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ABSTRACT13

Chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) is a widely used14

approach to study protein-DNA interactions. To analyze ChIP-Seq data, practitioners are15

required to combine tools based on different statistical assumptions and dedicated to spe-16

cific applications such as calling protein occupancy peaks or testing for differential occu-17

pancies. Here, we present GenoGAM (Genome-wide Generalized Additive Model), which18

brings the well-established and flexible generalized additive models framework to genomic19

applications using a data parallelism strategy. We model ChIP-Seq read count frequencies20

as products of smooth functions along chromosomes. Smoothing parameters are estimated21

from the data eliminating ad-hoc binning and windowing needed by current approaches.22

We derived a peak caller based on GenoGAM with performance matching state-of-the-art23

methods. Moreover, GenoGAM provides significance testing for differential occupancy with24
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controlled type I error rate and increased sensitivity over existing methods. By analyzing a25

set of DNA methylation data, we further demonstrate the potential of GenoGAM as a generic26

analysis tool for genome-wide assays.27

INTRODUCTION28

Chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) is the reference method29

used for genome-wide quantification of protein-DNA interactions1. It is used to study a wide30

range of fundamental genome biology processes covering transcription, replication, and mainte-31

nance. ChIP-Seq consists of cross-linking DNA with chromatin, followed by DNA fragmentation32

and immunoprecipitation of the protein of interest along with its bound DNA fragments. The DNA33

fragments are then released, amplified, and sequenced. ChIP-Seq has been applied for studying34

DNA-bound proteins of various functions and therefore with various patterns of distribution along35

the genome. These include transcription factors that are bound at discrete binding sites2, 3, histone36

modifications3, 4 which are found at nucleosomes, or the transcription3 and replication machinery37

which are even more broadly distributed. Often, the quantities of interest are the occupancies38

relative to technical controls, such as the input (a sample that was not subject to the immunopre-39

cipitation step), between genetic backgrounds, treatments, or combinations thereof.40

Although ChIP-Seq is a very generic methodology to study protein-DNA interactions, statis-41

tical analysis methods have been so far dedicated to specific applications. Early work has focused42

on transcription factors with discrete binding sites, typically DNA motifs at promoters or tran-43

scriptional enhancers2, 5. ChIP-Seq read coverage then shows peaks localized at the binding sites.44

The aim of these statistical methods is to identify these peaks and their statistical significance,45

typically by controlling the false discovery rate. For example, MACS5 is a widely used6, 7 peak46

caller that assumes a Poisson distribution for the count data and computes peak significance based47

on a combination of global and local rate. ZINBA8 combines a negative binomial mixture model48

for background and enriched regions with a zero inflated component for regions with excessive49

zero counts. The specific calling of narrow and wide peaks was made possible by JAMM9, which50
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makes use of replicates, and is based on a mixture model of enriched and non-enriched regions.51

Testing for differential overall occupancies at regions of interest across conditions is done52

by testing for differences in number of reads overlapping the region 10. Complementary to testing53

for overall occupancies, MMdiff11 allows testing for differences in shapes in given regions. Lun54

et al.12 provide a framework to test differential occupancies between conditions across windows in55

given regions while properly controlling for false discovery rate. This approach allows both testing56

for differences in overall occupancies and in shapes.57

Hence, practitioners rely on different statistical frameworks for peak calling tasks and dif-58

ferential occupancies. However, flexible handling of replicates and additional control factors is59

not always possible. Moreover, current methods rely on binning and sliding window techniques,60

whose choice of the window size is not data-driven but subjective. Another limitation is that the61

more general task of statistical inference of a genome-wide bias-corrected occupancy track is not62

addressed.63

Here, we introduce GenoGAM (Genome-wide Generalized Additive Model), which pro-64

vides a statistical framework to simultaneously address the above issues. Our model describes65

genome-wide occupancy by smooth functions, which facilitate downstream applications such as66

peak calling or differential binding analysis. GenoGAM normalizes for sequencing depth and can67

handle factorial experimental designs, including biological replicates and multiple controls. The68

amount of smoothing is estimated in an automatic, data-driven manner and thus avoids introducing69

subjectivity from the analyst. When analyzing differential binding in a factorial design, we ob-70

tain well-calibrated per-base-pair p-values. Application to datasets of human and yeast shows that71

GenoGAM is as performant as dedicated methods for peak calling and much more sensitive than72

state-of-the art differential occupancy methods. By providing an approximation to a conventional73

generalized additive model (GAM13) that allows a data parallelism implementation, GenoGAM74

scales linearly with the number of data points and is thus computationally amenable to whole-75

genome applications. Our method provides a framework that is applicable not only to ChIP-Seq76
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data, but also to other next-generation sequencing data such as DNA methylation data (Figure 1a).77

RESULTS AND DISCUSSION78

A generalized additive model for ChIP-Seq data79

We consider an experiment consisting of a set of ChIP-Seq samples. A data point is defined by a80

pair of a ChIP-Seq sample and a genomic position. We denote by xi the genomic position of the i-th81

data point, by ji its ChIP-Seq sample and by yi ≥ 0 the number of fragments in sample ji centered82

at position xi. For single-end libraries, the fragment center is estimated by shifting the read end83

position by a constant (Methods). When reducing ChIP-Seq data to fragment centers rather than84

full base coverage, each fragment is counted only once. This reduces artificial correlation between85

adjacent nucleotides. We model the counts yi using the following generalized additive model:86

yi ∼ NB(µi, θ) (1)

log(µi) = oi +
K∑

k=1

fk(xi) zji,k (2)

The counts yi are assumed to follow a negative binomial distribution with means µi (equation87

1) and a dispersion parameter θ that relates the variance to the mean such that Var(yi) = µi +µ2
i /θ.88

Consequently, the model accounts for overdispersion10. The logarithm of the mean µi is the sum of89

an offset oi and one or more smooth functions fk (equation 2). The offsets oi are predefined data-90

point specific constants that account for sequencing depth variations (Methods). More elaborate91

usage could include position- and sample-specific copy number variations, or GC-biases. The92

indicator variable zji,k values 1 if the smooth function fk contributes to the mean counts of sample93

ji and 0 otherwise. As demonstrated in the Methods section, this formulation allows modeling IP94

versus input experiments as well as factorial experimental designs.95
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We modeled IP versus input experiments using GenoGAM with two smooth functions: finput96

that contributes to both input and IP samples, and fprotein that only contributes to IP samples. More97

specifically, finput models local ChIP-Seq biases common to input and IP, whereas fprotein models98

the protein log-occupancy up to one genome-wide scaling factor. Figure 1b shows the application99

of this model to one ChIP-Seq library for the S. cerevisiae general transcription factor TFIIB and100

its input control (Methods).101

In GenoGAM, the smooth functions are represented by cubic spline curves, which are writ-102

ten as linear combinations of a set of regularly spaced B-spline basis functions br, i.e. fk(x) =103 ∑
r

βrbr(x). We chose second order B-splines as basis functions, which are bell-shaped cubic poly-104

nomials over a finite support14. To avoid overfitting, additional smoothing of the functions fk is105

carried out by penalization of the second order differences of the spline coefficients, which ap-106

proximately penalizes second order derivatives of fk – an approach called P-splines (penalized107

B-splines 15). The optimization criterion for P-splines is the sum of the negative binomial log-108

likelihood (depending on the response vector y and the vector β containing the coefficients of all109

smooth functions) plus a penalty function that is weighted by the smoothing parameter λ:110

β̂ = argmax lNB(β;y, θ)− λβ>Sβ, (3)

where S is a symmetric positive matrix that encodes the squared second order differences of the111

coefficients β15. This regularization allows dense placements of the basis functions (between 20112

and 50 bp), while relying on the smoothing parameter λ to protect against overfitting. Large values113

of λ yield smoother functions. A single smoothing parameter common to all smooth functions114

proved to be sufficient for our applications. For given λ and θ, model fitting was performed using115

penalized iteratively re-weighted least squares (Methods).116

The penalized likelihood can also be interpreted in a Bayesian fashion16, where a multivariate117

Gaussian prior is placed on the coefficient vector β. Large-sample approximations then yield a118
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multivariate Gaussian posterior distribution for β, and, by the linearity of fk(x) =
∑
r

βrbr(x),119

Gaussian posteriors for the point estimates fk(x). This allows for the construction of pointwise120

confidence bands 16. An example of the fitted smooth functions and their confidence bands for the121

yeast transcription factor TFIIB is shown in Figure 1b.122

Data-driven determination of the smoothing and dispersion parameters123

To determine the optimal value for λ and θ, generalized cross-validation, which is based on an124

analytical leave-one-out large-sample approximation16, yielded very wiggly fits indicative of over-125

fitting. We thus developed an empirical cross-validation scheme. To reduce computational time,126

cross-validation was performed on a subset of all data. To this purpose, we selected a sufficiently127

large set of distinct regions that are long enough to not suffer from border effects common to spline128

fitting. Using 40 or more distinct regions containing at least 60 basis functions gave satisfactory129

empirical results (Supplementary Table 1). Also, it was important to select regions relevant for the130

desired application. For peak calling purposes, regions were selected that had the most significant131

fold change of IP versus input read counts (Methods). In each region, 10-fold cross-validation132

was performed, where a tenth of the data points were removed, the model was fitted on the re-133

maining data points, and the log-likelihood of the left-out data points was computed. Parameter134

combinations were scored for the total out-of-sample log-likelihood over all regions. Short range135

correlations are strong in ChIP-Seq data and are not fully controlled by replicates or input ex-136

periments. To avoid overfitting due to short range correlations, each cross-validation fold did not137

consist of randomly selected single base pairs but of short intervals. The length of these intervals138

was about a tenth the average fragment size in absence of replicates and twice the average fragment139

sizes when replicates were available (Methods). Investigation on grid values of θ and λ showed140

that the out-of-sample log-likelihood was typically unimodal. We therefore used Nelder-Mead141

optimization 17 to jointly fit the two parameters in a computationally faster way than grid search.142
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Fitting a GAM genome-wide143

Since the computation time of a GAM grows polynomially with the number of basis functions,144

fitting one model to a whole chromosome is unfeasible. Instead, we propose to fit separate GAMs145

on sequential overlapping intervals (or tiles, Fig. 2a). As overlap length increases, agreement of146

the fit at the midpoint of the overlapping region increases. A genome-wide fit is obtained by joining147

together tile fits at overlap midpoints (Fig. 2a). This approximation yields computation times that148

are linear in the number of basis functions at no practical precision cost (Fig. 2b). Furthermore,149

it allows for parallelization, with speed-ups being linear in the number of cores (Fig. 2c). This150

approximation parallelizes the computation over the data, which will allow future implementation151

of GenoGAM in map-reduce frameworks such as Spark18.152

GenoGAM provides a competitive peak caller153

Because analytical derivatives of P-splines are available, identifying peaks of the protein occu-154

pancy fprotein is straightforward by extracting local maxima where f ′protein(x) = 0 and f ′′protein(x) < 0155

(Methods, Supplementary Fig. S1). To assess statistical significance of the peak heights, we in-156

troduced an empirical z-score that contrasts the estimate of the log-occupancy µ at the peak to a157

robust estimate of background log-occupancy level µ0, taking both background level variance σ2
0158

and uncertainty of peak height σ2 into account (see Methods for their estimation):159

z =
µ− µ0√
σ2 + σ2

0

. (4)

A practical approach to model the null distribution of peak scores is to assume that false160

positive peaks arise from symmetric fluctuations of the background and thus distribute similarly to161

local minima, or peaks found when inverting the role of input and IP 5. We therefore estimated the162

false discovery rate using the z-score distributions of the local minima (Methods).163
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We first compared the performance of GenoGAM, MACS5, JAMM9 and ZINBA8 in identi-164

fying binding sites of TFIIB. For about 20% of yeast promoters, recruitment of TFIIB is triggered165

by the well-characterized DNA element TATA-box, providing at these promoters a ground truth for166

a TFIIB occupancy peak19. We mapped 1,105 TATA-boxes genome-wide by regular expression of167

a consensus motif (Methods) and considered 1 kb regions centered on TATA-boxes for benchmark-168

ing. In these regions, significant peaks (FDR < 0.1) from GenoGAM were substantially closer to169

TATA-boxes than those of alternative methods (median absolute distance 58 bp, third quartile 144170

bp for GenoGAM versus 152 and 247 bp for MACS, 82 and 174 bp for JAMM, and 155 and 237171

bp for ZINBA, respectively Fig. 3a).172

Moreover, the proportion of peaks within 30 bp of a TATA-box center was twice as high as173

for any other method independently of the number of reported peaks (Fig. 3b), showing that the174

improvement was robust to the score threshold. We performed a similar benchmark (Methods)175

on the human chromosome 22 for 6 transcription factors of the ENCODE project6 selected to176

be representative of accuracies in predicting ChIP-Seq peak positions from sequence motifs 20
177

(CEBPB, CTCF, MAX, USF1, PAX5, and YY1). On these data, GenoGAM performance was178

comparable to the other methods (95% boostrap confidence intervals, Fig. 3c for significant peaks,179

and Supplementary Fig. S2 for distance distributions, Supplementary Fig. S3 for all cutoffs).180

Hence, although GenoGAM is a general framework for ChIP-Seq analysis, it nonetheless provides181

a peak caller that is at least as performant as dedicated tools.182

We next investigated the reason for the drastic differences observed in the yeast TFIIB dataset183

between GenoGAM and the other methods. The TATA-box region of IDH2 illustrates the issue184

(Fig. 4a). The peaks reported by GenoGAM are positions with maximal a posteriori estimate of IP185

over input fold-changes. In contrast, MACS and JAMM report positions with maximal statistical186

significance5, 9. Because statistical significance increases with both effect size and sample size, this187

leads to peak calls biased toward positions with high total counts in IP and input (Fig. 4a). Across188

all 644 TATA-box regions at which both GenoGAM and MACS identify a peak, total counts within189

50 bp of peak positions were higher for MACS, but count ratios were higher for GenoGAM (Fig.190
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4b), generalizing the observations made for IDH2. The yeast TFIIB dataset was sequenced at a191

much higher coverage than the ENCODE dataset (0.9 unique fragments per base in average versus192

less than 0.03 unique fragments per base in average), leading to stronger discrepancies between193

significance and robust fold-changes. As sequencing depth is expected to increase in the near194

future, we anticipate that robust fold-change estimates as provided by GenoGAM will be a more195

sustainable criterion than mere significance for calling peak positions.196

Higher sensitivity in testing for differential occupancy197

To assess the performance of GenoGAM for calling differential occupancy, we re-analyzed histone198

H3 Lysine 4 trimethylation (H3K4me3) ChIP-Seq data of a study21 comparing wild type yeast199

versus a mutant with a truncated form of Set1, the H3 Lysine 4 methylase. H3K4me3 is a hallmark200

of promoters of actively transcribed genes. Thornton and colleagues21 have reported genome-wide201

redistribution in the truncated Set1 mutant of H3K4me3, which is depleted at the promoter and202

enriched in the gene body. We modeled this data with GenoGAM using one smooth function fWT203

for the wild type reference occupancy, and one further smooth function fmutant/WT for the differential204

effect. The offsets were computed to control for variations in sequencing depth between replicates205

and overall genome-wide H3K4me3 level (Methods). This yielded base-level log-ratio estimates206

and their 95% confidence bands genome-wide (Methods, Figure 5a for data and fit at the gene207

YNL176C consistent with the report of reduced binding at promoter regions).208

As mentioned above, the confidence bands are Bayesian credible intervals. Previous studies209

based on simulated data showed that these confidence bands have close to nominal coverage prob-210

abilities and can, in practice, be used in place of frequentist confidence intervals 22. We estimated211

base-level p-values using the point-wise estimates and standard deviations (Methods). To empir-212

ically verify that the p-values were at least conservative, we created a negative control dataset by213

per-base-pair independent permutation of the counts between the four samples. The offsets were214

set to 0 and the smoothing and dispersion parameters were estimated again. This non-parametric215

permutation scheme makes less assumptions than previous simulation studies22. Nonetheless, per-216
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base-pair p-values in this negative control experiment were slightly overestimated (Figure 5b).217

These results show that GenoGAM can be used to identify individual positions of significant dif-218

ferential occupancies with controlled type I error. Here, correction for multiple testing can either219

be done using the Benjamini and Hochberg procedure23 or, procedures that exploit dependencies220

between adjacent positions24.221

Complementary to de novo identification, predefined regions, such as genes, can be tested for222

differential occupancies. To test for differences at any position in a region using GenoGAM, we223

propose to apply Hochberg’s procedure to correct the pointwise p-values for multiple testing, and to224

report the smallest of these corrected p-values (Methods). To validate this approach, we compared225

GenoGAM against the following three approaches: csaw12, which also tests for differences at226

any position in the regions, DESeq10, which tests for differences in the overall occupancies, and227

MMdiff11, which tests for differences of distribution within the regions but not overall occupancy228

(Methods). All investigated methods empirically controlled type I error on the permuted dataset229

at the 5% nominal level (Supplementary Fig. S4). On the original dataset, the least number of230

significant genes (FDR< 0.1) were identified by DEseq (735) and MMdiff (5). The csaw algorithm231

gave up to 863 significant genes but the number of identified genes depended strongly on the choice232

of the window size (Figure 5c). Of all methods, GenoGAM was the most sensitive, reporting 4,409233

significant genes. Up to 861 genes, these genes were a superset of the genes reported by csaw,234

indicating that GenoGAM captured the same signal but with a higher sensitivity (Figure 5d). The235

genes reported only by GenoGAM showed a differential occupancy pattern similar yet weaker to236

the genes common to csaw and GenoGAM, with depletion in the promoter and enrichment in the237

gene body (Figure 5d), indicating that GenoGAM captured true biological signal.238

Application to DNA methylation data239

Generalized additive models are based on the generalized linear modeling framework and thus240

allow any distribution of the exponential family for the response. Therefore, GenoGAM can be also241

used to model continuous responses, for instance using the Gaussian distribution, and proportions242
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using the Binomial distribution. For ChIP-Seq data, a log-linear predictor-response relationship of243

the form (2) is justified by the fact that effects on the mean are typically multiplicative. However,244

other monotonic link functions could also be used. Moreover, quasi-likelihood approaches are245

supported, allowing for the specification of flexible mean-variance relationships25.246

To test the flexibility of GenoGAM, we conducted a proof-of-principle study on modeling247

bisulfite sequencing of bulk embryonic mouse stem cells grown in serum26. Bisulfite sequencing248

quantifies methylation rate by converting cytosine residues to uracil, leaving 5-methylcytosine249

residues unaffected. At each cytosine, the data consisted of the number ni of fragments overlapping250

the cytosine and the number yi of these fragments for which the cytosine was not converted to251

uracil. The quantity of interest was the methylation rate, i.e. the expectation of the ratio yi/ni.252

In the original publication, single nucleotide position methylation rates were estimated using a253

sliding window approach with an ad-hoc choice of window size of 3 kb computed in steps of 600254

bp. Figure 6 reproduces an original figure showing the fit in a 120kb section of chromosome 6. We255

modeled this 120 kb section with GenoGAM using a quasi-binomial model, where the response256

was the number of successes yi out of ni trials, the log-odd ratio was modeled as a smooth function257

of the genomic position, and the variance was equal to a dispersion parameter times the variance258

of the binomial distribution. Smoothing and dispersion parameters were determined by cross-259

validation (Methods). The GenoGAM fit was consistent with the original publication26, but did260

not rely on manually set window sizes and provided confidence bands (Figure 6). As expected,261

wider confidence bands were obtained in regions of sparse data and tighter bands in regions with a262

lot of data (Figure 6).263

CONCLUSION264

We have introduced a generic framework based on generalized additive models to model ChIP-Seq265

data. We have made this possible by providing a scalable algorithm that can fit GAMs to very long266

longitudinal data such as whole chromosomes at base-pair resolution. Scaling was made possible267

by parallelization over the data and allowing approximations rather than exact computation of the268
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fit 27.269

Smoothing and dispersion parameters were obtained by cross-validation, i.e. they were fitted270

for the accuracy in predicting unseen data. This criterion turned out to provide useful values of271

smoothing and dispersion for inference, since we obtain signal peaks close to actual binding sites272

of transcription factors when these are known, at least as close as dedicated tools. Moreover, this273

criterion also led to reasonable uncertainty estimates since confidence bands of the fits were found274

to be only slightly conservative.275

The utilization of genome-wide GAMs comes with a number of advantages: First, we flexi-276

bly model factorial designs, as well as replicates with different sequencing depths using size factors277

as offsets. Second, applying GAMs yields confidence bands as a measure of local uncertainty for278

the estimated rates. We showed how these can be the basis to compute point-wise and region-wise279

p-values. Third, GAMs outputs analytically differentiable smooth functions, allowing flexible280

downstream analysis. We showed how peak calling can be elegantly handled by making use of the281

first and second derivatives. Fourth, various link functions and distributions can be used, providing282

the possibility to model a wide range of genomic data beyond ChIP-Seq, as we illustrated with a283

first application on DNA methylation. In conclusion, we foresee GenoGAM as a generic method284

for the analysis of genome-wide assays.285

METHODS286

Preprocessing287

Fragments were centered, reducing each fragment to one single data point. In case of single end288

data, the fragment length d was estimated using the Bioconductor package chipseq and its cov-289

erage method. It is defined as the optimal shift for which the number of bases covered by any read290

is minimized. Thus, the center was taken as the start of the read shifted by d
2

downstream.291
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Sequencing depth variations292

Variations for sequencing depth was controlled by using size factors computed by DESeq2 28 (ver-293

sion 2 1.10.0 here and after). This method robustly estimates fold-changes in overall sequencing294

depth by comparing read counts of predefined regions. The selection criteria for these regions was295

application-specific.296

For peak calling applications, the selected regions were the 1,000 tiles with smallest p-value297

according to DESeq2 test for enrichment of IP over input performed on total read counts per298

tile. This allowed to select tiles that were most likely containing peaks. For differential binding299

application, all tiles were considered.300

Model fitting301

Model fitting given λ and θ302

Each chromosome was partitioned into equally-sized intervals called chunks. Tiles were defined303

as chunks extended on either side by equally-sized overhangs. The generalized additive model was304

fitted on each tile separately using the gam function of the R package mgcv. Point estimates at305

each base pair of the smooth functions and their standard errors were extracted with the predict306

function on the fitted object setting “type” parameter to “iterms”. The tile fits were then restricted307

to their chunk to define the chromosome-wide fit.308

Fitting of λ and θ309

The parameters λ and θ were the same for all tiles and were estimated using 10-fold cross-310

validation on a subset of all tiles. The selection of relevant tiles for cross-validation was application-311

specific as outlined in the respective sections below. To avoid overfitting due to short range cor-312
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relation, each cross-validation fold did not consist of randomly selected single base pairs but of313

short intervals. When replicate samples were available (that is all except for the TFIIB dataset),314

intervals could be of greater length as the model can predict samples from the respective replicates.315

We set it to twice the estimated fragment length. In the absence of replicates (TFIIB dataset), in-316

terval length was set to 20 bp (approximately a tenth of the fragment length.). For a given pair317

of values for λ and θ, the score function was defined as the sum of out-of-sample log-likelihood318

over all cross-validation folds and all tiles, restricted to the data points within chunks to not depend319

on poor fitting in overhangs. The parameters λ and θ were estimated by gradient-free numerical320

optimization of the score function using the Nelder-Mead algorithm (R function optim).321

Yeast TFIIB dataset322

ChIP-Seq library preparation, sequencing and read alignment323

ChIP-Seq for TFIIB was performed essentially as described previously 29 with a few modifications.324

Briefly, 600 ml BY 4741 S. cerevisiae culture with C-terminally TAP-tagged TFIIB (Open Biosys-325

tems) was used. Immunoprecipitation was performed with 75 µl of IgG SepharoseTM 6 Fast Flow326

beads (GE Healthcare) for 3 hours at 4◦C on a turning wheel. 30 µl of Input sample was taken be-327

fore immunoprecipitation and stored at 4◦C. IP and Input samples were reverse cross-linking for 2328

hours with Proteinase K at 65◦C and purified using Quiagen MinElute Kit. Samples were digested329

with 2.5 µl RNase A/T1 Mix (2 mg/ml RNase A, 5000 U/ml RNase T1; Fermentas) at 37◦C for330

1 h, purified and eluted in 50 µl H2O. ChIP-Seq libraries were prepared using NEB Next library331

preparation kit following manufacturer’s instructions using the complete 50 µl as input. 2 µl of332

1.7 µM adapters containing a GGAT barcode and 2 µl of a 0.25 µM adapter containing a CACT333

barcode were used for ligation with Input and IP samples, respectively. The final library was am-334

plified for 22 cycles using Phusion Polymerase and purified using Agencourt Magnetic beads. 36335

bp single end sequencing was performed on an Illumina GAIIX sequencer at the LAFUGA core336

facility of the Gene Center, Munich. Single-end 36 base reads and 4 base reads of barcodes were337
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obtained and processed using the Galaxy platform30. Reads were demultiplexed, quality-trimmed338

(Fastq Quality Filter), and mapped with Bowtie 0.12.7 31 to the SacCer2 genome assembly (Bowtie339

options: -q -p 4 -S –sam-nohead -phred33-quals).340

GenoGAM model341

This dataset consisted of two samples: one input and one IP without replicates. Hence there was

no need for an offset. We used the following GenoGAM model:

yi ∼ NB(µi, θ)

log(µi) = finput(xi) + fprotein(xi)zji,protein,

where zji,protein = 1 whenever ji is the index of an IP sample and zji,protein = 0 whenever ji is the342

index of an input sample. Further parameter details are given in Supplementary Table S1.343

TATA box mapping344

Promoter TATA boxes where defined as instances of the motif TATAWAWR19 at most 200 bp 5’345

and 50 bp 3’ of one of the 7,272 transcript 5’-ends reported by Xu et al.32.346

ENCODE transcription factors347

Data processing348

Alignment files (BAM files, aligned for the human genome assembly hg19) for ChIP-Seq data349

for the transcription factors CEBPB, CTCF, MAX, USF1, PAX5, and YY1 were obtained from350

the ENCODE website www.encodeproject.org. All these datasets contained two biological351

replicates for the protein samples and at least one input sample. However, the library sizes of the352
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input samples were so small that including them resulted in higher uncertainty about the peaks,353

for our approach and for alternative approaches. We therefore conducted the analyses without354

correction for input.355

GenoGAM model356

For each transcription factor the dataset was modeled separately. Each one consisted of IPs with357

replicates. The following GenoGAM model was used:358

yi ∼ NB(µi, θ)

log(µi) = log(sji
) + fprotein(xi),

where the offsets log(sji
) are log-size factors computed to control for sequencing depth vari-359

ation between the replicates (see section ). Further parameter details are given in Supplementary360

Table S1.361

Transcription factor motif mapping362

Motif occurrences in the genome were determined by FIMO33 using default threshold 10−4 with363

position weight matrices (PWMs) from the JASPAR 2014 database34 with the following IDs:364

CEBPB: MA0466.1, CTCF: MA0139.1, MAX: MA0058.1, PAX5: MA0014.2, USF1: MA0093.2,365

YY1: MA0095.2366
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Peak calling367

GenoGAM-based peak calling and z-score368

Values of first and second derivatives of fitted smooth functions were obtained by multiplying the369

estimated coefficients with the corresponding derivatives of the B-splines as obtained from the370

spline.des function of the R package splineDesign. Local extrema (at base pair resolution)371

were identified as positions at which the sign of the first derivative differed from the one of the372

preceding position. For the z-score (equation 4), µ0 is the global background mean and σ2
0 is the373

global background variance of f(x). In order to account only for the background without potential374

peaks, µ0 was estimated as the shorth from the Bioconductor genefilter package for all f(xi),375

i = 1, . . . , n (midpoint of the shortest interval containing half of the data) of all fitted values.376

The fitted values smaller than the shorth were mirrored on it, such that a symmetric density was377

created that excludes the values larger than the shorth, in particular those high values representing378

peaks. The variance of this newly created distribution was then estimated in a robust fashion by379

the median absolute deviation (MAD) giving σ2
0 (Supplementary Figure S1).380

False Discovery Rate for GenoGAM peaks381

To estimate false discovery rates (FDR), peaks were called on −fprotein. Their z-scores were ob-382

tained by recomputing µ0 and σ0 and applying the same formula. The FDR for a given minimum383

z-score z was estimated by |Vz |
|Pz |+|Vz | , where Pz and Vz are the sets of peaks and valleys, respectively,384

with a z-score greater than or equal to z.385
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MACS, JAMM, and ZINBA386

The version 2 of the MACS software, MACS2, was run with the default parameters and the addi-387

tional flag call-summits. In case of TFIIB, the nomodel parameter was used to avoid building the388

shifting model. This was necessary since the default values for mfold were too high and resulted389

in worse performance if reduced, compared to absence of a model.390

JAMM was run with default values and peak calling mode (-m) set to narrow assuming a391

three component mixture model for background, enriched regions and tails of enriched regions.392

Although JAMM computes a score to rank peaks it does not provide a method to define a threshold393

for a given FDR or significance. Nevertheless, JAMM applies some filtering on the complete list394

of peaks to output a filtered list. Instead of using this filtered output directly, we used the complete,395

sorted (by score) peak list and took the topN results whereN is the number of peaks in the filtered396

output. This improved the performance of JAMM in some cases (and left unchanged in others).397

For analysis, where a cutoff for JAMM was still needed we used the same number of peaks that398

MACS reported.399

For ZINBA, the mappability score was generated (generateAlignability) with the mappabil-400

ity files for 36 bp reads, taken from the ZINBA website https://code.google.com/p/401

zinba/. The average fragment length (extension) was specified at 190 bp, window size (win-402

Size) at 250 and offset (offset) at 125. The FDR threshold was set to 0.1 and window gap to 0.403

Peaks were refined (default) and model selection was activated. The complete model was used404

(selecttype = ”complete”), input was included as a covariate (selectcovs = ”input count”) and405

interactions were allowed. The chromosome used to build the model was selected randomly to be406

”chrXVI” (selectchr). The parameter “method” was set method = ”mixture”.407
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Differential binding408

Data processing409

Raw sequencing files (H3K4ME3 Full length Set1 Rep 1.fastq,410

H3K4ME3 Full length Set1 Rep 2.fastq, H3K4ME3 aa762-1080 Set1 Rep 1.fastq,411

and H3K4ME3 aa762-1080 Set1 Rep 2.fastq) were obtained from the Sequence Read Archive412

(SRA) repository (http://www.ncbi.nlm.nih.gov/sra). These were paired-end reads.413

Reads were aligned to the SacCer3 build of the S. cerevisiae genome with the STAR aligner35 (ver-414

sion 2.4.0, default parameters). Reads with ambiguous mapping were removed using samtools36
415

(version 1.2 option -q 255). Gene boundaries were obtained from the S. cerevisiae genome anno-416

tation R64.1.1, restricting gff file entries of type ”gene”.417

GenoGAM model418

This dataset consisted of four samples: two biological replicate IPs for the wild type strain, and419

two biological replicate IPs for the mutant strain. We used the following GenoGAM model:420

yi ∼ NB(µi, θ)

log(µi) = log(sji
) + fWT(xi) + fmutant/WT(xi)zji,mutant

where zji,mutant = 1 for j index of one mutant sample and 0 for wild-type samples. The off-421

sets log(sji
) are log-size factors computed to control for sequencing depth variation and overall422

H3K4me3 across all four samples (see section ). Further parameter details are given in Supple-423

mentary Table S1.424
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Position-level significance testing425

Null hypotheses of the form H0 : fk(x) = 0 for a smooth function fk() at a given position x of426

interest were tested assuming approximate normal distribution of the corresponding z-score, i.e.:427

Tk(x) ∼ N(0, 1)

where

Tk(x) =
f̂k(x)

σ̂2
fk(x)

where f̂k(x) and σ̂2
fk(x) denote point estimate and standard error of the smoothed value 16 as428

returned by the function predict(..., type=”iterms”, se.fit=TRUE) of the R package mgcv.429

False discovery rate for predefined regions430

Let R1, ..., Rp be p regions of interest, where a region is defined as a set of genomic positions.431

Regions are typically but not necessarily, intervals (e.g. genes or promoters). For instance, all432

exons of a gene could make up a single region. Regions can be a priori defined or defined on the433

data using independent filtering 37. For instance, when testing for significant differences between434

two conditions, regions can be selected for having a large total number of reads over the two435

conditions 12.436

For j in 1, .., p, let Hj
0 be the composite null hypothesis that the smooth function fk values 0

at every position of the region Rj:

Hj
0 =

∧
xi∈Rj

(fk(xi) = 0)
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The False Discovery Rate was controlled using the following procedure 12:437

1. Position-level p-values at all region positions were computed using position-level significant438

testing as described above.439

2. Within each region Rj , position-level p-values were corrected for multiple testing using440

Hochberg family-wise error rate correction 38. The Hochberg correction was applied because441

position-level p-values of one smooth function are positively associated. The p-value for442

the null hypothesis Hj
0 was then computed as the minimal family-wise error rate corrected443

position-level p-value. This step gives one p-value per region.444

3. FDRs were computed using Benjamini-Hochberg procedure 23 applied to the region-level445

p-values.446

Benchmarking447

The R/Bioconductor packages DESeq228, MMDiff11, and csaw12 were applied on original count448

data and on the base-level permuted dataset, for all genes. The log-size factors were set 0 for all449

methods when applied to the permuted datasets. DESeq2 was applied with default parameters.450

MMDiff was applied with a bin length of 50 bp, the DESeq method for the normalization factor,451

and the Maximum Mean Discrepancy (MMD) histogram distance. The csaw method was applied452

with window size of 150 bp and otherwise default parameters. The window size was determined453

through a grid search (see Figure 5c), choosing the window size with the most significant genes.454

In particular, csaw uses a different procedure to estimate normalization factors than DESeq and455

MMDiff. We used the default one as it was in favor of csaw for returning more significant genes.456
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Methylation data457

Data processing458

We obtained the data in text table format from Smallwood et al.26 from the Gene Expression Om-459

nibus (GEO) repository http://www.ncbi.nlm.nih.gov/gds. The data provided, was460

one record per CpG site, with the number of methylated and unmethylated fragments at the re-461

spective site. We used a Python script to bin this data into bins of 3,000 bp width every 600 bp, as462

was done in the original paper.463

GenoGAM model464

To model yi, the number of reads of methylated state, out of ni, the total number of reads, we used

the quasi-binomial model defined by:

E(yi/ni) = µi

log(
µi

1− µi

) = fmethylation(xi)

Var(yi/ni) = θ · µi(1− µi)

ni

,

where the scale parameter θ > 0 models dispersion. The model was applied on only one tile with a465

width of 120 kb, reproducing Figure 2a of Smallwood et al.26. Further parameter details are given466

in Supplementary Table S1.467

Accession code468

ChIP-Seq data are available at Array Express under the accession number E-MTAB-4175. For469

review, user: Reviewer E-MTAB-4175, password: NF3Qvgio470

22

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 6, 2016. ; https://doi.org/10.1101/047464doi: bioRxiv preprint 

http://www.ncbi.nlm.nih.gov/gds
https://doi.org/10.1101/047464
http://creativecommons.org/licenses/by/4.0/


Code availability471

Scripts used for this study are provided in Additional data file 2. A R package called GenoGAM472

has been submitted to Bioconductor39. Refer to the Bioconductor web page at http://www.473

bioconductor.org for installation procedures.474
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Figure 1: GenoGAM applications and concept (a) GenoGAM provides a general framework to

analyze ChIP-Seq data for both absolute (left arrow) and differential protein (center arrow) occu-

pancy. It can also be applied to infer DNA methylation rate from bisulfite sequencing data (right

arrow). (b) ChIP-Seq analysis with GenoGAM yields base-pair resolution occupancy profiles with

confidence bands. Input (black) and IP (blue) centered read counts (dots) and fitted smooth (solid

line) with 95% confidence intervals (ribbons) for the transcription factor TFIIB for a section of the

chromosome XIII of S. cerevisiae. Additionally, the extracted fold change of IP over Input (green)

and gene annotation at the very bottom. Simplified equations depict model constituents.
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Figure 2: Per tile-parallelization allows map-reduce implementation of GAM. (a) Read count

(black dots, capped at >= 7) and predicted rates (orange, blue, green, and yellow transparent

lines) for four successive tiles (lower track). Vertical dashed lines denote the junction points (b)

Distribution of the relative error (difference over mean) at the junction point of two neighbor tiles,

for an overhang of 8 basis functions. (c) Computing time in seconds (y-axis in log scale) versus

region length in bp (x-axis) for a standard GAM (orange), GenoGAM on a single core (blue), and

GenoGAM on four cores (green). Tiles were 2,400 bp long and contained 100 basis functions

each.
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Figure 3: GenoGAM identifies protein binding sites with similar accuracy to state-of-the-art

peak callers. (a) Boxplot of distances between significant peaks (FDR< 0.1, Methods) and TATA

box for the yeast TFIIB dataset (Methods) for GenoGAM (orange), MACS (green) and JAMM

(blue) and ZINBA (yellow). (b) Proportion of TFIIB peaks (y-axis) within 30 bp of a TATA box

for GenoGAM (orange), MACS (green), JAMM (blue) and ZINBA (yellow) versus number of

selected peaks when ordered by decreasing score (x-axis). For each method transparent colors

indicate peaks that the method considers not significant (FDR> 0.1, Methods). (c) Proportion of

significant peaks within 30 bp of motif center and 95% bootstrap confidence interval (error bars,

Methods) for all six ENCODE transcription factors (CEBPB, CTCF, USF1, MAX, PAX5, YY1)

on chromosome 22 and for the yeast TFIIB dataset.
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Figure 4: Peak position represent maximal fold change rather then maximal significance. (a)

Example region in yeast with input (black dots), IP (blue dots) and the smooth function IP over

input with 95% confidence interval (green line) showing a correctly identified peak by GenoGAM

(orange vertical dashed line) and an incorrect identified by MACS (green vertical dashed line), due

to enrichment in input. (b) Scatterplot of the sum of counts (input + IP) vs ratio of counts (input/IP)

for GenoGAM divided by MACS on all mutually called TATA box positions. The red dot denotes

the example region shown in (a)
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Figure 5: Statistical testing for factorial designs. (a) Read counts (dots) and fitted rates with 95%

confidence bands for wild-type (black) and mutant (blue) and the log-ratio of mutant over wild-

type with confidence band (bottom row, green) around YNL176C. (b) Empirical (y-axis) versus

theoretical (x-axis) p-values in base-level permuted count data (Methods). P-values at every 200

bp positions are shown. (c) Number of genes with significant differential occupancies in mutant

over wild type (FDR< 0.1) reported by GenoGAM (orange) and by csaw (blue) as function of

window size (x-axis). (d) Fold-change of counts in mutant over wild-type in 150 bp windows for

all 6607 yeast genes in the -1 to 5 kb region centered on TSS (vertical black line). The genes are

sorted into four groups (separated by the black horizontal lines) according to which method reports

them significant. From top to bottom: csaw only (2 genes), csaw and GenoGAM (861 genes),

GenoGAM only (3,548 genes) and none (2,196 genes). Within each group genes are ordered by

p-values (lowest to highest from top to bottom). The “csaw and GenoGAM” group is sorted by

GenoGAM p-values.
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Figure 6: Application to DNA methylation data. Estimated DNA methylation rates in a 120

kb region of chromosome 6 of the mouse (cf. Smallwood et al.26). Shown are the data for bulk

embryonic mouse stem cells grown in serum; ratios of methylated counts for each CpG position

(black dots), with point size proportional to the number of reads. The estimated rates are shown for

the moving average approach26 of 3,000 bp bins in 600 bp steps (blue line) and for the GenoGAM

(orange line) with 95% confidence band (ribbon).
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