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Abstract8

Single cell gene expression profiling can be used to quantify transcriptional dynamics in9

temporal processes, such as cell differentiation, using computational methods to label each10

cell with a ‘pseudotime’ where true time series experimentation is too difficult to perform.11

However, owing to the high variability in gene expression between individual cells, there is12

an inherent uncertainty in the precise temporal ordering of the cells. Preexisting methods13

for pseudotime ordering have predominantly given point estimates precluding a rigorous14

analysis of the implications of uncertainty. We use probabilistic modelling techniques to15

quantify pseudotime uncertainty and propagate this into downstream differential expression16

analysis. We demonstrate that reliance on a point estimate of pseudotime can lead to inflated17

false discovery rates compared and that probabilistic approaches provide greater robustness18

and measures of the temporal resolution that can be obtained from pseudotime inference.19

Background20

The emergence of high-throughput single cell genomics as a tool for the precision study of biolog-21

ical systems Kalisky and Quake (2011); Shapiro et al. (2013); Macaulay and Voet (2014); Wills22

and Mead (2015) has given rise to a variety of novel computational and statistical modelling23

challenges Stegle et al. (2015); Trapnell (2015). One particular area of interest has been the24
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study of transcriptional dynamics in temporal processes, such as cell differentiation or prolifera-25

tion Treutlein et al. (2014); Tsang et al. (2015), in order to understand the coordinated changes26

in transcription programming that underlie these processes. In the study of such systems, prac-27

tical experimental designs that can allow the collection of real time series data maybe difficult or28

impossible to achieve. Instead, investigators have adopted computational methods to identify29

temporal signatures and trends from unordered genomic profiles of single cells, a process known30

as pseudotemporal ordering Qiu et al. (2011); Bendall et al. (2014); Marco et al. (2014); Trapnell31

et al. (2014); Moignard et al. (2015); Reid and Wernisch (2015). Computational approaches for32

this problem were first tackled in the context of gene expression microarray analysis of bulk cell33

populations Magwene et al. (2003); Gupta and Bar-Joseph (2008); Qiu et al. (2011) but the34

recent availability of single cell technology overcomes the limitations of measuring population35

averaged signals in bulk analyses.36

Pseudotemporal ordering of whole-transcriptome profiles of single cells with unsupervised37

computational methods has an advantage over cytometry-based assays in that it does not rely on38

a priori knowledge of marker genes. The principle underlying these methods is that each single39

cell RNA sequencing experiment constitutes a time series in which each cell represents a distinct40

time point along a continuum representing the underlying degree of temporal progress (Figure41

1A). During the single cell capture process, the true temporal label that identifies the stage42

of the cell is lost (Figure 1B) and these parameters become latent, unobserved quantities that43

must be statistically inferred from the collection of single cell expression profiles (Figure 1C).44

Importantly, absolute physical time information will in general be irretrievably lost and it is only45

possible to assign a “pseudotime” for each cell that provides a relative quantitative measure of46

progression. Consequently, whilst the correspondence between physical and pseudotime ordering47

maybe conserved, the pseudotimes themselves are not necessarily calibrated to actual physical48

times. Pseudotime ordering can potentially be used to recapitulate temporal resolution in an49

experiment that does not explicitly capture labelled time series data. The pseudotimes could50

then be used to identify genes that are differentially expressed across pseudotime (Figure 1D)51

providing insight into the evolution of transcription programming.52

Practically, current methods for pseudotime inference proceed via a multi-step process.53

First, gene selection and dimensionality reduction techniques are applied to compress the infor-54
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mation held in the high-dimensional gene expression profiles to a small number of dimensions55

(typically two or three for simplicity of visualisation). The identification of an appropriate56

dimensionality reduction technique is a subjective choice and a number of methods have been57

adopted such as Principal and Independent Components Analysis (P/ICA) and highly non-58

linear techniques such as diffusion maps Haghverdi et al. (2015) or stochastic neighbourhood59

embedding (SNE) Hinton and Roweis (2002); Van der Maaten and Hinton (2008); Amir et al.60

(2013). This choice is guided by whether the dimensionality reduction procedure is able to61

identify a suitable low-dimensional embedding of the data that contains a relatively smooth62

trajectory that might plausibly correspond to the temporal process under investigation.63

Next, the pseudotime trajectory of the cells in this low-dimensional embedding is charac-64

terised. In Monocle Trapnell et al. (2014) this is achieved by the construction of a minimum65

spanning tree (MST) joining all cells. The diameter of the MST provides the main trajectory66

along which pseudotime is measured. Related graph-based techniques (Wanderlust) have also67

been used to characterise temporal processes from single cell mass cytometry data Bendall et al.68

(2014). In SCUBA Marco et al. (2014) the trajectory itself is directly modelled using principal69

curves Hastie and Stuetzle (2012) and pseudotime is assigned to each cell by projecting its70

location in the low-dimensional embedding on to the principal curve. The estimated pseudo-71

times can then be used to order the cells and to assess differential expression of genes across72

pseudotime.73

A limitation of these approaches is that they provide only a single point estimate of pseu-74

dotimes concealing the full impact of gene expression variability and technical noise. As a75

consequence, the statistical uncertainty in the pseudotimes is not propagated to downstream76

analyses precluding a thorough treatment of robustness and stability. To date, the impact of77

this pseudotime uncertainty has not been explored and its implications are unknown as the78

methods applied do not possess a probabilistic interpretation. However, we can examine the79

stability of the pseudotime estimates by taking multiple random subsets of a dataset and re-80

estimating the pseudotimes for each subset. For example, we have found that the pseudotime81

assigned to the same cell can vary considerably across random subsets in Monocle (details given82

in Supplementary Materials and Supplementary Figure S1).83

In order to address pseudotime uncertainty in a formal and coherent framework, probabilistic84
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approaches using Gaussian Process Latent Variable Models (GPLVM) have been used recently85

as non-parametric models of pseudotime trajectories Reid and Wernisch (2015); Campbell and86

Yau (2015). These provide an explicit model of pseudotimes as latent embedded one-dimensional87

variables and can be fitted within a Bayesian statistical framework allowing posterior uncertainty88

in the pseudotimes to be derived using Markov Chain Monte Carlo (MCMC) simulations. In89

this article we adopt this framework based to assess the impact of pseudotime uncertainty90

on downstream differential analyses. We will show that pseudotime uncertainty can be non-91

negligible and when propagated to downstream analysis may considerably inflate false discovery92

rates. We demonstrate that there exists a limit to the degree of recoverable temporal resolution,93

due to intrinsic variability in the data, with which we can make statements such as “this cell94

precedes another”. Finally, we propose a simple means of accounting for the different possible95

choices of reduced dimension data embeddings. We demonstrate that, given sensible choices96

of low-dimensional representations, these can be combined to produce more robust pseudotime97

estimates. Overall, we outline a modelling and analytical strategy to produce more stable98

pseudotime based differential expression analysis.99

Results100

Probabilistic pseudotime inference using Gaussian Process Latent Variable101

Models102

We first provide a brief overview of the Gaussian Process Latent Variable Model Titsias and103

Lawrence (2010). The GPLVM uses a Gaussian Process to define a stochastic mapping between104

a low-dimensional latent space to a (typically) higher dimensional observation space. A Gaussian105

Process is characterised by a mean function describing the expected mapping between the latent106

and observation spaces and a covariance function that describes the covariance between the107

mapping function evaluated at any two arbitrary latent positions. The covariance function108

therefore acts to control the second-order statistics of the Gaussian Process and suitable choices109

can be designed to encourage properties such as smoothness, periodicity or other second-order110

features.111

For this application, the latent space is one-dimensional, describing pseudotime progression112

whilst the observations are the reduced dimensionality representations of the single cell expres-113
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sion data. We will use Bayesian inference to characterise the joint posterior distribution p(t|X)114

of the pseudotimes t = {t1, . . . , tn} given the expression data X = {x1, . . . ,xn} for n single cells.115

As the integrals involved are mathematically intractable, we will use Markov Chain Monte Carlo116

simulations to obtain a numerical approximation to the posterior by drawing samples from the117

posterior distribution. Each sample corresponds to one possible trajectory and ordering for the118

cells with the set of samples providing an approximate distribution of pseudotimes. The pseu-119

dotime values are between measured 0 and 1 where a value of 0 corresponds to one end state of120

the temporal process and a value 1 to the other. In this work we focus only on non-bifurcating121

processes. Figure 2 gives a diagrammatic representation of our proposed workflow and a more122

detailed model descriptions is given in Methods.123

Sources of uncertainty in pseudotime inference124

We applied our probabilistic pseudotime inference to three published single-cell RNA-seq datasets125

of differentiating cells: myoblasts in Trapnell et al. (2014) Trapnell et al. (2014), hippocampal126

quiescent neural stem cells in Shin et al. (2015) Shin et al. (2015) and sensory epithelia from127

the inner ear in Burns et al. (2015) Burns et al. (2015). For the Trapnell and Shin datasets128

we used Laplacian Eigenmaps Belkin and Niyogi (2003) for dimensionality reduction prior to129

pseudotime inference, while for the Burns dataset we used the PCA representation of the cells130

from the original publication (for a detailed description of our analysis, see Supplementary131

Methods: Data Analysis). These particular choices of reduced dimensionality representations132

gave visually plausible trajectory paths in two dimensions.133

An implicit assumption in pseudotime ordering is that proximity in pseudotime should reflect134

proximity in the observation or data space. That is, two cells with similar pseudotime assign-135

ments should have similar gene expression profiles but, in practice, cell-to-cell variability and136

technical noise means that the location of the cells in the observation space will be variable even137

if they truly do have the same pseudotime. We plotted posterior mean pseudotime trajectories138

for the three datasets learned using the GPLVM in Figure 3A-C and the posterior predictive139

data distribution p(X∗|X). The posterior predictive data distribution gives an indication of140

where future data points might occur given the existing data. Notice that for all three data141

sets, this distribution can be quite diffuse. This is due to a combination of actual cell-to-cell142
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expression variability, manifesting as a spread of data points around the mean trajectory, but143

also model misspecification (the difference between what our “assumed” model and the “true”144

but unknown data generating mechanism).145

It is interesting to discuss the latter point as it is an issue that is often not adequately146

addressed or fully acknowledged in the literature. The GPLVM applied assumes a homoscedastic147

noise distribution which is uniform along the pseudotime trajectory. However, it is clear that148

the variability of the data points can change along the trajectory and a heteroscedastic (non-149

uniform) noise model may be more appropriate in certain scenarios. Unfortunately, whilst150

models of heteroscedastic noise processes can be applied Le et al. (2005), these typically severely151

complicate the statistical inference and require a model of how the variability changes over152

pseudotime which is likely to be unknown. The important point here is that the posterior153

probability calculations are always calibrated with respect to a given model. The better the154

model represents the true data generating mechanism, the better calibrated the probabilities.155

Model misspecification can also contribute to posterior uncertainty in inferred parameters.156

Returning to the intrinsic cell-to-cell variability, we next considered the conditional posterior157

predictive data distributions p(X∗|t∗,X) which are shown in Figure 3D-F. These distributions158

show the possible distribution of future data points given the existing data and a theoretical159

pseudotime t∗ and, in this example, we condition on pseudotimes t∗ = 0.5 and t∗ = 0.7. Al-160

though the two pseudotimes differ by a magnitude of 0.2, the conditional predictive distributions161

are very close or overlapping. This means that cells with pseudotimes of 0.5 or 0.7 could have162

given rise to data point occupying these overlapping regions. This variability is what ultimately163

limits the temporal resolution that can be obtained.164

It is important to note that the posterior mean trajectories correspond to certain a priori165

or subjective smoothness assumptions (specified as hyperparameters in the model specification)166

which dedicate the curvature properties of the trajectory. Figure 4 shows three alternative167

posterior mean pseudotime trajectories for the Trapnell data based on different hyperparameters168

settings for the GPLVM. In a truly unsupervised scenario all three paths could be plausible as169

we would have little information to inform us about the true shape of the trajectory. This would170

become an additional source of uncertainty in the pseudotime estimates. However, we favoured171

hyperparameter settings that gave rise to well-defined (unimodal) posterior distributions that172
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resulted in multiple independent Markov Chain Monte Carlo runs converging to the same mean173

trajectory rather than settings that give rise to a “lumpy” posterior distribution with many174

local modes corresponding to different interpretations of the data (see Supplementary Figure175

S3). Later on, when we consider inference using multiple representations, the ability to specify176

a wider choice of trajectories is useful as we will demonstrate how the correspondence between177

pseudotime trajectories in different reduced dimension representations is not always obvious178

from a visual analysis.179

We next examined the posterior distributions in pseudotime assignment for four cells from180

the Trapnell dataset in Figure 5A. Uncertainty in the estimate of pseudotime is assessed using181

the highest probability density (HPD) credible interval (CI), the Bayesian equivalent of the182

confidence interval. The 95% pseudotime CI typically covers around one quarter of the tra-183

jectory, suggesting that pseudotemporal orderings of single-cells can potentially only resolve a184

cell’s place within a trajectory to a coarse estimate (e.g. ‘beginning’, ‘middle’ or ‘end’) and185

do not necessarily dramatically increase the temporal resolution of the data. One immediate186

consequence of this is that it is unlikely that we can make definite statements such as whether187

one cell comes exactly before or after another. This is illustrated in Figures 5B-D which dis-188

plays the estimated pseudotime uncertainty for all three datasets. In all the datasets, the189

general progression is apparent, but the precise ordering of the cells has a non-trivial degree of190

ambiguity.191

Failure to account for pseudotime uncertainty leads to increased false discov-192

ery rates193

The previous section addressed the sources of statistical uncertainty in the pseudotimes. We next194

explored the impact of pseudotime uncertainty on downstream analysis. Specifically, we focused195

on the identification of genes that are differentially expressed across pseudotime. Typically,196

these analyses involve regression models that assume the input variables (the pseudotimes) are197

both fixed and certain but, with our probabilistic model, we can use the posterior samples from198

our Bayesian model to refit the regression model to each pseudotime estimate. In doing so we199

can examine which genes are called as significant in each of the posterior samples and assess200

the stability of the differential expression analysis to pseudotime uncertainty by recording how201
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frequently genes are designated as significant across the posterior samples. This allowed us to202

re-estimate the false discovery rate (FDR) fully accounting for the variability in pseudotime. As203

there are a multitude of sources of uncertainty on top of this (such as biological and technical204

variability) this allows us to put a lower bound on the FDR of such analyses in general.205

Precisely, we fitted the tobit regression model from Trapnell et al. (2014) for each gene206

for each sample from the posterior pseudotime distribution, giving us a per-gene set of false-207

discovery-rate-corrected Q-values. We then compared the proportion of times a gene is called208

as differentially expressed (5% FDR) across all pseudotime samples to the Q-value using a point209

pseudotime estimate based on the maximum a posteriori (or MAP) estimate. We reasoned that210

if a gene is truly differentially expressed then such expression will be robust to the underlying211

uncertainty in the ordering. Note for comparison, our MAP estimates with the GPLVM correlate212

strongly with Monocle derived pseudotime point estimates (see Supplementary Figure S2).213

Figure 6A shows two analyses for two illustrative genes (ITGAE and ID2) in the Trapnell214

data set. Using the MAP pseudotime ordering, differential expression analysis of ITGAE over215

pseudotime attained a q-value of 0.02. However, the gene was only called significant in only216

9% of posterior pseudotime samples with a median q-value of 0.32. In contrast, ID1 - known to217

be involved in muscle differentiation - had a q-value of 6.6× 10−11 using the MAP pseudotime218

ordering, but was also called significant in all the posterior pseudotime ordering samples having219

a median q-value of 4.4× 10−11. This indicates that the significance of the temporal expression220

variability of ID1 is robust with respect to posterior sampling of the pseudotime ordering whilst221

the significance ITGAE is much more dependent on the ordering chosen.222

As a conservative rule of thumb, we designated a putative temporal association as a false223

positive if the gene has a Q-value less than 5% at the MAP estimate of pseudotime but is224

significant in less than 95% of the posterior pseudotime samples. Looking across all genes in the225

Trapnell data, Figure 6B shows that a significant number of genes that were found to have a Q-226

value < 0.05 and deemed significant based on the MAP pseudotime ordering, did not replicate227

consistently and were not robust to alternate orderings. In fact, across the three datasets we228

analysed, we found that the false discovery rate, when adjusted for pseudotime uncertainty,229

ranged from 4% to 20% (Figure 6C). This indicates the FDR can be up to much larger than230

the expected 5% and crucially is variable across datasets meaning there is no simple rule of231
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thumb that can be applied a priori to account for pseudotime uncertainty. Such values remain232

low enough that analyses examining the coexpression of gene sets across pseudotime (such as233

in Trapnell et al. (2014)) will still be largely valid. However, if a set of robustly differentially234

expressed genes is required or the FDR needs to be characterised then a full probabilistic235

treatment of pseudotime is needed.236

A sigmoidal model of switch-like behaviour across pseudotime237

In the previous section, we examined differential expression across pseudotime by fitting gen-238

eralized additive models to the gene expression profiles Trapnell et al. (2014). Their approach239

used a Tobit regression model with a cubic smoothing spline link function. Hypothesis testing240

using the likelihood ratio test is conducted against a null model of no pseudotime dependence.241

This model provides a highly flexible but non-specific model of pseudotime dependence that242

was not suited to the next question we wished to address.243

Specifically, we were interested in whether we could identify if two genes switched behaviours244

at the same (or similar) times during the temporal process and therefore an estimate of the time245

resolution that can be gained from a pseudotime ordering approach. This requires estimation246

of a parameter that can be directly linked to a switch on(/off) time that is not present in the247

Tobit regression model. As a result, we propose a “sigmoidal” model of differential expression248

across pseudotime that better captures switch-like gene (in)activation and has easy to interpret249

parameters corresponding to activation time and strength. By combining such a parametric250

model with the Bayesian inference of pseudotime we can then infer the resolution to which251

we can say whether one gene switches on or off before another. Details of the sigmoidal gene252

activation model are given in Methods and in Supplementary Methods.253

We applied our sigmoidal model to learn patterns of switch-like behaviour of genes in the254

Trapnell dataset. For each gene we estimated the activation time (t0) as well as the activation255

strength (k). We fitted these sigmoidal switching models to all posterior pseudotime samples256

to approximate the posterior distribution for the time and strength parameters. We uncovered257

a small set of genes whose median activation strength is distinctly larger than the rest and258

had low variability across posterior pseudotime samples implying a population of genes that259

exhibit highly switch-like behaviour (Figure 7A). Some genes showed high activation strength260
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for certain pseudotime orderings but low overall median levels across all the posterior samples.261

We concluded that genes with large credible intervals on the estimates of activation strength262

do not show robust switch-like behaviour and demonstrate the necessity of using probabilistic263

methods to infer gene behaviour as opposed to point estimates that might give highly unstable264

results.265

Representative examples of genes with large and small activation strengths showed marked266

differences in the gene expression patterns corresponding to strong and weak switch-like be-267

haviour as expected (Figure 7B). In addition, we examined the posterior density activation268

time t0 for the five genes showing strong switching behaviour (Figure 7C). Under a point esti-269

mate of pseudotime each gene would give a distinct activation time with which these genes can270

be ordered. However, when pseudotime uncertainty is taken into account, a distribution over271

possible activation times emerges. In this case, the five genes all have activation times between272

0.3 and 0.5 precluding a precise ordering (if one exists) of activation. Visually, this seems sensi-273

ble since there is considerable cell-to-cell variability in the expression of these genes and not all274

cells express the genes during the “on” phase. We are therefore unable to determine whether275

the “on” phase begins when the first cell with high expression is first observed in pseudotime or,276

if it starts before, and the first few cells simply have null expression (for biological or technical277

reasons).278

We further explore this in Figure 8 which shows ten genes identified as having significant279

switch-like pseudotime dependence but with a range of mean activation times t0. The switch-280

like behaviour is stable to the different posterior pseudotime orderings that were sampled from281

the GPLVM. It is clear that the two genes RARRES3 and C1S are activating at an earlier time282

compared to the genes IL20RA and APOL4. However, we cannot be confident of the ordering283

within the pairs RARRES3/C1S and IL20RA/APOL4 in pseudotime since the distributions284

over the activation times are not well-separated and it is impossible to make any definitive285

statements as to whether one of these genes (in)activates before another. If the probability of286

a sequence of activation events is required, instead of examining each gene in isolation, we can287

count the number of posterior samples in which one gene precedes another instead and evidence288

may emerge of a possible ordering. These observations suggests a finite temporal resolution289

limit that can be obtained using pseudotemporal ordering.290
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We note that we have deliberately avoid directly linking the sigmoidal gene activation and291

GPLVM pseudotime models to derive a single, joint model. In a joint model, the inference292

would attempt to order the cells in such a way as to maximise the fit of the sigmoidal and293

GPLVM to the expression data. However, as the sigmoidal model is only intended to identify294

genes with switch-like behaviour, it cannot explain other types of pseudotime dependence that295

may and do exist. This model misspecification would potentially drive inference in ways that296

cannot be foreseen.297

Learning trajectories from multiple reduced data representations298

Finally, we address the impact of the subjective choice of dimensionality reduction that is299

normally applied to single cell gene expression data prior to pseudotime ordering and estimation.300

Typically, the choice of dimensionality reduction approach is based on whether the method301

gives rise to a putative pseudotime trajectory in the reduced dimensionality representation302

from visual inspection followed by confirmational analysis by examining known marker genes303

with established temporal association. This may lead to a number of possibilities since the same304

trajectory may exist in a number of reduced dimensionality representations.305

One characteristic of the GPLVM is that the likelihood is conditionally independent across306

input dimensions. A consequence of this is that we can integrate heterogeneous data sources307

to learn pseudotimes as there is no requirement that each input dimension should come from308

the same representation or assay. We exploited this feature to examine the effect of the initial309

dimensionality reduction stage and see if we can learn pseudotime trajectories from multiple310

reduced dimension representations. Many dimensionality reduction algorithms have been ap-311

plied to single-cell RNA-seq data, including PCA Shin et al. (2015), ICA Trapnell et al. (2014),312

t-SNE Marco et al. (2014) and diffusion maps Haghverdi et al. (2015).313

We applied our probabilistic pseudotime inference algorithm to Laplacian Eigenmaps, PCA314

and t-SNE representations of the three datasets under consideration. We also applied the315

algorithm using all three representations jointly the results of which can be seen in Figure 9.316

While the pseudotime inference algorithm can fit trajectories to all three datasets individually,317

combining multiple representations can lead to a clearer, better defined trajectory. This allows318

us to track the same progression of cells through multiple reduced dimension representations319
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at once, providing an equivalence to the trajectories represented by different dimensionality320

reduction algorithms. In fact there may be no correspondence between the trajectories in the321

different reduced dimension representations at all if the analysis is not integrated.322

It should be noted that this approach is not necessarily an ideal integration model and more323

complex multi-view learning models Xu et al. (2013) should be investigated in future that will324

resolve the potential dependencies between the input representations. However, as a number of325

popular dimensionality reduction techniques (e.g. t-SNE) have no probabilistic interpretation326

and possess no underlying generative model, it is challenging to incorporate these within a327

coherent probabilistic framework (i.e. there is no likelihood function). The suggested technique,328

though implying simplistic independence assumptions, has practical value for incorporating such329

representations.330

We caution though that this integration approach is not intended to contain any arbitrary331

number of representations provided by the user. As each representation is ultimately drawn332

from the same underlying raw data, a representations should only be included if it provides some333

orthogonal (near-independent) information since the GPLVM assumes the representations are334

independent. In practice, this means selecting a small number of representations drawn from335

very different dimensionality reduction approaches. If the representations are not independent336

and are related this can give rise to an artificial reduction in posterior variance since we would337

be essentially doubling sample size by replicating the same data.338

Discussion339

Pseudotime ordering from gene expression profiling of single cells provides the ability to extract340

temporal information about complex biological processes from which true time series experi-341

mentation may be technically challenging or impossible. In our investigations we have sought342

to characterise the utility of a probabilistic approach to the single cell pseudotime ordering343

problem over approaches that only return a single point estimate of pseudotime. Our work is344

significant since it has so far not been possible to assess the impact of this statistical uncertainty345

in downstream analyses and to ascertain the level of temporal resolution that can be obtained.346

In order to address this we adopted a Gaussian Process Latent Variable modelling framework347

to perform probabilistic pseudotime ordering within a Bayesian inference setting. The GPLVM348
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allows us to probabilistically explore a range of different pseudotime trajectories within the349

reduced dimensional space. We showed that in a truly unbiased and unsupervised analysis the350

properties of the pseudotime trajectory will never purely be a product of the data alone and351

can heavily depend on prior assumptions about the smoothness, length scales of the trajectory352

and noise properties. Using samples drawn from the posterior distribution over pseudotime353

orderings under the GPLVM we were able to assess if genes that showed a significant pseudotime354

dependence under a point (MAP) pseudotime estimate would be robust to different possible355

pseudotime orderings. In two of the three datasets we examined we discovered that, when356

adjusted for pseudotime uncertainty, the false discovery rate may be significantly larger than357

the target 5%. Our investigations show that reliance on a single estimate of pseudotime ordering358

can lead to increased number of false discoveries but that it is possible to assess the impact of359

such assumptions within a probabilistic framework.360

It is important to note that the GPLVM used in our investigations is not intended to be361

a single, all-encompassing solution for pseudotime modelling problems. For our purposes, it362

provided a simple and relevant device for tackling the single trajectory pseudotime problem in a363

probabilistic manner but clearly has limitations when the temporal process under investigation364

contains bifurcations or heteroscedastic noise processes (as discussed earlier). Improved and/or365

alternative probabilistic models are required to address more challenging modelling scenarios366

but the general procedures we describe are generic and should be applicable to any problem367

where statistical inference for a probabilistic model can give posterior simulation samples.368

We also developed a novel sigmoidal gene expression temporal association model that en-369

abled us to identify genes exhibiting a strong switch-like (in)activation behaviour. For these370

genes we were then able to estimate the activation times and use these to assess the time reso-371

lution that can be attained using pseudotime ordering of single cells. Our investigations show372

that pseudotime uncertainty prevents precise characterisation of the gene activation time but a373

probabilistic model can provide a distribution over the possibilities. In application, this uncer-374

tainty means that it is challenging to make precise statements about when regulatory factors375

will turn on or off and if they act in unison. This places an upper limit on the accuracy of376

dynamic gene regulation models and causal relationships between genes that could be built377

from the single cell expression data.378
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In conclusion, single cell genomics has provided a precision tool with which to interrogate379

complex temporal biological processes. However, as widely reported in recent studies, the prop-380

erties of single cell gene expression data are complex and highly variable. We have shown that381

the many sources of variability can contribute to significant uncertainty in statistical inference382

for pseudotemporal ordering problems. We argue therefore that strong statistical foundations383

are vital and that probabilistic methods for provide a platform for quantifying uncertainty in384

pseudotemporal ordering which can be used to more robustly identify genes that are differen-385

tially expressed over time. Robust statistical procedures can also temper potentially unrealistic386

expectations about the level of temporal resolution that can be obtained from computationally-387

based pseudotime ordering. Ultimately, as the raw input data is not true time series data,388

pseudotime ordering is only ever an attempt to solve a missing data statistical inference prob-389

lem that we should remind ourselves involves quantities (pseudotimes) that are unknown, never390

can be known.391

Methods392

In addition to the descriptions below, further methodological descriptions and links to code to393

reproduce all our findings are given in Supplementary Methods.394

Statistical model for probabilistic pseudotime395

The hierarchical model specification for the Gaussian Process Latent Variable model is described396

as follows:397

γ ∼ Gamma(γα, γβ),

λj ∼ Exp(γ), j = 1, . . . , P,

σ2j ∼ InvGamma(α, β), j = 1, . . . , P,

ti ∼ TruncNormal[0,1)(µt, σ
2
t ), i = 1, . . . , N,

Σ = diag(σ21, . . . , σ
2
P )

K(j)(t, t′) = exp(−λj(t− t′)2), j = 1, . . . , P,

µj ∼ GP(0,K(j)), j = 1, . . . , P,

xi ∼ MultiNorm(µ(ti),Σ), i = 1, . . . , N.

(1)
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where xi is the P -dimensional input of cell i (of N) found by performing dimensionality re-398

duction on the entire gene set (for our experiments P = 2 following previous studies). The399

observed data is distributed according to a multivariate normal distribution with mean func-400

tion µ and a diagonal noise covariance matrix Σ. The prior over the mean function µ in each401

dimension is given by a Gaussian Process with zero mean and covariance function K given402

by a standard double exponential kernel. The latent pseudotimes t1, . . . , tN are drawn from a403

truncated Normal distribution on the range [0, 1). Under this model |λ| can be thought of as404

the arc-length of the pseudotime trajectories, so applying larger levels of shrinkage to it will405

result in smoother trajectories passing through the point space. This shrinkage is ultimately406

controlled by the gamma hyperprior on γ, whose mean and variance are given by γα
γβ

and γα
γ2β

407

respectively. Therefore, adjusting these parameters allows curves to match prior smoothness408

expectations provided by plotting marker genes.409

The hyperparameters γα, γβ, α, β, µt and σ2t are fixed and values for specific experiments410

for given in Supplementary Information. Inference was performed using the Stan probabilistic411

programming language Gelman et al. (2015) and our implementation is available as an R package412

at http://www.github.com/kieranrcampbell/pseudogp.413

Integrating multiple representations414

One feature of the GPLVM is that the likelihood is conditionally independent (given the pseu-415

dotimes) across input dimensions. If we have a set of Q reduced dimension representations416

of single-cell data {Xi, i = 1, . . . , Q} (be they multiple representations of the same assay, e.g.417

RNA-seq, or multiple representations of multiple assays) then the likelihood factorises across418

each representation. For example, if we have Laplacian Eigenmaps, PCA and t-SNE represen-419

tations of the same data then the likelihood becomes420

p({X}|t) = p(XLE|t)p(XPCA|t)p(XtSNE|t) (2)

where t is the pseudotime vector to be learned and inference proceeds straightforwardly using421

this product likelihood.422
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Sigmoidal model for switch-like gene (in)activation behaviours across pseudo-423

time424

We detail the mathematical specification of the sigmoidal switch model below. Let yij debotes425

the log2 gene expression of gene i in cell j at pseudotime tj then426

yij(tj) ∼ Norm(µi(tj), σ
2
i ) (3)

where427

µi(tj) =


µ
(0)
i , if gene i not differentially expressed,

2µ
(0)
i

1+exp
(
−ki(tj−t

(0)
i )

) , if gene i differentially expressed.
(4)

Under this model the parameter ki can be thought of as an activation ‘strength’ relating to428

how quickly a gene switches on or off, while t
(0)
i relates to the pseudotime at which the gene429

switches on or off.430

The case of a gene not being differentially expressed is a nested model of the differential431

expression case found by setting k = 0. Consequently we can use a likelihood ratio test with432

no differential expression as the null hypothesis and differential expression as the alternative433

and twice the difference in their log-likelihoods will form a χ2 test statistic with 2 degrees of434

freedom. The maximum likelihood estimates of the parameters under the differential expression435

model have no analytical solution so L-BFGS-B optimisation was used (implemented in the R436

package switchde, http://github.com/kieranrcampbell/switchde).437
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F. J. Theis, J. Fisher, and B. Göttgens (2015, February). Decoding the regulatory network488

of early blood development from single-cell gene expression measurements. Nature Biotech-489

nology 33 (3).490

Qiu, P., A. J. Gentles, and S. K. Plevritis (2011, April). Discovering biological progression491

underlying microarray samples. PLoS computational biology 7 (4), e1001123.492

Qiu, P., E. F. Simonds, S. C. Bendall, K. D. Gibbs Jr, R. V. Bruggner, M. D. Linderman,493

K. Sachs, G. P. Nolan, and S. K. Plevritis (2011). Extracting a cellular hierarchy from494

high-dimensional cytometry data with spade. Nature biotechnology 29 (10), 886–891.495

18

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 5, 2016. ; https://doi.org/10.1101/047365doi: bioRxiv preprint 

https://doi.org/10.1101/047365
http://creativecommons.org/licenses/by/4.0/


Reid, J. E. and L. Wernisch (2015). Pseudotime estimation: deconfounding single cell time496

series. bioRxiv , 019588.497

Shapiro, E., T. Biezuner, and S. Linnarsson (2013, September). Single-cell sequencing-based498

technologies will revolutionize whole-organism science. Nature reviews. Genetics 14 (9), 618–499

30.500

Shin, J., D. A. Berg, Y. Zhu, J. Y. Shin, J. Song, M. A. Bonaguidi, G. Enikolopov, D. W.501

Nauen, K. M. Christian, G.-l. Ming, and H. Song (2015, August). Single-Cell RNA-Seq with502

Waterfall Reveals Molecular Cascades underlying Adult Neurogenesis. Cell Stem Cell 17 (3),503

360–372.504

Stegle, O., S. a. Teichmann, and J. C. Marioni (2015, January). Computational and analytical505

challenges in single-cell transcriptomics. Nature Reviews Genetics 16 (3), 133–145.506

Titsias, M. and N. Lawrence (2010). Bayesian Gaussian Process Latent Variable Model. Arti-507

ficial Intelligence 9, 844–851.508

Trapnell, C. (2015, Oct). Defining cell types and states with single-cell genomics. Genome509

Res 25 (10), 1491–8.510

Trapnell, C., D. Cacchiarelli, J. Grimsby, P. Pokharel, S. Li, M. Morse, N. J. Lennon, K. J.511

Livak, T. S. Mikkelsen, and J. L. Rinn (2014, April). The dynamics and regulators of cell fate512

decisions are revealed by pseudotemporal ordering of single cells. Nature biotechnology 32 (4),513

381–6.514

Treutlein, B., D. G. Brownfield, A. R. Wu, N. F. Neff, G. L. Mantalas, F. H. Espinoza, T. J.515

Desai, M. A. Krasnow, and S. R. Quake (2014). Reconstructing lineage hierarchies of the516

distal lung epithelium using single-cell rna-seq. Nature 509 (7500), 371–375.517

Tsang, J. C., Y. Yu, S. Burke, F. Buettner, C. Wang, A. A. Kolodziejczyk, S. A. Teichmann,518

L. Lu, and P. Liu (2015). Single-cell transcriptomic reconstruction reveals cell cycle and519

multi-lineage differentiation defects in bcl11a-deficient hematopoietic stem cells. Genome520

biology 16 (1), 1–16.521

Van der Maaten, L. and G. Hinton (2008). Visualizing data using t-sne. Journal of Machine522

Learning Research 9 (2579-2605), 85.523

19

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 5, 2016. ; https://doi.org/10.1101/047365doi: bioRxiv preprint 

https://doi.org/10.1101/047365
http://creativecommons.org/licenses/by/4.0/


Wills, Q. F. and A. J. Mead (2015). Application of single cell genomics in cancer: Promise and524

challenges. Human molecular genetics, ddv235.525

Xu, C., D. Tao, and C. Xu (2013). A survey on multi-view learning. arXiv preprint526

arXiv:1304.5634 .527

Figures528

20

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 5, 2016. ; https://doi.org/10.1101/047365doi: bioRxiv preprint 

https://doi.org/10.1101/047365
http://creativecommons.org/licenses/by/4.0/


Figure 1: The single cell pseudotime ordering problem. (A) Single cells at different stages
of a temporal process. (B) The temporal labelling information is lost during single cell capture.
(C) Statistical pseudotime ordering algorithms attempt to reconstruct the relative temporal
ordering of the cells but cannot fully reproduce physical time. (D) The pseudotime estimates
can be used to identify genes that are differentially expressed over (pseudo)time.

Figure 2: Workflow for fitting Bayesian Gaussian Process Latent Variable Model
pseudotime models. Reduced-dimension representations of the gene expression data (from
Laplacian eigenmaps, PCA and/or t-SNE) are created. The pseudotime can be fitted using
one or more low dimensional representations of the data. Posterior samples of pseudotimes are
drawn from a Bayesian GPLVM and these are used to obtain alternative pseudotime estimates.
Downstream differential analyses can be performed on the posterior samples to characterise the
robustness with respect to variation in pseudotime ordering.
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Figure 3: Posterior pseudotime trajectories for three single-cell RNA-seq datasets.
Posterior pseudotime trajectories shown in a two-dimensional reduced representation space for
(left) a Laplacian eigenmaps representation of Trapnell et al. (2014) Trapnell et al. (2014),
(centre) Laplacian eigenmaps representation of Burns et al. (2015) Burns et al. (2015) and
(right) PCA representation of Shin et al. (2015) Shin et al. (2015). Each point represents a cell
and the black line represents the mean pseudotime trajectory. Plots (A-C) shows the overall
posterior predictive data density (red) whilst (D-F) shows the conditional posterior predictive
data density for t = 0.5 (red) and t = 0.7 (blue).
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Figure 4: Effect of prior expectations on pseudotime trajectories. The prior probabil-
ity distribution (defined in terms of hyperparameters (γα, γβ) in our model) on the expected
smoothness of pseudotime trajectories can fundamentally change the inferred progression path.
Examples shown using the data of Trapnell et al. (2014) Trapnell et al. (2014). Red - shows
the density of the posterior predictive data distribution. Black - shows the mean pseudotime
trajectory. Shrinkage hyperparameters (γα, γβ) of (30, 5), (5,1) and (3,1) were used for A, B
and C respectively.
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Figure 5: Posterior uncertainty in pseudotime trajectories. (A) Posterior uncertainty
in pseudotimes for four randomly selected cells from the Trapnell et al. (2014) dataset. Hori-
zontal bars represent the 95% highest probability density (HPD) credible interval (CI), which
typically covers around a quarter of the pseudotime trajectory. (B-D) Boxplots showing the
posterior uncertainty for each cell from the Trapnell et al. (2014) datasets. The edges of the
boxes and tails correspond to the 75% and 95% HPD-CIs respectively.
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Figure 6: Approximate FDR for differential expression across pseudotime. (A)
Gene expression plots across pseudotime, with black traces corresponding to models fitted
to pseudotime samples while the red trace corresponds to the point (MAP) estimate for two
exemplar genes and (B) corresponding posterior pseudotime orderings. (C) Scatter plot of
point estimate q-values against proportion significant for all genes (Trapnell dataset). (D)
Approximate false discovery rates (AFDR) for three datasets (Trapnell et al. 2014, Shin et al.
2015 and Burns et al. 2015).
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Figure 7: Robust inference of switch-like behaviour in genes across pseudotime. (A)
The square-root of the median of the activation strength parameter k across all pseudotime
samples as a function of activation time t0. The error bars show the 95% credible interval,
demonstrating that point estimates can severely skew the apparent behaviour of genes and a
requirement for a robust Bayesian treatment of gene expression. A distinct population of genes
whose median activation strength sits separate from the majority close to the x-axis implies a
subset of genes show true switch-like behaviour. (B) Representative examples of genes whose
median activation strength is large (top row) compared to small (bottom row). Each black
point represents the gene expression of the cell with red lines corresponding to posterior traces
of the sigmoidal gene expression model. Genes with a large activation strength show a distinct
gene expression pattern compared to those with a small activation strength. (C) A posterior
density plot of the activation time for the five genes showing strong activation strength in (B).
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Figure 8: Identifying pseudotime dependent gene activation behaviour. Ten selected
genes from Trapnell et al. (2014) found using our sigmoidal gene activation model exhibiting a
range of activation times. For each gene, we show the expression levels of each cell (centre) where
each row corresponds to an ordering according to a different posterior samples of pseudotime.
The orange line corresponds to a point estimate of the activation time. The posterior density
of the estimated activation time is also shown (right).
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Figure 9: Learning pseudotime from three reduced dimension representations
(Laplacian eigenmaps, PCA and t-SNE) of single-cell gene expression data from
the three datasets studied (Trapnell, Burns and Shin). For each dataset the left col-
umn shows the Laplacian Eigenmaps representation, middle shows PCA and right shows t-SNE
(Supplementary Methods). Pseudotime trajectories are fitted either on each representation in-
dividually (top row of each dataset) or jointly for all representations (bottom row). It can be
seen that trajectory fits are more stable when the joint representations are used. Such analysis
allows us to track cellular trajectories across multiple visualisations showing an equivalency of
dimensionality reduction algorithms in the context of single-cell RNA-seq data.
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