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Abstract 

Single cell experiments provide an unprecedented opportunity to reconstruct a sequence of changes in a 

biological process from individual “snapshots” of cells. However, nonlinear gene expression changes, 

genes unrelated to the process, and the possibility of branching trajectories make this a challenging 

problem. We developed SLICER (Selective Locally Linear Inference of Cellular Expression Relationships) 

to address these challenges. SLICER can infer highly nonlinear trajectories, select genes without prior 

knowledge of the process, and automatically determine the location and number of branches and loops. 

SLICER more accurately recovers the ordering of points along simulated trajectories than existing 

methods. We demonstrate the effectiveness of SLICER on previously published data from mouse lung 

cells and neural stem cells. 
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Introduction 

Understanding the dynamic regulation of gene expression in cells requires the study of 

important temporal processes, such as cell differentiation, the cell division cycle, or tumorigenesis. 

However, in such cases, the precise sequence of changes is generally not known, few if any marker 

genes are known, and individual cells may proceed through the process at different rates. These factors 

make it very difficult to externally judge where a cell is in the process. Additionally, bulk RNA-seq data 

may blur aspects of the process because cells at sampled at a given point in time may be at different 

points in the process. 
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The advent of single cell RNA-seq enables the study of sequential gene expression changes by 

providing a set of time slices or “snapshots” from individual cells sampling different moments in the 

process [1–3]. To combine these snapshots into a coherent picture, we need an “internal clock” that 

tells, for each cell, where it is in the process. Because one of the motivations for performing a single cell 

RNA-seq experiment is to conduct an unbiased, genomewide study, we would like an unsupervised 

approach for inferring this internal clock, rather than relying on known marker genes or experiments 

starting from synchronized cells. Given these motivations, the internal state of a cell is the only reliable 

way to judge where it is in the process. 

One way to approach this problem is to infer a low-dimensional manifold embedded in high-

dimensional space that captures the observed geometric relationships among the cells [1, 2]. The 

modeling assumption behind this approach is that the main difference among cells is where they lie in 

the process, so that the sequence of gene expression changes traverses a “trajectory” through the 

sampled cells in high-dimensional space. 

Several techniques to identify cellular trajectories have recently been developed. The Monocle 

tool [1] uses independent component analysis (ICA) to find a low-dimensional linear projection of the 

data, then constructs a minimum spanning tree in the resulting low-dimensional space to order cells 

progressing through development. Another tool, Wanderlust, constructs an ensemble of �-nearest 

neighbor graphs directly in high-dimensional space without performing dimensionality reduction, then 

finds shortest paths through the ensemble of graphs [2]. An advantage of Wanderlust is its ability to 

capture nonlinear behavior. 

Monocle and Wanderlust have both been successfully applied to reveal biological insights about 

cells moving through a biological process [1, 2, 4, 5]. However, a number of aspects of the trajectory 

construction problem remain unexplored. For example, both Monocle and Wanderlust assume that the 
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set of expression values they receive as input have been curated in some way using biological prior 

knowledge. Wanderlust was designed to work on data from protein marker expression, a situation in 

which the number of markers is relatively small (dozens, not hundreds of markers) and the markers are 

hand-picked based on prior knowledge of their involvement in the process. In the initial application of 

Monocle, genes were selected based on differential expression analysis of bulk RNA-seq data collected 

at initial and final timepoints [1]. In addition, Monocle uses ICA, which assumes that the trajectory lies 

along linear projection of the data. In biological settings, this assumption may not hold. In contrast, 

Wanderlust can capture nonlinear trajectories, but works in the original high-dimensional space, which 

may make it more susceptible to noise, particularly when given thousands of genes, many of which are 

unrelated to the process being studied. Another challenging aspect of trajectory construction is the 

detection of branches. For example, a developmental process may give rise to multiple cell fates, leading 

to a bifurcation in the manifold describing the process. Wanderlust assumes that the process is non-

branching when constructing a trajectory. Monocle provides the capability of dividing a trajectory into a 

branches, but requires the user to specify the number of branches. 

In this paper, we present SLICER (Selective Locally linear Inference of Cellular Expression 

Relationships), a new approach that uses locally linear embedding (LLE) to reconstruct cellular 

trajectories. SLICER provides four significant advantages over existing methods for inferring cellular 

trajectories: (1) the ability to automatically select genes to use in building a cellular trajectory with no 

need for biological prior knowledge; (2) use of locally linear embedding, a nonlinear dimensionality 

reduction algorithm, for capturing highly nonlinear relationships between gene expression levels and 

progression through a process; (3) automatic detection of the number and location of branches in a 

cellular trajectory using a novel metric called geodesic entropy; and (4) the capability to detect types of 

features in a trajectory such as "bubbles" that no existing method can detect.  

Results 
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Overview of SLICER Method 

Figure 1 summarizes the process by which SLICER infers cellular trajectories. SLICER takes as 

input a matrix of unfiltered gene expression levels. By computing a quantity we term “neighborhood 

variance”, we choose a set of genes to use in building the trajectory (Fig. 1a). Intuitively, this method 

removes genes that show random fluctuation across the set of cells and selects only genes that vary 

incrementally from cell to cell in a systematic manner. Note that this gene selection method does not 

require either prior knowledge of genes involved in the process or differential expression analysis of 

cells from multiple time points. Next, the number of nearest neighbors � to use in constructing a low-

dimensional embedding is chosen so as to yield the shape that most resembles a trajectory, as 

measured by the �-convex hull of the embedding (Fig. 1a and Fig. S1). Alternatively, the user can specify 

� to manually tune the trajectory. SLICER then uses a nonlinear dimensionality reduction algorithm, 

locally linear embedding (LLE), to project the set of cells into a lower-dimensional space (Fig. 1b). The 

low-dimensional embedding is used to build another neighbor graph, and cells are ordered based on 

their shortest path distances from a user-specified starting cell. SLICER then computes a metric called 

geodesic entropy based on the collection of shortest paths from the starting cell and uses the geodesic 

entropy values to detect the presence, number, and location of branches in the cellular trajectory (Fig. 

1c and Fig. S2). The branch detection approach is based on the insight that the shortest paths along a 

non-branching trajectory will be highly degenerate, passing through only a small set of cells, in contrast 

with a branching trajectory which will use one or more distinct sets of cells (see Methods for details). 

Synthetic Data 

We constructed a set of simulated trajectories to assess the performance of SLICER on inputs 

with known solutions. To do this, we generated simulated expression levels for genes in such a way that 

the expression levels are a function of a “process time” parameter �. We simulated 5 different 
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“pathways” using distinct families of functions; the genes generated by a single family of functions are 

analogous to co-regulated genes in a biological pathway that all change in response to a common 

regulatory mechanism. Because each simulated gene depends on �, points simulated in this way lie 

along an essentially one-dimensional manifold (a trajectory) in high-dimensional space. Since, in the real 

data setting, we do not know in advance which genes are involved in a trajectory, we also devised a 

means to simulate genes that are unrelated to the process. To do this, we randomly permute the 

simulated values of some genes, thus removing their relationship with �. The number of such randomly 

reshuffled genes is controlled by a parameter �. 

To measure the performance of a trajectory reconstruction algorithm, we use the algorithm to 

produce an ordering of the points, then compare it to the true ordering specified by parameter �. We 

used “percent sortedness”, the percentage of pairs of items out of order in a list, as a metric for 

assessing trajectory reconstruction. 

Using the synthetic data generated in this way, we compared SLICER to Wanderlust, a previously 

published method that can reconstruct nonlinear trajectories. Wanderlust requires the user to specify a 

value for �, the number of nearest neighbors; to ensure a fair comparison, we ran Wanderlust for all 

values of � in �5,10, . . . ,45,50� and chose the � that gave the best value. We evaluated SLICER in the 

same way (testing a sequence of � values) and compared the best � to the � that SLICER automatically 

selected using our �-convex hull approach. To test the importance of using a nonlinear method, we also 

used ICA, a method that finds a linear projection, to perform dimensionality reduction, then performed 

the same shortest path algorithm that SLICER uses to order the points in the resulting low-dimensional 

space. For a baseline method, we randomly permuted the elements in the trajectory and measured the 

sortedness of the result.  
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Figure 2 shows the results of this comparison. Several things are important to note about these 

results. First, Wanderlust performs well when the majority of genes are related to the trajectory, but 

performance begins to degrade as more unrelated genes are added. This performance degradation may 

stem from the fact that Wanderlust operates in the original, high-dimensional space, so a large number 

of irrelevant features begin to compromise the result. In contrast, both SLICER and ICA are fairly stable 

in the presence of irrelevant genes. However, the ability to capture nonlinear behavior appears to be 

important, as the performance of ICA is far worse than SLICER and Wanderlust (though still better than a 

random strategy). Finally, the �-hull approach for automatic selection of � appears to work well. 

The large performance gap between SLICER and the other methods in Fig. 2 is due in part to the 

highly curved shape of the trajectory and the use of gene selection. ICA performs poorly on this example 

because of the large departure from linearity, and both Wanderlust and ICA suffer from the noise added 

by irrelevant genes. We note, however, that the ability to automatically select relevant genes and 

reconstruct highly nonlinear trajectories are key benefits of SLICER compared to existing methods. 

When we simulated a less highly curved trajectory and fed the genes selected by SLICER to the other 

methods (Fig. S3), the gap between methods was much smaller. SLICER with gene selection and 

Wanderlust with SLICER’s selected genes were very similar as the proportion of irrelevant genes 

increased, although Wanderlust performed slightly better in some cases (Fig. S3c). Both methods 

generally performed better than ICA, with the gap widening as the proportion of irrelevant genes 

increased (Fig. S3c). SLICER with no gene selection consistently outperformed the other approaches 

without gene selection (Fig. S3c), highlighting the robustness that LLE provides. We also compared 

SLICER with the other methods for increasing levels of noise with � 
 0, that is, no irrelevant genes (Fig. 

S3d). This comparison showed that the performance of SLICER degrades slightly less rapidly than the 

other methods in the presence of increasing noise (Fig. S3d), once again indicating the robustness of LLE. 
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To demonstrate SLICER's ability to detect branches and “bubbles”, we simulated a trajectory in 

which a single initial path splits into two branches that subsequently converge to a single path (Fig. 3a). 

We also created a simulated trajectory with a single branch (Fig S4). We created three families of genes 

in a manner similar to what is described in the Methods section and used 300 genes, noise level � 

0.5, and � 
 0. Note that the effect of the noise level depends on the relative magnitudes of the genes 

and the mean of the normal distribution used to add noise. The functions used to simulate the bubble 

example (Fig. 3) have a much smaller range than the genes used in Fig. 2, and thus a noise level of 0.5 

represents a significant challenge (note the level of noise present in Fig. 3a). Fig. 3a contains an example 

of the three different gene “shapes” used in the simulated dataset.  

The geodesic entropy profile of this simulated dataset (top graph in Fig. 3b) shows a spike 

followed by a drop and then another spike. The first position at which the geodesic entropy exceeds 1 

indicates the branch in the trajectory. The points colored red in Fig. 3c correspond to one branch, and 

the points colored blue, yellow, and green correspond to the other. We then recursively computed 

geodesic entropy on the longer of the two branches. The recursive geodesic entropy profile (bottom of 

Fig. 3b) indicates that the initial branch gives rise to another branch (yellow and green points in Fig. 3c). 

The second branch arises because one side of the bubble is slightly shorter than the other, causing the 

shortest paths from the start point to wrap around past the end of the bubble to reach the end of the 

red branch. The location of the second branch thus indicates the true end of the bubble. Fig. 3d shows 

the bubble correctly identified by SLICER colored in blue. 

 We also tested the robustness of SLICER’s branch detection in the presence of increasing noise 

and proportion of irrelevant genes (Fig. S4). We used the percentage of cells assigned to the correct 

branch as a metric for the accuracy of branch detection. This analysis showed that SLICER is able to 

identify the correct branch assignment for cells even in the presence of irrelevant genes (Fig. S4b) and 
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noise (Fig. S4c), although it appears that noise affects the branch assignment more than irrelevant 

genes. 

Developing Mouse Lung Cells 

We next ran SLICER on previously published data from developing mouse lung cells [6]. The data 

were generated as follows: cells from the developing bronchio-alveolar epithelium were extracted from 

embryonic mice on days E14.5, E16.5, and E18.5. The developing lung epithelium during this stage of 

development contains progenitor cells, intermediates, and cells committed to one of two specialized cell 

fates (Alveolar Type 1, AT1 and Alveolar Type 2, AT2) [7]. AT2 cells from adult mice (postnatal day 107) 

were also extracted and sequenced for comparison. We computed gene expression levels using RSEM v. 

1.2.8 and the UCSC mm10 gene annotations. Cells with less than 1000 genes detected at or above 1 

FPKM were omitted from further analysis, leaving 183 out of 198 cells. We then log-transformed the 

expression levels but did not filter the genes in any way. 

Each cell in this dataset represents a “snapshot” observation of the sequential process of gene 

expression changes required for differentiation. Our goal is to investigate the precise sequence of 

changes, which are not completely understood, although some marker genes for the AT1 and AT2 cell 

types are known. Differentiation may proceed at different rates across the set of cells, necessitating the 

use of an internal clock for monitoring differentiation progress, rather than relying strictly on the time 

point. We therefore would like to construct a trajectory that captures the sequential relationships 

among the cells undergoing the differentiation process. In addition, this dataset represents an excellent 

test for the branch detection capabilities of SLICER, because the cells are differentiating toward one of 

two cell fates, each with a handful of known marker genes. 

To determine a set of genes to use in building the trajectory, we selected genes whose 

expression level variance exceeded their “neighborhood variance” (see Methods). This method 
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produced a list of 660 genes. We next computed a 2D embedding of the data using LLE (Fig. 4a). We 

then picked a starting cell, constructed a nearest neighbor graph in the low-dimensional space, and 

found single-source shortest paths from the starting cell using Dijkstra's algorithm. 

As Fig. 4a shows, the trajectory reconstructed by SLICER places cells in an order that is clearly 

related to the day of development. Based on the labels indicating the days on which the cells were 

extracted, starting at the bottom of the figure and moving to the top and then left or right, seems to 

correspond to progress through development. In this ordering, the cells separate well by day of 

development. However, there are some exceptions: cells from days E14.5 and E16.5 overlap 

significantly, indicating that few changes occur during that two-day period. In contrast, there is a wide 

separation between day E18.5 and the fully differentiated AT2 cells from post-natal day 107. Another 

salient feature of the SLICER trajectory is that there appears to be a branch, with some cells positioned 

to the left of the early progenitors approaching the AT2 cells and some to the right of the early 

progenitors. 

To further investigate the trajectory inferred by SLICER, we examined the expression levels of 

several genes that were previously validated [6] as markers of mouse lung development (Fig. 4b-d and 

Supplementary Figure 5). The AT1 marker gene Pdpn should show moderate expression in early 

progenitor cells, high expression in AT1 cells, and low expression in AT2 cells [6]. As Fig. 4b shows, Pdpn 

expression gradually increases along the continuum from early progenitor cells to AT1 cells, matching 

the expected pattern. Similarly, the AT2 marker Sftpb shows increasing expression moving along the 

trajectory from early progenitors to adult AT2 cells but not AT1 cells (Fig. 4c). Additionally, the 

transcription factor Sox11, which plays a role in tissue remodeling during early lung development [6, 8], 

shows decreasing expression levels with increasing distance from the start of the trajectory (Fig. 4d). 

Collectively, the expression patterns of Pdpn, Sftpb, and Sox11 confirm that the SLICER trajectory 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 9, 2016. ; https://doi.org/10.1101/047845doi: bioRxiv preprint 

https://doi.org/10.1101/047845


represents a continuum of cells ordered by differentiation progress from early progenitor cells to either 

AT1 or AT2 cells. 

 We also used the branch detection capability of SLICER to infer the presence and location of a 

branch in the differentiation process. Approximately 25 steps from the starting cell, the geodesic 

entropy of the trajectory exceeds 1, indicating the beginning of a branch (Fig. 4e). Based on the above 

investigation of known marker genes, this location appears to represent a decision point for a 

differentiating cell, after which a cell proceeds toward either the AT1 or AT2 cell fate. After detecting the 

existence and location of a branch in the trajectory, we used SLICER to assign each cell to a branch (Fig. 

4f). 

Mouse Neural Stem Cells 

We ran SLICER on previously published data from mouse adult neural stem cells [4]. In this 

study, cells were harvested from the subventricular zones of adult mice with the goal of determining 

how gene expression changes during neural stem cell activation after a brain injury [4]. Only one cell fell 

below the cutoff of 1000 genes detected, leaving 271 out of 272 cells. 

We again selected genes by comparing sample variance and neighborhood variance. This 

yielded a list of 661 genes. Figure 5a shows the resulting trajectory. The embedding has a clear 

trajectory-like shape, with most of the cells lying along a horizontal path. There are also two clusters of 

cells, one close to the main group of cells along the horizontal axis, and one in the upper right corner of 

the plot.  

SLICER has the ability to detect such clusters directly from the low-dimensional �-nearest 

neighbor graph, allowing the user to include or omit certain cell types from trajectory construction (Fig. 

5b). For example, in the initial analysis of this dataset, the authors discovered the presence of 

oligodendrocytes, mature neural cells that were extracted at low levels due to overlap with the markers 
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used to isolate neural stem cells. Based on our analysis of marker genes distinguishing oligodendrocytes 

and neural stem cells (see below), the green cell type in Fig. 5b corresponds to oligodendrocytes. SLICER 

thus gives the ability to easily exclude oligodendrocytes from further analysis, although we chose to 

retain them because they provide a good example of a trajectory with multiple branches (see below). 

To investigate whether the trajectory produced by SLICER is related to the activation of neural 

stem cells, we examined the expression of known marker genes (Fig. 5c-g and Supplementary Figure 6). 

The Mki67 gene was previously shown to be a marker for active neural stem cells (aNSCs), and the 

transcription factor Sox9 is associated with quiescent neural stem cells (qNSCs) [4]. When we colored 

the trajectory with the expression levels of these marker genes, we found that cells along the x-axis in 

Fig. 5a show gradual variation, with high qNSC marker expression on the right and high aNSC marker 

expression on the left (Fig. 5c-d). This suggests that these cells represent a continuum of states from 

quiescent to active neural stem cells. The expression of Dcx, a neuroblast marker that is also responsible 

for the proper migration of differentiating neurons [4, 9], is expressed at high levels in the cluster of cells 

near the horizontal axis, indicating that this cluster of cells corresponds to neuroblasts (Fig. 5e). The 

cluster of cells that is far removed from the others shows high expression of the oligodendrocyte 

transcription factor Sox10 [4], indicating that these cells are oligodendrocytes (Fig. 5f). The Dlx1 gene 

encodes a transcription neuroblast-associated transcription factor, and it was observed in [4] that some 

of the aNSCs also expressed this marker, indicating the initiation of a differentiation program in the 

aNSCs. Our analysis confirms this result (Fig. 5g).  

 One of the key advantages of SLICER is the ability to identify multiple levels of branches 

automatically using geodesic entropy, as the synthetic data example in Fig. 3 showed. The neural stem 

cell dataset provides an excellent opportunity to demonstrate this capability on real data because of the 

presence of three distinct cell types. The geodesic entropy profile of the trajectory indicates a branch 

about 50 steps from the starting cell. This branching event corresponds to the distinction between 
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aNSCs and neuroblasts (Fig. 5h-i). We next computed geodesic entropy recursively on each of the top-

level branches identified (red and green cells shown in Fig. 5i). SLICER identified a second branch 

separating neuroblasts from oligodendrocytes but did not detect a branch in the aNSCs (Supplementary 

Figure 7). 

 Because the cost of single cell RNA-seq depends strongly on the number of cells to be 

sequenced, the number of cells required to construct a trajectory is an important question. However, 

the number of cells needed depends strongly on the biological process under consideration. Factors 

such as the number of branches, relative size of each branch, and extent of the changes across the 

sampled set of cells all can affect this number. With these caveats in mind, we have addressed this 

question by investigating, for both of our biological datasets, how much the trajectory changes when 

SLICER is given a random subset of the cells rather than the full dataset (Fig. S8). The results indicate 

that, for both datasets, the ordering of the cells is relatively stable even with as few as 20% of the cells. 

The assignment of cells to branches is stable down to 20% of the cells for the distal lung epithelium 

dataset, but the assignment accuracy steadily declines for the neural stem cell dataset. The reason for 

this difference is most likely that there are more branches in the neural stem cell dataset, and a smaller 

proportion of cells occur after the branch points. In contrast, the single branching event in the lung 

dataset is roughly an even split and occurs mid-way through the trajectory. Thus, in this case the 

separation between the cell fates is maintained even when only a few cells are used to build the 

trajectory. 

Comparison with Other Methods 

In order to assess the performance of SLICER in relation to other approaches, we ran ICA and 

Wanderlust on the lung and neural stem cell data and compared the results from all three approaches. 

We used the set of genes selected by SLICER to ensure that the results from all three approaches were 
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directly comparable. We also set the number of nearest neighbors for Wanderlust to the same values 

used by SLICER.  

The ICA embedding of the mouse lung data in Fig. 6a resembles the trajectory inferred by 

SLICER, detecting a single main path with a prominent branch. However, the arrangement of the points 

in the embedding is noticeably more diffuse and less “trajectory-like” than the SLICER result shown in 

Fig. 4. In addition, the geometric relationship between early progenitor cells and AT2 cells is somewhat 

different than that inferred by SLICER (compare Fig. 4a and Fig. 6a). It appears that tracing a shortest 

path from early progenitor cells to AT1 cells in Fig. 6a would pass through AT2 cells, while the SLICER 

branching analysis and marker gene expression suggest that these cells should fall on different branches. 

The ICA embedding of the neural stem cells shows a similar overall shape to the SLICER trajectory 

(compare Fig. 5a and Fig. 6b). Once again, however, the overall shape of the ICA embedding is much 

more amorphous, and an ordering of the cells from quiescent to active is much less apparent than in the 

SLICER trajectory shown in Fig. 5a. 

Because Wanderlust produces only a one-dimensional ordering of cells rather than a two-

dimensional embedding, we plotted the Wanderlust ordering of cells against the SLICER geodesic 

distance (Fig. 6c-d). The two tools agree on the relative ordering of mouse lung cell types, with early 

progenitor cells preceding AT1 cells and most AT2 cells (Fig. 6c). However, it is important to note that 

because Wanderlust assumes that a trajectory does not branch, the Wanderlust ordering suggests that 

lung differentiation process moves from early progenitor cells to AT1 cells, then AT2 cells. In addition to 

obscuring the true sequence of events in the differentiation process, the existence of multiple cell fates 

is lost in this approach, underscoring the importance of detecting branches in a trajectory. The 

Wanderlust ordering of neural stem cells agrees with SLICER on the relative ordering of qNSCs, aNSCs, 

and neuroblasts (Fig. 6d). One exception to note, however, is that Wanderlust places the 

oligodendrocytes in the middle of the ordering, interleaving them with aNSCs. 
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Discussion 

We developed SLICER (Selective Locally linear Inference of Cellular Expression Relationships), a 

method for inferring cellular trajectories from single cell RNA-seq data. The key advantages of our 

approach are (1) the ability to discover which genes to use in building the trajectory without prior 

knowledge of the process, (2) a novel method for detecting the number and location of branches and 

bubbles, and (3) the ability to infer nonlinear trajectories. In addition, our evaluation of SLICER on 

synthetic data shows that the method is highly robust to the presence of genes unrelated to the 

process. Our simulations also show the importance of modeling nonlinear behavior. It is worth noting 

that the choices of highly nonlinear functions such as cosine and square root that we used to simulate 

gene expression levels are not an unrealistic representation of biological systems, given such 

phenomena as cell-cycle genes and Michaelis-Menten enzyme kinetics [10]. 

We showed that SLICER can detect branches and bubbles in simulated trajectories. In addition 

to making the trajectory construction process simpler for the user by eliminating the need for manually 

counting the number of branches, our branch detection approach provides two important advantages. 

First, it can be used to detect branches even if the number of manifold dimensions is greater than two 

or three. For example, a recent paper that examined a hematopoiesis differentiation continuum used a 

four-dimensional projection to construct a cell trajectory [11]. The method of manual inspection cannot 

be used directly in this case, because there is no easy way to visualize a four-dimensional space. Second, 

geodesic entropy is a metric that characterizes the degeneracy of a trajectory, which opens the door to 

developing a statistical model of branch significance. Such a model, although beyond the scope of the 

current paper, would be very useful for detecting branching events corresponding to rare cell types or 

rare alternate outcomes of a process.  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 9, 2016. ; https://doi.org/10.1101/047845doi: bioRxiv preprint 

https://doi.org/10.1101/047845


Our branch detection approach is capable of identifying loops or “bubbles”, but to the best of 

our knowledge, no “bubbles” have yet been discovered through analysis of real single cell RNA-seq data. 

However, it is interesting to consider what might cause a bubble, and what might be the biological 

significance of such a geometry. One situation in which a bubble might arise is when there are multiple 

possible sequences of events that can lead a cell to the same position in a process. For instance, there 

may be cases in which the master regulator genes A, B, and C must all be turned on in order to complete 

some process, but it does not matter which of the genes is turned on first. If each of these three genes 

subsequently induces a separate regulatory cascade, cells could reach a final end state through several 

distinct sequences of gene expression changes. Another way in which a bubble might occur is if cells 

within a single initial population receive distinct signals that eventually lead the cells to a common state. 

It is possible that detecting a bubble from real data would require a process to be well-sampled, which 

means that many cells would be required. As increasingly high-throughput techniques for single cell 

isolation and sequencing emerge [12, 13], the number of cells sequenced is likely to increase 

dramatically. We hypothesize that as more and more biological processes are studied at the single cell 

level with increasing numbers of cells, examples of different processes arriving at the same outcome will 

be discovered. 

Methods 

Trajectory Reconstruction 

We use locally linear embedding (LLE) [14], a nonlinear dimensionality reduction technique, to 

reconstruct cellular trajectories. LLE belongs to the class of nonlinear dimensionality reduction 

techniques, which includes a number of methods, such as Isomap [15], Hessian LLE [16], Laplacian 

eigenmaps [17], and diffusion maps [18]. Nonlinear dimensionality reduction techniques have been 

widely on high-dimensional data used to perform denoising and feature extraction for subsequent 
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classification or regression. For example, such techniques were used to estimate head pose angle and 

age from images of human faces [19, 20]. We initially experimented with Isomap, Hessian LLE, Laplacian 

eigenmaps, and diffusion maps and found that LLE seemed to give the best results.  

To infer a trajectory using LLE, we take as input a matrix of expression levels with � samples and 

� genes ���� 
  �����, where ���  is the expression of gene � in sample �. Then we perform LLE on ���� 

to give a low-dimensional embedding ����. Our analysis of synthetic and real datasets indicates that 

� 
 2 is a reasonable choice (see below for more detailed discussion of this point). LLE performs 

dimensionality reduction in two steps. First, a set of reconstruction weights ���� is learned so that each 

point in high-dimensional space is represented as a linear combination of its �-nearest neighbors, where 

� is a chosen constant: 

� 
 �������  �  �� ! � "�����

�	


 
�

�

 �

�	


  
The row sums of W are constrained to 1 to ensure translational invariance [14]. Then, the weights are 

used to solve for the coordinates of each point in �-dimensional space: 

� 
 �������  �  �� ! � "�����

�	


 
�

�

 �

�	


  
The sum-to-one constraint on the reconstruction weights and the form of the weight equations ensure 

that the low-dimensional reconstruction preserves the high-dimensional geometry of the points [14].  

After embedding the data using LLE, we build a �-nearest neighbor graph in the low-dimensional 

space. Then we use Dijkstra's algorithm [21] to find the single source shortest paths from a user-

specified start point. These shortest paths can be thought of as geodesics that characterize the shape of 

the cell trajectory manifold, and the length of the shortest path to a particular point represents its 
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geodesic distance from the source point. These geodesic distances can then be used to order the points 

according to their progress through a process. 

The question of the best choice for dimensionality (�) is difficult to answer for the trajectory 

construction problem, because the ground truth cell ordering is unknown for the biological data, and the 

synthetic data are generated to yield a specific intrinsic dimensionality. While developing SLICER, we 

explored using intrinsic dimensionality estimators such as packing numbers [22] and nearest neighbor 

estimation [23] to determine �, but tests on our synthetic data showed these methods to be unreliable 

and highly sensitive to noise. In addition, most of these methods require setting a scale parameter, 

which simply moves the problem of choosing the dimensionality parameter back one level. Most cell 

trajectory studies to date have used � 
 2, and this seems to yield biologically meaningful results. To 

our knowledge, only one study has used � # 2 [11]. For the datasets that we used here, � 
 1 will hide 

any branches in the trajectory (see Fig. 6), and � 
 3 produces an embedding that is not qualitatively 

different than � 
 2 (Fig. S9). We note that SLICER allows the user to specify the number of dimensions, 

and works for � % 2. 

Gene Selection 

Selecting the genes to use when constructing a trajectory is a key step in the process. Both 

Monocle and Wanderlust require the pre-selection of genes based on some sort of prior knowledge. The 

Monocle paper selected genes that exhibited differential expression in bulk RNA-seq samples taken 

from the initial and final time points. However, in some cases, cells are collected at only a single time 

point, and furthermore it would be ideal to have a method for selecting genes without the need for prior 

knowledge provided by additional experiments. 

We developed an approach for selecting genes based on a simple intuition: If a gene is involved 

in progression along a cellular trajectory, we expect to see gradual changes in the expression of the gene 
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along the trajectory. Conversely, if a gene is not involved in the sequential progression, the gene should 

fluctuate in a manner independent of the trajectory. Because gene selection must be performed before 

trajectory construction, selecting genes directly based on whether they are related to the trajectory is 

not possible. Instead, we note that points close together in Euclidean space are likely to lie close 

together on the manifold, and we can thus use the similarity of genes in neighboring points to 

approximate the change in a gene moving along the trajectory. Specifically, for a gene �, we calculate 

the sample variance �&
� of � across all samples. Then, we compute the “neighborhood variance” 

'
���� 
 1��� ! 1 � ����
 ! ����,��
����

�	


�

�	


 

where ���  is the expression level of the �th gene in the �th sample, ()�, �* is the �th nearest neighbor of 

sample �, and �� is the minimum number of neighbors needed to yield a connected graph. Intuitively, 

the quantity '
����   is like a sample variance computed with respect to neighboring points rather than 

the mean, and it measures how much � varies across neighboring samples. To select the genes that are 

most likely to be involved in the trajectory, we pick � such that �&
�  #  '
����. These are genes that show 

more gradual variation across neighboring points than at global scale.  

 In biological datasets, genes often cluster into co-expressed modules, so an important question 

is how our gene selection method handles co-expressed genes. Because the variance and 

“neighborhood variance” are computed for each gene separately, genes related to the trajectory will be 

selected whether or not they are co-expressed. Conversely, genes that are unrelated to the trajectory 

will not be selected even if they are co-expressed. Examining the correlation matrix of selected genes 

from the two biological datasets shows that there is a high degree of co-expression, with genes 

clustering into co-expressed modules (Fig. S10). We also note that our simulations include “genes” that 

show strong co-expression because they are generated from a handful of functions simulating shared 
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gene regulatory mechanisms. Our simulation results indicate that the gene selection approach works 

well for these co-expressed genes (Fig. 2, Fig. S3, Fig. S4). 

Choosing the Number of Neighbors 

Previous approaches for selecting the number of neighbors for LLE have relied upon similarity 

metrics comparing the relative distances of points in the full space and the embedded space [24, 25]. 

We initially tried such approaches and found that they work fairly well on the simulated data but tend to 

recommend improbably large values for � when run on real data. Consequently, we developed an 

alternate method that is tailored to the particular manifold shape that we expect to see in this problem. 

In particular, we expect a trajectory to resemble a long, narrow shape rather than an amorphous point 

cloud. 

To formalize this intuition, we use the notion of alpha convex hull [26]. The �-hull of a set of 

points is the intersection of all closed discs with radius � that contain all of the points. For a given �, we 

perform LLE and compute the length + of the longest shortest path (see Trajectory Reconstruction). We 

then find the area � of the �-hull with � 
  +/10. This choice of � corresponds to the fraction of the 

length that contains roughly 10% of the datapoints. Using the area of the �-hull allows us to compute 

the “width” of the embedding: "�  
  �/+. The quantity "� quantifies how much the embedding 

resembles a trajectory, and we choose � 
 �������-"�.. Supplementary Figure 1 shows an example 

of the longest shortest path and �-hull for a 2D LLE embedding.  

Detecting Branches 

In some cases, the manifold describing a cellular trajectory possesses important properties such 

as branches. For example, the Monocle paper found a branch in the trajectory corresponding to a split in 

development resulting in two different cell fates [1]. We developed a novel approach for characterizing 

the branching structure of a manifold. Our approach can detect the location and number of branches. In 
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addition, we can readily distinguish branches from convergences and bubbles. To do this, we take as 

input the set of shortest paths used to characterize the trajectory (see Trajectory Reconstruction) and 

use them to compute a metric that we term geodesic entropy. Intuitively, our approach lines up the 

shortest paths from the start point to all other points and asks whether the paths use similar vertices. 

Let ��  
  -/ 
 0
, . . . , 0� , . . . , 0� 
 �. be the shortest path along the manifold from the starting point / to 

point � that passes through the + points 0
, … , 0� , … , 0�. Denote the �th vertex on the shortest path 

from / to � by ��)�*. Consider the set ' of shortest paths to each point on the manifold, then 

2��  
  � 3���)�* 
 ���

�

  
is the number of these paths that pass through point � k at distance �, where 3�4� is an indicator 

function. The fraction of all paths in ' that pass through vertex � at distance � is 

���  
  2��∑ 2���
�	
   

Finally we define 6�  as the Shannon entropy of ��: 

6�  
  ! � ���  log�  ����

�	


 

We refer to the quantity 6�  as geodesic entropy because it describes the vertex composition 

degeneracy of the shortest paths along the manifold (geodesics). If most of the paths are similar in the 

first � vertices, then the geodesic entropy 6�  will be low (approximately zero), indicating that the 

manifold does not branch. High geodesic entropy, on the other hand, indicates that multiple distinct 

vertices are being used along the shortest paths. In fact, following the information theoretic 

interpretation of entropy as the number of bits needed to transmit a message across a channel, a 
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geodesic entropy of 6�  means that there are approximately 2��  distinct paths � vertices from the start 

point. 

Supplementary Figure 2 shows an example of a branching trajectory and illustrates how 

geodesic entropy at � 
 10 steps from the starting cell is computed for this example. To compute 2�� 

and 2��, count the number of shortest paths that contain � and � at position �; these numbers are 8 and 

9 respectively. This means that the probability of seeing vertex � at position � is 8/17, and the 

probability of seeing vertex � at position � is 9/17. If we treat )��� , ���* as a probability distribution, we 

can take calculate the geodesic entropy to obtain 6� : 1. 

We use geodesic entropy to detect the location and number of branches and to assign points to 

branches as follows. Choose � as the smallest value of � such that 6� %  1. This represents the number 

of steps from the start point along the manifold geodesics at which at least two branches are first 

detected. The approximate number of branches at � is given by 2��. Now decrement � until you reach a 

value ; such that only one value of ���  is positive (or greater than some <; we used < 
  0.05). This 

represents a vertex at which there is still only one path but beyond which the branch occurs. Now take 

= 
 ; > 1 as the location of the branch and pick the 2�� “distinguishing points” with the highest ���  

values. A point � can then be assigned to a branch based on the value of ��� , that is, which of the 

“distinguishing points” is used at position = in the shortest path to �. Points with shortest paths 

containing fewer than = vertices fall before the branch. As a practical detail, geodesic entropy will 

sometimes be high if very few cells are under consideration. For example, at the end of a trajectory, if 

the shortest path from the start passes through a single cell ; and ends at each of the � neighbors of ;, 

the geodesic entropy will be log�� even though there is not really a branch at ;. This problem can easily 

be addressed by ignoring any branches with less than some number � of cells (SLICER uses � 
  10 by 

default). 
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In addition to detecting branches, geodesic entropy can be used to infer other interesting 

geometries, such as “bubbles” (see Fig. 3). A bubble is a branch that subsequently converges to a single 

path and can be detected as a spike in 6�  such that points on the distinct branches after the spike are 

connected downstream of the branch. Complex structures with multiple branches can be unraveled by 

recursively computing geodesic entropy using the subgraph corresponding to each branch.  

We can detect a bubble as follows. We first detect a branch as described above. If the branches 

identified in this way are connected through the �-nearest neighbor graph downstream of the branch 

point, then this indicates that the branches converge to form a bubble. However, the branches may not 

be of exactly equal lengths; if they are not, then the shortest paths from the start point will continue 

past the end of the shorter branch and wrap around the bubble. In such a case, there will be another 

branch at the end of the bubble, where one set of shortest paths continues around the bubble and the 

other set exits the bubble (see Fig. 3 for an example of such a case). We can detect this second branch 

by recursively computing geodesic entropy on the shorter of the two initial branches. The location of the 

second branch then indicates the end of the bubble. In the case of initial branches that are exactly the 

same length, the point at which they connect after the initial branch point indicates the end of the 

bubble. 

Simulating Trajectories 

We constructed a set of simulated trajectories to assess the performance of SLICER on inputs 

with known solutions. To do this, we generated simulated expression levels for genes in such a way that 

the expression levels are a function of a “process time” parameter �. We simulated 5 different 

“pathways” using distinct families of functions; the genes generated by a single family of functions are 

analogous to co-regulated genes in a biological pathway that all change in response to a common 

regulatory mechanism. For the simulations shown in Fig. 2, we used the following 5 functions: 
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2
)�* 
  5;
cos)�/5* > 8 > <
 

2�)�* 
  5;�sin)�/5* > 8 > <� 

2�)�* 
  ;�√� > <� 

2�)�* 
 12 ;� E �20F� > <� 

2�)�* 
 14 ;�)16 ! E �20F�* > <� 

where ;� H  ()1,0.01* and <� H ()0, ��*. For the simulations in Fig. S3b-d, we used 2�)�* 
 ;
 I�
�
J > 8,  

2�)�* 
 5 log)� > 1* > 8, and 2� , 2�, 2� as defined above. 

The genes used in the simulated are generated by multiplying the value of the corresponding function 

2)�* by a normally distributed random variable ;� . For the actual values of t, we used the sequence of 

801 values 0,0.1,0.2, … ,79.9,80. Because each simulated gene depends on �, points simulated in this 

way lie along an essentially one-dimensional manifold (a trajectory) in high-dimensional space. Because 

in the real data setting we do not know in advance which genes are involved in a trajectory, we also 

devised a means to simulate genes that are unrelated to the process. To do this, we randomly permute 

the simulated values of some genes, thus removing their relationship with �. The number of such 

randomly reshuffled genes is controlled by a parameter �. As genes are simulated, we pick a set of 5 

genes (one from each pathway) to reshuffle. A group of 5 is reshuffled in this way with uniform 

probability �. Randomly permuting the genes (rather than simply sampling from a Gaussian, for 

instance) ensures that the values lie in the exact same range as the related genes, yet have no 

relationship with �. 
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To measure the performance of a trajectory reconstruction algorithm, we use the algorithm to produce 

an ordering of the points, then compare the ordering to the true value of � used to generate it. We 

measure the “percent sortedness” of a list by computing the following quantity: 

M1 ! // I�2JN O 100% 

where / is the number of pairs of items in the list that are out of order. We chose to use percent 

sortedness rather than a metric related to distance along the trajectory because dimensionality 

reduction re-scales the data, which makes it difficult to compare methods that perform dimensionality 

reduction with those that do not. We used the percentage of points assigned to the correct branch as a 

metric for evaluating SLICER’s branch detection algorithm. 

Figure Captions 

Figure 1: Overview of SLICER method. (a) Genes to use in building a trajectory are selected by 

comparing sample variance and neighborhood variance. Note that this gene selection method does not 

require either prior knowledge of genes involved in the process or differential expression analysis of 

cells from multiple time points. Next, the number of nearest neighbors � to use in constructing a low-

dimensional embedding is chosen so as to yield the shape that most resembles a trajectory, as 

measured by the �-convex hull of the cells. (b) SLICER builds a �-nearest neighbor graph in high-

dimensional space and then performs LLE to give a nonlinear low-dimensional embedding of the cells. 

The low-dimensional embedding is then used to build another neighbor graph, and cells are ordered 

based on their shortest path distances from a user-specified starting cell. (c) SLICER computes geodesic 

entropy based on the collection of shortest paths from the starting cell and uses the geodesic entropy 

values to detect branches in the cellular trajectory. 
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Figure 2: Evaluation of SLICER on synthetic data. (a) Comparison of performance of SLICER, Wanderlust, 

ICA, and random shuffling. The synthetic datasets were generated as described in the text using 500 

genes, � 
 2 (� is the noise level), and increasing values of �. A higher � corresponds to an increased 

probability that a gene will be randomly reshuffled, removing its relationship with the simulated 

trajectory. To assess the effectiveness of automatic determination of �, SLICER was run both with and 

without automatic selection of �. Performance was evaluated by counting the number of inversions in 

the resulting sorted list of cells. (b) Histogram of percent sortedness values from 1000 random 

permutations of the simulated trajectory used in panel a. Note that the distribution of values is sharply 

peaked around 50% sortedness. 

Figure 3: Synthetic data example showing that SLICER can detect branches and bubbles. (a) Three 

simulated genes showing the bubble structure. (b) Geodesic entropy computed for the trajectory (top) 

and recursively for the longest branch (bottom). The dotted line in each plot represents an entropy of 1, 

which indicates the beginning of a branch. (c) LLE embedding with branches colored. Black is the initial 

path that splits into two branches (red and blue). The shorter arm of the initial branch then branches 

again (yellow and green) at the end of the bubble. (d) Plot showing the boundaries of the bubble (blue) 

as detected by SLICER. 

Figure 4: SLICER applied to cells from the developing mouse lung. (a) Cellular trajectory inferred by 

SLICER. The shape of each point indicates the time point (note that this information is used only after 

the fact for assessing whether the trajectory makes sense, not for constructing it). Color corresponds to 

inferred geodesic distance from the start cell (“differentiation progress”). The lines indicate edges used 

in the shortest paths to each point. Panels (b) through (d) show the expression levels of marker genes in 

each cell, with the cells ordered by developmental time. (b) shows a marker for alveolar type 1 cells, (c) 

is an alveolar type 2 marker and (d) is a marker for early progenitor cells. (e) Geodesic entropy plot for 

the trajectory shown in panel (a). The dotted line represents an entropy value of 1, the threshold for 
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branch detection. (f) Cells colored according to the branches that SLICER assigned using geodesic 

entropy. Note that no annotations were used in assigning cells to branches; instead, the interpretations 

indicated in the legend (AT1, AT2, or EP) were deduced based on marker genes such as those shown in 

panels (b)-(d) after branch assignment. 

Figure 5: SLICER applied to mouse neural stem cells. (a) Cellular trajectory inferred by SLICER. Color 

corresponds to inferred geodesic distance from the start cell (“differentiation progress”). The lines 

indicate edges used in the shortest paths to each point. (b) Clustering using the connected components 

in the low-dimensional k-nearest neighbor graph before trajectory construction identifies four cell types. 

SLICER provides the option to select which cell types to include when building a trajectory. Panels (c) 

through (g) show the expression levels of marker genes for different cell types: (c) active neural stem 

cells, (d) quiescent neural stem cells, (e) neuroblasts, (f) oligodendrocytes, and (g) neuroblasts. (h) 

Geodesic entropy plot for the trajectory shown in panel (a). The dotted line represents an entropy value 

of 1, the threshold for branch detection. (i) Cells colored according to the branches that SLICER assigned 

using geodesic entropy. The interpretations indicated in the legend were deduced based on marker 

genes such as those shown in panels (c)-(g) after branch assignment. 

Figure 6: ICA and Wanderlust results from mouse lung and neural cells. Note that the genes selected by 

SLICER were used as input to both ICA and Wanderlust to ensure an accurate side-by-side comparison. 

(a) ICA embedding of mouse lung cells. The colors correspond to the branch assignments from SLICER. 

(b) ICA embedding of mouse lung cells. Colors correspond to the SLICER cell type assignments from Fig. 

5b. (c) Comparison of one-dimensional Wanderlust ordering (x-axis) and SLICER geodesic distance (y-

axis) for mouse lung cells. (d) Comparison of one-dimensional Wanderlust ordering (x-axis) and SLICER 

geodesic distance (y-axis) for mouse neural cells. 
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Supplementary Figure 1: Selecting Q using the R-convex hull. The red border is the alpha-convex hull of 

the set of points shown, obtained by taking the intersection of the spheres of radius � indicated here. 

The longest shortest path is shown as a dotted line. 

Supplementary Figure 2: Computing geodesic entropy of a trajectory. The starting cell is indicated in 

red, two geodesics (shortest paths) are shown in gray, and the cells at � 
 10 steps away from the 

starting cell are indicated in yellow. 

Supplementary Figure 3: Additional simulations comparing SLICER with other approaches. (a) The first 

three functions used to generate the synthetic data discussed in Fig. 2. Note the highly curved shape of 

the trajectory. (b) The first three functions used to generate an additional dataset. This trajectory is 

much less curved than the one shown in panel a, and ICA thus performs much better on this example. 

(c) Performance of SLICER and other approaches, with and without gene selection, on the trajectory 

shown in panel b as the proportion of irrelevant genes increases. Note that the other approaches do not 

perform gene selection on their own, so the genes selected by SLICER were given as input for this 

comparison. A noise level of 2 was used for these simulations. Note that the y-axis does not start at 0. 

(d) Performance of SLICER and other approaches on the trajectory shown in panel b as the noise level 

increases. To isolate the effect of increasing noise, irrelevant gene proportion of � 
 0 was used for 

these datasets. Note that the y-axis does not start at 0. 

Supplementary Figure 4: Robustness of branch detection in the presence of noise and irrelevant 

genes. (a) Simulated branching trajectory used to assess the robustness of SLICER’s branch detection 

method. (b) Chart showing the percent of cells assigned to the correct branch by SLICER as the 

proportion of irrelevant genes increases (noise = 0.5). (c) Percent of cells assigned to the correct branch 

in the presence of increasing noise (� 
 0). 

Supplementary Figure 5: Additional marker genes for mouse lung dataset. (a) and (b) are markers for 

alveolar type 1 (AT1) cells. (c) and (d) are markers for AT2 cells. 
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Supplementary Figure 6: Additional marker genes for mouse neural stem cell dataset. (a) and (b) are 

neuroblast markers that also show expression in some active NSCs. (c) and (d) are oligodendrocyte 

markers. 

Supplementary Figure 7: Detecting multiple branches in the mouse neural stem cell dataset. (a) 

Geodesic entropy computed recursively for the main trajectory branch containing neuroblasts and 

oligodendrocytes. Entropy exceeds 1 almost immediately indicating the presence of a second branch 

separating neuroblasts and oligodendrocytes. (b) Neuroblasts and oligodendrocyte cells colored by 

SLICER’s branch assignments. (c) Geodesic entropy computed recursively for the main trajectory branch 

containing active neural stem cells. Note that geodesic entropy exceeds 1 only near the end of the 

branch due to the small number of cells at that distance from the starting cell. SLICER does not detect a 

branch because the number of cells on falls below a user-specified threshold (10 by default). (d) Active 

neural stem cells colored by SLICER’s branch assignments. 

Supplementary Figure 8: Accuracy of trajectory reconstruction using a subset of cells. (a) Graph 

showing how similar the SLICER trajectory is when computed using a random subset of lung cells. The 

blue bars show the similarity in cell ordering (units are percent sorted with respect to the trajectory 

constructed from all cells). The orange bars show the similarity in branch assignments (percentage of 

cells assigned to the same branch as the trajectory constructed from all cells). The values shown were 

obtained by averaging the results from 5 subsampled datasets for each percentage (80%, 60%, 40%, and 

20%). (b) Order preservation and branch identity values computed as in panel (a), but for datasets 

sampled from the neural stem cell dataset. 

Supplementary Figure 9: Three-dimensional LLE results for biological datasets. Points are colored 

based on SLICER branch assignments using two-dimensional LLE embedding. (a) LLE embedding of distal 

lung epithelium data. (b) LLE embedding of neural stem cell data. 
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Supplementary Figure 10: Correlation matrices for genes selected by SLICER. Blue indicates negative 

correlation and red indicates positive correlation. (a) Genes selected from the distal lung epithelium 

dataset. (b) Genes selected from the neural stem cell dataset. 
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