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Summary: Sparse canonical correlation analysis (SCCA) is a useful approach for correlating
one set of measurements, such as single nucleotide polymorphisms (SNPs), with another
set of measurements, such as gene expression levels. We present a fast implementation of
SCCA, enabling rapid analysis of hundreds of thousands of SNPs together with thousands of
phenotypes. Our approach is implemented both as an R package flashpcaR and within the
standalone commandline tool flashpca.
Availability and implementation: https://github.com/gabraham/flashpca

Contact: gad.abraham@unimelb.edu.au

1 Introduction

Canonical correlation analysis (CCA) is a well-known statistical approach for multivariate analysis of
two datasets (Hotelling, 1936). In the context of large-scale genomic and multi-omic analyses, CCA can
prove useful in identifying relationships amongst complex data, for example single nucleotide polymor-
phisms (SNPs) and gene expression levels. Approaches that consider one SNP at a time together with
multiple phenotypes have been shown to increase power to detect QTLs over the simpler but commonly
utilised single-SNP/single-phenotype approach (Ferreira et al., 2009; Inouye et al., 2012), particularly
when analysing correlated phenotypes that are modulated by the same genetic variants.

Analysis of multiple SNPs simultaneously is an attractive extension of the single-SNP multiple-
phenotype approach, however, standard CCA is not well-defined when the number of samples is
lower than the number of SNPs or phenotypes (n<min{p,m}). One solution is Sparse CCA
(SCCA) (Witten et al., 2009a,b; Parkhomenko et al., 2009), an L1-penalised variant of CCA which allows
for tuning the number of variables that effectively contribute to the canonical correlation, thus making
the problem well-defined. Owing to the induced sparsity, SCCA can be useful for identifying a small
subset of SNPs and a small subset of the phenotypes exhibiting strong correlations. However, the rapidly
increasing size and coverage of genotyping arrays (exacerbated by genotype imputation), together with
the availability of large phenotypic datasets (transcriptomic, metabolomic, and others; e.g., Bartel et al.
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(2015); The GTEx Consortium (2015)), makes it challenging to perform such analyses using existing
tools.
We have developed an efficient implementation of SCCA that is capable of analysing genome-

wide SNP datasets (1 million SNPs or more) together with thousands of phenotypes, as part of
the tool flashpca (Abraham et al., 2014). The tool is implemented in C++ using the Eigen 3 nu-
merical library (Guennebaud et al., 2010), as well as an R interface (package flashpcaR) based on
RcppEigen (Bates et al., 2013).
Here, we compare the SCCA implementation in flashpcaR and flashpca with a widely-used imple-

mentation (PMA, by Witten et al. (2013)), and demonstrate the substantial improvements in speed of our
tool, allowing for large analyses to be performed rapidly.

2 Methods

In standard CCA, we assume that we have two matrices X (n × p) and Y (n × m), measured for the
same n samples. We further assume that both X and Y have been column-wise standardised (zero mean,
unit variance). For a single pair of canonical variables a and b, CCA involves solving the problem

argmax
a,b

aTΣXY b
√

aTΣXXa bTΣY Y b
, (1)

where ΣXX and ΣY Y are the covariance matrices of X and Y, respectively, and ΣXY is the covariance

matrix ofX andY. The solution is given by the singular value decomposition (SVD) ofΣ
−1/2
XX ΣXY Σ

−1/2
Y Y ,

with a = Σ
−1/2
XX u1 and b = Σ

−1/2
Y Y v1, where u1 and v1 are the first left and right singular vectors,

respectively.
SCCA is typically used for high-dimensional data, where a useful assumption is that the columns of

X and Y are uncorrelated, i.e., ΣXX = ΣY Y = I (Parkhomenko et al., 2009), hence, a = u and b = v.
Thus, SCCA involves solving another form of CCA,

argmax
u,v

uTΣXY v

s.t. ||u||22 = 1, ||v||22 = 1, ||u||1 ≤ su, ||v||1 ≤ sv, (2)

where u and v are the left and right canonical vectors, respectively, and su and sv are constraints on the
L1 norms of these canonical vectors.
The problem can be converted into the penalised (Lagrangian) form and solved using iterative soft-

thresholding (Parkhomenko et al., 2009). Unlike standard CCA, SCCA is well-defined even when
n<min{p,m}, and induces sparse canonical vectors, depending on the choice of L1 penalties (higher
penalties lead to higher sparsity). The optimal set of penalties can be found via cross-validation: the
data (bothX andY) are split into training and test sets, SCCA is run on the training set (Xtrain,Ytrain)
using a 2D grid of penalties, and the pair of penalties that produce the highest correlations in the test
set, Cor(Xtestu,Ytestv), are selected.

3 Results

We utilised the HapMap3 phase III genotypes (International HapMap 3 Consortium, 2010), together with
gene expression data of 709 individuals (Stranger et al., 2012). After quality control (see Supplementary
Material) and taking the intersection of SNPs across the populations, the data consisted of 709 individuals,
973,983 SNPs, and 18,379 gene expression probes.
We first confirmed that flashpcaR::scca produced models comparable with PMA::CCA, by comparing

the results in cross-validation on HapMap3 genotypes together with simulated gene expression levels
(Supplementary Material). Next, to further assesss the relative speed improvement using real-world
data, we used subsets of the HapMap3 genotypes and real gene expression levels (Stranger et al., 2012)
and compared the runtime of: (i) PMA::CCA (R package), (ii) flashpcaR::scca (R package), and (iii)
flashpca (commandline tool). Whereas both PMA::CCA and flashpcaR::flashpca are bound by the
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Figure 1: Timing (median of 30 runs) of SCCA implemented in (i) the flashpcaR (R package) and (ii)
flashpca (stand-alone commandline tool), compared with PMA, using subsets of the HapMap3
dataset with gene expression levels as phenotypes. The stand-alone flashpca timing includes
data loading into memory.
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memory limitations of R, the commandline tool flashpca allows much larger analyses; hence we also
ran larger analyses: chromosomes 1–2, 1–3, . . . , 1–22, up to all 973,983 SNPs. Figure 1 shows that
flashpcaR::scca was 3–12× faster than PMA::CCA, with an analysis of 75,000 SNPs and 10,000 gene
expression levels completing in 5s and 50s, respectively. The commandline flashpca was faster than
PMA::CCA as well, and completed an analysis of 709 individuals, 973,983 SNPs and 18,379 gene expression
levels in median wall time of ∼47s (including all overheads), using ∼10GiB of RAM. Note that runtime
for the commandline flashpca includes all steps such as loading data into RAM, unlike the R version
where the data is pre-loaded into R. Performing cross-validation over a grid of penalties will increase
these times, and we recommend parallelisation over several cores (Supplementary Material).

4 Conclusion

flashpca provides a fast implementation of sparse canonial correlation analysis, making it possible
to rapidly analyse high dimensional datasets. SCCA is available in the R package flashpcaR, which
enables analysis of metabolomic, transcriptomic, or any other quantitative set of measurements. The
commandline version is targeted at SNP/phenotype data, enabling large QTL analyses of >1 million
SNPs and thousands of phenotypes, that would otherwise be too large to fit within R.

Funding

This work has been supported by the NHMRC (grant no. 1062227). GA was supported by an NHMRC
Early Career Fellowship (no. 1090462). MI was supported by a Career Development Fellowship co-funded
by the NHMRC and Heart Foundation (no. 1061435).

References

H Hotelling. Relations between two sets of variates. Biometrika, 28:321–377, 1936.

M. Ferreira et al. A multivariate test of association. Bioinformatics, 25:132–133, 2009.

M Inouye et al. Novel Loci for Metabolic Networks and Multi-Tissue Expression Studies Reveal Genes for Atherosclerosis. PLoS

Genet, 8(8):e1002907, 2012.

D. Witten et al. A penalized matrix decomposition, with applications to sparse principal components and canonical correlation

analysis. Biostatistics, 10:515–34, 2009a.

D. Witten et al. Extensions of Sparse Canonical Correlation Analysis with Applications to Genomic Data. Stat Appl Genet Mol

Biol, 8(1):Article 29, 2009b.

E. Parkhomenko et al. Sparse canonical correlation analysis with application to genomic data integration. Stat Appl Genet Mol

Biol, 8(1):Article 1, 2009.

J. Bartel et al. The human blood metabolome-transcriptome interface. PLoS Genet, 11(6):e1005274, 06 2015.

The GTEx Consortium. The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans. Science,

348:648–660, 2015.

G. Abraham et al. Fast principal component analysis of large-scale genome-wide data. PLoS ONE, 9(4):e93766, 04 2014.

G. Guennebaud et al. Eigen v3. http://eigen.tuxfamily.org, 2010.

D. Bates et al. Fast and elegant numerical linear algebra using the RcppEigen package. J Stat Soft, 52(5):1–24, 2013. URL

http://www.jstatsoft.org/v52/i05/.

D. Witten et al. PMA: Penalized Multivariate Analysis, 2013. URL http://CRAN.R-project.org/package=PMA. R package version

1.0.9.

International HapMap 3 Consortium. Integrating common and rare genetic variation in diverse human populations. Nature, 467:

52–58, 2010.

B. Stranger et al. Patterns of Cis Regulatory Variation in Diverse Human Populations. PLoS Genet, 8(4):e1002639, 2012. doi:

10.1371/journal.pgen.1002639.

4

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 6, 2016. ; https://doi.org/10.1101/047217doi: bioRxiv preprint 

http://www.jstatsoft.org/v52/i05/
http://CRAN.R-project.org/package=PMA
https://doi.org/10.1101/047217
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Methods
	Results
	Conclusion

