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Abstract

Temporal asynchrony among species helps1 diversity to stabilize ecosystem func-
tioning, but identifying the mechanisms that determine synchrony remains a challenge.
Here, we refine and test theory showing that synchrony depends on three factors: species
responses to environmental variation, interspecific interactions, and demographic stochas-
ticity. We then conduct simulation experiments with empirical population models to
quantify the relative importance of these factors in five plant communities. We found
that the average synchrony of per capita growth rates, which can range from 0 (perfect
asynchrony) to 1 (perfect synchrony), was higher when environmental variation was
present (0.62) rather than absent (0.43). Removing interspecific interactions and de-
mographic stochasticity had small effects on synchrony. In these plant communities,
where species interactions and demographic stochasticity have little influence, synchrony
reflects the covariance in species responses to the environment.
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INTRODUCTION

Ecosystems are being transformed by species extinctions (Cardinale et al. 2012), changes
in community composition (Vellend et al. 2013, Dornelas et al. 2014), and anthropogenic
environmental change (Vitousek et al. 1997), impacting the provisioning and stability
of ecosystem services (Loreau et al. 2001, Hooper et al. 2005, Rockstrom et al. 2009).
Experiments have provided compelling evidence that decreases in species richness will decrease
productivity (Tilman et al. 2001) and the temporal stability of productivity (Tilman
et al. 2006, Hector et al. 2010). The stabilizing effect of species richness stems from
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individual species responding in different ways to environmental fluctuations (environmental
stochasticity), or fluctuating asynchronously because of random chance events (demographic
stochasticity) (Isbell et al. 2009, Hector et al. 2010, de Mazancourt et al. 2013). Species
richness affects synchrony because larger species pools are more likely to contain species
that respond disimilarly to environmental conditions (Yachi and Loreau 1999), implying
that species losses will reduce ecosystem stability. Even without species losses, abiotic
homogenization can weaken compensatory dynamics and, in turn, decrease temporal stability
of ecosystem functioning (Hautier et al. 2014). The link between synchrony and stability
means that a mechanistic understanding of synchrony can help us predict the impacts of
global change on ecosystem stability.

Theory identifies three main determinants of species synchrony: environmental stochas-
ticity, demographic stochasticity, and interspecific interactions (Loreau and de Mazancourt
2008, 2013, Gonzalez and Loreau 2009). For example, in a community composed of large
populations (no demographic stochasticity) with weak interspecific interations, community-
wide species synchrony should be determined by the covariance of species’ responses to the
environment (Loreau and de Mazancourt 2008). However, this prediction relies on a relatively
simple population model and only holds under two assumptions: (i) species’ responses to the
environment are similar in magnitude and (ii) all species have similar growth rates. Whether
such theoretical predictions hold in natural communities where species differences are unlikely
to be symmetrical is unkown because few studies have explicitly tested theory on the drivers
of species synchrony in natural communities (Mutshinda et al. 2009, Thibaut et al. 2012),
and they did not consider demographic stochasiticity.

In grasslands, most empirical studies have focused on whether species synchrony is
primarily an outcome of species-specific responses to environmental conditions (Hautier et
al. 2014) or competition (Gross et al. 2014). Even beyond grassland studies, whether
competition or environmental responses drive compensatory dynamics remains controversial
(reviewed in Gonzalez and Loreau 2009). In part, controversy remains because quantifying
the relative strengths of each driver on the degree of synchrony from the covariance matrix of
species abundances (e.g., Houlahan et al. 2007) is impossible. This is because an unbiased
null expectation for synchrony does not exist (Loreau and de Mazancourt 2008) and observed
synchrony can arise from non-unique combinations of factors (Ranta et al. 2008). For
example, weak synchrony of population abundances could reflect positive environmental
correlations (synchronizing effect) offset by strong competition (desynchronizing effect), or
negative environmental correlations and weak competition.

The best way to quantify the effects of environmental stochasticity, demographic stochas-
ticity, and interspecific interactions is to remove them one-by-one, and in combination. In
principle, this could be done in an extremely controlled laboratory setting, but empirically-
based models of interacting populations, fit with data sets from natural communities, offer a
practical alternative. For example, Mutshinda et al. (2009) fit a dynamic population model
to several community time series of insect and bird abundances. They used a statistical
technique to decompose temporal variation into competition and environmental components,
and found that positively correlated environmental responses among species determined
community dynamics. Thibaut et al. (2012) used a similar approach for reef fish and came
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to a similar conclusion: environmental responses determine synchrony. While a major step
forward, Mutshinda et al.’s (2009) and Thibaut et al.’s (2012) modeling technique relied on
abundance data that may or may not reliably capture competitive interactions that occur at
the individual level. Furthermore, although both studies quantified the relative importance
of environmental stochasticity and interspecific interactions to explain the observed variation
of species synchrony, they did not use the model to quantify how much synchrony would
change when each factor is removed.

Here, we use multi-species population models fit to long-term demographic data from five
semi-arid plant communities to test theory on the drivers of species synchrony. Our objectives
are to (1) derive and test theoretical predictions of species synchrony and (2) determine the
relative influence of environmental stochasticity, demographic stochasticity, and interspecific
interactions on species synchrony in natural plant communities. To achieve these objectives,
we first refine theory that has been used to predict the effects of species richness on ecosystem
stability (de Mazancourt et al. 2013) and species synchrony (Loreau and de Mazancourt 2008)
to generate predictions of community-wide species synchrony under two limiting cases derived
from the dynamics of individual species in monoculture. We then confront our theoretical
predictions with simulations from the empirically-based population models. Second, we
use the multi-species population models to perform simulation experiments that isolate the
effects of environmental stochasticity, demographic stochasticity, and interspecific interactions
on community-wide species synchrony. Given that our population models capture the
essential features of community dynamics important to synchrony (density-dependence, and
demographic and environmental stochasticity), and that these models successfully reproduce
observed community dynamics (Chu and Adler 2015), perturbing the models can reveal the
processes that determine species synchrony in our focal grassland communities.

THEORETICAL MODEL

The model

While existing theory has identified the factors driving synchrony, we do not have a simple
expression to predict synchrony in a particular community with all factors operating simulta-
neously. However, we can derive analytical predictions for species synchrony under special
limiting cases. The limiting case predictions we derive serve as baselines to help us interpret
results from empirically-based simulations (described below). We focus on synchrony of per
capita growth rates, rather than abundances, because growth rates represent the instanta-
neous response of species to the environment and competition, and are less susceptible to
the legacy effects of drift and disturbance (Loreau and de Mazancourt 2008). We present
equivalent results for synchrony of species abundances in the Online Supporting Information,
and show that they lead to the same overall conclusions as synchrony of per capita growth
rates. Following Loreau and de Mazancourt (2008) and de Mazancourt et al. (2013), we
define population growth, ignoring observation error, as
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ri(t) = lnNi(t+ 1)− lnNi(t) (1)

= rmi

1−
Ni(t) +∑

j 6=i αijNj(t)
Ki

+ σeiuei(t) + σdiudi(t)√
Ni(t)

 (2)

where Ni(t) is the biomass of species i in year t, and ri(t) is its population growth rate
in year t. rmi is species i’s intrinsic rate of increase, Ki is its carrying capacity, and αij

is the interspecific competition coefficient representing the effect of species j on species
i. Environmental stochasticity is incorporated as σeiuei(t), where σ2

ei is the environmental
variance and uei are normal random variables with zero mean and unit variance that are
independent through time but may be correlated between species. Demographic stochasticity
arises from variations in births and deaths among individuals (e.g., same states, different
fates), and is included in the model as a first-order, normal approximation (Lande et al. 2003,
de Mazancourt et al. 2013). σ2

di is the demographic variance and udi(t) are independent
normal variables with zero mean and unit variance. To derive analytical predictions we solved
a first-order approximation of Equation 2 (de Mazancourt et al. 2013 and Online Supporting
Information). Due to the linear approximation approach, our analytical predictions will likely
fail in communities where species exhibit large fluctuations due to limit cycles and chaos
(Loreau and de Mazancourt 2008). Indeed, one of the advantages of focusing on growth rates
rather than abundances is that growth rates are more likely to be well-regulated around an
equilibrium value, if the long-term average of a species’ growth rate is relatively small (e.g.,
r < 2).

Predictions

Our first prediction assumes no interspecific interactions, no environmental stochasticity,
identical intrinsic growth rates, and that demographic stochasticity is operating but all species
have identical demographic variances. This limiting case,MD, represents a community where
dynamics are driven by demographic stochasticity alone. Our prediction for the synchrony of
per capita growth rates forMD, φR,MD

, is

φR,MD
=

∑
i p
−1
i(∑

i p
−1/2
i

)2 , (3)

where pi is the average frequency of species i, pi = Ni/NT . When all species have identical
abundances and pi = 1/S, where S is species richness, synchrony equal 1/S (Loreau and de
Mazancourt 2008).

Our second limiting case assumes only environmental stochasticity is operating (ME).
Thus, we assume there are no interspecific interactions, demographic stochasticity is absent,
intrinsic growth rates are identical, and environmental variance is identical for all species.
Our prediction for the synchrony of per capita growth rates forME, φR,ME

, is
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φR,ME
=
∑

i,j cov(uei, uej)
S2 , (4)

where cov(uei, uej) is the standardized covariance of environmental responses between species
i and species j. Confronting our theoretical predictions with data requires estimates of
species dynamics of large populations (no demographic stochasticity) growing in isolation (no
interspecific interactions) to calculate the covariance of species’ environmental responses. To
estimate environmental responses in natural communities, we turn to our population models
built using long-term demographic data.

EMPIRICAL ANALYSIS

Materials and methods

Data We use long-term demographic data from five semiarid grasslands in the western
United States (described in detail by Chu and Adler 2015). Each site includes a set of
1-m2 permanent quadrats within which all individual plants were identified and mapped
annually using a pantograph (Hill 1920). The resulting mapped polygons represent basal
cover for grasses and canopy cover for shrubs. Data come from the Sonoran desert in Arizona
(Anderson et al. 2012), sagebrush steppe in Idaho (Zachmann et al. 2010), southern mixed
prairie in Kansas (Adler et al. 2007), northern mixed prairie in Montana (Anderson et al.
2011), and Chihuahuan desert in New Mexico (Anderson et al. in preparation, Chu and Adler
2015) (Table 1).

Calculating observed synchrony The data consist of records for individual plant size
in quadrats for each year. To obtain estimates of percent cover for each focal species in each
year, we summed the individual-level data within quadrats and then averaged percent cover,
by species, over all quadrats. We calculated per capita growth rates as log(xt)− log(xt−1),
where x is species’ percent cover in year t. Using the community time series of per capita
growth rates or percent cover, we calculated community synchrony using the metric of Loreau
and de Mazancourt (2008) in the ‘synchrony’ package (Gouhier and Guichard 2014) in R (R
Core Team 2013). Specifically, we calculated synchrony as

φr = σ2
T

(∑i σri
)2 (5)

where σri
is the temporal variance of species i’s per capita population growth rate (ri) and

σ2
T is the temporal variance of the aggregate community-level growth rate. φ ranges from 0 at

perfect asynchrony to 1 at perfect synchrony (Loreau and de Mazancourt 2008). We use the
same equation to calculate observed synchrony of species’ percent cover, which we present to
relate our results to previous findings, even though we focus on synchrony of growth rates in
our model simulations (see below).
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Fitting statistical models Vital rate regressions are the building blocks of our dynamic
models: an integral projection model (IPM) and an individual-based model (IBM). We
followed the approach of Chu and Adler (2015) to fit statistical models for survival, growth,
and recruitment (see Online Supporting Information for full details). We modeled survival
probability of each genet as function of genet size, temporal variation among years, permanent
spatial variation among groups of quadrats, and local neighborhood crowding from conspecific
and heterospecific genets. Regression coefficients for the effect of crowding by each species
can be considered a matrix of interaction coefficients whose diagonals represent intraspecific
interactions and whose off-diagonals represent interspecific interactions (Adler et al. 2010).
These interaction coefficients can take positive (facilitative) or negative (competitive) values.
We modeled growth as the change in size of a genet from one year to the next, which depends
on the same factors as the survival model. We fit the survival and growth regressions using
INLA (Rue et al. 2014), a statistical package for fitting generalized linear mixed effects
models via approximate Bayesian inference (Rue et al. 2009), in R (R Core Team 2013).
Crowding was treated as a fixed effect without a temporal component because most 95%
credible intervals for random year effects on crowding broadly overlapped zero and, in a test
case, including yearly crowding effects did not change our results. Spatial (quadrat groupings)
variation was treated as a random effect on the intercept and temporal (interannual) variation
was treated as random effects on the intercept and the effect of genet size in the previous
year (Online Supporting Information).

We modeled recruitment at the quadrat scale, rather than the individual scale, because
the original data do not attribute new genets to specific parents (Chu and Adler 2015). Our
recruitment model assumes that the number of recruits produced in each year follows a
negative binomial distribution with the mean dependent on the cover of the parent species,
permanent spatial variation among groups, temporal variation among years, and inter- and
intraspecific interactions as a function of total species’ cover in the quadrat. We fit the
recruitment model using a hierarchical Bayesian approach implemented in JAGS (Plummer
2003) using the ‘rjags’ package (Plummer 2014) in R (R Core Team 2013). Again, temporal
and spatial variation were treated as random effects.

Building dynamic multi-species models Once we have fit the vital rate statistical
models, building the population models is straightforward. For the IBM, we initialize the
model by randomly assigning plants spatial coordinates, sizes, and species identities until each
species achieves a density representative of that observed in the data. We then project the
model forward by using the survival regression to determine whether a genet lives or dies, the
growth regression to calculate changes in genet size, and the recruitment regression to add new
individuals that are distributed randomly in space. Crowding is directly calculated at each
time step since each genet is spatially referenced (as in the observed data). Environmental
stochasticity is not an inherent feature of IBMs, but is easily included since we fit year-specific
temporal random effects for each vital rate regression. To include temporal environmental
variation, at each time step we randomly choose a set of estimated survival, growth, and
recruitment parameters specific to one observation year. For all simulations, we ignore the
spatial random effect associated with variation among quadrat groups, so our simulations
represent an average quadrat for each site.
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The IPM uses the same vital rate regressions as the IBM (Rees and Ellner 2009, Rees et
al. 2014), but it is spatially implicit and does not include demographic stochasticity. Following
Chu and Adler (2015), we use a mean field approximation that captures the essential features
of spatial patterning to define the crowding index at each time step (Supporting Online
Information). Temporal variation is included in exactly the same way as for the IBM. For
full details on the IPMs we use, see Chu and Adler (2015).

Simulation experiments We performed simulation experiments where drivers (environ-
mental stochasticity, demographic stochasticity, or interspecific interactions) were removed
one-by-one and in combination. To remove interspecific interactions, we set the off-diagonals
of the interaction matrix for each vital rate regression to zero. This retains intraspecific
interactions, and thus density-dependence, and results in simulations where species are
growing in isolation. We cannot definitively rule out the effects of species interactions on all
parameters, meaning that a true monoculture could behave differently than our simulations of
a population growing without interspecific competitors. To remove the effect of a fluctuating
environment, we removed the temporal (interannual) random effects from the regression
equations. To remove the effect of demographic stochasticity, we use the IPM rather than the
IBM because the IPM does not include demographic stochasticity (demographic stochasticity
cannot be removed from the IBM). Since the effect of demographic stochasticity on population
dynamics depends on population size (Lande et al. 2003), we can control the strength of
demographic stochasticity by simulating the IBM on areas (e.g. plots) of different size. Indeed,
results from an IBM with infinite population size would converge on results from the IPM.
Given computational constraints, the largest landscape we simulate is a 25 m2 plot.

We conducted the following six simulation experiments: (1) IBM: All drivers (envi-
ronmental stochasticity, demographic stochasticity, or interspecific interactions) present; (2)
IPM: Demographic stochasticity removed; (3) IBM: Environmental stochasticity removed; (4)
IBM: Interspecific interactions removed; (5) IPM: Interspecific interactions and demographic
stochasticity removed; (6) IBM: Interspecific interactions and environmental stochasticity
removed. We ran IPM simulations for 2,000 time steps, after an initial 500 iteration burn-in
period. This allowed species time to reach their stable size distribution. We then calculated
the synchrony of species’ per capita growth rates over 100 randomly selected contiguous 50
time-step sections. We ran IBM simulations for 100 time steps, and repeated the simulations
100 times for each simulation experiment. From those, we retained only the simulations in
which no species went extinct due to demographic stochasticity. Synchrony was calculated
over the 100 time steps for each no extinction run within a model experiment. To explore
the effect of demographic stochasticity in different sized populations, we ran simulations (1)
and (6) on plot sizes of 1, 4, 9, 16, and 25 m2. All other IBM simulations were run on a 25
m2 landscape.

Results from our simulation experiments also allow us to test our theoretical predictions.
First, in the absence of interspecific interactions and demographic stochasticity, populations
can only fluctuate in response to the environment. Therefore, we can use results from
simulation (5) to estimate the covariance of species’ responses to the environment (cov(uie, uje))
and parameterize Equation 4. Parameterizing Equation 3 does not require simulation output
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because the only parameters are the species’ relative abundances. Second, simulations (5)
and (6) represent the simulated version of our limiting case theoretical predictions. Thus,
we directly test the theoretical predictions by comparing them to observed synchrony and
simulated synchrony.

Results

Synchrony of species’ per capita growth rates at our study sites range from 0.36 to 0.89 and
synchrony of percent cover ranged from 0.15 to 0.92 (Table 2). Synchrony tends to be higher
in communities with few species (Arizona and New Mexico) and/or with relatively high
temporal variability in percent cover (e.g., Montana). Synchrony is lowest in Idaho, the only
data set that includes two life forms: a shrub and three perennial grasses (Table 1). Synchrony
of per capita growth rates and CV of percent cover are positively correlated (Pearson’s ρ =
0.72). For all five communities, species synchrony from IPM and IBM simulations closely
approximated observed synchrony (Fig. S1). IBM-simulated synchrony is consistently, but
only slightly, lower than IPM-simulated synchrony (Fig. S1), likely due to the desynchronizing
effect of demographic stochasticity.

Across the five communities, our limiting case predictions closely matched synchrony
from the corresponding simulation experiment (Fig. 1 and Table S1). The correlation between
our analytical predictions and simulated synchrony was 0.97 for φR,MD

and 0.997 for φR,ME
.

The largest difference between predicted and simulated synchrony was 0.05 in New Mexico
for φR,MD

(Table S1).
Simulation experiments revealed that removing environmental fluctuations has the

largest impact on synchrony, leading to a reduction in synchrony of species growth rates
in four out of five communities (Fig. 1). Removing environmental fluctuations (“No E.S”
simulations) decreased synchrony by 33% in Arizona, 48% in Kansas, 39% in Montana, and
40% in New Mexico. Only in Idaho did removing environmental fluctuations cause an increase
in synchrony (Fig. 1), but the effect was small (9% increase; Table S2). Overall, species’
temporal random effects in the statistical vital rate models are positively correlated (Table
S3). Species interactions are weak in these communities (Table S4 and Chu and Adler 2015),
and removing interspecific interactions had little effect on synchrony (Fig. 1; “No Comp.”
simulations). Removing interspecific interactions caused, at most, a 5% change in synchrony
(Fig. 1). Removing demographic stochasticity (“No D.S.” simulations) caused synchrony to
increase slightly in all communities (Fig. 1), with an average 6% increase over synchrony
from IBM simulations on a 25m2 area.

The desynchronizing effect of demographic stochasticity, which increases as population
size decreases, modestly counteracted the synchronizing force of the environment, but not
enough to lower synchrony to the level observed when only demographic stochasticity is
operating (Fig. 2). In the largest, 25 m2 plots, synchrony was driven by environmental
stochasticity (e.g., ME). At 1 m2, synchrony reflected demographic stochasticity and
environmental stochasticity (e.g., between ME and MD). For context, population sizes
increased from an average of 17 individuals per community in 1 m2 IBM simulations to an
average of 357 individuals per community in 25 m2 IBM simulations.
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For all five communities, the synchrony of species’ growth rates when growing in isolation
almost perfectly matched species synchrony in polyculture (Fig. 3). Results for synchrony of
percent cover are qualitatively similar, but simulation results were more variable and less
consistent with analytical predictions and observed synchrony (Online Supporting Information,
Figs. S2-S3).

DISCUSSION

Our study produced four main findings that were generally consistent across five natural
plant communities: (1) limiting-case predictions from the theoretical model were well-
supported by simulations from the empirical models; (2) demographic stochasticity decreased
community synchrony, as expected by theory, and its effect was largest in small populations;
(3) environmental fluctuations increased community synchrony relative to simulations in
constant environments because species-specific responses to the environment were positively,
though not perfectly, correlated; and (4) interspecific interactions were weak and therefore
had little impact on community synchrony. We also found that analyses based on synchrony
of species’ percent cover, rather than growth rates, were uninformative (Figs. S2-S3) since
the linear approximation required for analytical predictions is a stronger assumption for
abundance than growth rates, especially given relatively short time-series (Online Supporting
Information). Thus, our results provide further evidence that it is difficult to decipher
mechanisms of species synchrony from abundance time series, as expected by theory (Loreau
and de Mazancourt 2008). Observed synchrony of per capita growth rates was positively
correlated with the variability of percent cover across our focal communities, which confirms
that we are investigating an important process underlying ecosystem stability.

Simulations support theoretical predictions

Our theoretical predictions were derived from a simple model of population dynamics and
required several simplifying assumptions, raising questions about their relevance to natural
communities. For example, the species in our communities do not have equivalent environ-
mental and demographic variances (Figs. S4-S7), as required by our predictions. However,
the theoretical predictions closely matched results from simulations of population models
fit to long-term data from natural plant communities (Table 3). Such strong agreement
between our analytical predictions and the simulation results should inspire confidence in the
ability of simple models to inform our understanding of species synchrony even in complex
natural communities, and allows us to place our simulation results within the context of
contemporary theory.

Demographic stochasticity decreases synchrony

Demographic stochasticity partially counteracted the synchronizing effects of environmental
fluctuations and interspecific interactions on per capita growth rates, but only when pop-
ulations were small (Fig. 2), in agreement with theory (Loreau and de Mazancourt 2008).
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Even in small populations, however, demographic stochasticity was not strong enough to
compensate the synchronizing effects of environmental fluctuations and match the analytical
prediction where only demographic stochasticity is operating (MD in Fig. 2). These results
confirm the theoretical argument by Loreau and de Mazancourt (2008) that independent
fluctuations among interacting species in a non-constant environment should be rare. Only
in the Idaho community does synchrony of per capita growth rates approachMD in a non-
constant environment (Fig. 2). This is most likely due to the strong effect of demographic
stochasticity on the shrub Artemisia tripartita since even a 25 m2 quadrat would only contain
a few individuals of that species.

Our analysis of how demographic stochasticity affects synchrony demonstrates that
synchrony depends on the observation area. As the observation area increases, population size
increases and the desynchronizing effect of demographic stochasticity lessens (Fig. 2). Thus,
our results suggest that community-wide species synchrony will increase as the observation
area increases, rising fromMD toME. Such a conclusion assumes, however, that species
richness remains constant as observation area increases, which is unlikely (Taylor 1961).
Recent theoretical work has begun to explore the linkage between ecosystem stability and
spatial scale (Wang and Loreau 2014, 2016), and our results suggest that including demo-
graphic stochasticity in theoretical models of metacommunity dynamics may be important
for understanding the role of species synchrony in determining ecosystem stability across
spatial scales.

Environmental fluctuations drive community synchrony

In large populations where interspecific interactions are weak, synchrony is expected to
be driven exclusively by environmental fluctuations (Equation 4). Under such conditions
community synchrony should approximately equal the synchrony of species’ responses to the
environment (Loreau and de Mazancourt 2008). Two lines of evidence lead us to conclude
that environmental fluctuations drive species synchrony in our focal plant communities. First,
in our simulation experiments, removing interspecific interactions resulted in no discernible
change in community-wide species synchrony of per capita growth rates (Fig. 1). Second,
removing environmental fluctuations from simulations consistently reduced synchrony (Fig.
1), and the synchrony of species in isolation was a very strong predictor of synchrony of species
in polyculture (Fig. 3). Our results lead us to conclude that environmental fluctuations,
not species interactions, are the primary driver of community-wide species synchrony in
the communities we studied. Given accumulating evidence that niche differences in natural
communities are large (reviewed in Chu and Adler 2015), and thus species interactions are
likely to be weak, our results may be general in natural plant communities.

In the Idaho community, removing environmental fluctuations did not cause a large
decrease in synchrony. However, that result appears to be an artifact. Removing environmental
variation results in a negative invasion growth rate for A. tripartita. Although we only analyzed
IBM runs in which A. tripartita had not yet gone extinct, it was at much lower abundance
than in the other simulation runs. When we removed A. tripartita from all simulations, the
Idaho results conformed with results from all other sites: removing environmental stochasticity
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caused a significant reduction in species synchrony (Fig. S8). Our main results for Idaho
(Fig. 2), with A. tripartita included, demonstrate how the processes that determine species
synchrony interact in complex ways. A. tripartita has a facilitative effect on each grass
species across all vital rates, except for a small competitive effect on H. comata’s survival
probability (Tables S8-S10). At the same time, all the perennial grasses have negative
effects on each other for each vital rate (Tables S8-S10). We know synchrony is affected
by interspecific competition (Loreau and de Mazancourt 2008), but how facilitative effects
manifest themselves is unknown. The interaction of facilitation and competition is clearly
capable of having a large effect on species synchrony, and future theoretical efforts should
aim to include a wider range of species interactions.

A challenge to the generality of our results is that we were only able to model common, co-
occuring species (see Chu and Adler 2015). Most communities are dominated by few common
species and many rare species (McGill et al. 2007), meaning that the low number of common
species in our focal commiunities is not unusual. Rather, the generality of our results hinges
upon the influence of rare species. Rare species could be kept at low densities by competitive
suppression due to strong interspecific interactions. If we had been able to model rare species,
we might have found a larger effect of competition on community synchrony. However,
recent theory predicts that persistent rare species may actually experience even weaker
interspecific competition, and thus stronger niche differences, than common species (Yenni et
al. 2012), in which case synchrony would remain predominantly driven by environmental
responses. Rare species could also be limited by generalist natural enemies whose effects
are density-independent but alter competitive hierarchies (Mordecai 2011). Under such
conditions, synchrony will depend on the degree of pathogen-induced fitness differences and
the pathogen’s response to environmental conditions. Neither our model nor current theory
explicitly considers the effects of pathogens on species synchrony, and this highlights the
need for theoretical work on the interaction between mechanisms of species coexistence and
mechanisms of species synchrony (Loreau 2010).

Interspecific interactions had little impact on community synchrony

We expected community synchrony of per capita growth rates to decrease when we removed
interspecific interactions (Loreau and de Mazancourt 2008). We found that community
synchrony was virtually indistinguishable between simulations with and without interspecific
interactions (Fig. 2). The lack of an effect of interspecific interactions on synchrony is in
contrast to a large body of theoretical work that predicts a strong role for competition in
creating compensatory dynamics (Tilman 1988) and a recent empirical analysis (Gross et al.
2014).

Our results do not contradict the idea that competition can lead to compensatory
dynamics, but they do highlight the fact that interspecific competition must be relatively
strong to influence species synchrony. The communities we analyzed are composed of species
with very little niche overlap (Chu and Adler 2015) and weak interspecific interactions
(Tables S1, S3-S17). Mechanistic consumer-resource models (Lehman and Tilman 2000)
and phenomenological Lotka-Volterra models (Lehman and Tilman 2000, Loreau and de
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Mazancourt 2013) both confirm that the effect of competition on species synchrony diminishes
as niche overlap decreases. In that sense, our results are not surprising: interspecific
interactions are weak, so of course removing them does not affect synchrony.

However, our results do contrast with a recent analysis of several biodiversity-ecosystem
functioning experiments showing that competition drives species synchrony in grasslands
(Gross et al. 2014). The apparent inconsistency between our results and those of Gross et al.
(2014) may be explained by the differences between our studies. Gross et al.’s results are based
on rapidly assembling experimental communities that are, at most, 11 years old. The natural,
relatively undisturbed communities we studied consist of species that have co-occurred for
decades (Chu and Adler 2015) and represent a much later stage of community assembly. In
theory, species interactions should weaken through time as community assembly proceeds
(Kokkoris et al. 1999), meaning that in biodiversity-ecosystem functioning experiments the
processes driving competitive exclusion are still operating. Such communities may be highly
influenced by transient, but strong, interspecific competition that can mask the synchronizing
effects of the environment. In contrast, synchrony may be driven by environmental fluctuations
in older communities. In other words, the dominant driver of community synchrony should
shift from competition to environmental fluctuations through time. One way to test this
prediction is to continue collecting data from biodiversity-ecoystem functioning experiments
and conduct the analysis of Gross et al. (2014) every few years.

Our conclusion that species interactions have little impact on synchrony only applies to
single trophic level communities. Species interactions almost certainly play a strong role in
multi-trophic communities where factors such as resource overlap (Vasseur and Fox 2007),
dispersal (Gouhier et al. 2010), and the strength of top-down control (Bauer et al. 2014) are
all likely to affect community synchrony.

CONCLUSIONS

Species-specific responses to temporally fluctuating environmental conditions is an important
mechanism underlying asynchronous population dynamics and, in turn, ecosystem stability
(Loreau and de Mazancourt 2013). When we removed environmental variation, we found
that synchrony decreased in four out of the five grassland communities we studied (Fig. 2).
A tempting conclusion is that our study confirms that compensatory dynamics are rare in
natural communities, and that ecologically-similar species will exhibit synchronous dynamics
(e.g., Houlahan et al. 2007). Such a conclusion misses an important subtlety. The perennial
grasses we studied do have similar responses to the environment (Table S2), which will tend
to synchronize dynamics. However, if community-wide species synchrony is less than 1, as
it is in all our focal communities, some degree of compensatory dynamics must be present
(Loreau and de Mazancourt 2008). In agreement with other studies (Rocha et al. 2011,
Vasseur et al. 2014), we find that environmental responses are primarily responsible for the
degree of synchrony among ecologically-similar species. This result contrasts with a recent
analysis of several biodiversity-ecosystem functioning experiments showing that competition
drives community synchrony (Gross et al. 2014). Recently assembled communities, such
as experimental plots, may exhibit strong species interactions that will weaken over time
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(Kokkoris et al. 1999). Future research on the influence of community assembly on synchrony
could reconcile inconsistent observations on the biotic and abiotic forces that jointly drive
community dynamics.
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Tables

Table 1: Site descriptions and focal species.

Site Name Biome Location (Lat, Lon) Obs. Years Species

New Mexico Chihuahuan Desert 32.62° N, 106.67° W 1915-1950 Bouteloua eriopoda
Sporobolus flexuosus

Arizona Sonoran Desert 31°50’ N, 110°53’ W 1915-1933 Bouteloua eriopoda
Bouteloua rothrockii

Kansas Southern mixed prairie 38.8° N, 99.3° W 1932-1972 Bouteloua curtipendula
Bouteloua hirsuta
Schizachyrium scoparium

Montana Northern mixed prairie 46°19’ N, 105°48’ W 1926-1957 Bouteloua gracilis
Hesperostipa comata
Pascopyrum smithii
Poa secunda

Idaho Sagebrush steppe 44.2° N, 112.1° W 1926-1957 Artemisia tripartita
Pseudoroegneria spicata
Hesperostipa comata
Poa secunda
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Table 2: Observed synchrony among species’ per capita growth rates (φR), observed synchrony
among species’ percent cover (φC), the coefficient of variation of total community cover, and
species richness for each community. Species richness values reflect the number of species
analyzed from the community, not the actual richness.

Site φR φC CV of Total Cover Species richness
New Mexico 0.86 0.92 0.51 2
Arizona 0.89 0.80 0.47 2
Kansas 0.54 0.15 0.30 3
Montana 0.53 0.54 0.52 4
Idaho 0.36 0.18 0.19 4
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Figures

Figure 1: Community-wide species synchrony of per capita growth rates from model simula-
tion experiments. Synchrony of species’ growth rates for each study area are from simulation
experiments with demographic stochasticity, environmental stochasticity, and interspecific
interactions present (“All Drivers”), demographic stochasticity removed (“No D.S.”), environ-
mental stochasticity removed (“No E.S.”), interspecific interactions removed (“No Comp.”),
interspecific interactions and demographic stochasticity removed (“No Comp. + No D.S.”),
and interspecific interactions and environmental stochasticity removed (“No Comp. + No
E.S.”). Abbreviations within the bars for the New Mexico site indicate whether the IBM or
IPM was used for a particular simulation. Error bars represent the 2.5% and 97.5% quantiles
from model simulations. All IBM simulations shown in this figure were run on a 25 m2 virtual
landscape. Points show observed and predicted synchrony aligned with the model simulation
that corresponds with each observation or analytical predicion.
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Figure 2: Synchrony of species’ growth rates for each study area from IBM simulations across
different landscape sizes when only demographic stochastcity is present (“D.S. Only”) and
when environmental stochasticity is also present removed (“D.S. + E.S.”). The horizontal
lines show the analytical predictionsMD (dashed line) andME (dotted line). The strength
of demographic stochasticity decreases as landscape size increases because population sizes
also increase. Theoretically, “D.S. Only” simulations should remain constant across landscape
size, whereas “D.S. + E.S.” simulations should shift from the MD prediction to the ME

prediction as landscape size, and thus population size, increases, but only if demographic
stochasticity it strong enough to counteract environmental forcing. Error bars represent the
2.5% and 97.5% quantiles from model simulations.
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Figure 3: Synchrony of species per capita growth rates when species are growing in isolation
(IPM without species interactions) versus synchrony in polycultures (IPM with species
interactions). We used the same sequence of random year effects for both simulations (with
and without species interactions) to mimic biodiversity-ecosystem functioning experiments.
The dashed line is the line of equality. Simulation results in this figure are analagous to “No
Comp. + No D.S.” (species in isolation) and “No D.S.” (species in competition) in Fig. 1,
but here we control the time series of random year effects.
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