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Abstract—In order to produce dependable results, the output
of models must be carefully evaluated and compared to the
experimental data. One of the main goals of analyzing a model
is the understanding the effect of input factors on the model
output. This task is carried out using a methodology known as
sensitivity analysis. The analysis of Individual-based Models is
hindered by the lack of simple tools allowing a complete and
throughout evaluation without much effort. This kind of model
tends to have a high level of complexity and the manual execution
of a large experimental setup is generally not a feasible choice.
Thus, it is required that model evaluation should ideally be simple
and robust without demanding a high level of knowledge from
modelers. In this work we present the RRepast, an open source
GNU R package for executing, calibrating and analyzing Repast
Symphony models directly from the R environment.

I. INTRODUCTION

The individual-based modeling is being established progres-
sively as a main-stream and valuable tool for modeling com-
plex processes in many distinct areas of knowledge, ranging
from social science, economics to any flavor of computational
and systems science such as biology, ecology and so on
[1]. The reason is, amongst other things, the relative ease
with which detailed structural information can be incorporated
into a model without the constraints of other methodologies
[2]. Nonetheless, the possibility of incorporating many details
comes with the cost of models with a high complexity levels,
containing many rules and parameters for which the exact
values are, in many cases, hard or impossible to determine
experimentally, that is what is know as parameter uncertainty.

Model calibration is the task of estimate the set of val-
ues for input parameters of some simulation model which
provides the best fitting to any empirical data set available
for the system under study[3]. The estimation of acceptable
values for the parameters of Individual-based Models and the
analysis of uncertainty, requires specialized techniques which
are complex computationally demanding. One of the objectives
of these methods are understand the relative impact of input
parameters on the overall model outcomes. According to [4]
most of Individual-based models published tends to omit the
systematic calibration and sensitivity analysis tasks, chiefly
due the fact that modelers practitioners do not have the specific
knowledge to implement or simply use the required methods.
Therefore, it seems to be clear, that the availability of simple

and user friendly tools for experiment design and analysis
would help modelers to improve the formal quality of their
models.

The Repast Symphony framework is a fast and flexible java-
based environment with some built-in facilities for batching
and parameter sweeping [5], widely used in many fields for
building individual-based simulation models [6], [7], [8] of
dynamic processes. Repast also has support for running GNU
R [9], [10] code from inside the framework user interface
but until now was not feasible running Repast models from
R environment for controlling model in order to implement
experimental designs, parameter calibration and sensitivity
analysis, therefore hindering a throughout and comprehensive
verification of Individual-based models.

In addition the real value of a computational model depends
much on the ability of other researchers to reproduce and
enhance the results elsewhere, in other words results must
be reproducible. Hence, in order to achieve reproducibility,
research methods should be stated clearly and should preferen-
tially being backed by standard methods and software tools. In
the following sections we will describe the RRepast package
functionalities, the most significant API elements, as well as
a worked example for illustrating the basic use case of the
package.

II. THE RRepast PACKAGE

The RRepast1 is an ongoing open source project developed
primarily for invoking Repast Symphony models from inside
GNU R environment, but having much more features added
on top of this fundamental functionality, in order to make the
analysis of Individual-based models developed with Repast,
extremely straightforward, providing a powerful API which
reduce the need to code the most commons methods. The
package contains R and java code for linking the calls to the
Repast subsystem. The software is delivered under the MIT
license system.

The package has two main groups of functions: the first,
directly related to the integration of Repast Symphony with R,
allowing the instantiation, execution and control of a model

1The software can be found on the following CRAN URL: https://cran.
r-project.org/web/packages/rrepast/
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execution, as well as, gathering model output generated by any
aggregated dataset defined into Repast model[11]. The second
group of features relies on the first group for running model but
exposing a complete set of methods for parameter calibration
and for performing sensitivity analysis methods without much
effort, including also functions for most common experimental
design setups.

The first group of methods, are in turn subdivided into low
and high level calls. The first type of them are the functions
prefixed with the [Engine] keyword which wraps the calls
to the java subsystem using the rJava package[12]. These
functions are not intended for general use, instead the users
should the high level calls which include, the calls depicted
in the Table I.

The second group of functions inside the package contains
low level functions for the design of experiments[13] by the
user, as well as, high level methods which are the recom-
mended entry point for the generation of experiments with
the model. All of these high level functions have their names
prefixed with the "Easy" keyword. The Easy API are designed
to perform a complete and complex task with just one function
call. Some of these functions are shown in the Table II and
the current Easy API methods are presented in Table III.

III. RRepast IN ACTION

In this section we will provide some small examples on
how to use the RRepast package for running Repast models
and analyzing the data produced. In order to gets the model
running from R code, some minimal steps must be carried
out before calling Repast code.

1) Build an installer and install the Repast model.
2) Add the rrepast-integration.jar file, included in

RRepast distribution, to the lib directory of the installed
Repast model.

3) Add the integration configuration to scenario file in
the .rs directory of the installed model. The integra-
tion consists in the following code: <model.initializer
class="org.haldane.rrepast.ModelInitializerBroker" />

Once the previous steps are completed we are ready for
running the model. The minimal code to execute the model is
presented in Figure 1

1 l i b r a r y ( r r e p a s t )
2

3 # The d i r e c t o r y where The r e p a s t model has been i n s t a l l e d
4 i n s t a l l . d i r<− " c : / models / themode l "
5

6 # I n s t a n t i a t e and l o a d t h e model
7 o b j<− Model ( m o d e l d i r = i n s t a l l . d i r , d a t a s e t =" d a t a s e t " , TRUE)
8

9 # Run t h e model
10 Run ( o b j )
11

12 # The model ’ s o u t p u t
13 o u t p u t<− G e t R e s u l t s ( )

Figure 1: The minimal code for running a Repast model
from R. The boolean value in Model() tells RRepast to auto
load the model’s scenario.

Function name Description

Model(d, t, o, l) This function creates an object instance
for linking the Repast model to an R
object. The required parameters are the
directory where the model has been in-
stalled (d), the duration of simulation in
Repast ticks (t), the name of any aggre-
gated dataset of model for draining data
generated by the model simulation(o) and
a Boolean flag which tells the function to
call the Load method. The default value
is FALSE.

Load(m) This function loads the Repast scenario
from model’s directory. The only re-
quired parameter (m) is an instance of
Repast Model created with previous func-
tion.

Run(m, r, s) The purpose of this function is to execute
a single round of simulation using just
one parameter set. The parameters for
this function are a model instance (m), the
number of repetitions (r) and a collection
the random seeds (s) to be used for each
one of the repetitions. The only required
parameter is the model instance, created
with the Model() function. The default
value for r is one.

RunExperiment(m, r, d, F) Execute a complete experimental setup
for different set of parameters. The pa-
rameters required are a model instance
(m), the number of replications (r), the
experimental design (d) and finally a
user provided calibration function (F).
The experimental design parameter is
an R data frame containing a complete
set of model’s parameter per row. The
function returns a list with three data
frame elements: the paramset, the output
and dataset which holds respectively all
simulated input parameters, the result of
user provide calibration function and the
complete dataset produced during the ex-
periment execution.

GetSimulationParameters(e) Returns the complete list of parameters
declared by the model.

SetSimulationParameters(e, p) Modify several parameters at once.
SaveSimulationData(t, e) Exports the results of Run or RunExper-

iment to a csv or excel files.

Table I: The basic RRepast API Functions. These functions
are used for loading, modifying the default parameters defined
for model and for running the simulation.

In addition to the basic functionality for loading and run-
ning a model and retrieving the complete output of any
dataset defined in the Repast model, the package contains
an implementation of common techniques for screening and
global sensitivity analysis as well as for verifying the sta-
bility of output variables. These functionalities are readily
accessible, requiring very few lines of code. In the simplest
case the modeler only has complete three tasks for getting
the experiment done. The first one is to define a calibration
function. The calibration function must return zero for the best
fit and other number greater than zero otherwise. How the
criteria are implemented is up to the modeler. That function
is called internally by RRepast and has a specific format. The
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Function name Description

AddFactor(f, l, k, b, u) Creates the parameter collection for the
experimental setup. The function requires
the data frame (f) where parameter will be
added, if this parameter is not provided a
new data frame will be created. The second
parameter (l) is the random function used
internally, the default value is runif which
will be the valid choice in many cases, the
next parameter is k the name of factor, the
value provided must match some parameter
defined in the repast model. The following
two parameters (b) , (u) are the lower and
the upper range, respectively. The function
returns the updated (f) data frame with the
new parameter.

AoE.RandomSampling(n, f) Also known as Monte Carlo sampling, gen-
erate an experimental design based making
random samplings of parameter space. The
function takes two parameters, the sample
size (n) and the factor (f) data frame created
using AddFactor(). The function returns the
design matrix form the provided parameters.

AoE.LatinHypercube(n, f) Generates an experimental design using the
Latin Hypercube stratified sampling tech-
nique which is more efficient sampling
scheme, in terms of model evaluations,
than the pure random sampling. The pa-
rameters (n, f) and return values are the
same already described for the function
AoE.RandomSampling().

AoE.FullFactorial(n, f) Creates a factorial design where the ef-
fects of all independent variables of model
are studied simultaneously which implies
many more model evaluations. The param-
eters (n, f) and return values are the
same already described for the function
AoE.RandomSampling().

BuildParameterSet(d, p) Constructs the data frame required for exe-
cuting RunExperiment(). The function takes
two parameters: the design matrix (d) cre-
ated with one of previous functions and
the declared parameters (p) defined in the
Repast Model with the default values re-
trieve using the function GetSimulation-
Parameters(). The functions returns a data
frame with varying and fixed parameters for
the experimental setup of choice.

Table II: The Experimental Setup API functions. These func-
tions are used for experimental design, parameter calibration
and sensitivity analysis.

parameters passed to the function are the current set parameter
used and the complete content of Model dataset output and the
function must return a cbind() containing all individual criteria
and optionally the sum of individual criteria.

In order to providing some more realist examples we have
used the BactoSIM Repast model, which is an spatially explicit
individual-based model for simulating the plasmid spread on
a surface attached bacterial colony[16].

The BactoSIM simulation model has several parameters but
we want to focus just on four of them keeping all other fixed.
Thus, let’s say, we want to evaluate the parameters named
gamma0, cyclePoint, conjugationCons and pilusExpression-

Function name Description

Easy.Stability(d,o,t,f,s,r,v,F) Evaluate the behavior of model output in
order to determine the minimum required
number of replication of chosen experi-
mental setup. The function accept the fol-
lowing parameters: the model installation
directory (d), the aggregated data source
defined within the Repast model (o), the
simulation time in Repast ticks (t) which
default value is 300 ticks, the input factors
to be sampled (f) created with the previously
mentioned function AddFactor(), the num-
ber of parameter samples (s), the desired
number of replications to be tried (r) being
the default value 100, the output variables
of interest which will be checked for their
stability and convergence of the coefficient
of variation (v), this parameter is leaved
empty all output variables are checked and
finally the user provided calibration function
(F) for determining the best input parameter
combination.

Easy.Morris(d,o,t, f,p,s,r,F) This function performs all required tasks
for carrying out the method of Morris for
screening. The parameters are practically
the same as described for the previous func-
tion with exception of parameters (p) and
(s) which are respectively the levels of input
factors and the number of sampling points
of Morris method[14].

Easy.Sobol(d,o,t,f,n,r,F) Encapsulate all required steps for perform-
ing sensitivity analysis using Sobol method.
The method of Sobol is a global sensi-
tivity an analysis technique based on the
decomposition of output variance [15], [14].
The parameter semantics are the same al-
ready described: the model installation di-
rectory (d), the aggregated data source de-
fined within the Repast model (o), the sim-
ulation time in Repast ticks (t) , the input
factors to be sampled (f), the sample size
(n), the desired number of replications (r)
and calibration function (F).

Easy.Calibration(d,o,t,f,n,r,F) This function estimate the best set of input
parameters or factors performing a set of ex-
periments in order to sample the calibration
function. The objective of this function is to
minimize the output of calibration function
provided by the user.

Table III: The easy API functions. These functions are the
preferred entry point for the eventual users. These "Easy"
functions lump together a complete experiment task in just
one call, reducing the coding needs to the minimum.

Cost. For accomplishing this task we will use the Easy API
functions described in Table III. These functions return a list
holding three elements:

• experiment. The experiment is also a list holding the
parameter set (paramset), the calibration function output
(output) and the experiment raw dataset (dataset). These
three entities are connected by a column named pset.

• object. The reference to the object used which could be
Morris or a Sobol instance.

• charts. Contains the reference to the plots generated.
Therefore, the first step could be to determine the required

number of replications for the simulation experiments using

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 10, 2016. ; https://doi.org/10.1101/047985doi: bioRxiv preprint 

https://doi.org/10.1101/047985


17.0

17.5

18.0

18.5

19.0

0 25 50 75 100
sample size

R
S

D

factor(group)

gamma0.T.

Simulation output stability

Figure 2: The stability of model output.It is possible to
observe how, as far the number of replications of the experi-
mental setup increases, the value of the coefficient of variation
converges to a common value.

the Easy.Stability() which output can be seen in Figure 2. The
output shows on the abscissa the number of repetitions and on
the ordinates the coefficient of variation for the desired output
variable.

The listing shown in Figure 3 is an example of how easy
is to analyze simulation experiments using RRepast. That is
all code required to perform the Morris screening method for
the BactoSIM Model. One of the outputs of Morris method is
presented in Figure 4.

Finally we could decide, using the output of Morris method,
to discard some of the parameters and focus only on those
more important to perform the Sobol method. One of the
output charts of Sobol method showing the indices and the
confidence interval are show in Figure 5.

IV. CONCLUSIONS

In this report we have presented the basic aspects of
RRepast package and how it could be used for perform
the basic experimental setup of Repast Models. The API
functions shown here are planned to be stable but they are
not frozen yet as the project is still a work in progress, hence

1

2 # The c a l i b r a t i o n f u n c t i o n
3 fun<− f u n c t i o n ( p , r ) {
4 c r i t e r i a<− c ( )
5

6 Rate<− AoE .RMSD( r $Sim , r $Exp )
7

8 c r i t e r i a<− c b i n d ( Rate )
9 r e t u r n ( c r i t e r i a )

10 }
11

12 # The f a c t o r s unde r s t u d y
13 f<− AddFactor ( name=" c y c l e P o i n t " , min =0 ,max=90)
14 . . .
15 f<− AddFactor ( f , name="gamma0" , min =1 ,max=10)
16

17 v<− Easy . M or r i s ( " c : / BactoSim " , " o u t " , 30 0 , f , 5 0 , 1 0 , 1 0 , fun )

Figure 3: The complete listing for perform the Morris’s
screening method. In the line 6 we define the Rate calibration
criteria which is root-mean-square deviation between simu-
lated and observed values. In lines 13 to 15 we create the
input factor collection with their range of variation and finally
line 17 shows the call of Easy.Morris function.

Figure 4: One of the output charts for Morris’s screening
method.The chart shows that the most import parameter for
the Rate calibration metric is the cyclePoint followed by the
gamma0.

some slight variations may occur from version to version.
Future versions will include more out-of-box functions for
the statistical analysis of the model output and we are also
evaluating the possibility of parallelize the multiple model’s
executions required by the sensitivity analysis methodologies.
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Figure 5: The output chart for Sobol method.The Sobol
output shows that the dominant parameter is the cyclePoint
but differently from Morris method the second in importance
seems to be the pilusExpressionCost.

One of main drawback of analyzing individual-based mod-
els is the computational cost and the time required to complete
an experimental setup for any model with a medium complex-
ity level and a high number of agents being simulated. The
simulations are safe and relatively easy to distribute as the
same code will be executed for a different set of parameters but
there are no need to communicate instances of experimental
setup. Recently some interest has been shown on using Docker
container technology for scientific research [17] and we are
exploring that technology for easy deployment of the model
execution across many nodes seamlessly.
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