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ABSTRACT 1	
  

Nucleosomes have structural and regulatory functions in all eukaryotic DNA-templated 2	
  

processes. The position of nucleosomes on DNA and the stability of the underlying histone-DNA 3	
  

interactions affect the access of regulatory proteins to DNA. Both stability and position are 4	
  

regulated through DNA sequence, histone post-translational modifications, histone variants, 5	
  

chromatin remodelers, and transcription factors. Here, we explored the functional implications of 6	
  

nucleosome properties on gene expression and development in C. elegans embryos. We 7	
  

performed a time-course of micrococcal nuclease (MNase) digestion, and measured the relative 8	
  

sensitivity or resistance of nucleosomes throughout the genome. Fragile nucleosomes were 9	
  

defined by nucleosomal DNA fragments recoverable preferentially in early MNase-digestion 10	
  

time points. We found fragile nucleosomes at locations where we expected to find destabilized 11	
  

nucleosomes, like transcription factor binding sites where nucleosomes compete with DNA-12	
  

binding factors. Contrary to our expectation, the presence of fragile nucleosomes in gene 13	
  

promoters was anti-correlated with transcriptional activity. Instead, genes with fragile 14	
  

nucleosomes in their promoters tended to be expressed in a context-specific way, operating in 15	
  

neuronal response, the immune system, and stress response. Nucleosome fragility at these 16	
  

promoters was strongly and positively correlated with the AT content of the underlying DNA. 17	
  

There was not a strong correlation between promoter nucleosome fragility and the levels of 18	
  

histone modifications or histone variants. Our data suggest that in C. elegans promoters, 19	
  

nucleosome fragility is primarily a DNA-encoded feature that poises genes for future context-20	
  

specific activation in response to environmental stress and developmental cues. 21	
  

 22	
  

 23	
  

 24	
  

 25	
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INTRODUCTION 1	
  

The fundamental unit of eukaryotic chromatin is the nucleosome, which consists of 147 bp of 2	
  

DNA wrapped around an octamer of histone proteins (Luger et al. 1997). Nucleosomes have 3	
  

important structural and regulatory functions in organizing the genome and restricting access of 4	
  

regulatory factors to the DNA sequence (Henikoff 2008). As such, the interactions between 5	
  

nucleosomes and DNA strongly influence the regulation of gene expression by determining 6	
  

DNA accessibility for transcription factors and RNA polymerase. In addition to regulated 7	
  

nucleosome assembly and disassembly through the action of histone chaperones and 8	
  

chromatin remodelers, nucleosome stability is influenced by histone modifications, histone 9	
  

variants, DNA features encoded in cis, and competition with DNA-binding factors in trans. For 10	
  

the purposes of this manuscript, we define “stability” qualitatively, as the propensity of a given 11	
  

nucleosome to remain intact and at that position, rather than to be evicted, disassembled, or 12	
  

translocated to a substantially different position. A complete picture of the mechanisms 13	
  

governing nucleosome stability is fundamental to understanding how gene expression is 14	
  

dynamically regulated.   15	
  

 16	
  

Nucleosome stability has been studied in vitro using sensitivity to enzymatic digestion or salt 17	
  

concentration (Bloom and Anderson 1978; Simon and Felsenfeld 1979; Burton et al. 1978; Li et 18	
  

al. 1993; Jin and Felsenfeld 2007; Wu and Travers 2004; Polach and Widom 1995; 1999; 19	
  

Anderson et al. 2002). Genome-wide adaptations of these methods have been used to identify 20	
  

nucleosome position and stability in vivo. More recent studies in yeast, Drosophila, plants, and 21	
  

mammals have used varying concentrations of the enzyme micrococcal nuclease (MNase) to 22	
  

identify nucleosomes with differential sensitivity to MNase digestion in vivo (Xi et al. 2011; 23	
  

Henikoff et al. 2011; Chereji et al. 2015; Kent et al. 2011; Weiner et al. 2010; Vera et al. 2014; 24	
  

Lombraña et al. 2013; Kubik et al. 2015). Nucleosomes sensitive to low concentrations of 25	
  

MNase have been labeled as “fragile”, and have been associated with transcription factor 26	
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binding sites (Vera et al. 2014), active origins of replication (Lombraña et al. 2013), gene 1	
  

promoters (Xi et al. 2011), and genomic sequences with high AT content (Chereji et al. 2015). 2	
  

Thus, both DNA-encoded sequence features and active processes in trans influence 3	
  

nucleosome fragility. The relationship between fragility and nucleosome function remains 4	
  

unclear. For example, one study reported fragile nucleosomes at the promoters of repressed 5	
  

stress-response genes during normal growth (Xi et al. 2011), while another found fragile 6	
  

nucleosomes at the promoters of highly transcribed genes in yeast (Kubik et al. 2015). 7	
  

 8	
  

We performed a timecourse of MNase digestion in C. elegans mixed-stage embryos to study 9	
  

the relationship between nucleosome fragility and gene activity in a developing multicellular 10	
  

organism. In our study, fragile nucleosomes were associated with lowly expressed genes and 11	
  

genes expressed in a context-specific fashion. Although we found that competition with trans 12	
  

factors promoted nucleosome fragility, our data suggest that the majority of highly fragile 13	
  

nucleosomes in the C. elegans embryo are not due to trans factors but rather to cis features 14	
  

encoded in the DNA sequence. Together, our data indicates that the fragility of nucleosome-15	
  

DNA interactions may aid in poising genes for induction in response to stress or developmental 16	
  

cues. 17	
  

 18	
  

RESULTS 19	
  

A digestion timecourse identifies nucleosomes with differential MNase sensitivity 20	
  

We postulated that functionally distinct nucleosomes in the C. elegans could be distinguished by 21	
  

the length of time it took them to be liberated from bulk chromatin by MNase digestion. Previous 22	
  

studies using this approach defined nucleosomes released early in the timecourse as “fragile” 23	
  

and those released later in the timecourse as “resistant” (Xi et al. 2011). To identify 24	
  

nucleosomes of differential sensitivity genome-wide, we isolated mixed-stage embryos from C. 25	
  

elegans, treated them with formaldehyde to cross-link the chromatin, isolated nuclei, and 26	
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   5	
  

digested the chromatin with MNase (Figure 1A). After 2, 4, 8, 15, and 30 minutes of digestion 1	
  

we removed a chromatin aliquot and performed paired-end Illumina sequencing on the 2	
  

mononucleosomal fragments liberated at each time point (Figure 1B). Without MNase, 3	
  

chromatin remained intact and undigested. After addition of the enzyme, a stereotypic chromatin 4	
  

ladder rapidly formed, and a small proportion of total chromatin became mononucleosomal. As 5	
  

digestion proceeded, the mononucleosomal fraction increased while polynucleosomal fractions 6	
  

were depleted (Figure 1C). We performed two replicate experiments on native chromatin and 7	
  

two replicate experiments on formaldehyde-fixed chromatin samples. Results from the native 8	
  

and fixed chromatin were very similar (Supplemental Figure 1). We therefore focused our 9	
  

downstream analysis on fixed chromatin for maximum compatibility with previously-generated 10	
  

datasets.  11	
  

 12	
  

Mononucleosomal DNA fragments released earliest during the digestion were larger (median 13	
  

size of 2-minute nucleosomal fragments: 180 bp) than fragments released later in the 14	
  

timecourse (median of 30-minute nucleosomes: 155 bp) (Figure 1D). Among the digestion 15	
  

timepoints, nucleosome sizes decreased in 10 bp increments, reflecting the MNase digestion 16	
  

preference for WW (AA, AT, TA, or TT) dinucleotides and the 10-11 bp periodicity of the DNA 17	
  

helical turn (McGhee and Felsenfeld 1983; Deniz et al. 2011; Trifonov and Sussman 1980; 18	
  

Ioshikhes et al. 2011) (Figure 1D). This is consistent with the model that with increasing lengths 19	
  

of digestion time, MNase will cleave long linkers and any unwrapped ends of nucleosomal DNA. 20	
  

Although the genome-wide occupancy profiles of mononucleosomal fragments were globally 21	
  

similar across the timepoints (Figure 1B, Supplemental Figure 2), there were a number of 22	
  

substantial differences in the nucleosome maps among the timepoints (Supplemental Figure 3, 23	
  

Figure 1E).  24	
  

 25	
  

To systematically study nucleosomes of differential sensitivity to MNase, we assigned each 26	
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   6	
  

nucleosome both a fragility and a resistance score (Supplemental Figure 4). For each 1	
  

timepoint, we first called nucleosome positions and then assigned each nucleosome an 2	
  

occupancy score (see Methods for details). The fragility score for a nucleosome is defined by 3	
  

subtracting the average occupancy score of the intermediate timepoints (4, 8, and 15 min) from 4	
  

the occupancy score of the 2 min timepoint. Conversely, a resistance score is computed by 5	
  

subtracting the average occupancy score of the intermediate timepoints from that of the 30 min 6	
  

timepoint (Figure 1E). Thus, fragility and resistance scores were generally reciprocal to each 7	
  

other at a given nucleosome, but not necessarily so. We defined the top 10% of nucleosomes 8	
  

with the highest fragility or resistance scores as “fragile” or “resistant” nucleosomes, respectively 9	
  

(Figure 1F). 10	
  

 11	
  

Trans-factors increase nucleosome fragility 12	
  

We sought to address whether nucleosome fragility was a consequence of competition with 13	
  

DNA binding proteins and other trans factors. Trans-acting factors disrupt nucleosomes by 14	
  

competing with histones for binding to the DNA sequence (Simpson 1990; Adams and 15	
  

Workman 1995). We first examined regions of the genome where we expected to find 16	
  

nucleosomes destabilized by competition with other DNA-binding factors, for example at 17	
  

transcription factor binding sites (TFBS). We collected a set of 35,062 TFBS bound at any stage 18	
  

of C. elegans development, as identified by transcription factor (TF) ChIP-seq from the 19	
  

modENCODE consortium (Araya et al. 2014). TFBS in the C. elegans genome on average 20	
  

show strong affinity to histones in vitro (Locke et al. 2013). A nucleosome occupancy model 21	
  

based solely on DNA sequence also predicted C. elegans TFBS to be nucleosome bound 22	
  

(Kaplan et al. 2009) (Figure 2A). In vivo, however, these sites show a dip in nucleosome 23	
  

occupancy, consistent with the footprint of TF binding. Moreover, TFBS had high fragility scores 24	
  

on average (Figure 2B). These data are in agreement with previous reports from yeast to 25	
  

humans that transcription factors compete with nucleosomes for access to DNA (Barozzi et al. 26	
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2014; Wang et al. 2012; Ozonov and van Nimwegen 2013). To further investigate the 1	
  

relationship between TF binding and fragility we broke TFBS into groups depending on the 2	
  

number of TFs bound at a site. Although the majority of TFBS identified in C. elegans are bound 3	
  

by a single factor, some sites may be bound by many different TFs (Chen et al. 2014; Araya et 4	
  

al. 2014; Boyle et al. 2014). Fragility scores increased as a function of the number of TFs bound 5	
  

at a single TFBS (Figure 2C).  6	
  

 7	
  

We found that TFBS had high fragility scores despite their intrinsic preference for nucleosome 8	
  

formation in vitro. One possible explanation is that transcription factors destabilize nucleosomes 9	
  

at their binding sites, causing the fragility at TFBS. Alternatively, TFBS may contain DNA 10	
  

sequences that disfavor nucleosome formation in vivo, thereby increasing nucleosome fragility. 11	
  

To distinguish among these possibilities, we identified a set of TFBS specifically bound at 12	
  

different developmental stages (Figure 2D). We hypothesized that if active competition with TFs 13	
  

increases nucleosome fragility, then TFBS bound by TFs only in the embryo should be fragile in 14	
  

embryos, whereas TFBS bound only in the L4 larval stage should not be fragile in embryos 15	
  

(Figure 2E, top). Alternatively, if DNA sequence influences nucleosome fragility then the 16	
  

embryo-specific and L4-specific TFBS should be equally fragile in embryos (Figure 2E, 17	
  

bottom). Due to their high fragility scores and dynamic nature, we focused our analysis on HOT 18	
  

regions, TFBS where significant enrichments (false discovery rate <5%) in multiple transcription 19	
  

factor binding sites are observed (Araya et al. 2014). We found that embryo-specific HOT 20	
  

regions had high nucleosome fragility and low nucleosome occupancy (Figure 2F, 21	
  

Supplemental Figure 5). In contrast, L4-specific HOT regions showed lower nucleosome 22	
  

fragility in embryonic samples and higher nucleosome occupancy than embryo-specific HOT 23	
  

regions (Figure 2G). These results support the hypothesis that active competition with 24	
  

transcription factors in vivo contributes to nucleosome fragility despite their intrinsically 25	
  

nucleosome favoring properties in vitro.  26	
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 1	
  

Nucleosome fragility increases throughout heat-shock genes upon induction 2	
  

The preceding analysis found a correlation between transcription factor binding and nucleosome 3	
  

fragility. We next sought to test the relationship between fragile nucleosomes and trans factors 4	
  

more explicitly. Moderate transcription levels have been shown to cause displacement and 5	
  

repositioning of nucleosomes in gene bodies (Reinberg and Sims 2006). At extremely highly 6	
  

transcribed genes, such as heat shock responsive genes after induction, it has been proposed 7	
  

that RNA Pol II molecules occupy the entire gene body (Merz et al. 2008; Cole et al. 2014; 8	
  

Schwabish and Struhl 2004; Kristjuhan and Svejstrup 2004). We hypothesized that nucleosome 9	
  

fragility should increase at gene bodies after inducing high levels of transcription, as a result of 10	
  

nucleosome competition with transcribing RNA polymerase II (Pol II). To test whether we could 11	
  

induce nucleosome fragility, we designed a heat shock experiment in conjunction with an 12	
  

MNase-seq timecourse (Figure 3A).  13	
  

 14	
  

Heat shock in C. elegans activates HSF-1 and HSF-2, two homologues of the mammalian HSF1 15	
  

transcription factor, which bind heat shock elements (HSE) in the promoters of heat shock-16	
  

responsive genes to upregulate their expression (Åkerfelt et al. 2010). Upon heat shock, the 17	
  

heat-shock-response genes undergo rapid chromatin remodeling and colocalize with the 18	
  

nuclear pore complex (Rohner et al. 2013). Using RNA-seq, we identified 14 genes that are 19	
  

rapidly upregulated after a brief (20 minute) heat shock at 34 °C (Figure 3B, Supplemental 20	
  

Figure 6). We then analyzed how fragility scores changed at those genes after heat shock 21	
  

(Supplemental Figure 7). Though nucleosome occupancy remained largely unchanged, we 22	
  

found nucleosome fragility dramatically increased both 5′ and 3′ of heat-shock genes, as 23	
  

well as in the gene body itself (Figure 3C, 3D). Notably, promoter and +1 nucleosome fragility 24	
  

increased on average genome-wide, although gene-body fragility was specific to the set of heat 25	
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shock-induced genes (Figure 3E). This result suggests that the rapid induction of these genes 1	
  

increases nucleosome competition with Pol II. This mode of transcription has been suggested to 2	
  

remove the entire histone octamer, rather than FACT-mediated H2A-H2B recycling (Kulaeva et 3	
  

al. 2010; Kireeva et al. 2002). Alternatively, previous studies of the Hsp70 locus in Drosophila 4	
  

have shown that heat shock induces rapid transcription-independent loss of gene-body 5	
  

nucleosomes (Petesch and Lis 2008). Future experiments with transcription inhibitors may 6	
  

clarify the exact mechanism by which gene body nucleosomes become fragile after heat shock. 7	
  

Our results demonstrate that nucleosome fragility can be modulated by trans-acting factors like 8	
  

transcription factors and RNA polymerase II, and is not solely dependent on DNA sequence. 9	
  

 10	
  

Nucleosome fragility near genes is anti-correlated with expression 11	
  

We found high fragility scores at the types of genomic locations where destabilized 12	
  

nucleosomes had been previously reported, namely transcription factor binding sites and the 13	
  

gene bodies of newly induced genes (Urnov and Wolffe 2001). We investigated the genome-14	
  

wide distribution of fragile nucleosomes (nucleosomes with the highest 10% of fragility scores; 15	
  

Figure 1F) in detail. Fragile nucleosomes were enriched 5′ and 3′ of genes, specifically at 16	
  

the promoter -2, -1, and +1 nucleosomes, and at the terminal nucleosome (TN) and TN+1 17	
  

nucleosomes (Figure 4, Supplemental Figures 1, 8). Resistant nucleosomes (nucleosomes 18	
  

with the highest 10% of resistance scores (Figure 1F) were enriched in gene bodies 19	
  

(Supplemental Figures 1, 8).   20	
  

 21	
  

With increasing distance from the promoter, nucleosomes become less sharply positioned 22	
  

(Mavrich et al. 2008; Yuan et al. 2005). To investigate whether the higher nucleosome 23	
  

resistance scores at highly expressed genes were a consequence of more consistent 24	
  

nucleosome positioning, we asked whether fragility or resistance scores were correlated with 25	
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the standard deviation of the nucleosome center, or “fuzziness”. Neither nucleosome fragility nor 1	
  

nucleosome resistance scores were correlated with the fuzziness of the nucleosome at the 2	
  

intermediate timepoint (fragility vs. fuzziness: R = 0.03, resistance vs. fuzziness: R = -0.06), 3	
  

suggesting that the susceptibility or resistance to MNase digestion is not a direct consequence 4	
  

of more or less well-positioned nucleosomes (Supplemental Figure 9). 5	
  

 6	
  

Given the positive relationship between fragility and transcription factor binding (Figure 2C), 7	
  

and given that induction resulted in increased nucleosome fragility throughout heat-shock genes 8	
  

(Figure 3C, 3D), we expected that nucleosome fragility would be enriched in the promoters or 9	
  

gene bodies of highly expressed genes in the embryo, which exhibit high levels of TF and Pol II 10	
  

binding as measured by ChIP-seq (Supplemental Figure 10) (Ho et al. 2014). To our surprise, 11	
  

gene expression levels on average were anti-correlated with nucleosome fragility at both 12	
  

promoters and gene bodies (Figures 4A, 4B, 4F, Supplemental Figure 12. R = -0.17) and 13	
  

positively correlated with nucleosome resistance (Figures 4A, 4B, 4G, Supplemental Figure 14	
  

12. R = 0.11). For example, in contrast to our earlier observation at the heat shock genes, we 15	
  

failed to find a correlation between ongoing expression and nucleosome fragility at the gene 16	
  

bodies of the most highly transcribed genes (compare Figure 3D to Supplemental Figure 11). 17	
  

Perhaps only newly-induced genes display gene-body fragility, or extremely high levels of 18	
  

transcription are required to induce fragility in gene bodies. 19	
  

 20	
  

Although overall nucleosome fragility scores were high 5′ and 3′ of all genes, including at the 21	
  

majority of TFBS (Figure 2), fragile nucleosomes occurred preferentially at the promoters of 22	
  

lowly-expressed genes (Figures 4B, 4F, Supplemental Figure 10). No single transcription 23	
  

factor profiled in the embryo significantly overlapped the distribution of fragile nucleosomes 24	
  

(Figure 1F, Supplemental Figure 10). Though previous reports have suggested that the 25	
  

histone variant H2A.Z may act to promote nucleosome instability (Jin and Felsenfeld 2007; Jin 26	
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et al. 2009; Xi et al. 2011), we did not observe a significant overlap between previously-1	
  

identified H2A.Z-containing nucleosomes (Ho et al. 2014) and fragile nucleosomes (Figures 4D, 2	
  

Supplemental Figure 13). These data collectively suggest that two separate mechanisms 3	
  

account for nucleosome fragility depending on the genomic context. In places where 4	
  

nucleosomes are directly in competition with transcription factors (Figure 2) or in the bodies of 5	
  

exceptionally highly expressed or newly induced genes (Figure 3) fragility arises through 6	
  

competition with transcription factors or other DNA-associated proteins. By contrast, fragility 5′ 7	
  

and 3′ of genes at locations with few TF binding events appears to be determined by another 8	
  

mechanism, which we explored next.  9	
  

 10	
  

Nucleosome fragility is correlated to cis-encoded DNA features 11	
  

We hypothesized that cis features may be responsible for the fragility of nucleosomes at the 12	
  

promoters of lowly-expressed genes. We examined the DNA sequences occupied by fragile and 13	
  

resistant nucleosomes, and compared these to sequences occupied by all nucleosomes in the 14	
  

genome (Figure 5). Compared to the set of all nucleosomes, DNA sequences occupied by 15	
  

fragile nucleosomes had lower GC sequence content on average, a feature favoring 16	
  

nucleosome formation (Figure 5A) (Deniz et al. 2011). We then asked whether these 17	
  

sequences were likely to form nucleosomes based on a previously reported in vitro 18	
  

reconstitution assay (Locke et al. 2013). We found that DNA sequences occupied by fragile 19	
  

nucleosomes in the embryo were generally less occupied in vitro (Figure 5C). Finally, we 20	
  

observed that sequences occupied by fragile nucleosomes were less conserved across 21	
  

nematodes than DNA sequences occupied by the set of all nucleosomes (Figure 5E).  22	
  

 23	
  

Poly(dA:dT) tracts disrupt nucleosome formation and tend to increase transcription of 24	
  

downstream genes (Raveh-Sadka et al. 2012), while TATA box motifs in yeast are associated 25	
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with bendable promoters sensitive to chromatin remodelers (Tirosh et al. 2007; Albert et al. 1	
  

2007). In C. elegans, the number of T-block motifs (3 to 5 consecutive thymine nucleotides, 2	
  

often spaced at 10 bp periodicity) have been positively correlated with expression: genes with 3	
  

more than 5 T-blocks have fivefold higher expression than genes with fewer than 4 T-blocks 4	
  

(Grishkevich et al. 2011), presumably through a reduction in promoter nucleosome occupancy. 5	
  

T-blocks were not enriched at fragile or resistant nucleosomes, whereas TATA box motifs were 6	
  

enriched at fragile nucleosomes (Supplemental Figure 14).  7	
  

 8	
  

In addition to DNA-encoded cis features, promoter fragility at lowly-transcribed genes may be 9	
  

influenced by epigenetic features associated with these nucleosomes. Through comparison with 10	
  

previously generated datasets, we asked whether any histone post-translational modifications, 11	
  

histone variants, or chromatin states were positively associated with nucleosome fragility or 12	
  

resistance (Ho et al. 2014; Ooi et al. 2010). Only “low signal” chromatin states and chromatin 13	
  

extracted with 80 mM salt (another method proposed to identify unstable nucleosomes) were 14	
  

associated with fragile nucleosomes (Supplemental Figures 15, 16, 17) (Ooi et al. 2010; Ho et 15	
  

al. 2014). Though longer linkers were weakly correlated with increased fragility levels 16	
  

(Supplemental Figure 18), the GC content of the nucleosome was the strongest predictor of 17	
  

overall nucleosome fragility score (Supplemental Figure 19). Taken together, our data indicate 18	
  

that fragile nucleosomes in gene promoters are correlated with high AT content and TATA box 19	
  

motifs. It seems that most promoters are fragile at least in part due to high AT content (see 20	
  

residual fragility in Figure 2G), but that this cis effect of DNA sequence becomes apparent only 21	
  

at sites where the observation is not confounded by TF binding.  22	
  

 23	
  

Fragile nucleosomes are associated with genes expressed in future or context-specific 24	
  

situations 25	
  

To infer potential functional implications of nucleosome fragility in the developing embryo, we 26	
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next asked which genes were significantly associated with fragile nucleosomes. Fragile 1	
  

nucleosomes were enriched at the -1 nucleosome and resistant nucleosomes were enriched at 2	
  

the +1 nucleosome (Figure 4). We identified two sets of genes that contain fragile and resistant 3	
  

nucleosomes, respectively, +/- 500 bp from their transcript start site. We then identified enriched 4	
  

GO terms in each of the gene sets (Supek et al. 2011; Al-Shahrour et al. 2004). Genes with 5	
  

fragile nucleosomes were enriched for GO terms related to neuronal response, immune 6	
  

response, and stress response genes (“sensory perception of chemical stimulus”, “defense 7	
  

response”, “pharynx development”, “immune system process”) (Figure 6A). In contrast, genes 8	
  

with resistant nucleosomes were enriched for embryogenesis and cell cycle related terms 9	
  

(“mitotic cell cycle”, “RNA processing”, “regulation of developmental process”, “organic 10	
  

substance transport”) (Figure 6B). A complementary analysis confirmed the association 11	
  

between high fragility scores in the promoter and genes that function in context-specific 12	
  

processes. Unbiased k-means clustering of promoters based on their fragility scores identified a 13	
  

cluster containing lowly-expressed genes with high fragility scores that are expressed in 14	
  

response to perception of chemical stimulus, cognition, and neurological processes 15	
  

(Supplemental Figure 20). This second class of fragile nucleosomes in the embryo is unlikely 16	
  

to be fragile due to the action of trans factors because of their anti-correlation with expression 17	
  

and transcription factor binding. Rather, fragile nucleosomes were associated with lowly-18	
  

transcribed genes that are expressed in a future context-specific fashion during stress response 19	
  

or development.  20	
  

 21	
  

To confirm the association between fragile nucleosomes and future context-specific expression 22	
  

with an independent method, we used the publicly available modENCODE transcriptome 23	
  

sequencing data from seven different life stages to define a set of “developmentally regulated” 24	
  

genes and a set of “stably expressed” genes (Figure 6C) (Pérez-Lluch et al. 2015; Gerstein et 25	
  

al. 2014; Spencer et al. 2011). We hypothesized that if promoter nucleosome fragility is related 26	
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to context-specific expression as our GO analysis suggested, then we should find higher fragility 1	
  

signals near developmentally regulated genes. When we plotted the average fragility scores 2	
  

around these genes, we indeed saw higher nucleosome occupancy and fragility signals at 3	
  

developmentally regulated genes as compared to the set of stably expressed genes (Figure 4	
  

6D). While both sets of genes have fragile promoters, our data indicate that fragility is enriched 5	
  

at genes that tend to be expressed specifically during development, stress, or environmental 6	
  

stimulus response. Together, we suggest that these sequences may reflect a specialized 7	
  

promoter architecture that is primarily determined by high AT content, which acts to allow future 8	
  

disruption of nucleosome stability, and thereby the rapid induction of gene expression in a 9	
  

context-specific fashion (Figure 7). 10	
  

 11	
  

DISCUSSION 12	
  

We performed an MNase digestion timecourse, a simple modification to the traditional MNase 13	
  

digestion assay, in C. elegans embryos. Our experiment measured which individual 14	
  

nucleosomes were most quickly released from their polynucleosome context after exposure to 15	
  

MNase. Sensitivity to MNase digestion, and thereby fragility or resistance as defined in this 16	
  

study, could be determined by a number of factors. These include (1) a DNA sequence in the 17	
  

linker region that is preferentially cut by MNase; (2) longer linker regions; (3) nucleosome 18	
  

instability caused by low DNA-histone affinity; or (4) instability caused by competition with 19	
  

transcription factors. As such, nucleosome fragility or resistance is likely to be a reasonable 20	
  

proxy for the underlying stability of the nucleosome. Two lines of evidence suggest that 21	
  

nucleosome fragility reflects nucleosome instability. First, we found that nucleosomes can be 22	
  

made fragile by competition with transcription factors and RNA polymerase II. Second, we 23	
  

observed that nucleosomes can be made unstable in cis by being wrapped around nucleosome-24	
  

disfavoring DNA sequences with high AT content and TATA-box motifs. All of these factors 25	
  

have been shown to cause nucleosome instability in previous studies (Widom 2002; Ozonov 26	
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and van Nimwegen 2013). 1	
  

 2	
  

We performed our experiments in nuclei derived from whole embryos, which reflect a mixture of 3	
  

cell types and creates challenges for data interpretation. However, our core conclusions stand 4	
  

regardless. First, the DNA sequence underlying the data is the same across all cell types and 5	
  

therefore our conclusions regarding the cis contribution to nucleosome fragility are derived from 6	
  

and shared among all cells in the embryo. Second, previous precisely-timed developmental 7	
  

RNA-seq experiments show that certain genes are stably expressed in every cell type of the 8	
  

developing embryo, while other gene classes are not expressed at all during the time that the 9	
  

embryos used in our sample were collected, but instead are poised for expression later in 10	
  

development (Spencer et al. 2011; Gerstein et al. 2014). Therefore, for specific genes, we can 11	
  

say definitively that they were “on” or “off” in our sample, and make general conclusions 12	
  

accordingly. Third, the RNA-seq data we used is also derived from mixed embryos, and 13	
  

therefore quantitatively matches our fragility and resistance data. The same applies to the 14	
  

modENCODE chromatin data; the embryos used in this study were staged specifically to match 15	
  

the embryos used in the modENCODE studies. While future studies of pure populations of cells 16	
  

may reveal additional relationships between nucleosome properties and gene expression, the 17	
  

conclusions we make here with whole embryos are valid and are compatible with previously 18	
  

generated TF and histone ChIP-seq datasets.   19	
  

 20	
  

MNase resistant nucleosomes are correlated with expression in the embryo 21	
  

We found a class of nucleosomes that required relatively long durations of MNase digestion to 22	
  

be removed from chromatin. Traditional expectations might be that unstable nucleosomes would 23	
  

be found in the body of transcribed genes, and stable nucleosomes in silent, heterochromatic 24	
  

genomic regions. However, recent reports illustrate that nucleosomes in the gene body of 25	
  

transcribed genes are consistently well-positioned and highly occupied due to a number of 26	
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factors, including the activity of RNA Polymerase II and the histone chaperone FACT 1	
  

(FAcilitates Chromatin Transcription) (Bai and Morozov 2010; Jiang and Pugh 2009). Indeed, 2	
  

we found stable nucleosomes enriched in the gene body of actively transcribed housekeeping 3	
  

genes. During transcription, Pol II disrupts an H2A-H2B dimer that remains bound by FACT and 4	
  

is rapidly reassembled in the wake of Pol II (Formosa 2012). Histone modifications such as 5	
  

H3K36me3, which we found positively correlated with stable nucleosomes, are also thought to 6	
  

contribute to nucleosome stability and maintenance of transcription fidelity (Lieb and Clarke 7	
  

2005; Lickwar et al. 2009). Together, our measurements are in agreement with an emerging 8	
  

picture of highly regulated nucleosome stability throughout the genome, which is likely critical for 9	
  

regulation of DNA templated events like transcription, splicing, and DNA replication (Bintu et al. 10	
  

2011; Kwak et al. 2013; Tilgner et al. 2009; Chen et al. 2010; Eaton et al. 2010).  11	
  

  12	
  

MNase sensitive fragile nucleosomes are 5′ enriched and anti-correlated with expression 13	
  

Differential MNase digestion and salt fractionation have been previously used to probe 14	
  

nucleosome-DNA stability. Results from yeast (Xi et al. 2011; Weiner et al. 2010; Kubik et al. 15	
  

2015), plants (Vera et al. 2014), mouse (Lombraña et al. 2013; Deng et al. 2015), worm, (Ooi et 16	
  

al. 2010) and fly (Chereji et al. 2015; Henikoff et al. 2009) have identified highly labile 17	
  

nucleosomes in 5′ and 3′ “nucleosome free” regions. In yeast, Xi et al. observed that fragile 18	
  

nucleosomes were associated with H2A.Z containing promoter nucleosomes, believed to be 19	
  

involved in stress response (Zhang et al. 2005; Li et al. 2005). In vertebrates, nucleosomes 20	
  

containing both H3.3 and H2A.Z histone variants are unstable (Jin and Felsenfeld 2007; Jin et 21	
  

al. 2009). We did not observe a correlation between H2A.Z incorporation and nucleosome 22	
  

fragility in C. elegans as measured by our assay. Rather, H2A.Z is distribution is strongly biased 23	
  

towards active genes (Whittle et al. 2008; Liu et al. 2011). This distinction could be due to a 24	
  

divergence in H2A.Z properties between yeast and C. elegans (Zlatanova and Thakar 2008). It 25	
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is also possible that the distribution of H2A.Z-containing nucleosomes used for this study 1	
  

(measured in Ho et al.) was comprised of the particularly stable, homotypic type of H2A.Z 2	
  

nucleosomes (Ishibashi et al. 2009). 3	
  

 4	
  

Overall, we observed an anti-correlation between promoter nucleosome fragility and gene 5	
  

expression. Previous reports disagree about the relationship between nucleosome fragility and 6	
  

expression. Studies in yeast, C. elegans, Drosophila, and Maize have used salt profiling and 7	
  

different MNase concentrations to identify a positive correlation between promoter fragility and 8	
  

expression (Kubik et al. 2015; Ooi et al. 2010; Henikoff et al. 2009; Vera et al. 2014). However, 9	
  

Xi et al used the same approach and observed the opposite effect. One possible explanation for 10	
  

the discrepancy is that very light MNase digestion or salt profiling techniques may recover 11	
  

fragments from nucleosome-depleted loci, like the nucleosome-free regions in the promoters of 12	
  

active genes. If those regions are excluded, for example by slightly longer digestion times, 13	
  

higher enzyme concentrations, or by filtering out sub-nucleosomal fragments, truly unstable 14	
  

nucleosomes may become more apparent at the promoters of stress and context-responsive 15	
  

genes. We also point out that the relation between fragility and other methods used to measure 16	
  

nucleosome properties, such as profiling of salt-sensitive nucleosomes in Drosophila and C. 17	
  

elegans, remains unclear (Ooi et al. 2010; Henikoff et al. 2009). Both differential MNase 18	
  

digestion experiments and salt profiling experiments endeavor to measure some aspect of 19	
  

nucleosome stability but a rigorous study is needed to compare results from the two methods.  20	
  

 21	
  

A previous study (Xi et al. 2011) identified nucleosome fragility at nearly one-third of all 22	
  

promoters of protein-coding genes, and enriched at the promoters of genes involved in stress 23	
  

response. When we assessed the types of functional annotations that were enriched at 24	
  

promoters with fragile nucleosomes in C. elegans embryos, we identified GO terms related to 25	
  

context-specific expression: sensory perception of chemical stimulus, defense response, 26	
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immune system process. Based on our findings in conjunction of those with Xi et al., we 1	
  

propose that nucleosome fragility may serve to poise genes for rapid activation in response to 2	
  

developmental or external stimuli. This is consistent with previous work investigating the 3	
  

transcriptional activation of mammalian primary response genes, where unstable nucleosomes 4	
  

are used to achieve rapid induction independent of chromatin remodeling complexes (Ramirez-5	
  

Carrozzi et al. 2009).  6	
  

 7	
  

We found high fragility scores at the -2, -1, and +1 nucleosomes of developmentally regulated 8	
  

genes in comparison to stably expressed housekeeping genes. Previous work found that the 9	
  

promoters of developmentally regulated genes lack the histone post-translational modifications 10	
  

associated with active genes, like H3K4me3 (Pérez-Lluch et al. 2015). Similarly, we were 11	
  

unable to find an association between fragile nucleosomes and any histone post-translational 12	
  

modifications examined by the modENCODE group. Given the increased fragility of these 13	
  

nucleosomes, it is possible that (1) these nucleosomes at developmentally regulated genes 14	
  

were lost from standard chromatin preparation protocols and are thus underrepresented in the 15	
  

histone ChIP, or (2) developmentally regulated genes use promoter nucleosome fragility as a 16	
  

mechanism for gene regulation. 17	
  

 18	
  

Our results are reminiscent of previous reports from yeast, which propose that promoter 19	
  

structures can generally be classified as containing depleted proximal nucleosomes (DPN) or 20	
  

occupied proximal nucleosomes (OPN) (Tirosh and Barkai 2008). In yeast, DPN genes have 21	
  

low transcriptional plasticity (defined as the capacity to modulate transcription levels upon 22	
  

changing conditions), well positioned nucleosomes, and are enriched for TF binding sites and 23	
  

H2A.Z. In contrast, OPN genes have high transcriptional plasticity, higher evolutionary 24	
  

divergence, higher nucleosome turnover, and were sensitive to chromatin regulation. The yeast 25	
  

DPN genes may correspond to the set of stably-expressed genes we defined in C. elegans, 26	
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which that have depleted proximal nucleosomes (Figure 6D top). The yeast OPN genes may 1	
  

correspond to the set of developmentally regulated genes we defined in C. elegans, which have 2	
  

high promoter fragility and highly occupied proximal nucleosomes (Figure 6D, bottom). To our 3	
  

knowledge, OPN and DPN-type promoters have not been described or defined in C. elegans. 4	
  

Our results are consistent with a model in which nucleosome instability is encoded at the 5	
  

promoters of DPN-type genes, potentiating the high transcriptional plasticity observed at these 6	
  

sites. The presence of these promoter structures in yeast, human, and now C. elegans suggests 7	
  

a well-conserved strategy that uses nucleosome architecture to regulate the dynamics of gene 8	
  

expression. 9	
  

 10	
  

MATERIALS AND METHODS 11	
  

Worm strains and growth in liquid culture 12	
  

Wild type N2 worms were obtained from the Caenorhabditis Genome Center and maintained at 13	
  

20°C in liquid culture as previously described (Whittle et al. 2008; Ercan et al. 2011). Mixed-14	
  

stage embryos were isolated from gravid adults by bleach hypochlorite treatment and fixed with 15	
  

2% formaldehyde for 30 minutes at room temperature.  16	
  

 17	
  

MNase Digestion Time Course 18	
  

MNase digestion was performed as previously described (Ercan et al. 2011), with slight 19	
  

alterations. Micrococcal nuclease (Worthington LS004798) was resuspended in water at 50 20	
  

U/uL and frozen in individual aliquots at -80°C. To control for variability in enzyme activity, 21	
  

individual aliquots were removed from the freezer and thawed on ice, and never reused. Mixed-22	
  

stage embryos were incubated with chitinase (Sigma Cat #C6137), washed, and dounced in 23	
  

dounce buffer (0.35 M sucrose, 15 mM HEPES-KOH pH 7.5, 0.5 mM EGTA, 5 mM MgCl2, 10 24	
  

mM KCl, 0.1 mM EDTA, 1 mM DTT, 0.5% TritonX-100, 0.25% NP-40) to extract nuclei. Nuclei 25	
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were pelleted and washed with MNase digestion buffer (110 mM NaCl, 40 mM KCl, 2 mM 1	
  

MgCl2, 1 mM CaCl2, 50 mM HEPES-KOH pH 7.5). MNase was added, and at each timepoint (0, 2	
  

2, 4, 8, 15, or 30 minutes after enzyme addition) a fraction of the reaction was removed, 3	
  

quenched with EDTA, and stored on ice. Samples were treated with Proteinase K for 2 hours at 4	
  

55°C, then incubated overnight at 65°C to reverse crosslinks. DNA was isolated from RNA and 5	
  

proteins using phenol:chloroform extraction and RNase A treatment for 1 hour at 37°C. 6	
  

Mononucleosome-sized fragments (100 to 200 bp) were extracted from a 2% agarose gel and 7	
  

purified using a Qiagen gel extraction kit.  8	
  

 9	
  

Heat shock  10	
  

Mixed-stage embryos were isolated as described and split into two pools. One pool was 11	
  

incubated at 34°C for 20 minutes with intermittent brief mixing, while the other pool nutated at 12	
  

room temperature. After 20 minutes, an aliquot from each pool was saved for RNA-seq, while 13	
  

the remaining embryos were fixed for 30 minutes in 2% formaldehyde at room temperature.  14	
  

 15	
  

RNA isolation 16	
  

Embryos were dropped into TRIzol (Life Technologies) and flash frozen in liquid nitrogen after 17	
  

incubation for 20 minutes at room temperature or 34°C heat shock. Embryos were homogenized 18	
  

by thawing at 37°C and refreezing in liquid nitrogen 3x. Total RNA was isolated using a 19	
  

TRIzol/chloroform extraction followed by RNeasy Mini (Qiagen) preparation with On Column 20	
  

DNaseI Digestion (Qiagen).  21	
  

 22	
  

Illumina Library Preparation 23	
  

Individual libraries were prepared with unique barcodes for each timepoint from the timecourse. 24	
  

MNaseTC libraries were prepared from 100 ng of gel-extracted DNA using the Illumina TruSeq 25	
  

DNA library preparation kit v2 (FC-121-2001) according to manufacturer instructions. Ampure 26	
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beads were used for the final purification in lieu of gel purification. RNA-seq libraries were 1	
  

prepared from 2 ug of total RNA using the Illumina TruSeq RNA library preparation kit v2 (RS-2	
  

122-2001) according to manufacturer instructions. Individual samples were barcoded with 3	
  

unique 6bp index sequences contained within the sequencing adapters. Individual libraries were 4	
  

then pooled at equimolar ratios for paired-end multiplex sequencing. 5	
  

 6	
  

Illumina Sequencing and Post-Processing 7	
  

Paired-end sequencing was performed by the Princeton University Sequencing Core Facility 8	
  

according to Illumina protocols. Paired end reads were mapped to the UCSC Oct. 2010 9	
  

(WS220/ce10) genome release using Bowtie (v1.1.2) with stringent multimapping parameters: 10	
  

bowtie -q -X 2000 --fr -p 1 -S -n 2 -e 70 -l 28 --pairtries 100 --maxbts 125 -k 1 -m 1 --un 11	
  

/Unmapped_Reads.fastq --phred33-quals /ce10 -1 /read1.fastq -2 /read2.fastq 12	
  

 13	
  

Nucleosome analysis 14	
  

Reads with insert sizes between 100 and 250 bp were kept for downstream analysis. 15	
  

Replicates were first processed individually, then pooled after confirming a high degree of 16	
  

correlation between replicates. Nucleosome analysis was performed as described previously 17	
  

(Kaplan et al. 2010; Gossett and Lieb 2012).  18	
  

Coverage: Nucleosome coverage was calculated by extending the filtered mapped reads to 19	
  

their fragment length and measuring the sum of reads covering each bp. To normalize for 20	
  

variation between samples, nucleosome coverage was scaled by 1/(mean coverage), yielding a 21	
  

mean nucleosome coverage of 1.0.  22	
  

Dyads: Dyads are approximated as the center of a paired-end fragment. The number of dyads 23	
  

at each base pair was scaled by 1/(mean dyad density), then Gaussian smoothed with a 24	
  

standard deviation of 20 bp.   25	
  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 9, 2016. ; https://doi.org/10.1101/047860doi: bioRxiv preprint 

https://doi.org/10.1101/047860
http://creativecommons.org/licenses/by-nc-nd/4.0/


	
   22	
  

Nucleosome calls: Nucleosome positions were identified from dyad density maps using a 1	
  

previously reported greedy algorithm (Albert et al. 2007; Gossett and Lieb 2012). Using the local 2	
  

maxima of the dyad density as the nucleosome center p, the size of the nucleosome (the 3	
  

nucleosome-protected region) was determined by measuring the average length of all reads 4	
  

that covered the nucleosome center. The standard deviation of the nucleosome center (the 5	
  

nucleosome “fuzziness”) was calculated for each called nucleosome as the standard deviation 6	
  

of dyads around the mean. Nucleosome occupancy was defined as the number of dyads that 7	
  

fell within 50 bp of the nucleosome center. 8	
  

Boundary nucleosomes: Using these called nucleosome positions 5′  and 3′  boundary 9	
  

nucleosomes were identified for the 20,578 RefSeq annotated genes. 5′ +1 nucleosomes 10	
  

were identified as the first nucleosome call with a dyad coordinate downstream of the 1st coding 11	
  

exon. Similarly, the 3′ boundary nucleosome was identified as the first nucleosome call with a 12	
  

dyad coordinate upstream of the TTS.  Because C. elegans utilizes trans-splicing, the 5′ end 13	
  

of mature polyadenylated mRNAs, and the RefSeq annotations used in this analysis, do not 14	
  

reflect the exact base pair position of transcription initiation. Although recent studies have used 15	
  

novel methods to identify the true transcription initiation sites (Chen et al. 2013; Kruesi et al. 16	
  

2013; Saito et al. 2013), the TSS annotations are only known for a subset of expressed genes in 17	
  

a small number of stages (Chen et al. only tested embryos, only 31.7% of genes had a TSS in 18	
  

at least 1 of 3 stages tested in Kruesi et al., Saito et al., only tested embryo and adult). For 19	
  

completeness, we chose to instead investigate the full set of known genes using their first 20	
  

coding exon as an alignment point.  21	
  

 22	
  

Nucleosome Fragility and Resistance scores 23	
  

The pooled “intermediate” nucleosome profile was generated by pooling the reads from the 4, 8, 24	
  

and 15 minute time points from each replicate. The pooled reads were used to generate 25	
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average nucleosome positions, fuzziness scores, and occupancies. To identify regions of the 1	
  

genome that were liberated earlier or later than average, we subtracted the occupancy of the 2	
  

pooled sample from either the 2 minute (2m – pool = Fragility score) or the 30 minute samples 3	
  

(30m – pool = Resistance score). To highlight regions significantly enriched with this signal, we 4	
  

considered the 10% of nucleosomes with the highest fragility or resistance scores as Fragile or 5	
  

Resistant Nucleosomes.  6	
  

 7	
  

Gene ontology analysis 8	
  

Gene lists were uploaded to the FatiGO web server (babelomics.bioinfo.cipf.es) and compared 9	
  

against the background set of all C. elegans genes (Al-Shahrour et al. 2004). P-values were 10	
  

calculated using the Fisher’s exact test, and corrected for multiple testing using the FDR 11	
  

procedure of Benjamini and Hochberg (Benjamini and Hochberg 1995). Corrected p-values and 12	
  

GO terms were then input in to REVIGO to reduce and visualize significantly enriched GO 13	
  

clusters (Supek et al. 2011). 14	
  

 15	
  

Stable and developmentally regulated genes 16	
  

Pre-normalized transcriptome sequencing data was downloaded from: 17	
  

https://www.encodeproject.org/comparative/transcriptome/ (Gerstein et al. 2014; Spencer et al. 18	
  

2011). For each gene, we calculated the coefficient of variation (CV): 𝑐! =   
!
!
. We took the 1000 19	
  

genes with the highest CVs as the set of developmentally regulated genes, and the set of 1000 20	
  

genes with the lowest CVs as the set of stably expressed genes. 21	
  

 22	
  

RNA-seq analysis 23	
  

Unstranded mRNA libraries were prepared from total RNA for RNA-seq using the Illumina 24	
  

TruSeq RNA Library Preparation Kit v2 (RS-122-2001). RNA-seq reads were mapped to the C. 25	
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elegans WS220 Gene Annotation Model using Tophat2 (v0.7) (Trapnell et al. 2012). The 1	
  

resulting alignment files were quantified using HT-Seq (v0.4.1) and the RefSeq gene 2	
  

annotations for WS220 (Anders et al. 2015). Total read counts per gene were normalized for 3	
  

differential expression using DESeq2 (v1.0.19) in R (v3.0.1) (Love et al. 2014). 4	
  

 5	
  

Additional datasets 6	
  

A brief description of the additional publicly available datasets used in this study and their 7	
  

accession numbers can be found in Supplemental Table S1. 8	
  

 9	
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FIGURE LEGENDS 5	
  

Figure 1. An MNase digestion time course on C. elegans embryos 6	
  

(A) Mixed-stage embryos were collected from gravid hermaphrodites by bleach treatment. 7	
  

Dissociated nuclei from mixed-stage embryos were incubated with MNase for 2, 4, 8, 15, or 30 8	
  

minutes. (B) Paired-end reads from each timepoint were mapped to the C. elegans genome, 9	
  

normalized, and Gaussian smoothed for display. High signals represent regions of the genome 10	
  

protected from MNase digestion. Region plotted: chr IV position 12,074,951 to 12,084,347. (C) 11	
  

Representative image of an N2 embryo MNase digestion timecourse after gel electrophoresis. 12	
  

For each timepoint, mononucleosome-sized fragments were excised from the gel (white box) 13	
  

and used for paired-end Illumina DNA sequencing. Size markers (M) are indicated. (D) 14	
  

Mononucleosome fragments are shorter with increasing MNase digestion time, in 10 bp 15	
  

increments. (E) Calculation of fragility and resistance scores. Fragility: for each nucleosome, the 16	
  

average occupancy of the intermediate timepoints is subtracted from the 2 minute timepoint. 17	
  

Resistance: for each nucleosome, the average occupancy of the intermediate timepoints is 18	
  

subtracted from the 30 minute timepoint. Intermediate timepoints are 4, 8, and 15 minutes. 19	
  

Region plotted: chr IV position 12,076,980 to 12,078,364. (F) Distribution of fragility and 20	
  

resistance scores at all nucleosomes. The top 10% of each class (shaded in green and orange, 21	
  

respectively) were considered “Fragile” or “Resistant”. 22	
  

 23	
  

Figure 2. Competition with transcription factors influences nucleosome fragility  24	
  

(A) Average reconstituted nucleosome occupancy scores (Locke et al. 2013) and computational 25	
  

nucleosome occupancy model scores (Kaplan et al. 2009) at 35,062 regions bound at any stage 26	
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by any number of transcription factors. (B) Average fragility, resistance, and intermediate 1	
  

nucleosome occupancy scores are plotted around the same set of intervals from (A). (C) 2	
  

Nucleosome fragility scores are higher at sites bound by more transcription factors. Boxplot of 3	
  

average fragility or resistance scores at groups of sites bound by different numbers of 4	
  

transcription factors. N = number of regions in each category. (D) Cartoon characterization of 5	
  

how embryo-specific and L4-specific HOT regions were identified. Embryo HOT region: binding 6	
  

sites bound only in the embryo. L4 HOT region: binding sites bound only in the L4 stage. (E) 7	
  

Model to distinguish whether trans (top) or cis (bottom) effects result in nucleosome fragility at 8	
  

a given nucleosome in the embryo. Hypothetical fragility scores are represented. (F) Fragility, 9	
  

resistance, and nucleosome occupancy scores measured in the embryo at 119 regions found to 10	
  

be specifically HOT in the embryo. (G) Fragility, resistance, and intermediate nucleosome 11	
  

occupancy scores at 88 regions found to be specifically HOT in the L4 stage worm. 12	
  

 13	
  

Figure 3. Heat shock increases nucleosome fragility at the promoter and gene body of 14	
  

upregulated genes  15	
  

(A) Experimental overview. Mixed-stage embryos were either incubated at room temperature 16	
  

(RT) or heat shocked at 34°C (HS) for 20 minutes. Subsequently, embryos were fixed and used 17	
  

for an MNase-seq timecourse or stored in TRIzol and used for RNA-seq. (B) mRNA-seq of 18	
  

differentially expressed genes after a 20 minute HS at 34°C. Significantly differentially 19	
  

expressed genes (padj < 0.1) shown in red.  (C) Increased fragility scores after heat shock in the 20	
  

coding region of F33E5.4 and F33E5.5, two divergently transcribed hsp-70 orthologues. Region 21	
  

plotted: chr II position 11,749,925 to 11,770,394. (D) Nucleosome fragility and nucleosome 22	
  

occupancy at 11 significantly differentially expressed genes with and without heat shock. (E) 23	
  

Nucleosome fragility and nucleosome resistance at all 20,768 coding genes with and without 24	
  

heat shock. 25	
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Figure 4. Fragility is enriched 5′ and 3′ of genes, and on average is anti-correlated with 1	
  

gene expression 2	
  

(A) Log2 DESeq-normalized number of read counts measured by mRNA-seq at 20,785 genes, 3	
  

ordered by their relative expression. (B) Heatmap of fragility scores (green) at. Genes were 4	
  

aligned by the center of the first nucleosome downstream from the transcript start site, known as 5	
  

the +1 or 5′ Boundary Nucleosome (yellow line).  (C) Same as in (B), except resistance scores 6	
  

are plotted in red. (D) Same as (B), except for HTZ-1 input-normalized ChIP-seq signals (Ho et 7	
  

al Nature 2014). (E) Same as (B), except the average GC content (as a percentage of 100%) in 8	
  

5 bp windows is plotted. (F) Fragility and (G) resistance scores around the 5′ and 3′ boundary 9	
  

nucleosomes averaged over expression quintiles (highest expressed 20% in dark orange or 10	
  

green, lowest expressed 20% in lightest orange or green). Quintile 1: 0 to 4.5 normalized 11	
  

counts. Quintile 2: 4.5 to 65. Quintile 3: 65 to 619. Quintile 4: 619 to 2209. Quintile 5: > 2209. 12	
  

 13	
  

Figure 5. Fragile nucleosomes are found at AT-rich, nucleosome disfavoring, and poorly 14	
  

conserved promoters 15	
  

(A) Histogram of average GC content at fragile (green) or all nucleosomes (grey). (B) Same as 16	
  

A for resistant (orange) or all nucleosomes (grey). (C) Histogram of in vitro nucleosome 17	
  

occupancy scores at fragile (green) or all nucleosomes (grey). (D) Histogram of in vitro 18	
  

nucleosome occupancy scores at resistant (orange) or all nucleosomes (grey). (E) Histogram of 19	
  

PhastCons 7-way conservation score at fragile nucleosomes (green) or all nucleosomes (grey). 20	
  

(F) Same as E for resistant nucleosomes (orange) or all nucleosomes (grey).  21	
  

 22	
  

Figure 6. Fragile nucleosomes are enriched at genes that will be expressed in the future 23	
  

and in specific contexts 24	
  

 (A) Top 10 Gene Ontology biological process functional annotation terms associated with 25	
  

genes with fragile nucleosomes. (B) Top 10 gene ontology biological process functional 26	
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annotation terms associated with at genes with resistant nucleosomes. (C) Bar plot 1	
  

representation of expression levels and coefficient of variation (CV) for R07H5.2 and F26F2.10. 2	
  

R07H5.2 has a low CV, and is an example of a stably-expressed gene; F26F2.10 has a high 3	
  

CV, and is an example of a developmentally regulated gene. (D) Average plot of fragility and 4	
  

nucleosome occupancy scores at 1000 stably-expressed genes (top), or developmentally 5	
  

regulated genes (bottom) as determined by their coefficient of variation across 7 different life 6	
  

stages: early embryo, late embryo, larval stages L1, L2, L3, L4, and young adult.  7	
  

  8	
  

Figure 7 9	
  

We propose a model whereby nucleosome fragility is determined by two distinct mechanisms, 10	
  

one that operates in cis at all genes, and one that operates in trans at a subset of genes. Left: 11	
  

Competition in trans with transcription factors and polymerase machinery destabilizes 12	
  

nucleosomes at the promoters of actively transcribed genes that tend to be stably expressed.. 13	
  

Right: Condition-specific and developmentally regulated genes contain promoters with high 14	
  

levels of nucleosome fragility, determined primarily in cis by high AT content.  Green line: high 15	
  

AT content is sequence-encoded at all promoters, but is highest at condition-specific genes. 16	
  

Orange cylinders: resistant nucleosomes found in the gene body of highly and stably expressed 17	
  

genes. Green cylinders: fragile nucleosomes compete (single arrow) with transcription factors 18	
  

and RNA Pol II at stably expressed genes. Fragile nucleosomes at condition-specific genes 19	
  

“treadmill” on the DNA (three arrows) due to destabilizing DNA elements like TATA-box motifs 20	
  

and high AT content.  21	
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