, are unique to PC5 and do not overlap with any elemental QTL. A PC5 QTL 236!
at 379.7 cM is shared with a molybdenum QTL. (C) Significant PC QTL (loci with LOD scores 237!
at or above the 95th percentile of the highest LOD score achieved by running the stepwise QTL 238!
mapping algorithm on 1000 random permutation replicates) for 16 PCs in 10 environments. QTL 239!
location is shown across the 10 maize chromosomes (in cM) on the x-axis. Environment in 240!
which QTL was found is designated by color. QTL are represented as dashes of uniform size. 241!
 242!
QTL by Environment Interactions 243!

 That QTL detection was so strongly affected by environment suggested that the effects of 244!

allelic variation were heavily dependent on environments for both elemental and PCA traits. 245!

These results, however, did not specifically test for QTL by environment interactions (QEI). 246!

Comparison between environments in our data is additionally complicated because different 247!

subsamples of the IBM population were grown at these different locations and years. There are 248!

many different approaches to identifying QEI described in the literature, summarized in El-Soda 249!

et al. We took two previously implemented methods of QEI analysis. The first considered 250!

location (but not year) by comparing the goodness of fit for linear models with and without an 251!

interactive covariate [19-21]. The second method takes advantage of the ability to grow 252!

genetically identical RIL in multiple years. Trait values measured in the same IBM line for the 253!

same element at the same site but in different years were subtracted from each other and the 254!

difference between years was assigned as the trait value for that RIL genotype for QTL detection 255!

[22,23]. We added a third approach, not previously described, to determine the gene by 256!

environment effects on the multi-element phenotypes. We extended the PCA analysis across 257!

years and locations by calculating PCs on a subset of lines across environments, and using the 258!

loadings to calculate a projection for each line in each environment.  If the genetic and 259!

environmental variances do not interact, some projections will reflect environmental variance 260!
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and others will reflect genetic variance. However, if the ionome is reporting on a summation of 261!

physiological status that results from genetic and environmental influences, some projections 262!

calculated from ionomic traits should be both correlated with environmental factors and result in 263!

detectable QTL.  264!

Linear model estimation of QTL by location effects. The most common approach to analyze 265!

QEI is to fit a linear model with environment as both a cofactor and an interactive covariate and 266!

compare results to a model with environment as an additive covariate [24]. This method is most 267!

amenable when data are available for the same lines grown in every environment, which was not 268!

the case across all of our dataset. Data from the three locations with two replicate years each (FL, 269!

IN, NY) were analyzed to reduce the number of covariates and increase the power to detect 270!

variation from the environment. The data for both years in each location were combined (FL05 271!

& FL06, IN09 & IN10, NY05, NY06 & NY12), averaging common lines across years.  272!

 Two linear equations were fit to the combined data using the FL, IN, and NY locations as 273!

covariates. The first equation is the full model considering phenotypic variation as controlled by 274!

genotype and location as both additive and interacting covariates (1) while the reduced models 275!

consider phenotypic variation as resulting from location and genotype as additive factors (2). 276!

Subtracting (2) from (1) isolates genetic by location variation. 277!

!" #= #!% #+#!' #+# #!%('   (1) 278!

!" #= #!% #+# #!'    (2)  279!

!" = #!%('     (1) - (2) 280!

The program R/qtl was used to fit QTL for phenotypic variation with and without 281!

considering QTL by location interactions for sample weight and 20 elements. The significance 282!

threshold was calculated by using the 95th percentile of the highest LOD score from 1000 283!
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permutations of the three step procedure (fitting the two models and then subtracting LOD 284!

scores). Even with this underpowered dataset, 10 QTL by location interactions exceeded this 285!

threshold (Table 3). Interactions between QTL and location are likely to be due to a combination 286!

of soil and weather differences across different locations. In the case of Ni, our initial single-287!

element QTL mapping conducted separately on data from each environment identified 288!

differences in QTL presence or strength between FL, IN, and NY locations (Fig 4). These QTL 289!

corresponded to loci with significant QTL by location effect (Fig 4). Remarkably, all elemental 290!

QTL by location interactions, detected by this approach, affected trace element accumulation. 291!

These elements are both low in concentration in the grain, and often variable among soils [25]. 292!

Cd, an element for which we found significant QEI, has detrimental effects on both human and 293!

plant health [26] and is toxic in food at levels as low as .05 ppm. [27]. The locus with the 294!

strongest QEI for Cd does not follow location averages of Cd content in the grain (Table S3) and 295!

therefore is unlikely to be affected by crossing a detection threshold driven by higher Cd in the 296!

soils at those locations. This lack of direct correlation between QTL significance and grain 297!

content also occurs for the loci with strong by-location effects for Mo and Ni. This demonstrates 298!

that reduced cadmium or enhanced micronutrient contents in grain require plant breeding 299!

selections that consider complex genetic by environment interactions rather than genotypes 300!

assessed in a single soil environment.  301!

Table 3. QTL with Significant by-Location interactions. 302!

Trait Chr Pos (cM) LOD Significance 
Threshold† 

Na 3 237.00 3.48 3.39 
Na 9 115.40 4.24 3.39 
Mn 1 232.00 4.77 3.84 
Fe 5 196.20 3.69 3.57 
Ni 9 7.70 23.59 5.44 
Zn 4 157.40 3.82 3.78 
Rb 2 188.40 4.30 3.41 
Rb 10 93.60 4.25 3.41 
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Mo 1 378.00 32.85 4.32 
Cd 2 214.60 14.47 3.59 

†95th percentile LOD score from 1000 random permutations 303!

 304!

Fig 4. Significant QTL-by-Location Interactions Reflect Variation in Single Environment 305!
Mapping. (A) Nickel QTL on chromosome 9 exhibits variation between FL, IN, and NY 306!
growouts in single environment QTL mapping. Scanone QTL mapping output for Ni on is 307!
plotted for FL05, FL06, IN09, IN10, NY05, and NY12. LOD score is plotted on the y-axis and 308!
cM position on the x-axis. Horizontal line corresponds to 95th percentile of highest LOD score 309!
from 1000 random permutations. (B) Scanone QTL mapping for combined Ni data from Florida 310!
(FL05 and FL06), Indiana (IN09 and IN10), and New York (NY05 and NY12) growouts. All 311!
lines within a location were included, with values averaged between lines common to multiple 312!
years in a location. QTL mapping output using model with location as an additive covariate is 313!
shown as dotted line. QTL mapping output from model with location as both an additive and 314!
interactive covariate shown as dashed line. Subtracted LOD score profile from the two models 315!
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(QTL by location interactive effect only) shown as solid line. Horizontal line corresponds to 316!
significance threshold for QTL by location interaction effect, derived from 1000 iterations of the 317!
three step procedure using randomized data: scanone QTL mapping with the additive model, 318!
scanone QTL mapping with the additive and interactive model, and subtraction of the two 319!
models. 320!
 321!
QTL for trait differences within location. The previous method identified genotypes with 322!

interactions with location but not with year. Year to year variation will also have effects due to 323!

differences in rainfall, temperature and management practices. To examine variation that occurs 324!

within a location over different years, we examined the intra-location QEI in the three locations 325!

(FL05 & FL06, IN09 & IN10, NY05 & NY12). Using the same stepwise algorithm that was 326!

implemented with single element and PC analysis, QTL were mapped on the trait differences 327!

between common lines in the two environments for sample weight and 20 elements. Mapping the 328!

trait differences between years for the three locations identified loci affecting phenotypic 329!

differences between the same lines grown on the same farm but in different years. Six QTL were 330!

found for FL05-FL06 differences, one QTL for IN09-IN10 differences, and two QTL for NY05-331!

NY12 differences (Table 4). These trait-difference QTL included locations identified in our 332!

single element and single environment QTL experiment where a locus was present for one year 333!

but not the other or the QTL was found in both years with differing strength (Fig 5A, B, C). Six 334!

QTL were detected that affected variation in the year to year difference but no QTL were 335!

detected at that location when the years were mapped separately. This demonstrates that this 336!

method can detect by-year differences that were not apparent by contrasting QTL detected from 337!

each year’s data. These significant effects of year to year environmental variation within the 338!

same location indicated that factors beyond location are both influencing the ionome and 339!

determining the consequences of genetic variation. 340!

Table 4. Significant QTL for Trait Differences. 341!
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Location Years 
Compared 

Trait Chr Pos (cM) LOD Significance 
Threshold† 

FL FL05_FL06 Mg 8 294.4 5.23 3.74 
FL FL05_FL06 P 4 130.2 3.89 3.60 
FL FL05_FL06 P 4 297.8 6.03 3.60 
FL FL05_FL06 P 8 294.6 8.43 3.60 
FL FL05_FL06 Co 1 296.3 4.36 3.69 
FL FL05_FL06 Mo 1 378.6 6.10 3.70 
IN IN09_IN10 Fe 8 140.9 4.52 3.62 
NY NY05_NY12 K 5 154.2 4.25 3.61 
NY NY05_NY12 Sr 7 193.2 4.45 3.66 

†95th percentile LOD score from 1000 random permutations 342!

 343!

Fig 5. Comparison of QTL Mapped on Traits in Single Environments and Trait 344!
Differences Between Environments. Examples from stepwise QTL mapping on trait 345!
differences of between two years at one location, calculated between IBM lines common to both 346!
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years. Scanone QTL mapping output is plotted for the same trait from each year separately. LOD 347!
score is plotted on the y-axis and cM position on the x-axis. Horizontal lines correspond to 95th 348!
percentile of highest LOD score from 1000 random permutations. (A) Molybdenum QTL on 349!
chromosome 1 mapped for Mo in FL05, Mo in FL06, and difference in Mo content between 350!
FL05 and FL06. (B) Iron QTL on chromosome 8 mapped for Fe in IN09, Fe in IN10, and 351!
difference in Fe content between IN09 and IN10. (C) Potassium QTL on chromosome 5 mapped 352!
for K in NY05, K in NY12, and difference in K content between NY05 and NY12. 353!
 354!
PCA-derived projections. The covariance between element accumulation data across all 355!

environments was summarized using principal components analysis.  Elements prone to 356!

analytical artifacts (B, Na, Al, As) were removed prior to analysis. Only the 16 lines common to 357!

six of the 10 environments (FL05, FL06, IN09, IN10, NY05, NY12) were used to calculate the 358!

PCA. The rotations from this PCA were then projected onto the centered and scaled full dataset. 359!

In this way, 16 projections (PRs) derived from PCs describing the covariation of the ionome 360!

were calculated for every RIL in every environment. To reduce the incidence of artifacts or over 361!

fitting, PRs accounting for less than 2% of the total variation were eliminated, leaving seven PRs 362!

(Fig S2). The covariation captured by these PRs could due to genetic variation, result from a 363!

programmed response of the plant across multiple environments, or a combination of both.   364!

The first two PRs were highly responsive to the environment (Fig 6). The lines from each 365!

environment cluster together when plotting PR1 vs PR2 values, with distinct separation between 366!

environments and years. Additionally, when modeled as a simple linear function, environment 367!

had a significant effect on all PRs (p<0.001). In order to identify environmental factors 368!

responsible for ionome covariance, weather station data from each location and year was 369!

collected from Climate Data Online (CDO) (http://www.ncdc.noaa.gov/cdo-web/). Average 370!

minimum temperature, maximum temperature, and growing degree days (GDD = ((Tmax + 371!

Tmin)/2) –10) across the entire 120-day growing season and over each 30-day quarter were 372!

calculated from daily summaries (Fig. 7A). Correlations were calculated between weather 373!
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variables and average PR 1-7 values in the nine environments with weather data. Correlations 374!

were detected between PRs and weather variables. The weather variables, all temperature-based, 375!

are not correlated with PRs in many cases, although correlations exceeding rp= 0.60 were 376!

observed for PRs 4-7 (Fig. 7A, Table S3). The strongest correlation observed for PR1 was with 377!

average maximum temperature in the fourth quarter of the growing season (rp = 0.37) (Fig 7B) 378!

while the highest observed for PR2 was for average minimum temperature during the fourth 379!

quarter (rp = 0.47) (Fig 7C). The relatively small number of environments, interrelatedness of the 380!

weather variables, and likely contribution of factors other than temperature limit the descriptive 381!

power of these correlations.  The environmental components of projection variables are unknown 382!

but, consistent with element remobilization from the leaves to the seeds, temperature during the 383!

fourth quarter of the growing season may be one contributor to the environmental covariance in 384!

the seed ionome. The lack of particularly strong correlations between the first two PRs and 385!

temperature variables suggests that non-recorded variables, such as field to field variation in soil 386!

composition, fertilizer application, humidity, or biotic factors are likely to have an impact. 387!

 388!

Fig 6. PC-Based Projections Separate Lines by Environment. PR1 and PR2 separate lines by 389!
environment. Points correspond to lines, colored by their environment. (A) PR1 vs PR2 values 390!
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for each line, colored by environment. Percentage of total variance accounted for by each PR 391!
indicated on the axes. (B) Average PR1 vs PR2 values for all lines in each environment. 392!
 393!

 394!
Fig 7. PR and Weather Variable Correlations. (A) Heatmap showing correlations between 395!
averaged PR 1-7 values across environments and averages for maximum temperature, minimum 396!
temperature, and growing degree days (GDD = (Tmax + Tmin)/2 –10)) across the entire growth 397!
season and for each quarter of the growth season. Red intensity corresponds to size of positive 398!
correlations. Blue intensity corresponds to magnitude of negative correlations. (B) Averaged 399!
PR1 values for 9 environments (FL05, FL06, IN09, IN10, NC06, NY05, NY06, NY12, MO06) 400!
plotted on x-axis. Average maximum temperature (in degrees Celsius) for each environment over 401!
the fourth quarter of the growing season plotted on the y-axis. Points are colored by 402!
environment. Pearson correlation coefficient (rp = .37) is shown above the graph. (C) Averaged 403!
PR2 values for 9 environments plotted on x-axis. Average minimum temperature (in degrees 404!
Celsius) for each environment over the fourth quarter of the growing season plotted on the y-405!
axis. Points are colored by environment. Pearson correlation coefficient (rp = .47) is shown above 406!
the graph. 407!
 408!
 In order to determine genetic effects on these projections, the calculated values for PR1 409!

through PR7 were used as traits for QTL analysis in each of the 10 environments. Unlike the 410!

earlier described PCAs done in environments separately, these PRs are calculated on data from 411!

all environments at once. Thus, while the single-environment PCs are distinct between 412!

environments, i.e. PC1 in NY05 does not have the same loadings as PC1 in NY06, the PRs are 413!

derived from PCs that account for across-environment variance and as such are the same trait for 414!
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mapping in each environment. The mapping analysis yielded at least four QTL for each PR and a 415!

total of 44 QTL, eight of which were found in multiple environments and 36 in single 416!

environments (Fig 8). Of these multi-environment QTL, 3 are overlapped with the three 417!

strongest single element QTL (Mo on Chr1, Cd on Chr 2 and Ni on Chr 9). The Mo and Cd QTL 418!

overlap with QTL from different PRs (PRs 3-6 for Mo and PRs 1-5 for Cd) depending on 419!

environment while the Ni QTL is only present in PR6 in the NY environments. The presence of 420!

PR QTL demonstrate that the covariation in the ionome described by PRs 1-7 results from both 421!

environmental and genetic variation. Further investigation is needed to identify the genes 422!

underlying PR QTL, their biological roles, and their interaction with specific environmental 423!

variables. 424!

 425!

Fig 8. PR QTL in 10 Environments. QTL identified for PCA-derived projection traits (PRs 1-426!
7).  (A) Total number of QTL detected for each PR, colored by environment. (B) Significant 427!
QTL (loci with LOD scores at or above the 95th percentile of the highest LOD score achieved by 428!
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running the stepwise QTL mapping algorithm on 1000 random permutation replicates) for PRs 429!
1-7. QTL location is shown across the 10 maize chromosomes (in cM) on the x-axis. Dashes 430!
indicate QTL, with environment in which QTL was found designated by color. All dashes are the 431!
same length for visibility. 432!

Discussion 433!

The results described here demonstrate that the concentrations of elements in the kernels 434!

of maize are highly interrelated. Dramatically, and perhaps paradoxically, element concentration 435!

is highly heritable within an environment and varied between environments. In agreement with 436!

previous studies, we found elemental correlations and QTL that were detected for more than one 437!

element. Phosphorous exhibited the greatest number of QTL overlap with other elements, 438!

including the cations K and Mg. Phosphorous is a central nutrient in plant development and 439!

regulates other elements. In the form of phytate, phosphorous complexes with cations to form 440!

phytin in maize seeds [28]. Additional shared QTL included those between Ca and Sr, Mo and 441!

Mn, and Zn and Fe. Ca and Sr are chemical analogs while Zn and Fe regulation have been linked 442!

at the physiological and molecular level [4,29]. Mo and Mn have roles in protein assimilation 443!

and nitrate regulation [30,31] and exhibit a regulatory relationship [18]. Thus, these shared QTL 444!

likely reflect the coincident genetic regulation of multiple elements and demonstrate cellular 445!

mechanisms to detect and respond to the levels of those elements. 446!

Given the importance of understanding the effects of genetic alteration of multi-element 447!

regulatory genes or genetic changes targeted to a single element with pleiotropic effects on other 448!

elements, multivariate methods are necessary to create a fuller understanding of the factors 449!

underlying ionomic variation. PCA generated variables representative of multiple elements and 450!

condensed the covariation between elements without requiring that we know of specify the 451!

underlying relationships that led to covariance. QTL mapping with the principal components as 452!

traits isolated both loci that had been identified using elements as traits and PC-specific QTL. 453!
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The PC-specific QTL likely represent loci with small effects on multiple elements which would 454!

not be detected when considering only the concentration of single elements. Candidate genes for 455!

these QTL include transporters with multi element specificities or factors within a pathways 456!

responding to several elements. Clearly, the inability to detect multiple element loci would leave 457!

substantial gaps in our understanding of element regulatory networks, making PCA a useful 458!

complement to single element approaches.  459!

 The presence of a large number of single-environment QTL is consistent with the 460!

hypothesis that environment has a significant impact on genetic factors influencing the ionome. 461!

By changing the stringency of the statistical tests, we are able to discount the likelihood that that 462!

these single environment QTL are the result of a large number of false positives or false 463!

negatives. The structure of our data, with few lines measured across all locations and years, 464!

limited our ability to test for direct QTL by Environment Interactions. As a result, we have likely 465!

underestimated the extent of QEI. Future studies with uniform lines across environments will 466!

allow for inclusion of data from all environments and lines and increase power to detect 467!

additional genetic by environment interactions. 468!

 Nevertheless, we were able identify QEI over different locations and QEI at a single 469!

location over different years. We identified a strong nickel QTL on chromosome 9 that was 470!

found in Indiana and New York with single-environment QTL mapping, but not in Florida. This 471!

same locus also identified as a significant location-interacting QTL when using a model that 472!

included Indiana, New York, and Florida as covariates. One possible cause for this, and other 473!

location specific QTL, might be differences in element availability between local soil 474!

environments. Interestingly, the presence/absence of the QTL does not seem to correlate with the 475!

mean levels of the elements in the grains sampled from that location, suggesting that QEI are not 476!
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being driven solely by altered availability of the elements in the soil. Local soil differences are 477!

less likely to be driving the QTL found for pairwise differences between two years at one 478!

location. Soil content should remain relatively similar from year to year at the same farm, 479!

suggesting that the loci identified by comparison between years and within location will encode 480!

components of elemental regulatory processes responsive to precipitation, temperature, or other 481!

weather changes. 482!

 In addition to being a tool for understanding the genetics of multi-element regulation, 483!

principal components were also used as a tool to reflect environmental variation in the ionome 484!

and genetic by environment interactions. Rather than simply conduct a PCA on all lines, the two-485!

step procedure of generating projections from a PCA on lines replicated within a subset of 486!

environments was used to find variables that could describe variation across all 10 environments 487!

while minimizing the confounding effect of different sets of lines among all environments. The 488!

first two projections capture most of the variation in the ionome across 10 different growouts, 489!

much of which is environmental. This can be seen in the ability of PR1 and PR2 to separate 490!

growouts by location and, in some cases, different years within a location. Thus, PRs capture the 491!

impact of environment on the ionome as a whole. Within the data collected, limited to only 492!

maximum and minimum temperature, we observed the strongest correlations for PR1 and PR2 493!

during the fourth quarter of the growing season. Because seed filling occurs in the last quarter of 494!

the season, temperature during this time could have a pronounced affect on seed elemental 495!

composition. However, given the presence of a low number of data points and a lack of any 496!

striking correlations, environmental components of the projections must be largely explained by 497!

environmental factors other than temperature. Experiments with more extensive weather and soil 498!

data, or carefully manipulated environmental contrasts, are needed to create models with 499!
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additional covariates and precisely model environmental impacts. The identification of PR QTL 500!

indicated that the variation captured by PRs has both environmental and genetic components. 501!

These QTL may encompass genes that affect the ionome in an environmentally-responsive 502!

manner.  503!

 Although the mapping intervals do not provide gene-level resolution, several QTL 504!

overlap with known elemental regulation genes, such as the QTL on chromosome 1 at 378 cM 505!

which coincides with ZEAMMB73_045160, an ortholog of the Arabidopsis molybdenum 506!

transporter, MOT1. We observe strong effects and replication of this QTL across nearly all 507!

environments, suggesting that this MOT1 plays a role in a variety of environments. Other large 508!

effect QTL found in several environments merit further investigation, as they may recapitulate 509!

important element-associated genes that have yet to be identified.  Identification of the genes 510!

underlying these QTL and the gene/environmental variable pairs underlying the QEIs will 511!

improve our understanding of the factors controlling plant elemental uptake and productivity.  512!

Given the high levels of variability that the interaction between genotype and environmental 513!

factors can induce in these traits, conventional breeding approaches that look for common 514!

responses across many different environments for a single trait may fail to improve the overall 515!

elemental content, necessitating rational approaches that include both genetic and environmental 516!

factors.   517!

Conclusions 518!

 Here we have shown that the maize kernel ionome is determined by genetic and 519!

environmental factors, with a large number of genetic by environment interactions. Elemental 520!

profiling of the IBM population across 10 environments allowed us to capture environmentally-521!

driven variation in the ionome. Our QTL analysis on single elements found mainly single-522!
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environment QTL, indicative of substantial genetic by environment interaction in establishment 523!

of the elemental composition of the maize grain. We also demonstrated that treating the ionome 524!

as an interrelated set of traits using PCA within environments can identify novel loci. PCA 525!

across environments allowed us to derive projections that described both environmental and 526!

genetic variation in the ionome. This approach, along with identification of QEI occurring both 527!

within a single location over different years and QEI between different locations, demonstrated 528!

that gene by environment interactions underlie elemental accumulation in maize kernels. 529!

Methods 530!

Field Growth and Data Collection 531!

Population and field growth. Subsets of the intermated B73 x Mo17 recombinant inbred (IBM) 532!

population were grown in 10 different environments:  Homestead, Florida in 2005 (220 lines) 533!

and 2006 (118 lines), West Lafayette, Indiana in 2009 (193 lines) and 2010 (168 lines), Clayton, 534!

North Carolina in 2006 (197 lines), Poplar Ridge, New York in 2005 (256 lines), 2006 (82 lines), 535!

and 2012 (168 lines), Columbia, Missouri in 2006 (97 lines), and Ukilima, South Africa in 2010 536!

(87 lines). In all but three environments, NY05, NC06, and MO06, one replicate was sampled 537!

per line. In NY05, 3 replicates of 199 lines, 2 replicates of 50 lines, and 1 replicate of 7 lines 538!

were sampled. Table S1 includes planting dates and line numbers after outlier removal and 539!

genotype matching. 540!

Elemental Profile Analysis 541!

Elemental profile analysis is conducted as a standardized pipeline in the Baxter Lab. The 542!

methods used for elemental profile analysis are as described in Ziegler et al. Descriptions taken 543!

directly are denoted by quotation marks. 544!
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Sample preparation and digestion. Lines from the IBM population from each environment 545!

were analyzed for the concentrations of 20 elements. “Seeds were sorted into 48-well tissue 546!

culture plates, one seed per well. A weight for each individual seed was determined using a 547!

custom built weighing robot. The weighing robot holds six 48-well plates and maneuvers each 548!

well of the plates over a hole which opens onto a 3-place balance. After recording the weight, 549!

each seed was deposited using pressurized air into a 16×110 mm borosilicate glass test tube for 550!

digestion. The weighing robot can automatically weigh 288 seeds in approximately 1.5 hours 551!

with little user intervention.” 552!

 “Seeds were digested in 2.5 mL concentrated nitric acid (AR Select Grade, VWR) with 553!

internal standard added (20 ppb In, BDH Aristar Plus). Seeds were soaked at room temperature 554!

overnight, then heated to 105°C for two hours. After cooling, the samples were diluted to 10 mL 555!

using ultrapure 18.2 MΩ water (UPW) from a Milli-Q system (Millipore). Samples were stirred 556!

with a custom-built stirring rod assembly, which uses plastic stirring rods to stir 60 test tubes at a 557!

time. Between uses, the stirring rod assembly was soaked in a 10% HNO3 solution. A second 558!

dilution of 0.9 mL of the 1st dilution and 4.1 mL UPW was prepared in a second set of test tubes. 559!

After stirring, 1.2 mL of the second dilution was loaded into 96 well autosampler trays.” 560!

Ion Coupled plasma mass spectrometry analysis. Elemental concentrations of B, Na, Mg, Al, 561!

P, S, K, Ca, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Mo, and Cd “were measured using an Elan 562!

6000 DRC-e mass spectrometer (Perkin-Elmer SCIEX) connected to a PFA microflow nebulizer 563!

(Elemental Scientific) and Apex HF desolvator (Elemental Scientific). Samples were introduced 564!

using a SC-FAST sample introduction system and SC4-DX autosampler (Elemental Scientific) 565!

that holds six 96-well trays (576 samples). All elements were measured with DRC collision 566!

mode off. Before each run, the lens voltage and nebulizer gas flow rate of the ICP-MS were 567!
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optimized for maximum Indium signal intensity (>25,000 counts per second) while also 568!

maintaining low CeO+/Ce+ (<0.008) and Ba++/Ba+ (<0.1) ratios. This ensures a strong signal 569!

while also reducing the interferences caused by polyatomic and double-charged species. Before 570!

each run a calibration curve was obtained by analyzing six dilutions of a multi-element stock 571!

solution made from a mixture of single-element stock standards (Ultra Scientific). In addition, to 572!

correct for machine drift both during a single run and between runs, a control solution was run 573!

every tenth sample. The control solution is a bulk mixture of the remaining sample from the 574!

second dilution. Using bulked samples ensured that our controls were perfectly matrix matched 575!

and contained the same elemental concentrations as our samples, so that any drift due to the 576!

sample matrix would be reflected in drift in our controls. The same control mixture was used for 577!

every ICP-MS run in the project so that run-to-run variation could be corrected. A run of 576 578!

samples took approximately 33 hours with no user intervention. The time required for cleaning 579!

of the instrument and sample tubes as well as the digestions and transfers necessary to set up the 580!

run limit the throughput to three 576 sample runs per week.” 581!

Computational Analysis 582!

Drift correction and analytical outlier removal. Analytical outliers were removed from single-583!

seed measurements using a method described in Davies and Gather (1993). Briefly, values were 584!

considered an outlier and removed from further analysis if the median absolute deviation 585!

(MAD), calculated based on the line and location where the seed was grown, was greater than 586!

6.2.  587!

 Normalization for seed weight by simply dividing each seed’s solution concentration by 588!

sample weight resulted in a bias where smaller seeds often exhibited a higher apparent elemental 589!

concentration, especially for elements whose concentration is at or near the method detection 590!
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limit. This bias is likely either a result of contamination during sample processing, a systematic 591!

over or under reporting of elemental concentrations by the ICP-MS or a violation of the 592!

underlying assumption that elemental concentration in seeds scales linearly with seed weight. 593!

Instead, we developed a method whereby the residuals from the following linear model:  594!

 595!

) = *+ +#*,-, +#*.-. + / 596!

 597!

where Y is the non-weight normalized measure of elemental concentration for each seed after 598!

digestion, β0 is the population mean, X1 is the seed weight, X2 is the analytical experiment the 599!

seed was run in (to further correct for run-to-run variation between analytical experiments), and e 600!

is the residual (error) term. The residuals in this linear model represent how far each data point 601!

departs from our assumption that analyte concentration will scale linearly with sample weight. If 602!

all samples have the same analyte concentration then the linear model will be able to perfectly 603!

predict analyte concentration from weight and the residuals will all equal zero. However, if a 604!

sample has a higher or lower concentration of an analyte then the general population being 605!

measured, then it will have a residual whose value represents the estimated concentration 606!

difference from the population mean. For this reason, we have termed this value the estimated 607!

concentration difference from the mean (ECDM). 608!

Heritability calculation. Broad-sense heritability was calculated for seed weight and 20 609!

elements across environments and within three environments for which we had substantial 610!

replicate data. To calculate the broad-sense heritability across 10 environments, the total 611!

phenotypic variance was partitioned into genetic and environmental variance, with the broad-612!

sense heritability being the fraction of phenotypic variance that is genetic. This was done using 613!
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an unbalanced, type II analysis of variance (ANOVA) in order to account for the unbalanced 614!

common line combinations across environments. Two models were fit using the lmfit function in 615!

R. The first model included genetic variance as the first term and environmental variance as the 616!

second. The second model had the opposite form. The sum of squares for genetic or 617!

environmental components was obtained using the anova function on the model in which that 618!

component was the second term. Broad-sense heritability was calculated by dividing the genetic 619!

sum of squares by the total (genetic plus environmental) sum of squares. Heritability was 620!

calculated within environments for NY05, NC06, and MO06. Data with outliers designated as 621!

NA was used for each environment. For each element within an environment, lines with NA 622!

were removed and lines with only 1 replicate were removed, leaving only lines with 2 or more 623!

replicates. The heritability was then calculated for seed weight and each element using lmfit 624!

followed by anova functions to obtain the sum of squares for the genetic component and the 625!

residuals. Broad-sense heritability was calculated as the proportion of total variance (genetic plus 626!

residuals) explained by the genetic component. 627!

QTL mapping: elemental traits. The R package R/qtl was used for QTL mapping. For each of 628!

the 10 environments, elemental trait line averages and genotypes for all lines, 4,217 biallelic 629!

single nucleotide polymorphisms (SNPs) distributed across all 10 maize chromosomes, were 630!

formatted into an R/qtl cross object. The stepwiseqtl function was used to implement the 631!

stepwise method of QTL model selection for 21 phenotypes (seed weight, 20 elements). The max 632!

number of QTL allowed for each trait was set at 10 and the penalty for addition of QTL was set 633!

as the 95th percentile LOD score from 1000 scanone permutations, with imputation as the 634!

selected model for scanone. A solely additive model was used; epistatic and interaction effects 635!

were not considered and thus heavy and light interaction penalties were set at 0. QTL positions 636!
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were optimized using refineqtl, which considers each QTL one at a time, in random order, 637!

iteratively scanning in order to move the QTL to the highest likelihood position. QTL models for 638!

each trait in each environment were obtained using this procedure. QTL within 5 cM of each 639!

other were designated as the same QTL.  640!

Principal components analysis. Elements prone to analytical error were removed prior to PC 641!

analysis, leaving 16 elements (Mg, P, S, K, Ca, Mn, Fe, Co, Ni, Cu, Zn, Se, Rb, Sr, Mo, and Cd) 642!

that were used for PCA. A PCA was done using elemental data for each of the 10 environments 643!

separately. The prcomp function in R with scale = TRUE was used for PCA on elemental data to 644!

perform PCA on the line average element values in an environment. This function performs 645!

singular value decomposition on a scaled and centered version of the input data matrix, 646!

computing variances with the divisor N-1. 16 PCs were returned from each environment and the 647!

10 sets of 16 PCs were used as traits in QTL analysis.  648!

QTL Mapping: principal components. QTL mapping was done in the same manner as 649!

described for element phenotypes but with principal components as phenotypes. The mapping 650!

procedure was done for each environment separately, with PC line averages for each line in the 651!

given environment as phenotypes and line genotypes as input. The stepwise algorithm was used 652!

with the same designations as with single-element mapping to produce a QTL model for each PC 653!

The PC QTL were compared to element QTL, with unique PC QTL designated as PC QTL at 654!

least 25 cM away from any element QTL detected in the environment in which the PC QTL was 655!

detected. 656!

QTL by environment analysis: linear model comparison. Linear modeling was used 657!

determine instances and strength of QEI using data averaged over years within a three locations 658!

(FL, IN, NY). FL05 and FL06 data were combined, averaging for common lines. The same was 659!
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done with IN09 and IN10 and with NY05, NY06 and NY12. FL, IN, and NY were then used as 660!

covariates in QTL analysis. Two QTL models were fit for each phenotype (sample weight, 20 661!

elements, 7 PCs) using the scanone function in R/qtl: (1) a model of phenotypic variation with 662!

location as an additive and interacting covariate and (2) a model of phenotypic variation with 663!

location as only an additive covariate. LOD scores for each marker using model (2) were 664!

subtracted from LOD scores for each marker using model (1) to isolate genetic by location 665!

variation. 666!

!" #= #!% #+#!' #+# #!%('   (1) 667!

!" #= #!% #+# #!'    (2)  668!

!" = #!%('     (1) - (2) 669!

 QTL by location interaction was determined as QTL with a significant LOD score after 670!

subtraction. The significance threshold was calculated from 1000 permutations of the three step 671!

procedure (fitting the two models and then subtracting LOD scores) and taking the 95th 672!

percentile of the highest LOD score.  673!

QTL by environment analysis: mapping on within-location differences. QTL were mapped 674!

on phenotypic differences between common lines grown over two years at a single location. This 675!

procedure was used to compare FL05 and FL06, IN09 and IN10, and NY05 and NY12 by 676!

calculating the differences for each trait value between common lines in location pairs (FL05-677!

FL06, IN09-IN10, NY05-NY12) and using these differences for analysis using the previously 678!

described stepwiseqtl mapping and permutation procedure.  679!

QTL by environment analysis: PCA-derived projections. The 16 most precisely measured 680!

elements (Mg, P, S, K, Ca, Mn, Fe, Co, Ni, Cu, Zn, Se, Rb, Sr, Mo, and Cd) were used for 681!

principal components analysis. The prcomp function in R with scale = TRUE was used for PCA 682!
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on elemental data to perform PCA on only the 16 lines common to 6 of the 10 environments in 683!

which we had two replicates per location (FL05, FL06, IN09, IN10, NY05, NY12). PC loadings 684!

were extracted from the prcomp object and then matrix multiplied with the centered and scaled 685!

full dataset matrix (all lines, all environments) to generate whole dataset projections (PRs) of 686!

PCs influenced by only lines with multi-environment replicates. The first 7 PRs, derived from 687!

the first 7 PCs (98% total variation), were used for correlation analysis with weather variables 688!

and stepwise QTL mapping.  689!

Weather data collection and analysis. Weather data for FL05, FL06, IN09, IN10, NC06, 690!

NY05, NY06, and NY12 was collected from Climate Data Online (CDO), an archive provided 691!

by the National Climatic Data Center (NCDC) through the National Oceanic and Atmospheric 692!

Administration website: http://www.ncdc.noaa.gov/cdo-web/. The Climate Data Online Search 693!

was used to find Daily Summaries for each day of the growing season from the weather station 694!

nearest to the field location. For Florida growouts (FL05, FL06), data was collected from the 695!

Homestead General Aviation Airport station. For Indiana growouts (IN09, IN10): West 696!

Lafayette 6 NW station. North Carolina (NC06): Clayton station. New York growouts (NY05, 697!

NY06, NY12): Aurora Research Farm station. Missouri (MO06): Columbia U of M station. 698!

Minimum temperature (in degrees Celsius), and maximum temperature (in degrees Celsius) was 699!

available in each location. With these variables, average minimum temperature, and maximum 700!

temperature were calculated across the 120-day growing season as well as for 30 day quarters. 701!

GDD was calculated for the entire season and quarterly using the formula GDD = ((Tmax + 702!

Tmin)/2) –10. Weather data averages for all environments except for South Africa were tested 703!

for correlation with the PR averages from the corresponding 9 environments. The pearson 704!

correlation coefficient was calculated for pairs between weather variables and PRs 1-7.   705!
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