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Abstract

Position weight matrices (PWMs) are the standard model for DNA and RNA regulatory motifs.
In PWMs nucleotide probabilities are independent of nucleotides at other positions. Models that
account for dependencies need many parameters and are prone to overfitting. We have developed
a Bayesian approach for motif discovery using Markov models in which conditional probabilities
of order k−1 act as priors for those of order k. This Bayesian Markov model (BMM) training
automatically adapts model complexity to the amount of available data. We also derive an EM
algorithm for de-novo discovery of enriched motifs. For transcription factor binding, BMMs
achieve significantly (p<0.063) higher cross-validated partial AUC than PWMs in 97 % of 446
ChIP-seq ENCODE datasets and improve performance by 36 % on average. BMMs also learn
complex multipartite motifs, improving predictions of transcription start sites, polyadenylation
sites, bacterial pause sites, and RNA binding sites by 26 %− 101 %. BMMs never performed worse
than PWMs. These robust improvements argue in favour of generally replacing PWMs by BMMs.
The Bayesian Markov Model motif discovery software BaMM!motif is available under GPL at
http://github.com/soedinglab/BaMMmotif.

Background

The control of gene expression allows the cell to adapt its protein and RNA inventory in response to
developmental and environmental cues. At its center lies the binding of proteins to specific motifs
in promoters and enhancers to control RNA synthesis rates and to RNAs to regulate their splicing,
localisation, translation and degradation. The accurate prediction of protein binding affinities to
DNA and RNA sequences is therefore of central importance for a quantitative understanding of
cellular regulation and of life in general.

Most known models that describe the sequence specificity of transcription factors were deduced
from in-vivo binding sites measured by ChIP-seq [1], from in-vitro measurements of binding
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strengths using either protein binding microarrays (PBMs) [2] or in-vitro selection coupled to
high-throughput sequencing (HT-SELEX) [3], or from bacterial one-hybrid assays [4]. To obtain a
statistical model of binding specificity from such measurements, motif discovery algorithms learn
the model parameters that agree best with the measurements. At present, the standard model for
this purpose is the position weight matrix (PWM), and thousands of PWMs for transcription factors
are available in motif databases such as JASPAR, HOCOMOCO, SwissRegulon, or TRANSFAC
[5, 6, 7, 8].

PWMs rank binding sites according to the log-odds score S(x1 :W ) =
∑W

j=1 sj(xj) with
contributions sj(xj) = log2 pj(xj)/pbg(xj) that depend only on single nucleotides xj in the binding
site sequence x1 :W := (x1 . . . xW ). Here, pj(xj) is the probability of nucleotide xj ∈ {A,C,G,T}
to occur at position j of the binding site, and pbg(xj) is the background probability for nucleotide
xj in a representative sequence set.

PWMs cannot model correlations between nucleotides. For example, if 50 % of binding site
sequences are GATC and the other 50 % are GTAC, a PWM will give the same high score to
GTTC and GAAC as to the true binding sequences. It cannot learn that at position 2 an A must
be followed by a T and T by A.

Nucleotide correlations can originate from (1) stacking interactions that determine binding
through DNA ”shape readout” [9], (2) amino acids that contact multiple bases simultaneously [10],
(3) multiple sequence-dependent binding modes of a factor [11, 12, 13, 14], and (4) complex multi-
submotif architectures with varying submotif spacings, which are typically bound cooperatively
by multiple factors [15, 16, 17].

For these reasons one might expect more complex models that do not assume nucleotides to
contribute independently to the binding strength to perform better than PWMs. However, the
usefulness of such more complex models has been controversially discussed for long [18, 19, 20].
Zhao et al. found PWMs to be as accurate as mixtures of PWMs to describe the binding strengths
of transcription factors measured by PBMs [21, 2]. Weirauch et al. concluded that for > 90 %
of tested transcription factors PWMs performed as well as more complex models to predict
PBM binding strengths, and they were just as good in predicting in-vivo ChIP-seq binding sites
for all factors [22]. In a recent study, 1’st-order Markov models performed significantly better
than PWMs in predicting in-vivo binding sites for 21 % of 96 tested datasets [5]. It is still not
clear whether these results are really due to the absence of correlations in binding sites of most
transcription factors or to what extent they are explained by the difficulty to train the many
model parameters reliably and robustly.

Numerous models incorporating nucleotide dependencies have been developed to improve
the modelling of binding site motifs and complex, multipartite motifs. Some learn mixtures of
PWMs [23, 24, 25] or Markov models [26], or profile hidden Markov models (HMMs) [27]. But
dependencies generally decrease with increasing distance [3], and therefore most models are based
on inhomogeneous Markov models (iMMs), in which the probability of xj depends on the previous
k nucleotides xj−k : j−1 [28, 29, 30].

The drawback of iMMs is that the number of parameters W × 3 × 4k grows exponentially
with k. Already for a 2’nd-order model we need 48 parameters per position. To estimate them
with 10 % accuracy requires ∼100 counts per 3-mer, or 4 800 sequences. When fewer sequences
are available, more complex models risk being overtrained: they may perform significantly worse
than a simple PWM model due to the noisy parameter estimates while showing overly optimistic
performance on the training data.

To prevent overtraining, various heuristic methods were suggested that reduce the number of
parameters in a data-driven fashion, by pruning the dependency graph describing which positions
each motif position j depends on [23, 31, 32, 33]. These methods have several technical drawbacks:
(1) they take yes/no decisions, which necessarily lead to a loss of information near the decision
boundary. (2) Optimising a discrete dependency graph is cumbersome: to decide between two
alternative graphs one needs to find the optimum model parameters for each graph. Also, since two
graphs usually induce models with different numbers of parameters, a likelihood-based optimisation
is not possible. (3) The discreteness of the graph topology precludes efficient gradient-based
optimisation techniques. (4) Finally, no algorithms have been put forward to train these models
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on unaligned motifs. These models can therefore not be applied for de-novo motif discovery.
Here, we present a Bayesian approach to learn inhomogeneous Markov models for sequence

motifs that makes optimal use of the available information while avoiding overtraining. The
key idea is that we use the conditional probabilities of order k−1 as priors for the conditional
probabilities of order k.

Our Bayesian approach is similar to interpolated Markov models [34, 35] in that the probabilities
of order k are obtained as linear interpolation of the maximum likelihood (ML) estimate for order
k and the lower-order probabilities. Various rather ad-hoc methods have been used to set the
interpolation weights [34, 35, 36, 37] (e.g. by making them depend on the p-value with which the
hypothesis can be rejected that the conditional probabilities of order k − 1 and of order k are
noisy estimates of the same underlying distributions [36]). In contrast, the interpolation weights
of BMMs emerge naturally from our probabilistic approach without further assumptions except
for the choice of priors.

We analyse how much can be gained by using higher-order inhomogeneous BMMs over two
baseline methods: 0’th-order BMMs, which are simply PWMs trained with the standard EM-type
algorithm as implemented in MEME [38], and our tool XXmotif, which performed favourably in
comparison to state-of-the-art motif discovery tools [39]. We assessed these different methods by
the quality of the models they produced starting from the motif occurrences discovered by XXmotif.
We demonstrate consistent improvements by higher-order BMMs as compared to PWMs on each
of a large and heterogeneous collection of datasets with simple and complex motif architectures.
Likewise, correlation of predicted binding affinities with quantitative EMSA measurements was
substantially improved.

Methods

Bayesian Markov model learning

We would like to solve the following task: We have a set of sequences that are enriched in a
sought motif, for example a binding motif for a transcription factor or a multi-submotif region
with complex architecture. The sequences might have been produced by ChIP-seq or SELEX-
seq experiments, they might be promoters of coregulated genes, regions of differential DNase
I accessibility, or specific genomic sites such as splice sites. Our goal is to train a model that
discovers the location and strength of enriched motifs in the training sequences and that can
predict motifs and their strengths in arbitrary sequences.

In the Supplemental Methods (eqs. S.1–S.7) we show that, to learn a model for the Gibbs
binding energy ∆G(x) to sequence x = x1:W , we can solve an equivalent statistical learning
problem: we learn the probability distribution of motif sequences, pmotif(x), and of background
sequences, pbg(x). Then the binding energy in units of kBT (where kB is Boltzmann’s constant) is,
up to a constant, given by the log-odds score, ∆G(x)/kBT = log[pmotif(x)/pbg(x)] + const. Here
we rely on the common approximation of unsaturated binding (low factor concentration), whereby
the probability to observe sequence x in the training set is proportional to exp(∆G(x)/kBT ).

We model the background sequences with a homogeneous Markov model (MM) of order K ′,

pbg(x1:W ) =
∏W

j=1 p
(k′)
bg (xj |xj−K′ : j−1) and the motif sites with an inhomogeneous Markov model

(iMM) of order K, pmotif(x1:W ) =
∏W

j=1 p
(k)
j (xj |xj−K : j−1). This results in a log-odds score

S(x) = log2

pmotif(x)

pbg(x)
=

W∑
j=1

log2

p
(K)
j (xj |xj−K : j−1)

p
(K′)
bg (xj |xj−K′ : j−1)

.

Since the binding energy ∆G(x) is a linear function of the log-odds score, the score is ideal for
ranking potential binding sites by their predicted strength.

The central idea for Bayesian Markov Model (BMM) training is that, to learn the k’th-order

probability p
(k)
j (xj |xj−k : j−1), we can use the order-(k−1) probability p

(k−1)
j (xj |xj−k+1 : j−1) as

prior information. The latter is an excellent approximation of the former because dependencies
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Figure 1. Bayesian Markov model training automatically adapts the effective number of
parameters to the amount of data. In the last line, if the context GCT is so frequent at position j
in the motif that its number of occurrences outweighs the pseudocount strength, nj(GCT )� α3, the
3’rd-order probabilities for this context will be roughly the maximum likelihood estimate, e.g.
p
(3)
j (A|GCT) ≈ nj(GCTA)/nj−1(GCT ). However, if few GCT were observed in comparison with the

pseudocounts, nj(GCT )� α3, the 3’rd-order probabilities will fall back on the 2’nd-order estimate,

p
(3)
j (A|GCT ) ≈ p(2)j (A|CT ). If also nj(CT )� α2, then likewise the 2’nd-order estimate will fall back on

the 1’st-order estimate, and hence p
(3)
j (A|GCT ) ≈ p(1)j (A|T ). In this way, higher-order dependencies are

only learned for the fraction of k-mer contexts that occur sufficiently often at one position j in the motif’s
training instances to trump the pseudocounts. Throughout this work we set α0 = 1 and αk = 20× 3k−1.

between positions generally decrease quickly with increasing distance [3]. And since the shorter
context xj−k+1 : j−1 is on average four times more frequent than xj−k : j−1, the lower-order
probabilities will also be more robustly estimated.

We learn the parameters of the inhomogeneous Markov model by maximising the posterior
probability, the product of the likelihood and the prior probability (eq. (S.12) in Supplementary
Methods). A natural prior is a product of Dirichlet distributions with pseudocount parameters
proportional to the lower-order model probabilities, with proportionality constants αk for k =
1, . . . ,K whose size determines the strength of the prior. Maximizing the posterior probability
yields

p
(k)
j (xj |xj−k:j−1) =

nj(xj−k:j) + αk p
(k−1)
j (xj |xj−k+1:j−1)

nj−1(xj−k:j−1) + αk
,

which is illustrated in Figure 1. For frequently occurring k-mers xj−k:j−1 the counts dominate over
the pseudocounts and we can accurately estimate the conditional probabilities from the counts.
For k-mers with few counts the pseudocounts dominate and the probability reverts to the estimate
at order k−1, which in turn may be dominated by the estimate at order k−2, and so forth, down
to an order where the number of counts dominates the pseudocounts. In this way, conditional
probabilities are learned only for those k-mers for which they can be robustly estimated, while
other conditional probabilities are approximated by robustly estimated lower-order probabilities.

We fixed the prior strengths α0 = 1 and αk = β×γk−1 for k ≥ 1, with hyperparameters β = 20
and γ = 3. The increasing strength of pseudocounts with increasing k reflects the prior belief that
dependencies should quickly decline with distance [3]. Owing to this rather strong regularisation,
we prevent overtraining on all datasets (see, e.g. Supplementary Figure S18). As background
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model, we always train a 2’nd-order homogeneous BMM on the set of positive training sequences,
with the default α setting from our tool XXmotif [39] (αk = 10 for all k ≥ 0). This choice gives
good performance as trimers capture the properties of background sequences in sufficient detail
without learning the motifs themselves.

Motif discovery using Bayesian models

When the motif sites in the training sequences are not known a priori, we need to learn a good
model and at the same time find motif instances in sequences that are often hundreds or thousands
of nucleotides long. Most motif discovery algorithms train PWMs. We derieve here an expectation
maximisation (EM) algorithm to train BMMs. A formal derivation is given in the Supplementary
Methods.

The goal is to estimate the model parameters p
(K)
motif , which is a vector containing the W ×4K+1

conditional probabilities p
(K)
j (xK+1|x1:K) for any K + 1-mer x1:K+1. The EM algorithm cycles

between E- and M-step. In the E-step, we re-estimate the probabilities for a motif to be present
at position i of sequence n,

rni := p(zn = i|xn, p
(K)
motif) =

p(xn|zn = i,p
(K)
motif)∑

i′ p(xn|zn = i′,p
(K)
motif)

.

We use the zero-or-one-occurrence-per-sequence (ZOOPS) model [38], and the hidden variable zn
indicates at which position the motif is present in sequence n. In the M-step we use the new rni
to update the model parameters p

(k)
motif for all orders k = 0, . . . ,K. This update equation looks

exactly the same as the previous equation for known motifs locations, except that now the counts
nj(x1:k) are interpreted as fractional counts computed according to

nj(x1:k) :=
∑
n

rni I(x
n
i+j−k:i−j−1 =x1:k).

The update of model parameters in the M-step runs through all orders from k = 0 to k = K,
each time using the just updated model parameters from the order below. We iterate the EM
algorithm until convergence.

Results

Nucleotide dependencies in transcription factor binding sites

We show how BMMs can improve by 29 % the prediction of transcription factor binding sites
learned from ChIP-seq-enriched sequences by modeling the correlations between nucleotides in
their binding sites.

We evaluated our approach on 446 human ChIP-seq datasets for 94 sequence-specific transcrip-
tion factors associated with RNA polymerase (RNAP) II from The ENCODE Project Consortium
[1]. Positive sequences were compiled from up to 5 000 peak regions with highest confidence by
extracting ±102 bp around peaks. We initialised our BMM learning with the motif instances that
XXmotif uses to build its top PWM model but added two positions to both 5′- and 3′-ends of the
models. We sampled background sequences with the same length as the positive sequences but
100 times as many, using the trimer frequencies from the positive sequences. To compare PWMs
with higher-order BMMs without any influence from other source except model order, we treated
PWMs as 0’th-order BMMs.

The performance in discriminating binding from background sequences was assessed using
four-fold cross-validation, by sorting in descending order the sequences by their maximum log-odds
score over all possible motif positions and recording the cumulated number of correct predictions
(TP) and false predictions (FP) above a score threshold. Lowering the score threshold from
maximum to minimum we trace out a curve of TP versus FP. The normalised version in which
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one plots the true positive rate (TPR), the fraction of TP out of all positive sequences, versus the
false positive rate (FPR), the fraction of FP out of all background sequences, is called receiver
operating characteristic (ROC) curve. The partial area under the ROC curve (pAUC) up to the
5’th percentile of FPR (insets in Figure 2A,B) is a good measure of performance, because at
FPR > 0.05 and TPR = 1 the precision, i.e. the fraction of predictions that are correct (i.e. truly
bound), has already fallen to below 1/(1 + 0.05× 100) = 0.167. The pAUC therefore summarises
the part of the ROC curve most relevant in practice for predicting factor binding sites and is
preferable over the AUC.

Figure 2A shows the ratios of pAUC for 1’st-order BMMs to the pAUC for PWMs (order
0) on each of the 446 datasets. On almost all sets the pAUC increases and the average relative
increase is 16 %. Strikingly, 5’th-order BMMs perform considerably better than 1’st-order BMMs,
yielding an average fold pAUC increase over PWMs of 29 % (Figure 2B). Also, on none of the 446
dataset they are clearly worse than PWMS, showing that overtraining is effectively prevented.
Higher-orders are particularly beneficial for the more challenging datasets with low pAUC values.

Figure 2C-E illustrates the improvements for specific datasets. The precision-recall curves
summarise predictive performance, showing the precision TP/(TP + FP) versus the recall (=
sensitivity), the fraction of all bound sequences that are predicted at this precision.

We developed sequence logos for higher orders to visualise the BMMs. We split the relative
entropy H (pmotif |pbg ) =

∑
x pmotif(x) log2[pmotif(x)/pbg(x)] into a sum of terms, one for each

order. The logos show the amount of information contributed by each order over and above what
is provided by lower orders, for each oligonucleotide and position.

The well-studied CCCTC-binding factor (CTCF) has been implicated in the establishment
of topologically associating domains and the formation of regulatory chromosome interactions
[40]. A 5’th-order BMM for CTCF achieves 14 % higher pAUC than a PWM (orange triangle in
Figure 2B, Figure 2C, left). The first-order sequence logo identifies the added information (Figure
2C, right). For example at position 16 an A is preferentially followed by a G and a G by a C,
relative to the 0’th-order model. The 1’st-order dependencies may reflect the intricate interplay of
a subset of CTCF’s 11 zinc-finger (ZnF) domains.

Transcription factor MafK of the AP-1 family of basic-region leucine zippers (bZIP) can bind
DNA as homodimer or heterodimer. Depending on its multimeric state, MafK targets the 13 bp
T-MARE or the 14 bp C-MARE motif. These are composed of a 7 bp and 8 bp core sequence,
respectively, flanked by GC elements on both sides [41]. A 5’th-order BMM for MafK achieves
a 19 % higher pAUC than a PWM (green triangle in Figure 2B). Most of this improvement is
already present in 1’st order (Figure 2D, left). The 1’st-order logo shows that two alternative
DNA recognition modes are represented by the BMM. While the T-MARE is primarily modeled
in 0’th order (Figure 2D, middle), the C-MARE is modeled via 1’st-order dependencies (Figure
2D, right). The upstream AT-rich region seen in 0’th order is revealed by the 1’st-order logo to be
a poly(dA:dT) tract. This indicates that MafK reads out the narrowed DNA minor groove width
known to be induced by poly(dA:dT) tracts [42].

The bZIP transcription factor JunD binds two half-site motifs separated by one or two base
pairs. The preferred spacing is cell-type-specific and depends on the availability of oligomerization
partners [43]. A 5’th-order BMM for JunD achieves a 96 % higher pAUC than a PWM (blue
triangle in Figure 2B, Figure 2E left). The 0’th-order model represents the two aligned right

Figure 2 (following page). Modelling nucleotide dependencies in transcription factor
binding motifs improves motif discovery and prediction. (A) Factor of increase in partial area
under the ROC curve (pAUC) of 1’st-order BMMs versus 0’th-order BMMs (PWMs) on 446 ChIP-seq
datasets for transcription factors from ENCODE. The average performance increase is 16% (dashed line).
Y-scale is logarithmic. Inset: partial ROC curve for PWM of MafK binding. (B) Same as A but showing
the increase in pAUC of 5’th-order BMMs versus PWMs. Inset: 5’th-order BMM of MafK binding. (C)
CTCF models learned from ChIP-seq sites in Mcf-7 cells. Predictive performance (left) for BMMs of
increasing order. 0’th-order (middle) and 1’st-order (right) sequence logos of 2’nd-order BMM. (D) Same
as C for MafK binding measured in HepG2 cells. (E) Same as C but for JunD binding in HepG2 cells.
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half-sites and a mixture of the two left half-sites displaced from each other by 1 bp (Figure 2E
middle). The 1’st-order model deconvolutes the two overlaid half-sites, encoding the sequences
ATGAC and XATGA at positions 2–6 (Figure 2E, right).

Supplementary Figures S1-S9 contain analyses for further transcription factors: BATF, c-Jun,
c-Fos, Hnf4a, IRF4, NF-YB, NRSF, PU.1, and ZnF143. Remarkably, for some datasets, e.g.
ZnF143, we still observe substantial improvements at order three or higher.

Improvements from flanking nucleotides

We show here that, by including the nucleotides flanking the core binding sites of transcription
factors, we can substantially increase the predictive performance of BMMs but less so for PWMs,
widening the performance gain of BMMs over PWMs to 36 %.

Two recent studies pointed out that for some transcription factors the nucleotides flanking the
core binding site make sizeable contributions to the binding specificity [44, 45]. These contributions
are probably owed to shape readout around to the core site, for example the minor groove width
[42]. Since DNA shape is largely determined by base-stacking interactions, we expect shape
readout to lead to strong next-neighbour nucleotide dependencies. If this is true, higher-order
models should profit particularly from the inclusion of flanking nucleotides.

We therefore analysed the contribution of flanking nucleotides on BMMs of various orders by
comparing models of the same length as found by XXmotif with models extended by four base
pairs on either side. For the 8-bp-extended models, we also extended all sequences by 8 bp to keep
the same search space size. We then trained original and 8-bp-extended BMMs.

PWMs increase their pAUC by 5 % on average (Figure 3A), with a few datasets showing
considerably better and others considerably worse performance with 8-bp-extended models. Nicely,
5’th-order BMMs indeed increased their pAUC much more, by 19 % on average, and only a single
dataset shows > 5 % worse performance with an extended model (Figure 3B).

When comparing 8-bp-extended PWMs with 8-bp-extended BMMs of 5’th order (Figure 3C),
the average increase in pAUC was 36 %. Most strikingly, extended 5’th-order BMMs significantly
(at 6.25 % level) outperformed the 0’th-order BMMs and also the XXmotif models (Figure 3D)
in the vast majority of datasets (97% and 99%, respectively), even though XXmotif compared
favourably to state-of-the-art motif discovery tools [39].

Figure 3E shows the results for the 2’nd-order BMM of basic helix-loop helix (bHLH) family
transcription factor USF1. The additional information in the flanking regions in 1’st order (right
logo) leads to an increase in pAUC of 20 % (blue triangle in Figure 3B) and an increase of precision
from 25 % to 90 % for low recall (Figure 3E left). The strong influence of flanking nucleotides has
also been demonstrated for other bHLH transcription factors [44, 46], including CBF1, a homolog
of USF1 in S. cerevisiae. Similar analyses for the transcription factors GR, IRF1, and c-Fos can
be found in Supplementary Figure S10.

Piqued by this success, we asked how much can be gained by including a still larger sequence
context around core sites. We chose CTCF for its importance in chromatin organisation and
extended the core model by 25 bp on either side. Again, only higher-order models profit markedly
(Supplementary Figure S11). The predictive performance for the 2’nd-order model reaches an

Figure 3 (following page). Nucleotides flanking the core binding sites of transcription
factors may contribute greatly to the specificity of higher-order models. (A) Factor of
increase in performance (on log scale) of 8-bp-extended versus unextended 0’th-order BMMs (PWMs) on
446 ChIP-seq datasets for transcription factors from ENCODE. The mean increase is 5% (dashed line).
(B) Performance increase of 5’th-order 8-bp-extended versus unextended BMMs (C) Performance
increase of 5’th-order 8-bp-extended BMMs versus 0’th-order 8-bp-extended BMMs (PWMs). Significant
improvements (p = 6.25%) are obtained on 97% of all datasets (filled diamonds). The remaining 12
datasets show insignificant differences (open diamonds). (D) Performance increase of 5’th-order
8-bp-extended BMMs versus PWMs refined by XXmotif. (E) Results for 8-bp-extended USF1 model
learned from ChIP-seq sites in the H1-hESC line.
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impressive recall of 52 % at 95 % precision, whereas the 0’th-order BMM predicts only 14 % true
sites at that precision.

Quantitative prediction of binding affinities

To attain a quantitative understanding of transcriptional regulation, we need to predict accurately
the factor occupancies on regulatory sequences. We demonstrate here that BMMs trained on
ChIP-seq data can predict binding affinities directly measured by biophysical methods considerably
more accurately than PWMs and a number of competing methods.

Sun et al. [47] measured dissociation constants (Kd) of the pioneer ZnF transcription factor
Klf4 for binding to various sequences by competitive EMSA experiments. 33 sequences had a
single mutation and 25 sequences had multiple mutations to the 10 bp Klf4 consensus motif. As
in Sun et al. [47], we computed the logarithms of each Kd divided by a Kref

d . For the sequences
with single mutations Kref

d was their median Kd and for the sequences with multiple mutations
the Kd closest to their mean.

We trained BMMs of increasing complexity using 101 bp sequences extracted around the
5 000 strongest ChIP-seq peaks from [48]. We plotted the log ratios of EMSA Kd’s versus the
corresponding predictions from our models. We compared the performance of BMMs of increasing
order by means of the Pearson correlation between measured and predicted logKd ratios.

Overall, the Pearson correlation improves with increasing BMM order (solid lines in Figure 4A,
left). While the 0’th-order BMM successfully predicts Klf4 affinities to singly mutated binding
sites, it fails for the multiply mutated binding sites (Figure 4A, middle). In contrast, the 5’th-order
BMM succeeds on both sets (Figure 4A, right).

To confirm these results, we performed a similar analysis on a dataset of competitive EMSA
measurements for 64 double-stranded oligonucleotide probes containing potential FoxA2 binding
sites [49]. These were correlated with predictions from the deep learning method DeepBind [50]
and various other methods, which were trained on a FoxA2 ENCODE ChIP-seq dataset, and with
prediction from a number of published PWMs for FoxA2. We repeated the analysis for our BMM
predictions and obtained a Spearman correlation of r = 0.831, better than the best competing
method, DeepBind (r = 0.814 and 0.784) (Figure 4B). This is remarkable, as no parameters were
adjusted and our BMMs were not developed with the aim of quantitative prediction of binding
affinities.

These results indicate that, at least for some factors, BMMs of order ≥ 3 are required to
satisfactorily predict binding affinities to low-affinity binding sites. This is reflected in the
information content of the higher-order sequence logos (Supplementary Figure S13).

Predicting RNAP II transcription start sites

Whereas our previous analyses were based on simple motifs composed of a single binding site,
we now assess higher-order Markov models for modelling complex motifs, regulatory regions that
are targeted by multiple, cooperatively binding factors. Such complex motifs can be composed of
multiple, non-obligatory submotifs with variable spacings and strengths.

The core promoter is the region of approximately ±50 bp around the transcription start site
(TSS) that is required to initiate transcription. RNAP II core promoters can be classified into
two classes [51], exhibiting a TSS distribution with a narrow peak (NP) or a broad peak (BP). In
animals the former tend to be correlated with highly regulated genes and more frequently carry
TATA-box and Initiator motifs, while the latter are correlated with housekeeping genes and have
fewer, more poorly defined motifs.

We clustered and filtered TSSs measured in D. melanogaster by cap analysis of gene expression
(CAGE) [52], resulting in 15 971 TSS clusters, assigned to 11 536 unique genes, which we classified
into 7 262 NP and 8 709 BP core promoters. Furthermore, we modeled ribosomal protein (RP)
gene core promoters using 92 core promoter sequences, corresponding to 86 unique RP genes listed
in the RPG database [53].
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Figure 4. Higher-order BMMs boost accuracy of binding affinity predictions for weak
sites. (A) Left: Pearson correlation between log(Kd/K

ref
d ) values for Klf4 binding to singly and multiply

mutated consensus sites and log(Kd/K
ref
d ) values predicted with models trained on Klf4-bound sequences

from ChIP-seq. Solid lines: BMM models; dashed lines: PWMs from XXmotif. Middle: log(Kd/K
ref
d )

values measured by competitive EMSA assay versus values predicted by 0’th-order BMM trained on
ChIP-seq data. Right: same but predictions from 5’th-order BMM. Affinities to weak, multiply mutated
sites (orange) are very badly predicted using a PWM (correlation 0.26) but decently using a 5’th-order
BMM (correlation 0.64). (B) Left: same as A, but showing Spearman rank correlations for FoxA2
binding affinities measured for 64 putative binding sites. DeepBind† and DeepBind differ only in model
length (16 versus 24 bp). Right: Spearman correlations of our 8’th-order BMM and various other
methods, adopted from Alipanahi et al. [50].

We again used four-fold cross-validation, training on 75 % of the TSSs, testing on 25 % of
TSSs and pooling results of the four test sets. Because of the different peak widths for NP, BP
and RP core promoters (90 % of CAGE tags are contained in regions of 9 bp, 47 bp and 23 bp
around the peak mode, respectively), we took training sequences of lengths 109 bp, 147 bp, and
123 bp around the mode of each TSS peak and trained models of length 101 bp on them. We
trained the 2’nd order background model on 501 bp sequences centered around TSSs. For each
test sequence of 501 bp around a TSS, the position with the largest log-odds score was taken to
be the predicted TSS. When the prediction was within 4 bp, 23 bp or 11 bp in the case of NP,
BP, and RP promoters, respectively, it counted as a true positive prediction, otherwise as false
positive. The precision was the fraction of sequences with true positive predictions.

Figure 5A shows the positional distribution of predictions around NP TSSs for BMMs of order
0, 1 and 2, normalised to a random predictor with uniform density. While NP core promoters
are relatively well predicted within ±4 bp by all three models, the 2’nd-order model achieves a
precision of 76 %, 26 % higher than the precision of the PWM model (60 %). These improvements
are reflected by a concomitant increase in total information content of the models (middle top).
For even higher model orders, the precision saturates but, crucially, does not show any signs of
overfitting (Supplementary Figure S16).

The 0’th-order sequence logo of the 2’nd-order NP core promoter BMM (Figure 5A, right)
reveals the Initiator motif at the TSS, the TATA box near −32 bp, and the motif ten and
downstream promoter elements (MTE, DPE). The left inset shows 1’st-order dependencies in the
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region around the TATA box, which partly arise from the variable positioning of the TATA box
with respect to the TSS. The right inset covers a region of overlapping DPE and E-box motifs and
gives an idea how such overlapping, alternative motifs can be represented by a 1’st-order BMM.
(See Supplementary Figure S14 for complete sequence logos.)

The BP TSSs are evidently much harder to predict than the NP TSSs (Figure 5B), owing to
the scarcity and poor information content of their motifs. For difficult cases, however, BMMs
show particularly clearcut gains: the precision achieved by a 2’nd-order BMM of 44 % is twice as
high as for the 0’th-order model. Similar to NP core promoters, the BMM of BP core promoters
represents sequence motifs that slightly vary in positioning and also distinct, overlapping motifs
(Figure 5B, right). For instance, the Ohler6 element [54] and the DNA recognition element (DRE)
are admixed but distinguishable in the 2’nd-order sequence logo (left inset). Similarly, the core
promoter elements Ohler1 and Ohler7 [54] are overlapping each other but are distinguishable in
higher orders (right inset).

The information density in higher orders of the NP and BP models seems rather low, but it
sums up to considerable sizes across the modeled region (Supplementary Figures S14 and S15). We
speculate that the nucleotide dependencies in our models reflect, at least in part, DNA structural
properties of core promoter regions that contribute to TSS recognition [55].

Models of RP gene core promoter sequences do not profit from higher orders (Supplementary
Figure S17A). However, despite the low number of sequence instances, even a 5’th-order BMM is
not overfit (Supplementary Figure S18A).

Prediction of polyadenylation sites

Sequence elements around the RNAP II polyadenylation (pA) site induce transcription termination
by recruiting the cleavage and polyadenylation machinery to the pA site. In S. cerevisiae, 3′-end
processing sequence signals were detected in the range from roughly 70 bp upstream to 30 bp
downstream of the pA site [56] including the UA-rich efficiency element (EE), the A-rich positioning
element (PE) and U-rich elements.

We extracted sequences of length 401 bp around 4 228 pA sites in S. cerevisiae from 4 173
unique genes using major transcript isoform annotations [57]. The training and analysis was
performed analagous to the core promoter prediction, using four-fold cross-validation. Training
was done on the regions from −70 bp to +30 bp around the pA sites and training of the BMM
background model on the full 401 bp sequences. Testing was done on full-length 401 bp sequences,
with true positive predictions defined to lie within 5 bp of the annotated pA site.

Again, higher-order BMMs outperform PWM models by a wide margin, improving the 28 %
precision of the PWM model by 45 % up to 40 % for the 2’nd-order BMM (Figure 5C, left and
middle bottom). The 2’nd-order BMM comprises all known 3′-end processing elements (Figure 5C,
right). The 1’st-order correlations are necessary to model the EE (left inset) and the downstream
T-rich region (right inset), which is revealed to be a poly(dA:dT) tract in higher orders (inset and

Figure 5 (following page). Higher-order BMMs excel at predicting complex,
multipartite motifs. (A) Left: positional distribution of TSS predictions around measured TSSs of
7 262 narrow peak (NP) core promoters in D. melanogaster, normalised to random prediction with
uniform density. Inset: same with expanded y-axis to show false predictions. Middle bottom: Fraction of
sequences with correct predictions, defined to lie within 4 bp of measured TSS peak mode. Dashed line:
precision of random predictor. Middle top: Total information content in BMMs. Right: 0’th-order
sequence logo of 2’nd-order BMM. Insets: 1’st-order sequence logos in region covering the TATA box
(left) and the DPE and E-box motifs (right). (B) Same as A but for TSSs of 8 709 broad peak (BP)
promoters. Correct predictions are defined to lie within 23 bp of measured TSSs. Logo insets show 2’nd-
and 1’st-order contributions. (C) Same as A but for polyadenylation (pA) sites from S. cerevisiae.
Correct predictions are within 5 bp of measured pA sites. Logo insets show 1’st-order contributions at
efficiency and U-rich elements. (D) Same as A but for RNAP pause sites from E. coli. Correct
predictions are within 0 bp of measured pause sites.
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Supplementary Figure S16). Again, even models of very high order did not suffer from overtraining
(Supplementary Figure S18B).

Prediction of bacterial RNAP pause sites

Pausing of RNAP during transcription has regulatory functions in RNA folding, recruitment of
factors to mRNAs, and transcription termination. Larson et al. [58] measured RNAP pause sites
in E. coli and B. subtilis using nascent elongating transcript sequencing (NET-seq) and identified
16 bp and 12 bp RNAP pause sequence signatures, respectively.

We extracted sequences of length 121 bp centered at 11 648 E. coli and 6 809 B. subtilis pause
sites. 20 bp models were trained on the regions from −12 bp to +7 bp around pause sites, which
adds 2 bp in E. coli and 4 bp in B. subtilis to either end of the pause site motifs defined by Larson
et al. The 2’nd order background model was trained on the entire genome. The assessment was
analogous to the TSS and pA site predictions, using four-fold cross-validation and defining correct
predictions as being precise within 0 bp.

The 0’th-order BMM predicts 31 % of E. coli pause sites correctly, the 1’st-order BMM increases
the precision to 38 %, and the 2’nd-order BMMs to 43 % (Figure 5D). This suggests that pause sites
might have a specific signature of DNA structural properties reflected in higher-order nucleotide
dependencies. Off-site predictions up- and downstream of the pause index, e.g. at −11 bp, are
presumably caused by local similarities in the sequence features (Figure 5D, right).

Beside the GpG dinucleotide at the 5′-end of the RNA-DNA hybrid, 10 bp upstream of the
3′-end, another distinctive feature of the consensus sequence described by Larson et al. is the
occurrence of TpG or CpG at the location of the 3′-end of the nascent transcript and incoming
nucleoside triphospate. The CpG dinucleotide of the template strand was recently shown to inhibit
elongation and induce G-to-A errors when spanning the active site of RNAP [59]. Our 2’nd-order
BMM refines this signature by revealing that after a TpG a G is favoured, whereas CpG is more
likely to be followed by a T or C (Figure 5D, right, inset).

In B. subtilis, the precision is only about half as high as in E. coli, but improvements through
higher orders BMMs are more marked. The 3’rd-order BMM reaches 21 % precision, an increase
of 55 % over 0’th-order (Supplementary Figures S17B and S18C).

Pause site models differ substantially in all orders between the gram-negative E. coli and the
gram-positive B. subtilis, except for a GpG dinucleotide at the upstream edge of the RNA-DNA
hybrid and a pyrimidine at the downstream edge.

Prediction of protein-RNA binding sites

In cells mRNAs are actively kept in a largely unfolded state by energy-dependent processes
[60]. In contrast to DNA, which forms a relatively stiff double helix, mRNAs are therefore
mostly single-stranded and extremely flexible. This leads to profound differences in the sequence
specificity of RNA- versus DNA-binding. DNA sequences similar to the consensus sequence will
usually be bound in a very similar overall protein-DNA conformation, whereas a single mutation
from high-affinity RNA motif will usually cause the highly flexible mRNA to change its structure
quite dramatically in order to minimise the binding energy. Such behaviour strongly violates the
assumption that the binding energy can be approximated by independent energy contributions
from each nucleotide, and it comes as no surprise that PWMs are poor models for RNA binding
factors [61]. We were therefore wondering whether BMMs would be more appropriate.

We used a dataset of binding sites of 25 mRNP biogenesis factors from S. cerevisiae measured
in vivo using PAR-CLIP [62, 63]. We extracted 25 nt sequences centered around the crosslinked
uridines of the strongest 2 000 binding sites. We randomly sampled 20 000 25 nt background
sequences centered around uridines in the transcriptome of S. cerevisiae. Our analysis of the
performance to discriminate between bound and background sequences proceeds in a way analogous
to the benchmark in Figures 2 and 3.

Figure 6A shows the discriminative power of 2’nd-order BMMs compared to 0’th-order, PWM
models. The performance of all models is low in comparison to DNA binders in Figure 2 when
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Figure 6. Modelling the sequence specificity of RNA binding factors is challenging but
improves with higher orders. (A) Increase of prediction performance of 2’nd- versus 0’th-order
BMMs for binding sites of 25 mRNP biogenesis factors from S. cerevisiae measured by PAR-CLIP.
Dashed line: mean fold increase. (B) Left: Higher-order BMMs lead to sizeable gains in precision and
recall for predicting Hrb1 binding sites. Right: sequence logos for order 0 and 1 of 2’nd-order BMM
(central crosslinked U was removed from the 0’th-order logo). (C,D) Effect of BMM model order on
prediction performance for Nab3 (C) and Yra1 (D).

we consider that here we used a ratio of background to positive sequences of 10:1 instead of
100:1. BMMs outperformed PWM models for all RNA-binding proteins (P = 3× 10−8, Wilcoxon
one-sided signed-rank test, n = 25), in two cases doubling the pAUC values.

The most drastic improvement was seen for the SR-like factor Hrb1 (Figure 6B). The crosslinked
U at position 0 (not shown) is frequently flanked by A and G upstream and downstream, respectively
(Figure 6, middle), which are also enriched around other RNA-binding protein crosslink sites
(Supplementary Figure S19). In the 1’st- and 2’nd-order logos we can discern a CUG-rich region
upstream of the crosslink site (Figure 6B, right), representing up to five successive CUG repeats,
which cannot be learned by the PWM due to their variable positioning. Hrb1 was not known to
bind CUG-rich sequences, but our observation makes sense in light of the fact that it contains
three RRM domains just like CELF1, which is known to bind CUG-rich ssRNAs [64].

Nab3 profits greatly from higher orders (Figure 6C) because the Nab3 motifs UCUU and
CUUG are learned together with the Nrd1 motifs UGUA and GUAG, which are enriched near
Nab3 crosslink sites [65] (Supplementary Figure S19A). A typical, very moderate gain is seen for
the Mex67 adaptor protein Yra1 (Supplementary Figure 6D and Figure S19B).

Discussion

In this study we developed a Bayesian approach to train inhomogeneous Markov models that uses
the conditional probabilities from lower order k−1 as prior for order k. The BMMs trained with
this scheme can be regarded as a variation of interpolated Markov models. Unlike the various
heuristic schemes that have been proposed for choosing the interpolation weights [34, 35, 36, 37],
in our Bayesian approach we do not need to make any ad hoc choices and merely require two
hyperparameters to set the strengths of the Bayesian priors for all model orders.
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Our scheme also sidesteps the common approach of pruning the discrete dependency graph
of the Markov model in order to limit the model’s complexity [23, 31, 32, 33]. Instead, we use
continuous, soft, data-driven cut-offs which are effectively realised using Bayesian priors. We
thereby avoid the cumbersome discrete optimisation of a dependency graph and can make use of
simple and effective optimisation methods. This also allowed us to develop an EM-based algorithm
for motif discovery using BMM training.

We tested our BMMs in a cross-validation setting on hundreds of ENCODE ChIP-seq datasets,
RNAP II core promoter sequences and polyadenylation sites, bacterial RNAP pause sites and RNA-
bound sites from PAR-CLIP measurements, using the same hyperparameters. On all datasets,
BMMs yielded sizeable improvements, typically around 30 %− 40 % increase in precision. BMMs
of order 5 led to a significant improvement (at significance level 0.0625) over PWMs on 97 % of the
446 ENCODE ChIP-seq datasets, while the performance was very similar on the remaining 3 %
(Figure 3C). For comparison, the Markov models recently introduced in the JASPAR database
(TFFMs) showed significantly improved performance on only 21 % of 96 ENCODE ChIP-seq
datasets [30].

Given this success with modeling nucleotide correlations, why did k-mer-based methods not
clearly outperform PWM-based models in the DREAM5 challenge [22]? First, whereas ChIP-seq
measurements are done with full-length transcription factors, many of which possess multiple
DNA-binding domains and binding partners, PBM measurements are mostly done with single
DNA binding domains. Second, we think that, in contrast to ChIP-seq measurements, the amount
of information present in a PBM measurement is often not enough to learn a model more detailed
than a PWM. To see why this might be the case, we note that each 8-mer occurs 16 times and
each 10-mer occurs once on the PBMs used in [22]. Due to the measurement noise, usually only
the affinities to 8-mers are considered, since these can be averaged over the 16 measurements.
However, for many DNA-binding domains the nucleotides flanking the core 8-mer probably have
a considerable influence on binding strength. This means that the 16 measurements of each 8-mer
are convoluted by the effects of the flanking nucleotides and could therefore be too unreliable to
allow for training complex models with many parameters. Another way to look at the question is
this: In a PBM measurement typically only 1 % of probes, i.e. 400, are significantly bound and
will carry most of the information, which might not be enough to estimate the (42 − 1)× 10 = 150
parameters of a 1’st-order model reliably enough.

Despite the theoretically high number of parameters at larger orders, our BMMs never
deteriorated in performance with increasing order k, in contrast to simple inhomogeneous Markov
models (Supplementary Figures S12, S18, and S20).

We developed higher-order sequence logos to visualise the information learned in the various
orders on top of what is contained in lower orders. As illustrated in several examples, the logos
could often explain the origin of the added value in higher orders.

For transcription factors, the added value is owed to variable submotif spacings, variable
dimerization partners, and DNA shape readout, neither of which can be adequately learned with
PWMs. Variable submotif spacings could also be learned by profile HMMs or mixtures of PWMs,
however they lack flexibility to model dinucleotide preferences due to DNA shape readout and to
describe more complex architectures with variable presence of motifs. Also, HMM training is slow
as it requires running a forward-backward algorithm in each iteration of the EM algorithm.

Extension of the core transcription factor binding motif by 8 bp improved 5’th-order BMMs
by 19 % but PWMs by only 5 %, due to the ability of higher orders to model the DNA shape
constraints around the core binding site. Implicitly learning structural properties might work
better than explicitly including them in the model [66], since any DNA physical property will be
reflected in specific, learnable oligonucleotide preferences.

We tested the ability of PWMs and BMMs trained on ChIP-seq data to predict binding
affinities for two transcription factors measured by EMSA on datasets of sequences near their
consensus binding sequences. BMMs improved predictions of PWMs and a number of other
methods. The improvements are likely owed to weak sites more than a single substitution away
from the consensus. On singly mutated sequences, the PWM predicted binding affinities as well
as the BMM, while on doubly mutated sites it showed a dismal correlation of 0.26 while the BMM
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achieved 0.64 (Figure 4). Hence PWMs learn to predict mostly the high-affinity sites correctly, as
the energies of all sequences a single mutation away from consensus can still be described with
their simple energy model, and the breakdown of the PWM performance for doubly mutated sites
reflects the breakdown of the additivity assumption according to which nucleotides contribute
individually to the binding energy. As low-affinity sites have been reported to be important for
the specificity and robustness of gene expression [67], improvements in predicting binding to weak
sites will be important for quantitative modeling of transcriptional regulation.

Complex, multipartite motifs profited from the flexibility of BMMs to represent multiple
submotifs at variable spacings and strengths. This flexibility may be useful to predict binding sites
of cooperatively binding transcription factors, which often prefer certain spacings and orientations
[15, 68]. It might prove particularly powerful for predicting binding sites of factors with multiple
DNA-binding domains, such as ZnF transcription factors. ZnFs comprise up to a third of human
transcription factors [69] and they contain on average 10 DNA-binding domains, which might
partly explain why clearly defined motifs could be found for 8 % of them [3]. The striking prediction
performance and specificity we observed for Znf143 (Supplementary Figure S9) and a 67-bp-long
model of CTCF (Supplementary Figure S11) indicates that the complex binding sites of ZnF
transcription factors with their multiple DNA-binding domains might be well predictable using
BMMs.

At present, a limitation of BMMs in comparison to Bayesian network models (e.g. [32, 23]) is
that nucleotide dependencies are only modeled within consecutive k-mers. Overcoming this would
be useful for transcription factors that change their binding mode depending on the sequence and
to learn complex motif architectures with correlated submotif occurrences, for example. It seems
straightforward to generalise the presented approach by making each position j dependent on up
to k not necessarily neighbouring upstream positions using a heuristic selection strategy. Because
the described EM algorithm is fast – a 5’th-order BMM with 21 positions from 5 000 sequences
of 205 bp is learned within 83 s on a single core of a 3.4 GHz Intel Core i7-2600 CPU – we may
choose a generous value k=5 or even higher in practice.

To further improve the performance of our BMM-based motif discovery tool BaMM!motif,
we will learn automatically from the data (1) the hyperparameters and (2) the model length,
a nontrivial task since the changing number of parameters precludes a simple optimisation of
the likelihood or posterior probability. We will also (3) develop an efficient method to estimate
the biological significance of discovered motifs, and (4) introduce positional priors. (5) Since
BaMM!motif’s speed is at present limited by the seed motif discovery code from XXmotif, we
will accelerate this code substantially. One future challenge will also be (6) to develop a rigorous
approach that can deal with quantitative data such as fluorescence intensities from HT-SELEX
and protein binding microarrays and peak strengths of ChIP-seq measurements.

Conclusion

We have developed a Bayesian approach to train higher-order Markov models, which automatically
adapts model complexity to the amount of available data position- and k-mer-specifically. The
BMMs learned with this scheme were never overtrained, even at high orders. We developed
the to our knowledge first method for learning the dependency graph among motif positions of
higher-order Markov models that does not require a-priori knowledge of motif locations and that
can hence be applied to de-novo motif discovery.

The most remarkable result of this study is the consistency with which higher-order BMMs
yielded solid improvements across various heterogeneous datasets without requiring parameter
tuning on each dataset and without a single case of failure. We can therefore answer affirmatively
the question of whether nucleotide correlations are significant in transcription factor binding sites
and other regulatory regions.

These results argue in favour of making the transition from PWMs to BMMs as the standard
model to describe protein-DNA binding affinities and to offer BMM models in databases for
regulatory and binding site motifs.
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