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Abstract 

Chemical modifications to DNA regulate cellular state and function. The Oxford                     

Nanopore MinION is a portable single­molecule DNA sequencer that can sequence long                       

fragments of genomic DNA. Here we show that the MinION can be used to detect and map two                                   

chemical modifications cytosine, 5­methylcytosine and 5­hydroxymethylcytosine. We present a                 

probabilistic method that enables expansion of the nucleotide alphabet to include bases                       

containing chemical modifications. Our results on synthetic DNA show that individual cytosine                       

base modifications can be classified with accuracy up to 95% in a three­way comparison and                             

98% in a two­way comparison. 

Statement of Significance 

Nanopore­based sequencing technology can produce long reads from unamplified                 

genomic DNA, potentially allowing the characterization of chemical modifications and                   

non­canonical DNA nucleotides as they occur in the cell. As the throughput of nanopore                           

sequencers improves, simultaneous detection of multiple epigenetic modifications to cytosines                   

will become an important capability of these devices. Here we present a statistical model that                             

allows the Oxford Nanopore Technologies MinION to be used for detecting chemical                       

modifications to cytosine using standard DNA preparation and sequencing techniques. Our                     

method is based on modeling the ionic current due to DNA k­mers with a variable­order hidden                               
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Markov model where the emissions are distributed according to a hierarchical Dirichlet process                         

mixture of normal distributions. This method provides a principled way to expand the nucleotide                           

alphabet to allow for variant calling of modified bases. 

Introduction 

Eukaryotic DNA chemical modifications of cytosine (C) include 5­methylcytosine (5­mC),                   

hydroxymethylcytosine (5­hmC), 5­formylcytosine, and 5­carboxylcytosine. DNA methylation is               

involved in multiple facets of biology, such as gene regulation, cell differentiation and                         

development, and disease. In addition, 5­mC and 6­methyladenine (6­mA) are involved in                       

bacterial gene regulation​1–3​. 

Next generation sequencing technologies use chemical treatment to detect cytosine                   

methylation. The treatment causes base substitutions that can be read without an expanded                         

nucleotide alphabet. These techniques are limited by sequence read length of 100­500 base                         

pairs and can only detect one cytosine variant at a time. Single­molecule real time (SMRT)                             

sequencing generates long reads (1­5 kb), and researchers have shown that it can detect                           

multiple modifications to DNA simultaneously using enzyme kinetics​4,5​. The Oxford Nanopore                     

Technologies’ (ONT) MinION is a portable, low­cost single molecule DNA sequencer that can                         

sequence long fragments of (50 kb) DNA at up to 92% accuracy absent amplification​6​. 

Computational analysis of nanopore data has historically been a niche area of                       

bioinformatic research​7,8​, but the field has broadened since the beginning of MinION Access                         

Program in 2014. Recently published algorithms have focused on alignment and ​de novo                         

genome assembly using hidden Markov models​9–12​. We build on this literature by taking a                           

similar approach to detecting base modifications. Our group and others have previously shown                         

that ionic current measurements from low­throughput nanopore sensors can discriminate all five                       

C5­cytosine variants​13,14​. In this paper, we demonstrate that the MinION nanopore sequencer                       
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can discriminate among C, 5­mC, and 5­hmC at high­throughput without special DNA                       

preparation. 

Our method is based on a generative model of the MinION’s ionic current signal. In                             

particular, we assume that the signal is emitted by a variable­order pair hidden Markov model                             

(HMM) that tracks a reference sequence but allows a reference nucleotide to match any of                             

several modified bases (Figure 1A­B, Figure 4). We augment the HMM by modeling the ionic                             

current distributions with a hierarchical Dirichlet process mixture model (HDP), a Bayesian                       

nonparametric method that shares statistical strength to robustly estimate a set of potentially                         

complex distributions​15​. We show that the HDP meaningfully enhances the HMM’s ability to                         

detect cytosine variants by comparing it to a simpler HMM with emissions modeled by                           

parametric normal distributions. 

This model allows for simultaneous reference alignment and probabilistic calling of DNA                       

modifications. We show that it can accurately distinguish DNA modifications using synthetic                       

DNA substrates containing homogeneously methylated, hydroxymethylated, or unmethylated               

cytosine residues. 

Results. 

Methylation variant calling 

We sequenced synthetic DNA strands containing entirely either cytosine,                 

5­methylcytosine, or 5­hydroxymethylcytosine on the MinION using standard preparation                 

protocol (see Methods for details). During sequencing, the MinION records ionic current in real                           

time at 3 kHz and then divides it into “events” that correspond to a single nucleotide step of the                                     

DNA molecule passing through the nanopore. The current software (and our method) models                         

each event as being due to six nucleotide segments of DNA, which we refer to as 6­mers. A                                   

hairpin is ligated to the end of the DNA duplex during sample preparation so that both the                                 
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template and complement strands are sequenced. We separately align the events from the                         

template and complement strands to a reference sequence with our model and marginalize over                           

the HMM’s states to obtain the posterior probability on the methylation status of a given                             

cytosine. We then call the variant as the methylation status with the highest marginal probability.                             

We performed three­way classification experiments between all three cytosine variants and                     

two­way classification experiments between only cytosine and 5­methylcytosine. The error rates                     

for each read (across cytosines) and each cytosine (across reads) are summarized below. 

Methylation calling error rate    

The mean and median per­read accuracy using the best performing HMM­HDP model                       

were 74% and 80% respectively for the template reads and 67% and 76% for the complement                               

reads. The distribution of per­read accuracies is shown in Figure 2A. These results represent a                             

significant improvement over the 33% accuracy that would be expected by chance. They are                           

also significantly better than the results of the HMM with the emissions modeled by normal                             

distributions, which achieved mean and median accuracy of 58% and 62%, respectively, for the                           

template reads and 47% and 50% for the complement reads. When the HMM­HDP classifies                           

between only cytosine and 5­methylcytosine, the mean and median accuracy increase to 83%                         

and 85% respectively for template reads and 78% and 84% for complement reads (Table 1). 

The accuracy varied substantially between different sites on the DNA substrate (Figure                       

2B). Averaged across reads, the best­performing three­way model classified cytosines at                     

accuracies ranging from 16% to 95% with median accuracy of 76% for template reads and 70%                               

for the complement reads (Table 1). The highest accuracy was achieved in a two­way                           

classification at 98% on template reads, with a median accuracy of 82%. The variability in                             

accuracies agrees with previous research that showed that sequence context affects                     
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methylation­calling error rate​13,16​. Figure 2C shows the classifier’s tradeoff between false                     

positive and false negative rate by site across thresholds on the posterior probability. 

It is likely that some of the difficulty in classifying certain sites results from 6­mer ionic                               

current distributions that vary only slightly between the methylation states. We observed a                         

statistically significant correlation between the mean pairwise Hellinger distance between the                     

distributions of the methylation states of the 6­mers overlapping a site and its classification                           

accuracy: Pearson correlation 0.52 (p = 6.6E­31) on the template strand and 0.36 (p = 9.0E­15)                               

on the complement strand (Figure 2D). 

The hierarchical Dirichlet process more realistically models ionic current distributions 

Figure 3 compares the current signal distributions of three representative 6­mers from                       

the HDP, the maximum likelihood estimate (MLE) normal distribution, and a kernel density                         

estimate. Qualitatively, compared to MLE, the HDP posterior densities reflect the nuance of the                           

6­mer distributions more realistically. As a nonparametric method, the HDP can approximate                       

any empirical distribution with sufficient data. The statistical shrinkage between the distribution                       

estimates also tends to smooth away small­scale irregularities that can be observed in the                           

kernel density estimate. 

Comparison of different HDP topologies 

The HDP boosts its statistical strength by sharing information between the set of                         

distributions it estimates. In effect, this encourages them to be more similar to each other than if                                 

they were modeled independently. The HDP model also has the possibility of encouraging a                           

greater degree of similarity between pre­specified subgroups of distributions (see Methods for                       

details). This can increase statistical strength further, assuming that the subgroups reflect                       

clusters of similarity in the true distributions. Since the biophysical relationship between each                         
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given 6­mer sequence and the observed ionic current distribution is poorly understood, we                         

empirically tested whether certain subgroupings would be informative in this manner. 

We tested five HDP models with different subgroupings of 6­mers. The two­level HDP                         

does not separate them into any subgroups (Figure 1C), whereas the rest of the models group                               

6­mers by features of their 6­mer sequence (Figure 1D). The “Multiset” HDP groups 6­mers by                             

their nucleotide content without regard for the order. “Composition” groups 6­mers by how many                           

purines and pyrimidines they contain. “MiddleNucleotides” groups 6­mers based on the center                       

two bases in the 6­mer. Finally, “GroupMultiset” groups the 6­mers by their nucleotide content                           

without regard for their order or their methylation status. We used methylation­calling accuracy                         

to assess the performance these structures. The best performing model was the “Multiset”                         

model (Table 1). However, it was a small gain in accuracy over the simpler ungrouped model. 

Discussion 

To date, few sequencing technologies have been able to directly sequence modified                       

bases alongside canonical nucleotides. ONT’s standard statistical model for the MinION also                       

does not distinguish 6­mers according to methylation. Our results show that it is possible to                             

expand the nucleotide alphabet to include 5­mC, and 5­hmC using a hybrid statistical model                           

composed of a pair HMM and an HDP mixture of normal distributions. 

We demonstrate that high­throughput nanopore sensing can successfully discriminate                 

between cytosine, 5­methylcytosine, and 5­hydroxymethylcytosine. Using MinION signal data,                 

we achieved three­way and two­way classification accuracy up to 95% and 98%, respectively of                           

single cytosines and median accuracies of 80% and 85% by read. The classification accuracy                           

varies between sequence contexts: some modified cytosines are reliably captured while others                       

are not discernable. We only classified cytosine variants based on one strand, however, and in                             

an application where there is symmetric methylation the context on the reverse complement                         
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strand may be more accurately classified. Rereading uncopied DNA may also improve the                         

accuracy. 

We anticipate numerous biological applications for this technology. In particular we                     

expect the combination of long reads and detection of multiple base modifications to be widely                             

useful. For instance, it could be applied to studying genomic methylation and haplotype phasing.                           

Since no extra sample preparation is necessary, this information is available “for free” in any                             

sequencing experiment. With appropriate training data, our methodology could be easily                     

generalized to detect additional nucleotides and different base modifications as well. As                       

nanopore sequencing evolves, the accuracies for detecting base modifications will improve                     

further, opening this technology to diagnostics and other clinical applications. 

Methods 

Creating a controlled set of C, 5­mC, and 5­hmC sequences 

  We used 897 bp synthetic DNA strands from ZYMO Research (Catalog # D5405) that                           

contain entirely C, 5­mC, or 5­hmC bases. Apart from the cytosines, the strands have identical                             

sequences. We performed sequencing experiments (using SQK­MAP006 kits) with four MinION                     

flow cells: one for each of the three substrates, and one where all the substrates were with                                 

barcoded with uniquely identifying sequences (using an ONT kit) and run together on one flow                             

cell. All models were trained on the reads run in separate flow cells. The bar­coded reads                               

served as our test dataset. This experimental design maximized the amount of training data                           

while controlling for batch effects between MinION runs. Sequence data were processed using                         

Metrichor (versions 1.15.0 and 1.19.0), and only ‘pass’ 2D reads were used for downstream                           

analysis. 

Mapping of Reads and Event Alignment 
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We align ionic current events to the reference sequence in a two­step process. First we                             

generate a guide alignment between nucleotide sequences, which we then use to guide a                           

second alignment of events to the reference. To generate the guide alignments, we used a                             

concatenated sequence from Metrichor’s ‘2D alignment’, which allows for each base in the                         

MinION nucleotide sequence to be mapped to an event in the template and complement event                             

sequence. We then generated a guide alignment of the nucleotide sequence to the reference                           

with BWA­MEM in ont2d mode​17​. Runs of consecutive matches in this guide alignment serve as                             

anchors for the event­to­reference alignment using the banded alignment scheme described by                       

Paten et al.​18​. The anchors are mapped back to events in the event sequence, and the events                                 

are then realigned to the reference using the HMM described below, constrained by the                           

anchors. 

Structure of variable­order hidden Markov model 

Our HMM is structured to allow alignment of multiple different bases at a given position                             

in the reference sequence. In this study, we allow for any cytosine variant to be aligned to a                                   

given cytosine residue. The fact that each event corresponds to six positions in the reference                             

means that more than one event reports on a single ambiguous position. Accordingly, the HMM                             

must be constrained so that two nearby match states cannot label a reference cytosine’s                           

methylation inconsistently. To accommodate this, we implemented our HMM in a variable­order                       

meta­structure that allows for multiple paths over a reference 6­mer depending on the number                           

of methylation possibilities (i.e. the number of cytosine options raised to the power of the                             

number of ambiguous positions in the 6­mer). The dynamic programming matrix has                       

high­dimensional cells to accommodate these paths. We restrict the recursion by only allowing                         

transitions if the bases at positions 2­6 in the first 6­mer are identical to the bases at positions                                   

1­5 in the second 6­mer (Figure 5). The joint probability for the event sequence and the                               
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reference is calculated with the forward­backward algorithm, and the likelihood of methylation at                         

each cytosine is calculated by marginalizing over the HMM’s states. 

Hierarchical Dirichlet process mixture model 

The HDP mixture is a statistical model in which a collection of mixture distributions (here                             

corresponding to the signal emission distributions for the 46,656 different 6­mers in the                         

expanded alphabet) are composed of a countably infinite set of shared mixture components.                         

The weights of the components in each mixture distribution are determined according to a                           

separate Dirichlet process on the shared collection of components​19​. In addition, the mixture                         

components themselves are distributed according to a Dirichlet process that draws components                       

from a base distribution. In our model, the base distribution is the normal­inverse gamma                           

distribution, which is a conjugate prior to the normal distribution (that is, to the mixture                             

components). 

Sharing mixture components statistically shrinks our estimates of the current                   

distributions toward each other. This boosts statistical strength since each distribution can share                         

the information learned by the others. We also have the option of adding a further layer of                                 

Dirichlet processes between the Dirichlet process that generates the distribution over shared                       

components and the Dirichlet processes that generate the 6­mer distributions. After doing so,                         

the Dirichlet processes are arranged in a tree structure (Figure 1D). This encourages a greater                             

degree of shrinkage within each subtree. We experimented with several topologies for this tree,                           

each representing a different grouping of 6­mers based on their sequence composition (see                         

Results for descriptions of the groupings). 

Generating preliminary alignments without consideration for methylation status 

ONT provides a lookup table of parametric distributions that they use characterizes the                         

current distributions of the 4096 canonical base 6­mers. We take advantage of this table to                             

9 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 4, 2016. ; https://doi.org/10.1101/047134doi: bioRxiv preprint 

https://doi.org/10.1101/047134
http://creativecommons.org/licenses/by-nd/4.0/


heuristically initialize the emission distributions in our HMM over the expanded alphabet. To do                           

so, we generate a preliminary alignment using the table and then infer the methylation status of                               

the events based on their flow­cell (as mentioned above, the substrates within a flow cell only                               

contain one kind of methylation). We can then use high probability matches from this alignment                             

to train the emission distributions of the HMM. 

To generate preliminary alignments we used the ONT table to calculate the probability                         

an event being due to a particular 6­mer in the Match and Insert­Y states of the HMM. The                                   

event’s mean current and fluctuation in the mean (noise) are modeled as normal distributions.                           

We assume independence of the mean and noise variables, so the conditional probability of an                             

event for a given 6­mer is just the product of the mean and noise marginal probabilities. The                                 

Insert­X state is silent and therefore does not have an emission probability. 

Supervised training of 6­mer distributions 

We train the HMM with a variant of the Baum­Welch procedure. First, we heuristically                           

initialize the emission distributions by training them on aligned events above a probability                         

threshold (0.9) from the preliminary alignment described above. In the control experiments using                         

normal distributions, this simply entails calculating the maximum likelihood normal distribution                     

for each 6­mer. For the HDP­HMM, we estimate the posterior mean density for each 6­mer’s                             

distribution using a Markov chain Monte Carlo (MCMC) algorithm. In both cases, we only                           

estimate distributions for the event mean current following the preliminary alignment (a separate                         

neural net experiment suggested that the event noise did not add to classification accuracy;                           

Supplementary Methods). We then produce new alignments and re­estimate the emission                     

distributions from high confidence assignments as in the initialization. At this step, we also                           

re­estimate the HMM’s transition probabilities independently. This process is iterated until the                       

model’s variant calling accuracy stops improving. 
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The MCMC algorithm we use for the HDP is the Chinese Restaurant Franchise                         

Algorithm (Teh, et al. 2006), a Gibbs sampler for HDP mixture models. We discard the first                               

900,000 samples as burn­in (30­times the total number of assignment data points) and collect                           

10,000 samples, thinning sampling iterations by 100. Whenever we record samples from the                         

Markov chain, we evaluate the posterior predictive distribution for each 6­mer at a grid of 1200                               

evenly spaced points in the interval between 30 pA and 90 pA. After sampling, we compute our                                 

estimate of the posterior mean density as the mean of the sampled densities at each grid point.                                 

Subsequently, we interpolate within the grid using natural cubic splines. 
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Tables and Figures: 

 

    Three­Way 

Accuracy 
   

Model  Mean Accuracy   

(read) 
Median Accuracy   

(read) 
Mean Accuracy   

(site) 
Median Accuracy   

(site) 

MLE  62% / 50%  58% / 47%  59% / 51%  66% / 57% 

singlelevel  74% / 66 %  79% / 72%  73% / 63%  76% / 69% 

multiset  74% / 67%  80% / 76%  73% / 67%  76% / 70% 

composition  73% / 66%  78% / 71%  73% / 66%  76% / 69% 

middleNts  71% / 63%  76% / 69%  72% / 64%  75% / 67% 

GroupMultiset  73% / 65%  78% / 71%  72% / 66%  75% / 69% 

    Two­Way 

Accuracy 
   

Model  Mean Accuracy   

(read) 
Median Accuracy   

(read) 
Mean Accuracy   

(site) 
Median Accuracy   

(site) 

singlelevel  83% / 78%  86.5% / 84.5%  82% / 77%  83% / 78% 

multiset  83% / 78%  86.5% / 84.5%  82% / 77%  83% / 78% 

 

Table 1. Comparison of different methods and HDP topologies. MLE is the maximum likelihood                           

estimate, described in the text. ‘Two­level’ is an HDP model with no subgroupings of 6­mers,                             

‘Multiset’, ‘Composition’, ‘MiddleNucleotides’, and ‘GroupMultiset’ are three­level HDP models                 

described in the results. Three­way classification was performed between cytosine,                   

5­methylcytosine, and 5­hydroxymethylcytosine. Two­way classifications were between cytosine               

and 5­methylcytosine. 
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Figure 1. Overview of models and chemical structures. A. Chemical structures of three cytosine                           

variants. B. Architecture of hidden Markov model used in this study. The match state ‘M’ emits                               

an event­6­mer pair and proceeds along the reference, Insert­Y ‘I​y​’ emits a pair but stays in                               

place, and Insert­X ‘I​x​’ proceeds along the reference but does not emit a pair. C and D.                                 

Two­level (C) and three­level (D) hierarchical Dirichlet process shown in graphical form. Circles                         

represent random variables. The base distribution ‘H’ is a normal inverse­gamma distribution for                         

both models. The Dirichlet processes ‘G​0​’, ‘G​σn​’, and ‘G​σni​’ are parameterized by their parent                           

distribution and shared concentration parameters ‘γ​B​’, γ​M​’, and γ​L​’. The factors ‘θ​ji​’ specify the                           

parameters of the normal distribution mixture component that generates datum ‘x​ji​’. 

13 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 4, 2016. ; https://doi.org/10.1101/047134doi: bioRxiv preprint 

https://doi.org/10.1101/047134
http://creativecommons.org/licenses/by-nd/4.0/


 

Figure 2. Distributions of accuracy by sequence context and read, ROC plot, and correlation                           

between Hellinger distance and accuracy. A and B. The accuracy distribution by read (A) and by                               

context (B) is shown for the MLE emission distributions and the ‘multiset’ HDP model. The                             

triangles represent the mean of the distribution. C. Receiver operating characteristic plot                       

showing the performance of the classifier across posterior match probabilities. D. Scatter plot                         

shows the correlation between log­odds of correct classification and the mean pairwise                       

Hellinger distance between the methylation statuses of the 6­mer distributions overlapping a                       

cytosine.  
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Figure 3. Probability distributions for three representative 6­mers by multiple methods. The first                         

row shows the kernel density estimate (KDE) based on the preliminary alignments described in                           

the text. The middle row shows the probability density function maximum likelihood estimated                         

normal distribution (MLE). The bottom row shows probability density functions from the ‘multiset’                         

hierarchical Dirichlet process (HDP). All data shown are from template reads.  
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Figure 4. Illustration of variable order hidden Markov model meta­structure. The HMM’s                       

meta­structure ties the possible match states so that ambiguous positions are labeled                       

consistently within a path. Each cell contains the three states shown in Figure 1B, and                             

transitions span between cells. An example reference sequence is shown at the top. C*                           

represents a potentially methylated cytosine. The structure expands around the C* base to                         

accommodate for all possible methylation states. The states are drawn as 4­mers for simplicity,                           

but the model is implemented with 6­mers.  
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Supplementary Methods

1 Preparing event and nucleotide sequences

Making a read sequence from the 2D alignment table

The current MinION DNA sequencing library preparation protocol involves lig-
ating a DNA hairpin to the distal end of the substrate to be sequenced. This
effectively makes the DNA duplex one long strand of nucleic acid polymer. The
sequencer then proceeds to sequence both strands of the DNA duplex. When
these two ”1D” reads are basecalled there is an event attributed to each nu-
cleotide in the read. The two 1D reads are assembled in silio into a ”2D” read.
During the assembly process some bases are inferred by the algorithm and do
not have events attributed to them. We need every nucleotide in the sequence
to correspond to an event because we use BWA-MEM to map the nucleotide
reads to the reference sequence and use runs of consecutive matches to constrain
the dynamic programming (see Banding section below). Obviously, the inferred
bases cause problems when we try to map bases to events. The ”2D Alignment”
table, however, does attribute each nucleotide position to an event. Therefore,
we use the list of 6-mers in the 2D alignment table to construct our nucleotide
sequence, which is then used for all downstream analysis.

Descaling events

The software that processes the raw MinION signal into events also produces
three read-specific parameters that describe how the distributions of the sig-
nal from that read deviate from Oxford Nanopore’s standard statistics: “scale”,
“shift”, and “variance”. Scale indicates how spread out the distributions of each
6-mer are from each other, shift indicates the location of the entire set of distri-
butions, and variance indicates how flat or peaked each distribution is (although
it is actually a standard deviation, not a variance). Without these parameters,
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the standard statistics describe each event mean X as a normal distribution with
a given mean and variance:

X ∼ N
(
µ, σ2

)
. (1)

The deviation parameters indicate that, from this particular read, X actually
follows

X ∼ N
(
SC · µ+ SH, V AR2 · σ2

)
, (2)

where SC, SH, and V AR are the scale, shift, and variance parameters re-
spectively. Rather than relying on the standard statistics, we learn 6-mer distri-
butions with a hierarchical Dirichlet process (See below). The learning algorithm
we use does not permit us to reparametrize the signal distributions for each read.
Instead, we reverse the process. Rather than transforming the distribution, we
transform the signal. In particular, we use a change of variable transformation
that would transform (2) into (1) so that all of the events can be assumed to use
the same coordinates. It is straightforward to verify that this transformation is

Y =
X + V AR · µ− SC · µ− SH

V AR
. (3)

We then use our model learn the density of Y and backtrack to obtain a
read-specific density for X (accounting for the Jacobian of the transformation):

fX(x) =
1

V AR
· fY

(
x+ V AR · µ− SC · µ− SH

V AR

)
. (4)

2 Modeling Ionic Current Sequences

During strand sequencing multiple nucleotides occupy the nanopore at one time
and thus multiple nucleotides contribute to the ionic current. In this study, we
model the ionic current as being due to six nucleotides (6-mers) but other models
with different length kmers could been used. The motor enzyme moves the DNA
one nucleotide at a time through the nanopore so five of the nucleotides remain
and one changes, resulting in a new 6-mer in the nanopore. In this section we
describe a pair hidden Markov model (HMM) for aligning ionic current events
(event sequence) to nucleotides (reference sequence). We then describe how this
model is expanded to allow for alignment to multiple variants at a positions in
the reference sequence.
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2.1 Pair Hidden Markov Model

A pair-HMM with the structure shown in Figure 1A was implemented, the
code can be found at https://github.com/ArtRand/signalAlign. This model
calculates the probability of an alignment π given a sequence of events E =
{e1...en}, a sequence of nucleotides, S, divided into nucleotide 6-mers S =
{k1...kn}, and the model Θ; P (π|E,S,Θ). The three states; match M for match-
ing one event with one nucleotide kmer, Ix for pairing a nucleotide kmer with
a gap, and Iy for pairing an event with a gap. The transition probabilities are
initialized to naive estimates for the stride, skip, and stay probabilities that cor-
respond to the enzyme advancing exactly one nucleotide, advancing more than
one nucleotide, and not advancing, respectively. In one version of the model, the
emissions for the M state and Iy are the product of the probability of the ionic
current mean and ionic current noise. We assume independence of the mean and
noise variables, so the conditional probability of an event for a given 6-mer is
given by,

P (ej |ki, θ) = P (µj |ki, θmean)P (σ′j |ki, θnoise)

The mean and noise are modeled as a normal distributions µi ∼ N (µi, σi) and
σi ∼ N (µ′i, σ

′
i), where µi, σi, µ

′
i, and σ′i are given by the supplied table from

Oxford Nanopore Technologies. For alignments using the maximum likelihood
estimate (MLE) (see methods in text for details of MLE), we only update the
µi, σi parameters. The Ix is silent and does not emit. In another version of
the model we modeled the ionic current distributions as a hierarchical Dirichlet
process mixture of normal distributions (details below). In this case we use the
posterior mean density as the emission probability of theM , and Iy states instead
of the probability density function for a normal distribution.

2.2 Variable-Order Hidden Markov Model

We model each event as reporting on six nucleotides in the reference sequence.
When we allow for multiple variants in the reference sequence (multiple cyto-
sine variants) we would like to compute over all possibilities in a way that the
probabilities for a given 6-mer are tied with only 6-mers that share that par-
ticular variant pattern. As can be seen visually in Figure 5, when a position is
allowed to be variable (C* bases) the number of paths expands to accommo-
date the number of variable positions. Given 6-mer ki that contains η variable
bases within the set C = {A,C,G, T, Cm, Ch} the number of paths, l, is simply
l = η|C|. The dynamic programming matrix is changed such that every cell has l
dimensions, which is precomputed based on the reference. Then we perform the
forward-backward algorithm through the matrix except that we don’t want to
sum over all paths, Π, only paths that represent legal moves, π ⊆ Π. A move is
defined as legal if bases 2-6 of the previous path’s 6-mer are the same as bases
1-5 of the current path’s 6-mer. For example, assume 5m-C is represented at E

and 5hm-C is O, the move between 6-mers AGEOAT and GEOATA would be legal,
but the move between AGEOAT and GEEATA would not. Moves from the start state
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and to the end state are legal regardless of the 6-mer. With this framework we
can calculate the total probability of an event sequence, the reference sequence
containing variable positions, and the model by:

P (E,Θ) = P ({e1...en}, Θ) =
∑
π

P (E, π)

Next we can calculate the posterior probability that 6-mer xi is aligned to event
ej (noted as xi � ej) as

P (xi � ej |x,Θ) = P (πi = M |x,Θ) =
fM (i)bM (i)

P (E,Θ)

Where fM and bM are the forward and backward variables respectively.

2.3 Banded alignment

We use a banded alignment heuristic to increase the speed and memory require-
ment of our algorithm. The banding procedure is described in detail in [1], in this
section we briefly describe the procedure and the settings used. The nucleotide
sequence derived from the 2D alignment table (described above) is aligned to the
reference sequence using BWA-MEM using the -ont2d flag for aligning nanopore
reads. We refer to this as the guide-alignment. From the guide alignment runs
of un-gapped matches are used as constraints in the edit graph around which we
compute our dynamic programming. To prevent any edge effects, the constraints
are trimmed at either end by 14 nucleotide pairs. We then expand around the
constraints by 50 anti-diagonal cells in the edit graph. To increase the efficiency
of the algorithm, we break the alignment into fragments. Alignment bands com-
puted between the centers of the constraints where the quality of the guide align-
ment should be highest. This allows our higher order HMM to have a smaller
memory footprint as well as constraining the posterior probability distribution
to higher likelihood matches.

2.4 Hierarchical Dirichlet Process Mixture Model for Ionic Current
Distributions

We model the distribution of ionic currents across the 45,656 different 6-mers as
a hierarchical Dirichlet process (HDP) mixture of normal distributions. In this
model, each current distribution is composed of a countably infinite collection
of Gaussian mixture components that are shared between the 6-mers. More pre-
cisely, all of the distributions draw mixture components according to a Dirichlet
process over the same discrete distribution over a countably infinite collection of
“atoms”, each of which consists of the parameters for a normal distribution. In
addition, this discrete distribution is itself generated according a Dirichlet pro-
cess on the normal-inverse-gamma distribution (a conjugate prior to a normal
distribution).
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The most intuitive interpretation of the Dirichlet process for this setting is
the “stick-breaking procedure”. In this construction, we draw a countably infinite
number of atoms from the normal-inverse-gamma distribution and then form a
new distribution over these atoms by assigning them weights wk, k = 1, . . . ,∞
sequentially:

wk = βk

k−1∏
i=1

(1− βi) βi ∼ Beta(1, α) (5)

where α is a hyper-parameter referred to as the “concentration”. Note that
both the value of the atoms and their weights are random variables. To gener-
ate each of the current distributions, the HDP draws a countably infinite set
of mixture components according to a Dirichlet process on this new distribu-
tion (treating the weights as probability masses). The weights that this process
assigns to the atoms are the weights on the components in the mixture distribu-
tion.

Our motivation for using an HDP to model signal distributions is that it
shrinks the set of distributions it learns towards each other, which increases
robustness, while retaining the flexibility to approximate any arbitrary distribu-
tion given sufficient data. Both of these feature are important, since we expect
that the current distributions may have complex shapes and we must estimate
a large number of them. The shrinkage is a result of the fact that all of the
distributions share the same mixture components: each distribution can share
the information learned by the others. In addition, this allows us to calculate
informed prior distributions even for 6-mers that have not been positively iden-
tified in the training data, a feature that will be useful for expanding the scope
of modifications that the model can detect.

Determining appropriate hyperparameters

The HDP mixture has two sets of hyperparameters. First, we must choose the
concentration parameters. Rather than choosing fixed values, we use the meth-
ods of [2] and [3] to place an exponential distribution prior with expected value
1 on the concentration parameters. We also assume that each level in the hierar-
chy of Dirichlet processes shares one concentration parameter. In other versions
of the model, we experimented with fixed concentration parameters and with
exponential priors with larger expected value, but this version performed the
best.

We also must choose the parameters of the normal-inverse-gamma distri-
bution that generates the atoms for the base Dirichlet process. To do so, we
leverage information provided by Oxford Nanopore Technologies. MinION data
come with a table of normal distributions that describe current signal gener-
ated by the 4096 six-nucleotide 6-mers composed of the four canonical bases.
We expect the set of distributions that HDP learns to be broadly similar to
these current distributions in terms of location and scale. Accordingly, we chose
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a base distribution for the HDP’s mixture components to have a high likelihood
of generating the normal distributions described in the table. In particular, we
found the maximum likelihood normal-inverse-gamma distribution treating the
distributions in the table as previously observed mixture components according
to the following derivation. For the sake of cleaner equations, we solve the equiv-
alent problem of finding the maximum likelihood estimates for the parameters
of a normal-gamma distribution.

Given N independent observations of mean-precision tuples (µi, τi), we have
likelihood function

L(µ, τ ) =
N∏
i=1

βα

Γ (α)
τα−1i exp (−βτi)

√
ντi
2π

exp
(
−ντi

2
(µi − µ0)2

)
. (6)

Differentiating the log-likelihood, the maximum likelihood estimates then
satisfy

∇`(µ, τ ) =


d`
dµ0

d`
dν

d`
dα

d`
dβ

 =


ν
∑N
i=1 τi(µi − µ0)

N
2ν −

1
2

∑N
i=1 τi(µi − µ0)2

N log β −Nψ0(α) +
∑N
i=1 log τi

Nα
β −

∑N
i=1 τi

 = 0, (7)

where ψ0 is the digamma function. This immediately yields closed form so-
lutions for the parameters µ0 and ν:

µ0 =

∑N
i=1 µiτi∑N
i=1 τi

(8)

ν =

(
1

N

N∑
i=1

τi(µi − µ0)2

)−1
. (9)

Further, substituting

β =
α

1
N

∑N
i=1 τi

, (10)

we obtain

N logα−Nψ0(α) +
N∑
i=1

log τi −N log

(
1

N

N∑
i=1

τi

)
= 0. (11)
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This formulation permits a Newton’s method approximation of α. In particu-
lar, starting from arbitrary positive α0 we iterate the following until convergence:

αn+1 = αn −
logαn − ψ0(αn) + 1

N

∑N
i=1 log τi − log

(
1
N

∑N
i=1 τi

)
1
αn
− ψ1(αn)

(12)

where ψ1 is the trigamma function. The result then also gives a solution for
β through Equation (10).

Grouping 6-mers with different HDP topologies

In the original HDP described by Teh, et al. (2006), all of the mixture distribu-
tions draw mixture components from the same distribution over atoms, which
is generated by a Dirichlet process on the base distribution. However, there is a
relatively simple extension of this model in which the mixture distributions are
split into prespecified groups, and it is these groups that share a distribution
of over atoms. This is accomplished by adding an additional layer of Dirichlet
processes between the one that generates the initial distribution over atoms and
the ones that generate the mixture distributions. To conceptualize this, it helps
to think of the HDP as a collection of Dirichlet processes arranged in a tree
structure (with the Dirichlet process over the base distribution at the root).
With this framing, the generalization amounts to having a tree with a depth of
two instead of one.

All of the mixture distributions still share the same collection of atoms, since
all of the atoms in the middle layer of Dirichlet processes are drawn from the
original root Dirichlet process. However, the weights of the atoms are reassigned
according to a new stick-breaking procedure (See Equation (5)) in each of the
middle-level Dirichlet processes. The effect is that the shrinkage between the
distribution estimates is greater within a subtree than between subtrees. Since
we have control over the topology of the tree, this serves an extra “knob” that
can be used to increase statistical strength. However, the grouping of mixture
distributions into subtrees presumably must reflect clusters of similarity in the
true distributions in order to accomplish this goal.

The biophysics of how a 6-mer of DNA translates into a current distribution
is poorly understood. Accordingly, we took an empirical approach to determining
what topologies for the tree of Dirichlet processes would be meaningful. We came
up with several ways to partition 6-mers based on their sequence composition
and tested the performance of each one. The groupings were as follows:

1. No groups: this model has no middle layer of Dirichlet processes.
2. Groups of 6-mers containing the same number of purines and pyrimidines:

this corresponds to a hypothesis that steric bulk is a strong determinant of
the current distribution.

3. Groups of 6-mers that shared the same two middle nucleotides: this corre-
sponds to a hypothesis that the nucleotides that are passing through the
most constricted portion of the nanopore have the most influence.
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4. Groups of 6-mers that contain the same nucleotides, irrespective of their
order : this corresponds to a hypothesis that the position of nucleotide in the
6-mer is less important than which nucleotide it is, similar to resistors in
series.

5. Groups of 6-mers that contain the same nucleotides, irrespective of both their
order and their modification status: this corresponds to the same hypothesis
as the previous grouping and also a hypothesis that the modification status
has relatively little effect on the current distribution.

2.5 Training the HMM Transitions

We trained the HMM transitions separately from the emissions using a batch
expectation-maximization procedure usually referred to as the Baum-Welch al-
gorithm. For a detailed description of the algorithm, see Durbin et al. 1998.
Training was performed in batches of 15,000 nucleotides and iterated 20 times.
When experimenting with different emissions models (eg. different HDP topolo-
gies), the transition matrices were trained specifically for that model.

2.6 Training the HMM-HDP model

An overview of the training method used is described in the methods section
of the main text. In this section we provide more details for this procedure. We
train the HMM-HDP with a variant of the Baum-Welch procedure. However, this
algorithm is sensitive to the initial values of the model’s parameters, so first we
leverage Oxford Nanopore’s standard statistical model to heuristically initialize
the HMM’s emission distributions. ONT’s model consists a table of parametric
distributions that describe the events arising from each of 4096 6-mers composed
of the four conventional nucleotides. In particular, they model the event mean
current as a normal random variable and the event current variability (which
they call “noise”) as an inverse Gaussian random variable. We assume that these
are independent so that we can calculate their joint density as the product of
the marginal densities.

To obtain our heuristic estimates of the HMM-HDP’s emission distributions,
we first generate a preliminary alignment with a simplified HMM. This HMM
only has states over the conventional four-nucleotide alphabet. This allows us to
1) use the standard statistical model and 2) use a first-order HMM (since there
are no ambiguities between the HMM’s alphabet and the reference alphabet).
We use the banded alignment scheme described above to obtain a posterior
probabilities that an event was generated by a given 6-mer. Our experimental
design allows us to then label the methylation status of the cytosines from these
alignments post hoc. After doing so, we extract the aligned events with posterior
probabilities of at least 0.9 and use these as training data to learn emission
distributions for the HDP.

Once we have a set of aligned events as training data, we estimate the emis-
sion distributions using an MCMC method. The specific algorithm is a Gibbs
sampler for HDPs called the Chinese Restaurant Franchise Algorithm, which we
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implemented in original software (available at https://github.com/jeizenga/
hdp_mixture ). Briefly, it involves integrating out the values of the HDP’s atoms
and then sampling the full conditional distributions of latent variables that indi-
cates which mixture component generated each data point (See Teh, et al. (2006)
for details). We begin with a burn-in period of 30 times as many sampling it-
erations as we have data points. After this, we record 10,000 samples, thinning
by 100 sampling iterations. Every time we record a sample, we compute the
posterior predictive distribution of each 6-mer on a grid that covers the range of
MinION current signal. We then estimate the mean posterior density at each of
these grid points from the sample and interpolate between them using natural
cubic splines. These serve as our distribution estimates.

Our variant of the Baum-Welch procedure functions similarly to the heuristic
initialization. First, we align the reads to the reference, except now we use the
full variable-order HMM and the emission distributions estimated by the HDP.
We then extract the assignments with posterior probabilities of at least 0.9 and
use these as training data to obtain mean posterior distributions from the HDP.
We then iterate this process a fixed number of times. This differs from the true
Baum-Welch procedure since we are using posterior mean estimates rather than
maximum a posteriori. However, these values are asymptotically equivalent in
unimodal posteriors, so this is probably a reasonable approximation.

3 Classification of Ionic Current Events with Neural
Networks

We investigated the feasibility of cytosine methylation detection by testing whether
or not events aligned to a single cytosine could be classified based on their methy-
lation status. We also used this strategy to evaluate which features are the most
discriminatory in classification. Artificial neural networks are non-sparse classi-
fiers well suited to this task, in this section we describe classification of events
that have been aligned to the reference sequence using the preliminary align-
ments generated without consideration for methylation status.

Data processing for single cytosine motifs

Subsequences of the reference sequence, motifs, were selected that contain a sin-
gle cytosine among a run of 11 nucleotides. The MinION reads both strands
of the DNA duplex and combines these reads into a ‘2D’, high quality read.
The motifs we chose contain guanine bases, however, and the complement would
therefore contain a variable number of modified cytosine bases and contribute
to the classification accuracy (see methods for substrate description). We there-
fore classified only one strand per read. In the case of forward-mapped reads
this was the template strand, in the case of backward-mapped it was the com-
plement strand. To assess the amount of classification bias due to the stands
alone, we classified Null motifs that do not contain any cytosines, Figure S1.
These Null motifs should be the same between strands and the classifier should
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report accuracy close to random chance (33%). Events that aligned to positions
in the reference corresponding to a motif were culled. When multiple events
were aligned to a position, the one with the highest posterior probability was
taken. Thus an ordered set of a maximum of 12 observed event mean current
levels (6 on the template and 6 on the complement), six observed ionic current
noise levels, and six posterior probabilities, was obtained. The difference from
the observed mean current level from the expected current level (from the ONT
table) given the 6-mer was taken for each observation. The same was done for
the noise levels. The differences in the mean current level (∆µ), differences in
noise level (∆σ), and the posterior probabilities (P ) became the features input
to the classifier. We experimented with four different feature sets; ∆µ alone, ∆µ
and ∆σ, ∆µ and P , and all three together.

Network architecture and training routine

Classification of the feature vectors was performed using a custom artificial neu-
ral network implemented in Theano (Bastien et al. 2012). For the individual
motif classification a network with two hidden layers and a final softmax layer
was used. The dimensions of this network were 50, 10, 3, with rectified linear unit
and hyperbolic tangent nonlinearity activation functions used for the first and
second hidden layers respectively. For classification, the class with the highest
probability from the softmax layer was chosen. We split the dataset into three
groups; 10% of the data was held out for testing after the training procedure.
Of the remaining, training data, 50% was used as cross-training (validation) and
50% was used in the optimization. An equal number of feature vectors for each
category were used in all data sets. Training of the network was done using mini-
batch stochastic gradient descent and an annealing learning rate schedule. We
used 5 reads per batch and a dynamic learning rate initialized at 0.1%. With
decreases in cross-training batch costs, the learning rate was decreased by 10%,
if the cross-training batch cost increased, the learning rate was increased by
5%. We used L1 and L2 regularization of 0.01. Lastly, the data was centered
and normalized based on the training data set before starting the routine. The
model that had the highest cross-training accuracy during the learning process
was used for final evaluation of the test set. We performed the same training
routine on the Null sites.

Classification accuracy is maximized using ∆µ and posterior
probability as features

The accuracy for the different feature sets for the cytosine motifs is summarized
in Table 1, the Null motifs are summarized in Table 2. The highest accuracy was
obtained when using the mean and posterior probability at 65% on the template
reads and 66% on complement reads. Including ∆σ did not appear to increase the
accuracy of the classifier. We classified events culled from alignments generated
with the HMM-HDP and the methylation-naive HMM. Both data sets produced
similar error rates when classified with the neural network.
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Table 1. Classification of single cytosine motifs

Forward/Template
Motif Sequence {∆µ} {∆µ, ∆σ} {∆µ, P} {∆µ, ∆σ, P}
TTTTGCTGAGT 78.33 86.67 83.33 85
AAGTTCAAAAT 40 51.67 46.67 35
AGATGCAGGGG 70 73.33 83.33 76.67
AAGGGCTGGAT 66.67 75 68.33 61.67
ATTTGCTGAGG 65 78.33 58.33 73.33
TGGGGCAAATG 68.33 75 68.33 83.33
GGAATCAAATT 40 40 40 40
GTGGACAGGAA 76.67 68.33 71.67 75
AAATTCTTGAA 46.67 56.67 56.67 58.33
GAAGACGAAAG 81.67 66.67 85 76.67
AATGTCATGAT 53.33 61.67 68.33 73.33
GGTTTCTTAGA 45 43.33 58.33 51.67
TTTTTCTAAAT 43.33 40 60 60
Average: 59.62 62.82 65.26 65.38

Backward/Complement
TTTTGCTGAGT 53.33 51.67 64.44 66.67
AAGTTCAAAAT 41.67 43.33 62.22 60
AGATGCAGGGG 61.67 63.33 84.44 68.89
AAGGGCTGGAT 63.33 63.33 73.33 73.33
ATTTGCTGAGG 51.67 70 75.56 73.33
TGGGGCAAATG 71.67 68.33 75.56 66.67
GGAATCAAATT 40 41.67 40 57.78
GTGGACAGGAA 40 40 46.67 40
AAATTCTTGAA 35 40 62.22 77.78
GAAGACGAAAG 73.33 55 80 75.56
AATGTCATGAT 40 40 57.78 62.22
GGTTTCTTAGA 45 46.67 68.89 66.67
TTTTTCTAAAT 46.67 48.33 68.89 64.44
Average: 51.03 51.67 66.15 65.64

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 4, 2016. ; https://doi.org/10.1101/047134doi: bioRxiv preprint 

https://doi.org/10.1101/047134
http://creativecommons.org/licenses/by-nd/4.0/


Table 2. Classification of Null motifs

Forward/Template
Motif Sequence {∆µ} {∆µ, ∆σ} {∆µ, P} {∆µ, ∆σ, P}
TTGTTGAATAA 40 40 43.33 43.33
GAGTTGAAGGA 38.33 41.67 46.67 41.67
GGATGATGGGG 40 40 35 35
AGGGGTAAAAG 40 40 60 38.33
AGGATGAAGGT 40 40 40 40
GAGGAAGGTGA 40 40 40 40
AAAAGAGTTTG 40 40 40 40
GGTGATATGGG 40 40 41.67 40
GTTTATAAAAT 40 40 36.67 40
TTTTATAGGTT 40 40 40 40
ATAATAATGGT 40 40 40 40
GGGGAAATGTG 40 40 40 40
TTTGTTTATTT 40 40 40 40
Average: 39.87 40.13 41.80 39.87

Backward/Complement
TTGTTGAATAA 40 40 48.89 48.89
GAGTTGAAGGA 40 40 40 40
GGATGATGGGG 40 40 42.22 44.44
AGGGGTAAAAG 40 40 44.44 46.67
AGGATGAAGGT 40 40 42.22 40
GAGGAAGGTGA 40 40 42.22 40
AAAAGAGTTTG 40 40 46.67 44.44
GGTGATATGGG 40 40 35.56 40
GTTTATAAAAT 40 40 26.67 33.33
TTTTATAGGTT 40 40 40 26.67
ATAATAATGGT 40 40 33.33 35.56
GGGGAAATGTG 40 40 55.56 60
TTTGTTTATTT 40 40 40 48.89
Average: 40.00 40.00 41.37 42.22
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4 MinION DNA Sequencing

We used synthetic DNA substrates from ZYMO Research (Catalog # D5405).
These are 897 bp long DNA molecules that are used as 5-mC and 5-hmC DNA
standards. We performed three MinION sequencing runs with SQK-MAP006
chemistry kits, using one flow cell per DNA standard (C, 5-mC, and 5-hmC).

Additionally, we also bar-coded these substrates using ONT barcoding kit
and mixed them together. We then performed MinION sequencing of this mix-
ture on a single flow cell. Reads corresponding to the three DNA standards were
separated using their respective barcode sequences during base-calling. All the
data was base-called using Metrichor (versions 1.15.0 and 1.19.0).

For this manuscript, we restricted all downstream analysis to pass 2D reads.
We used BWA (in ont2d mode) as the initial alignment tool to obtain read
mapping orientations (forward/backward). However, our method is not restricted
to 2D reads (or pass/fail categories).
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