
CoSMoMVPA: multi-modal multivariate
pattern analysis of neuroimaging data

in Matlab / GNU Octave
[© The Authors. This is a non-peer-reviewed pre-print available from bioRxiv]

Nikolaas N. Oosterhof, Andrew C. Connolly, James V. Haxby

April 04, 2016

Contents

1 Introduction 3

2 Analysis examples 4
2.1 Classification . 5
2.2 Representational similarity analysis . 6
2.3 Locating effects in space and time . 7
2.4 Generalization over time . 8

3 CoSMoMVPA concepts 10
3.1 Dataset structure . 12
3.2 Dataset dimensions . 12
3.3 Dataset operations . 13
3.4 Dataset input/output . 18
3.5 Classifiers . 18
3.6 Partitions . 19
3.7 Dataset measures . 19
3.8 Neighborhoods . 19
3.9 Searchlight . 21
3.10 Multiple comparison correction . 21

4 Design descisions 26
4.1 The Matlab / GNU Octave language . 26
4.2 Maintainable architecture . 27
4.3 Limitations . 28

5 Conclusion 29

6 Acknowledgements 29

7 Conflict of interest statement 30

References 30

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 6, 2016. ; https://doi.org/10.1101/047118doi: bioRxiv preprint

https://doi.org/10.1101/047118
http://creativecommons.org/licenses/by/4.0/

Abstract

Recent years have seen an increase in the popularity of multivariate pattern (MVP) analysis of functional magnetic
resonance (fMRI) data, and, to a much lesser extent, magneto- and electro-encephalography (M/EEG) data. We present
CoSMoMVPA, a lightweight MVPA (MVP analysis) toolbox implemented in the intersection of the Matlab and GNU
Octave languages, that treats both fMRI and M/EEG data as first-class citizens.

CoSMoMVPA supports all state-of-the-art MVP analysis techniques, including searchlight analyses, classification,
correlations, representational similarity analysis, and the time generalization method. These can be used to ad-
dress both data-driven and hypothesis-driven questions about neural organization and representations, both within
and across: space, time, frequency bands, neuroimaging modalities, individuals, and species.

It uses a uniform data representation of fMRI data in the volume or on the surface, and of M/EEG data at the sensor
and source level. Through various external toolboxes, it directly supports reading and writing a variety of fMRI and
M/EEG neuroimaging formats, and, where applicable, can convert between them. As a result, it can be integrated
readily in existing pipelines and used with existing preprocessed datasets.

CoSMoMVPA overloads the traditional volumetric searchlight concept to support neighborhoods for M/EEG and
surface-based fMRI data, which supports localization of multivariate effects of interest across space, time, and fre-
quency dimensions. CoSMoMVPA also provides a generalized approach to multiple comparison correction across
these dimensions using Threshold-Free Cluster Enhancement with state-of-the-art clustering and permutation tech-
niques.

CoSMoMVPA is highly modular and uses abstractions to provide a uniform interface for a variety of MVP mea-
sures. Typical analyses require a few lines of code, making it accessible to beginner users. At the same time, expert
programmers can easily extend its functionality.

CoSMoMVPA comes with extensive documentation, including a variety of runnable demonstration scripts and analy-
sis exercises (with example data and solutions). It uses best software engineering practices including version control,
distributed development, an automated test suite, and continuous integration testing. It can be used with the pro-
prietary Matlab and the free GNU Octave software, and it complies with open source distribution platforms such as
NeuroDebian.

CoSMoMVPA is Free/Open Source Software under the permissive MIT license.

Website: https://cosmomvpa.org

Source code: https://github.com/CoSMoMVPA/CoSMoMVPA

Keywords: multi-variate pattern analysis, software, functional magnetic resonance imaging, magnetoencephalography,
electroencephalography, open source, cognitive neuroscience

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 6, 2016. ; https://doi.org/10.1101/047118doi: bioRxiv preprint

https://doi.org/10.1101/047118
http://creativecommons.org/licenses/by/4.0/

1 Introduction

The use of multivariate pattern analysis has in the last decade become popular in functional magnetic resonance
imaging (fMRI) research (Edelman, Grill-Spector, Kushnir, & Malach, 1998; Haxby et al., 2001; D. D. Cox & Savoy,
2003; Mitchell et al., 2004; Haynes & Rees, 2006; Norman, Polyn, Detre, & Haxby, 2006). This is not surprising, as
MVPA has several advantages compared to traditional, and more commonly used, univariate analyses. First, MVPA
can provide more sensitivity in discriminating conditions of interest than univariate approaches because it considers
patterns of voxel activity that may show weak but consistent differences between conditions. Second, it allows for
making inferences about the underlying neural representations, within (Peelen, Wiggett, & Downing, 2006) and across
(Haxby et al., 2011) individuals, imaging modalities, and species (Kriegeskorte, Mur, Ruff, et al., 2008; Kriegeskorte
& Kievit, 2013). The popularity of MVPA has resulted in several projects, such as PyMVPA (Hanke, Halchenko,
Sederberg, Hanson, et al., 2009; Hanke, Halchenko, Sederberg, Olivetti, et al., 2009), the Princeton MVPA toolbox
(Detre et al., 2006), PRoNTO (Schrouff et al., 2013), Searchmight (Pereira & Botvinick, 2011), the RSA toolbox (Nili
et al., 2014) and The Decoding Toolbox (Hebart, Görgen, & Haynes, 2014), that aim to provide a common framework
to make it accessible to non-expert programmers.

While MVPA has become a popular technique for fMRI, there are few reports of its application to magneto- and
electro-encephalography (M/EEG 1) data (but see for example Kauhanen et al., 2006, Perreau Guimaraes, Wong,
Uy, Grosenick, & Suppes, 2007, Pistohl, Schulze-Bonhage, & Aertsen, 2011, Chan, Halgren, Marinkovic, & Cash,
2011, Cichy, Pantazis, & Oliva, 2014). M/EEG data benefits from of a much higher temporal resolution than fMRI
data, which allows for identifying neural correlates over the temporal dimension with high precision. In particular the
time-generalization method (King & Dehaene, 2014) provides a promising avenue to investigate how different neural
populations may encode experimental conditions over time. At the same time, to our knowledge only the MNE-python
package (Gramfort et al., 2013) provides (limited) MVPA support for M/EEG data.

To address this gap, we present CoSMoMVPA, a toolbox that can be used to answer hypothesis-driven and data-
driven neuroimaging questions using MVPA applied to both fMRI and M/EEG data. It uses simple, yet powerful data
structures and a modular approach, so that different modules can be combined to build complex analysis pipelines. For
data-driven approaches, it provides a generalized searchlight for localization of effects across voxels, surface nodes,
M/EEG channels, time intervals, and frequency intervals; and combinations of those. To guard against type-1 errors, it
it supports state-of-the-art Threshold-Free Cluster Enhancement and Monte Carlo-based permutation testing to correct
for multiple comparisons.

It has been proposed (Hanke, Halchenko, Sederberg, Hanson, et al., 2009) that a framework for neuroimaging analysis
should have at least the following five features:

• intuitive user interface: because most cognitive neuroscientists have limited training as computer scientists, the
software should support workflows for common data analysis pipelines.

• extensibility: to avoid duplication of implementation efforts, the software should be able to interface with exist-
ing toolboxes.

• transparent I/O: the software should support easy input/output from and to neuroimaging data stored in common
formats.

• portability: the software should not impose restrictions on the type of hardware used, and should run on all
major operating systems.

• open source software: the software itself should be open to inspection of the implementation so that its correct-
ness can be verified. In addition, we propose that the software should also run on open source platforms, so that
researchers are not limited by the lack of access to proprietary software.

Yet another MVPA toolbox? CoSMoMVPA is not the first MVPA toolbox for cognitive neuroscience; indeed, since
the Princeton toolbox (Detre et al., 2006), several other toolboxes have been released, both for the Python lan-
guage—PyMVPA (Hanke, Halchenko, Sederberg, Hanson, et al., 2009; Hanke, Halchenko, Sederberg, Olivetti, et

1 Throughout the manuscript we use the shorthand “M/EEG” to refer collectively to electrophysiological data including magneto-
encephalography (MEG), scalp electro-encephalography (EEG), and intracranial EEG (iEEG), electro-corticography (ECoG).

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 6, 2016. ; https://doi.org/10.1101/047118doi: bioRxiv preprint

https://doi.org/10.1101/047118
http://creativecommons.org/licenses/by/4.0/

al., 2009), MNE-python (Gramfort et al., 2013)—and the Matlab language—PRoNTO (Schrouff et al., 2013), Search-
might (Pereira & Botvinick, 2011), the RSA toolbox (Nili et al., 2014) and The Decoding Toolbox (Hebart et al.,
2014). However, we think that CoSMoMVPA provides a unique combination of features that make it attractive for
cognitive neuroscientists.

• easy to use: CoSMoMVPA is based on a small number of concepts (for details see Section 3), which apply
directly state-of-the art MVP analyses using only a few lines of code, as illustrated in Section 2. This in-
cludes classification, representational similarity, and classification analyses; using either a region-of-interest or
a searchlight; for fMRI and/or M/EEG data. Particular attention has been given to extensive data validation and,
whereever necessary, providing informative error messages.

• easy to learn: CoSMoMVPA’s website provides a set of exercises (with solutions) to get familiar with CoS-
MoMVPA’s concepts. CoSMoMVPA also comes with a variety of runnable code examples for MVP analyses, a
subset of which is shown in Section 2; users can use these as a starting point and adapt these examples for their
own analyses.

• characterize ‘locations’ that carry information: CoSMOMVPA provides functionality for characterizing infor-
mation content through a general searchlight concept. A searchlight is used with neighborhoods defined over
space—voxels for volumetric fMRI or M/EEG source data, nodes for surface-based fMRI data, or channels for
M/EEG channel data)—and time—timepoints for fMRI and M/EEG data, and temporal oscillations (frequency
bands) for M/EEG data—to characterize information content over space and time.

• based on Matlab / GNU Octave: Matlab (and to lesser extent, GNU Octave) is a popular platform in cognitive
neuroscience research, with many other widely used packages running on it, including Psychtoolbox (Brainard,
1997), FieldTrip (Oostenveld, Fries, Maris, & Schoffelen, 2011), EEGLAB (Delorme & Makeig, 2004), and
SPM (Friston, Jezzard, & Turner, 1994). It is also a popular tool for general data analysis. Given its widespread
use, many researchers may already be familiar with the Matlab / GNU Octave language, resulting in a reduced
time-investment to learn CoSMoMVPA.

• integrates with other packages: CoSMoMVPA provides extensive input/output support. It can read and write
the general fMRI NIFTI and GIFTI formats, and in addition read and write in the native data formats used by
the AFNI (R. W. Cox, 1996), BrainVoyager (Goebel, Esposito, & Formisano, 2006), SPM (Friston et al., 1994),
FieldTrip (Oostenveld et al., 2011) and EEGLAB (Delorme & Makeig, 2004) packages. As a result, it can be
easily integrated in, or extend, existing data analysis pipelines.

• focus on reproducibility and maintainability: Inspired by PyMVPA, CoSMoMVPA uses the git distributed
version control system (Torvalds et al., 2005)), an extenstive test suite, and continuous integration testing. These
components improve maintainibility of the software, as improvements of the code can be made in a distributed
manner, changes can be tracked over time, and (because of automated and repeated testing) changes that break
existing functionality is likely to be detected very early by the developers. Since CoSMoMVPA runs on Open
Source software, all components, at any point in their lifetime, can be studied and their behaviour reproduced in
arbitrary detail (For details, see Section 4).

The remainder of this paper is as follows. Section 2 contains a series of motivating examples of analysis of fMRI
and M/EEG data. Section 3 explains in more detail the CoSMoMVPA concepts underlying these examples. Section 4
explains some design decisions. Section 5 concludes the paper.

2 Analysis examples

This section provides a series of motivating examples of CoSMoMVPA’s approach to MVPA. To anticipate section 3,
the examples use a variety of CoSMoMVPA concepts, including measures, neighborhoods, and searchlights. These
examples demonstrate common MVP analyses, such as classification, correlation, representational similarity analy-
sis, and the time generalization method. The examples are minor variations of the examples that are included with
CoSMoMVPA, and based on real fMRI and M/EEG data. All data used here in the analyses were measured from
participants who gave informed consent for procedures approved by the Ethical Committee of the University of Trento

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 6, 2016. ; https://doi.org/10.1101/047118doi: bioRxiv preprint

https://doi.org/10.1101/047118
http://creativecommons.org/licenses/by/4.0/

and/or the Institutional Review Board at Dartmouth College. The data is provided under a permissive license from the
CoSMoMVPA website.

2.1 Classification

Data for our first example is from an fMRI experiment where one participant pressed the index and middle finger during
different blocks. The experiment had four runs, each with four blocks for each finger. The data was preprocessed and
analyzed with the general linear model in AFNI (R. W. Cox, 1996), resulting in t-statistics for each block. The
‘ingredients’ that the user has to specify are the filename of the AFNI neuroimaging data file, the chunks, which is
the acquisition run number, and targets, which specifies which finger was pressed during each block. Classification
analysis then requires specifying the cross-validation measure, classifier, and partitioning scheme. For surface-based
analysis, the additional information needed consists of the surfaces used to delineate the grey matter and the number
of voxels to select in each searchlight.

% Load AFNI data.
% (Also supported: BrainVoyager, NIFTI, ANALYZE, and SPM)
data_fn='glm_T_stats_perblock+orig'

targets=repmat(1:2,1,16)'; % class labels: 1 2 1 2 1 2 1 2 1 2 ... 1 2
chunks=ceil((1:32)'/8); % run labels: 1 1 1 1 1 1 1 1 2 2 ... 4 4

ds = cosmo_fmri_dataset('glm_T_stats_perblock+orig',...
'targets',targets,'chunks',chunks);

To run cross-validation using a classifier (e.g. D. D. Cox & Savoy, 2003), a cross-validation measure uses a take-
one-run out cross-validation and an LDA classifier. Both the measure and the classifier are specified using a function
handle; as illustrated in other examples (below), different measures or classifiers can be used by specifying another
function handle.

measure=@cosmo_classify_lda

measure_args=struct();
measure_args.classifier = @cosmo_classify_lda;
measure_args.partitions = cosmo_nfold_partitioner(ds);

For ROI analysis in a user-defined mask, the whole-brain dataset is sliced using the mask resulting in a smaller dataset,
and the measure applied to the smaller dataset.

ds_mask = cosmo_fmri_dataset('m1_mask+orig')
ds_roi = cosmo_slice(ds, ds_mask.samples~=0, 2);
ds_accuracy_roi = measure(ds_roi, measure, measure_args);

Surface-based searchlight analyses require one or two surfaces that define where the grey matter is. This example uses
two surfaces from FreeSurfer that define the inner and outer grey-matter boundaries. Thus, each searchlight is shaped
as a curved cylinder in between the two surfaces. Here, the number of voxels is kept constant across searchlight
locations, therefore resulting in a variable radius across locations (due to variations in grey-matter thickness). A
searchlight map (Kriegeskorte, Goebel, & Bandettini, 2006; Oosterhof, Wiestler, Downing, & Diedrichsen, 2011) is
computed using cosmo_searchlight, which uses the neighborhood, measure, and the measure’s arguments. For
illustration purposes, the result is stored in the GIFTI, AFNI / SUMA, and BrainVoyager formats.

neighborhood = cosmo_surficial_neighborhood(ds, ...
{'pial.asc', 'white.asc'}, ...
'count', 100);

ds_accuracy = searchlight(ds, neighborhood, ...
measure, measure_args);

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 6, 2016. ; https://doi.org/10.1101/047118doi: bioRxiv preprint

https://doi.org/10.1101/047118
http://creativecommons.org/licenses/by/4.0/

cosmo_map2surface(ds_accuracy, 'accuracy.gii'); % GIFTI
cosmo_map2surface(ds_accuracy, 'accuracy.niml.dset'); % AFNI / SUMA
cosmo_map2surface(ds_accuracy, 'accuracy.smp'); % BrainVoyager

Fig. 1: Illustration of surface-based searchlight results identifying where in the brain presses of the index and middle
finger can be distinguished using an LDA classifier and take-one-run-out cross-validation.

Classification options can be set by adjusting the measure’s argument. For example, the following code defines using
an odd-even partitioning scheme, SVM classifier, and output with the predicted label for each sample instead of
classification accuracies:

measure_args.classifier = @cosmo_classify_svm;
measure_args.partitions = cosmo_oddeven_partitioner;
measure_args.output = 'predictions';

Region-of-interest and searchlight analyses with these parameters would then proceed with exactly the same calls to
the measure and searchlight function as above.

2.2 Representational similarity analysis

Using data from Connolly et al., 2012, this example illustrates representational similarity analysis (Kriegeskorte,
Mur, & Bandettini, 2008). The data has t-statistics from six categories (monkey, lemur, mallard, warbler, ladybug,
lunamoth) averaged across all runs. Data can be loaded directly using cosmo_fmri_dataset, and a brain mask
can be specified to only select voxels inside the brain. The only additional step is setting the targets (condition labels)
to six unique values, and chunks to all the same value.

ds = cosmo_fmri_dataset('glm_tstats.nii',...
'mask', 'brain_mask.nii',...
'targets', (1:6)',...
'chunks', 1);

Behavioural data was collected where participants indicated the pair-wise similarity across categories, and stored in a
matrix as illustrated here:

behaviour_dissimilarity = ...
[0 0.10 1.05 1.10 1.68 1.75 ;

0.10 0 1.04 1.05 1.70 1.76 ;
1.05 1.04 0 0.39 1.54 1.46 ;
1.10 1.05 0.39 0 1.47 1.40 ;

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 6, 2016. ; https://doi.org/10.1101/047118doi: bioRxiv preprint

https://doi.org/10.1101/047118
http://creativecommons.org/licenses/by/4.0/

1.68 1.70 1.54 1.47 0 0.16 ;
1.75 1.76 1.46 1.4 0.16 0];

Using the behavioural dissimilarity matrix and a measure that computes similarity between the matrix and the neural
dissimilarity, a searchlight can identify regions where the neural dissimilarity matches behavioural dissimilarity. The
searchlight uses a spherical neighborhood with a variable radius, selecting the 100 voxels nearest to each center voxel.
Using a fixed number of voxels ensures that the number of features for locations near the edge of the brain is the same
as for locations inside the brain.

measure=@cosmo_target_dsm_corr_measure;
measure_args=struct();
measure_args.target_dsm=behaviour_dissimilarity;

neighborhood = cosmo_spherical_neighborhood(ds, 'count', 100);

ds_rsa = cosmo_searchlight(ds, neighborhood, measure, measure_args);

Fig. 2: Illustration of representational similarity analysis searchlight results identifying regions where pattern simi-
larity across six animal species is similar to behavioural similarity ratings.

For illustration purposes, the searchlight result map can be saved in a variety of volumetric formats:

cosmo_map2fmri(ds_rsa,'ds_rsa+orig'); % AFNI
cosmo_map2fmri(ds_rsa,'ds_rsa.vmp'); % BrainVoyager
cosmo_map2fmri(ds_rsa,'ds_rsa.nii'); % NIFTI
cosmo_map2fmri(ds_rsa,'ds_rsa.hdr'); % ANALYZE

2.3 Locating effects in space and time

Using MEG data from a Neuromag306 system, gradiometer data is used to identify when and where 20Hz electrical
median nerve stimulation can be identified using MEG data. Data from 145 trials were preprocessed in FieldTrip,
selecting 145 epochs from trials during stimulation, and another 145 epochs from the same trials before stimulation.
Each trial is considered to be independent from the others, and thus has a unique chunk value. As in the previous
example, the only information that the user has to provide is the file to load, the targets (condition labels), and the
chunks (indicating which samples are considered to be independent).

ds = cosmo_meeg_dataset('subj102_B01_20Hz_timelock.mat')
ds.sa.targets = ds.sa.trial_info; % from FieldTrip
ds.sa.chunks = [(1:145) (1:145)]';

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 6, 2016. ; https://doi.org/10.1101/047118doi: bioRxiv preprint

https://doi.org/10.1101/047118
http://creativecommons.org/licenses/by/4.0/

In the following analysis, a split-half correlation measure is applied (c.f. Haxby et al., 2001). Chunks are re-assigned
so that about half of the samples have a value of 1 and the others a value of 2, allowing for computing correlations
across the two halves.

nchunks = 2;
ds.sa.chunks = cosmo_chunkize(ds_tl, nchunks);

Similarly as illustrated in Figures 12 – 14, a channel-by-time neighborhood is defined by crossing a temporal with a
spatial neighborhood. The input data is from pairs of planar gradiometers (two values per sensor location), whereas
the output from the searchlight has combined gradiometer data (one value per sensor location).

chan_type = 'meg_combined_from_planar';
chan_count = 10; % use 10 sensor locations
time_radius = 2; % 2*2+1=5 time bins

chan_nbrhood=cosmo_meeg_chan_neighborhood(ds, 'count', chan_count, ...
'chantype', chan_type);

time_nbrhood=cosmo_interval_neighborhood(ds,'time',...
'radius',time_radius);

chan_time_nbrhood=cosmo_cross_neighborhood(ds,{chan_nbrhood,time_nbrhood});

Using a searchlight and the cosmo_correlation_measure—with default options, i.e. the measurement argu-
ment is not required—each of the three neighborhoods can be used to produce a different searchlight map, locating
effectors over time (across all channels), channels (across all time points), respectively. The last searchlight map,
which contains a channel-by-time representation, is converted to a FieldTrip structure for visualization (see Figure 3).

measure=@cosmo_correlation_measure

% run three searchlight analyses
ds_chan = cosmo_searchlight(ds, chan_nbrhood, measure);
ds_time = cosmo_searchlight(ds, time_nbrhood, measure);
ds_chan_time = cosmo_searchlight(ds, chan_time_nbrhood, measure);

% map the channel by time map to FieldTrip structure
fieldtrip_chan_time = cosmo_map2meeg(ds_chantime);

% visualize in FieldTrip
cfg = struct();
cfg.layout = cosmo_meeg_find_layout(ds_chan_time);
ft_multiplotER(cfg, fieldtrip_chan_time);

For illustration purposes, data is saved in FieldTrip and EEGLAB formats:

cosmo_map2meeg(ds_splithalf, 'ds_splithalf.mat'); % FieldTrip
cosmo_map2meeg(ds_splithalf, 'ds_splithalf.txt'); % EEGLAB

2.4 Generalization over time

It is also possible to measure pattern similarity across time. CoSMoMVPA provides
cosmo_dim_generalization_measure, which implements the time generalization method (King &
Dehaene, 2014). This function can use another measure (typically cosmo_correlation_measure or
cosmo_crossvalidation_measure) to compute, for each pair of time points in a training and test set, corre-
lations or classification accuracies. Train and test data are indicated by setting the chunks to 1 or 2, respectively.
Because the function itself is a measure, it can be used with a searchlight, so that generalization over time can be
located in space.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 6, 2016. ; https://doi.org/10.1101/047118doi: bioRxiv preprint

https://doi.org/10.1101/047118
http://creativecommons.org/licenses/by/4.0/

 [200, 300] ms

a

c

e

-100 500 ms

atanh(r)

1

b

d

[300, 400] ms [400, 500] ms

 [-100, 0] ms [0, 100] ms [100, 200] ms

-100 500 ms

atanh(r)

1

Fig. 3: M/EEG searchlight maps in the time dimension, channel dimension, and channel-by-time dimensions.
(a) time-only searchlight results using split-half Fisher-transformed correlation differences between somatosensory stimulation

and rest. Each pattern contains data from all M/EEG channels. (b) channel-only searchlight using the same data as (a), where each
pattern contains data from all time points. (c) channel-by-time searchlight, where each pattern contains data from a subset of

channels and a subset of time points, with the inset (d) showing the average over a subset of sensors. (e) Alternative visualization
of the results in (e), using topography plots for six time intervals.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 6, 2016. ; https://doi.org/10.1101/047118doi: bioRxiv preprint

https://doi.org/10.1101/047118
http://creativecommons.org/licenses/by/4.0/

Using the same MEG dataset as in the previous example (which is channel-by-time along the feature dimension), first
the time dimension is made a sample dimension. The resulting dataset has time along the sample dimension and
chan along the feature dimension.

ds_time=cosmo_dim_transpose(ds,'time',1);

For the searchlight, a neighborhood along the chan dimension is defined as:

chan_type='meg_combined_from_planar';
chan_count=10; % use 10 sensor locations

chan_nbrhood=cosmo_meeg_chan_neighborhood(ds, 'count', chan_count, ...
'chantype', chan_type);

The measure uses an LDA classifier and another measure (cosmo_crossvalidation_measure) to compute
classification accuracies. Time points are selected within a radius of 1 time points, so that for each pair of time points,
generalization is computed across patterns spanning the current, preceding, and following time points.

measure_args=struct();
measure_args.measure = @cosmo_crossvalidation_measure
measure_args.classifier = @cosmo_classify_lda;
measure_args.radius = 1;
measure_args.dimension = 'time';

The searchlight is run similarly as in previous examples. The output has two sample dimensions, train_time and
test_time.

ds_generalization_time=cosmo_searchlight(ds_time,nbrhood,measure,measure_args);

For visualization in FieldTrip, the sample dimensions are transposed into feature dimensions. As FieldTrip supports vi-
sualization of time-frequency data, the train_time and test_time dimensions are renamed to freq and time,
so that FieldTrip is ‘tricked’ into treating the data as time-frequency data and can visualize the data for interactive
exploration (see 4). FieldTrip can visualize the data directly:

ds_generalization=cosmo_dim_transpose(ds_generalization_time,...
{'train_time','test_time'},2);

ds_generalization=cosmo_dim_rename(ds_generalization,'train_time','freq');
ds_generalization=cosmo_dim_rename(ds_generalization,'test_time','time');

fieldtrip_generalization=cosmo_map2meeg(ds_generalization);

% visualize in FieldTrip
cfg = struct();
cfg.layout = cosmo_meeg_find_layout(ds_generalization);
ft_multiplotTFR(cfg, fieldtrip_generalization);

The next section describes the concepts used in CoSMoMVPA that underly the examples in this section.

3 CoSMoMVPA concepts

As we aimed to illustrate in the previous section, we believe that CoSMoMVPA provides an intuitive environment that
is accessible to non-expert programmers using common data structures and interfaces used throughout the toolbox.
The core concept is a common dataset structure (see Figure 5) inspired by PyMVPA (Hanke, Halchenko, Sederberg,
Hanson, et al., 2009; Hanke, Halchenko, Sederberg, Olivetti, et al., 2009) extended with dimensionality information
(Figure 6) to support various types of fMRI and M/EEG data uniformly.

This common dataset structure allows for a variety of analysis types and dataset operations (Figure 8), including:

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 6, 2016. ; https://doi.org/10.1101/047118doi: bioRxiv preprint

https://doi.org/10.1101/047118
http://creativecommons.org/licenses/by/4.0/

a

300

tra
in

 tim
e

(m
s)

0 3000

b

c

d

accuracy

70%

50%

30%

test time
(ms)

Fig. 4: Illustration of generalization over the time dimension using an LDA classifier, using the same somatosensory
stimulation data as in Figure 3. (a) Time-by-time accuracy plots for 102 combined gradiometers, with (b) inset of
a single plot. (c, d) Topographies for two combinations of time intervals across the training and test time, showing
above-chance accuracy on the diagonal (b) and below-chance accuracy off the diagonal (d).

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 6, 2016. ; https://doi.org/10.1101/047118doi: bioRxiv preprint

https://doi.org/10.1101/047118
http://creativecommons.org/licenses/by/4.0/

• merging and selecting subsets of datasets (Figure 9);

• conversion between matrix and multi-dimensional array representations (Figure 7) which is essential for in-
put/output operations to fMRI and M/EEG file formats (Figure 10);

• defining MVPA measures with a common function signature, including split-half correlations (Haxby et
al., 2001), classification predictions or accuracies using cross-validation with various partitioning schemes
(D. D. Cox & Savoy, 2003), representational similarity analysis (Kriegeskorte, Mur, & Bandettini, 2008), and
the time-generalization method (King & Dehaene, 2014);

• defining neighborhood structures in arbitrary feature spaces including time (Figure 12), space (Figure 13), and
combinations such as time by space (Figure 14);

• searchlight analyses (Figure 15) using any type of MVPA measure and neighborhood structure.

In the remainder of this section, the CoSMoMVPA concepts underlying these analses types and operations are ex-
plained in detail.

3.1 Dataset structure

Inspired by PyMVPA, CoSMoMVPA uses a single dataset structure for all types of neuroimaging data (Figure 5).
A minimal dataset has just one field .samples, which contains a samples-by-features matrix. Each row in the
matrix corresponds to a sample, or observation; for example, these can be the blood-oxygen-level dependent (BOLD)
response for a single volume, a beta estimate or t-statistic for a condition of interest during a single run, or the M/EEG
signal during a particular time point during a single trial. In the context of CoSMoMVPA, each sample (row) is
a pattern vector. Each column in the matrix corresponds to a feature, which refers to all measurements made for a
particular location in an abstract ‘feature space’—where values at that location may be simple or derived measurements
corresponding to some source. For example, features may correspond to voxels for volumetric data (M/EEG source
and fMRI data), nodes (surface-based data), combinations of time points and M/EEG sensors (time-locked M/EEG
data), or combinations of time points, frequency bands, and M/EEG sensors (M/EEG time-frequency data).

A dataset structure can contain additional attributes associated with the .samples field. Sample attributes (in a field
.sa) contain information for each sample (row), and have the same number of rows as the .samples matrix. For
most analyses, two sample attributes are required: .sa.targets and .sa.chunks. .sa.targets are used to
store information about the experimental condition. .sa.chunks are used to index which subsets of samples can
be considered as independent—such as fMRI acquisition runs. Typically their values are set by the user, although
in certain cases they are set automatically, e.g. when loading SPM data. In addition, an arbitrary number of other
attributes can be added as well, which may contain, for example, human-readable labels or statistical information.

Feature attributes (in a field .fa) is used to store indices specifying ‘locations’ of each feature, such as voxel indices,
time point, or frequency band.

General dataset attributes (in a field .a) contain general information that is not specific to either features or samples.
This can include information about the spatial or temporal dimensions of the dataset. For example, an fMRI volu-
metric dataset contains the affine transformation matrix that maps voxel coordinates to world coordinates in a field
.a.vol.mat.

3.2 Dataset dimensions

In many cases, neuroimaging data is inherently multi-dimensional along the feature axis. For example, fMRI volu-
metric data has three spatial dimensions, M/EEG time-locked data has a spatial (channel) and a time dimension, and
M/EEG time-frequency data has a spatial, time and frequency dimension.

Information about such dimensions is stored in a feature dimension attribute .a.fdim, which contains two subfields
for labels (.a.fdim.labels) and values (.a.fdim.values). The values contain, for each dimension, a list of
strings or numbers indicating the locations along that dimension. The labels contain the names of each dimension.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 6, 2016. ; https://doi.org/10.1101/047118doi: bioRxiv preprint

https://doi.org/10.1101/047118
http://creativecommons.org/licenses/by/4.0/

Fig. 5: Example of dataset structure. This fMRI dataset has a samples matrix (top left) with 43882 features (voxels)
and 60 samples (volumes). Sample attributes (sa, top right) contain information about conditions (in targets) and
which samples are considered independent (in chunks, which, in this case, contains the acquisition run number).
An additional sample attribute labels contain a human-readable description of each sample. Feature attributes (fa,
bottom left) contain indices to the location of each feature. Dataset attributes (a, bottom right) contains information
about the feature space of the dataset, which is used to determine neighbors of features (in searchlight analyses) and
when exporting data to neuroimaging formats such as NIFTI.

Each label must be a sub-field in the feature attribute field .fa, so that the vectors in the feature attributes index the
elements in the values sub-field. Figure 6 gives examples of feature dimensions for fMRI and M/EEG datasets.

Along the same lines, data can also be multi-dimensional along the sample axis. A typical case is representing a
dissimilarity matrix that contains distances between all pairs of samples in a dataset (see Figure 15).

Data can be flattened and unflattened along the feature and sample dimensions (Figure 7).

3.3 Dataset operations

As explained in the remainder of this Section, data in a CoSMoMVPA dataset structure can be processed in a variety
of ways (Figure 8). cosmo_slice can be used to select particular samples (rows) or features (columns) with the
corresponding sample or feature attributes.

One application of slicing samples is classification using cross-validation, where a subset of samples is sliced to form
a training set, and another (disjoint) subset of samples is sliced to form a test set. In a similar manner, split-half
correlations can be computed by slicing the dataset twice—once for each half.

The main application of slicing features is feature-selection, such as when only data in a pre-defined region-of-interest
(ROI) is to be used for MVPA. Such a region can comprise a subset of voxels, nodes, or M/EEG channels; and/or a
subset of time points or frequency bins. It is also used in searchlight analyses (described below), which involves the
repeated application of slicing features.

Datasets can also be merged along the sample and feature axes using cosmo_stack. For the feature dimension this
is useful when combining results from different locations, such as in searchlight analyses. For the sample dimension,
rows can be stacked when combining predictions from different folds in a cross-validated classification analyses.
Figure 9 gives examples of slicing and stacking along sample and feature dimensions.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 6, 2016. ; https://doi.org/10.1101/047118doi: bioRxiv preprint

https://doi.org/10.1101/047118
http://creativecommons.org/licenses/by/4.0/

Fig. 6: Examples of feature dimension attributes.
Dataset samples and sample attributes (a) can be associated with feature and dataset attributes for various types of neuroimaging

data with feature dimension information. Some examples of feature dimensions are for data in (b) fMRI volume, with three spatial
dimensions i, j and k, (b) fMRI surface, with a single dimension node_indices, (c) M/EEG channel by time, with

dimensions chan and time, (d) M/EEG frequency data, with dimension chan, time and freq, (e) M/EEG source data, which
combines the spatial dimensions i, j and k with a time dimension, (f) and M/EEG source frequency data, with a frequency

dimension freq added.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 6, 2016. ; https://doi.org/10.1101/047118doi: bioRxiv preprint

https://doi.org/10.1101/047118
http://creativecommons.org/licenses/by/4.0/

Fig. 7: Flattening and unflattening datasets.
A (tiny) fMRI dataset (a) with three spatial dimensions (left) is unflattened along the feature dimension using

cosmo_unflatten. Each sample (row) in samples results in a three-dimensional array (right). (b) a dataset containing
representational dissimilarities for five conditions is unflattened along the sample dimension. Each column in samples result in a
dissimilarity matrix. The result from unflattening a dataset can be reversed in both (a) and (b) using cosmo_flatten. Note that

dataset input/output functions for volumetric, surface-based, and M/EEG data (Figure 10) use the flattening and unflattening
operations internally.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 6, 2016. ; https://doi.org/10.1101/047118doi: bioRxiv preprint

https://doi.org/10.1101/047118
http://creativecommons.org/licenses/by/4.0/

@	

searchlight	

mul.ple	 	
comparison	 	
correc.on	

cross-‐valida-on	

correla-ons	

RSA	

Time	 generaliza-on	

LDA	

SVM	

GNB	

…	

Split-‐half	

Leave-‐one-‐out	

Cross-‐modal	

…	

measure	

Neuroimaging	 data	

SPM	
AFNI	
FSL	

BrainVoyager	
FieldTrip	

EEGLAB	
…	

voxel	

surface	

-me	

frequency	

…	

neighborhood	

par..ons	

classifier	

crossed	 	
neighborhoods	

fMRI	 volume	 	
RSA	

fMRI	 surface	
searchlight	

MEEG	 -me	 	
generaliza-on	
searchlight	

MEEG	 	
-me	 x	 channel	
searchlight	

	

MEEG	 	
channel	

searchlight	
	

a	

input/output	 	
-‐  fMRI	 volume	
-‐  fMRI	 surface	
-‐  MEEG	 channel	
-‐  MEEG	 source	

b	

c	

d	

e	

f	

g	

i	

j	

k	

h	

channel	

Fig. 8: Overview of CoSMoMVPA architecture.
Data collected (and optionally, preprocessed) in the fMRI or M/EEG modalities from a wide range of neuroimaging analysis

packages (a) can be imported and exported (b) to a uniform CoSMoMVPA dataset structure (c). CoSMoMVPA provides several
measures (d), including classification analysis (with various classifiers (e) and partitioning schemes (f)), correlation analysis,

representational similarity analysis, and the time generalization method (which uses another measure for all possible pairs of time
points for training and test sets (g)). Any measure can be applied directly (@) to the input dataset (c), which results in another

dataset (h). CoSMoMVPA also provides various neighborhood definitions across voxel, surface nodes, time point, and frequency
bin dimensions (h); these can be combined by crossing multiple dimensions (i). By combining a measure (d) with a neighborhood

(i), a searchlight can be applied to the input dataset (c) resulting in another dataset representing a searchlight map (g).
Neighborhoods are also used for Threshold-Free Cluster Enhancement multiple comparison correction. The result dataset from a

measure, a searchlight analysis using a measure and neighborhood, or multiple comparison correction is a dataset (h) that,
depending on the input and analysis parameters, can have various feature dimensions which can represent, for example, volumetric
fMRI, surface-based fMRI, M/EEG topologies, M/EEG time series, M/EEG space by time data, or localized time generalization

maps (j). Result datasets can be converted back (b) for visualization or further analysis in a wide variety of neuroimaging analysis
packages (a).

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 6, 2016. ; https://doi.org/10.1101/047118doi: bioRxiv preprint

https://doi.org/10.1101/047118
http://creativecommons.org/licenses/by/4.0/

Fig. 9: Example of dataset operations along the sample (first) dimension and feature (second) dimension. (a) a dataset
structure can be sliced along the first (sample) dimension (b), using either indices (top) or a logical mask (bottom).
The result has the same feature (fa) and dataset attributes (a) as the input, but only a subset of the samples and
corresponding sample attributes (sa). One application is selecting data in a region of interest (ROI). (c) multiple
datasets can be stacked along the sample dimension if the feature and dataset attributes match; one application is
combining predictions after cross-validated classification analysis. (d) The same dataset can also be sliced along
the second (feature) dimension. A typical use case is selecting a subset of samples for cross-validation analysis. (e)
Multiple datasets can be stacked along the feature dimension if the sample and dataset attributes match; one application
is combining results from different locations in searchlight analysis.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 6, 2016. ; https://doi.org/10.1101/047118doi: bioRxiv preprint

https://doi.org/10.1101/047118
http://creativecommons.org/licenses/by/4.0/

3.4 Dataset input/output

CoSMoMVPA comes with a set of input/output functions that read and write fMRI volumetric, fMRI surface-based,
and M/EEG data; these functions use the cosmo_flatten and cosmo_unflatten functions internally. Through
various external toolboxes (Shen, 2010; Saad & Chen, 1999; Weber, 2010; Flandin, 2008), a wide variety of neu-
roimaging formats is supported directly (See Figure 10).

cosmo_fmri_dataset	

cosmo_map2fmri	

cosmo_surface_dataset	

cosmo_map2surface	

cosmo_meeg_dataset	

Cosmo_map2meeg	

AFNI	 (+orig,	 +tlrc)	
SPM	 (SPM.mat)	
BV	 	 	 	 	 (.vmr,	 .vmp,	 .vtc,	
	 	 	 	 	 	 	 	 	 	 	 .glm,	 .msk)	
ANALYZE	 (.hdr,	 .img)	
NIFTI	 (.nii,	 nii.gz)	 CoSMoMVPA	

dataset	
	
AFNI	 	 (.niml.dset)	
BV	 	 	 	 	 (.smp)	
GIFTI	 (.gii)	
	

	
FieldTrip	 (Ime-‐locked,	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Ime-‐freq)	
EEGlab	 (Imelock)	
	

Fig. 10: Dataset input/output support
fMRI volumetric, fMRI surface-based, and M/EEG neuroimaging data (left) can be read and written by CoSMoMVPA through

various input/output functions (center), and represented by a uniform dataset structure (right).

3.5 Classifiers

A classifier function takes a training set of patterns samples_train, each with a target (class label) associated with
them in a vector targets_train, and a test set of patterns samples_test. A classifier returns a predicted target
label for each sample in samples_test in a vector samples_test.

CoSMoMVPA supports commonly used classifiers, including Linear Discriminant Analysis (LDA) and Support Vector
Machines (SVM). Some classifiers support additional options, such as kernel selection in LIBSVM (Chang & Lin,
2011).

In CoSMoMVPA, all classifiers use the same signature as the LDA classifier illustrated here:

function targets_pred = cosmo_classify_lda(samples_train, ...
targets_train, ...
samples_test, ...
opt)

which, through the use of function handles, provides re-usable functionality for classification analysis when used with
partitions and cross-validation measures. Note that this function signature makes explicit that the targets associated
with the test set are not used for classification.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 6, 2016. ; https://doi.org/10.1101/047118doi: bioRxiv preprint

https://doi.org/10.1101/047118
http://creativecommons.org/licenses/by/4.0/

3.6 Partitions

Partitioning schemes, used for classifiation analysis, define which samples are used for training and for testing. They
typically contain multiple folds to support cross-validation; in different folds, different samples are used for training
and testing. CoSMoMVPA provides functions to generate a variety of partitioning schemes including those for cross-
modal (Oosterhof, Wiggett, Diedrichsen, tipper, & Downing, 2010, Oosterhof, tipper, & Downing, 2012) and cross-
participant (Clithero, Smith, Carter, & Huettel, 2011; Haxby et al., 2011) decoding (Figure 11). Using a cross-
validation measure (explained below) with classifier provides functionality for cross-validation using a variety of
cross-validation schemes and classifiers.

3.7 Dataset measures

In CoSMoMVPA, the measure concept is a generalization to compute one or more values of interest (such as classi-
fication accuracy, or pair-wise distances between patterns) from an input dataset. Measures have a common function
signature: it takes an input dataset and optional arguments that prescribe the behaviour of the measure, and returns a
dataset with a singleton feature dimension. Thus, its function signature is:

ds_result = dataset_measure(ds_input, opt)

where ds_result.samples must be a column vector. CoSMoMVPA includes several measures for the most
common MVP analyses, including correlations (Haxby et al., 2001), classification predictions or accuracies using
cross-validation with various partitioning schemes (D. D. Cox & Savoy, 2003), representational similarity analysis
(Kriegeskorte, Mur, & Bandettini, 2008), and the time-generalization method (King & Dehaene, 2014). In the case of
region-of-interest analysis, measures can be applied directly to a dataset. As described below, when combined with a
neighborhood, they can be used for generalized searchlights as well.

3.8 Neighborhoods

Together with measures, neighborhoods form a crucial ingredient for running searchlights (also known as information
mapping), which provide a data-driven approach to localize multivariate effects of interest. The traditional searchlight
(Kriegeskorte et al., 2006; Etzel, Zacks, & Braver, 2013) is used for volumetric fMRI data, where, for each ‘center’
feature (voxel) in the brain, other neighboring features within a certain radius, are used to compute a measure. The
output from the measure is then assigned to that center feature.

More recently, surface-based searchlights (Oosterhof, Wiestler, Downing, & Diedrichsen, 2011; Chen et al., 2011)
were proposed to improve feature selection—by selecting voxels in the grey matter—and use a more accurate anatom-
ical delineation of cortical regions. In surface-based searchlights, each node is used as a center, and nearby voxels—in
masks with shapes not dissimilar to curved cylinders—are used as input for MVPA; thus accounting for the folded
nature of the cortical sheet. Because there is less ‘’leakage” of information across sulci, informative regions can be
localized more precisely and accurately (Oosterhof, Wiestler, Downing, & Diedrichsen, 2011). From an analysis per-
spective, in these searchlights one can distinguish between the input space, where the features are voxels in a volume,
and the output space, where the features are nodes on a surface; whereas in the traditional searchlight, the input and
output spaces are the same.

Through neighborhood structures, CoSMoMVPA generalizes the searchlight approach by supporting input and
output spaces that may be different. A neighborhood structure contains, for each feature in the out-
put space, a list of indices that map to features of the input space, as well as feature attributes and
dataset attributes for the output space. Functions are provided to define neighborhoods in the volume
(cosmo_spherical_neighborhood, for fMRI volumetric and M/EEG source space data), on the surface
(cosmo_surficial_neighborhood), for M/EEG sensors (cosmo_meeg_chan_neighborhood), and
over time and frequency bins (cosmo_interval_neighborhood). These neighborhood functions provide the
following functionality:

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 6, 2016. ; https://doi.org/10.1101/047118doi: bioRxiv preprint

https://doi.org/10.1101/047118
http://creativecommons.org/licenses/by/4.0/

Fig. 11: Partitions for cross-validation.
(a) a dataset with three targets (conditions) and four chunks (for example, acquisition runs for fMRI data). Various

cross-validation partitioning schemes can be defined using partitioning functions in CoSMoMVPA, including (b), from left to
right, testing on even chunks after training on even chunks (using a single fold), testing on even chunks after training on even

chunks and vice versa (two folds), testing on each chunk after training on the remaining chunks (four folds), and testing on each
combination of two chunks after training on the remaining chunks (six folds). Each column represents a single fold, with green

and red colors indicating samples used for training and testing, respectively. (c) a dataset with data acquired in two modalities (for
example, visual and auditory). Cross-decoding cross-validation schemes can be defined for (d) leave-one-chunk out for testing,

with testing on the first modality after training on the remaining chunks of the second modality (left) and vice versa (right). (e) a
dataset with data from four participants, with (f) a cross-participant leave-one-chunk-out (left) and leave-two-chunks out (right)

cross-validation schemes where data from one and two chunks, respectively, from one participant are used for testing after training
on data from the other participants and the other chunks.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 6, 2016. ; https://doi.org/10.1101/047118doi: bioRxiv preprint

https://doi.org/10.1101/047118
http://creativecommons.org/licenses/by/4.0/

• The volume and surface neighborhoods support selecting either features within a fixed radius, or, at each search-
light location, expanding the radius until a fixed number of features is selected.

• The surface neighborhood can be defined with input data either in volume or surface space.

• Interval neighborhoods can be defined by setting a one-dimensional ‘radius’ that defines how wide the bins are
along the time or frequency dimensions. (A radius of zero means to only use each center time point or frequency
bin itself as neighbor). An example is given in Figure 12.

• M/EEG sensor neighborhoods can be based on any channel layout supported by FieldTrip Oostenveld et al.,
2011. This means that all commonly used EEG and M/EEG systems supported in FieldTrip (currently 32) are
supported in CoSMoMVPA;.

• Certain systems, such as the Neuromag 306 system, use two types of sensors: gradiometers and planar gra-
diometers. Neighborhoods can be defined for either sensor type. In the case where planar gradiometers come
in pairs, the input space consists of pairs of planar gradiometers, and the output space of single ‘combined’
gradiometers. The advantage is that the output maps have one value per sensor location, but that the input is
based on the original individual gradiometer data without the need for averaging. An example is given in Figure
13.

Different neighborhoods can be crossed to form new neighborhoods. For example, an M/EEG channel neighborhood
can be crossed with a time interval neighborhood to produce a channel-by-time neighborhood, which allows for locat-
ing effects of interest over space and time (see Figure 12). Similarly a spherical neighborhood in M/EEG source space
can be crossed with a time interval neighborhood. When M/EEG data is in time-frequency space, a frequency interval
neighborhood can be included as well, so that effects can be located over space, time, and frequency bin (c.f. Leske et
al., 2014, Tucciarelli, Turella, Oosterhof, Weisz, & Lingnau, 2015). For fMRI data, the lower temporal sampling rate
and low-frequency characteristics makes temporal inferences more challenging, but if a sufficient number of volumes
are acquired per trial, a volume or surface neighborhood can be crossed with a time interval neighborhood to run a
searchlight over space and time (for an example, see Linden, Oosterhof, Klein, & Downing, 2012, Supplementary
Animation 1).

3.9 Searchlight

Based on the building blocks introduced earlier, a searchlight analysis becomes trivial. It requires a dataset structure,
a neighborhood structure, and a measure. Running a searchlight analysis involves slicing the dataset according to
the feature indices in the neighborhood structure, applying the measure to each sliced dataset, stacking the results,
and adding feature and dataset attributes from the neighborhood structure to form the output. Since it is based on the
general concepts of a neighborhood and measure concept, it can be used for any measure and any type of neighborhood.
As illustration, the internal workings of an fMRI surface-based searchlight that computes the pair-wise dissimilarity
matrix from neighborhoods consisting of voxels is illustrated in Figure 15.

3.10 Multiple comparison correction

For multivariate searchlight as well as univariate analyses, locating effects of interest based on statistical whole-brain
feature maps (in the volume, on the surface, or in M/EEG sensor, time, sensor by time, voxel by time, sensor by
time by frequency, or voxel by time by frequency) must take into account chance capitalization. That is, correction
for false positives must consider the large number of statistical tests that are performed. Since the meaningful units in
neuroimaging analysis are clusters of features (Penny, W & Friston, 2003), rather than individual features, the multiple
comparison correction approach taken in CoSMoMVPA is cluster-based as well.

Certain approaches are less suitable for multiple comparison correction. First, Bonferroni correction remains con-
servative even under the assumption of independence, but as typical statistical maps from neuroimaging analyses
are smooth, this results in correction that is far too conservative. Second, False Discovery Rate, is not suitable for
controlling for false positives in clusters of features in neuroimaging data Chumbley & Friston, 2009.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 6, 2016. ; https://doi.org/10.1101/047118doi: bioRxiv preprint

https://doi.org/10.1101/047118
http://creativecommons.org/licenses/by/4.0/

Fig. 12: Example of neighborhood over time dimension
1. A (tiny) M/EEG time-locked dataset with 3 conditions has, for each sample, data for 9 pairs of planar gradiometers (sensors

x1 to x9 for one dimension, and y1 to y9 for the other one), and for 5 time points (from 0 to 0.4 seconds relative to stimulus
onset). Its has two dataset dimensions, chan (sensors) and time. (b) Topology plot of data for the first sample (row) in
the dataset, for the third time bin. (c) cosmo_interval_neighborhood produces a time interval neighborhood, with
a radius of 1 time point. The output space of this neighborhood has a single dataset dimension time. (d) Illustration
of neighboring features for each center feature in the neighborhood. For each center time point, its neighbors consists of
features across all channels, and all time points that are at most one unit of time from the center. (e) Searchlight output when
using the neighborhood defined in (c) with a cross-validation measure (not shown). The output has one sample (classification
accuracy) and five features (one for each time point). (f) Schematic illustration of the dataset in (e), showing a time course
of classification accuracies.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 6, 2016. ; https://doi.org/10.1101/047118doi: bioRxiv preprint

https://doi.org/10.1101/047118
http://creativecommons.org/licenses/by/4.0/

Fig. 13: Example of neighborhood over channel dimension
1. The same M/EEG dataset as in Figure 12, with two dataset dimensions, chan (sensors) and time. (b) Topology plot of

data for the first sample (row) in the dataset, for the third time bin. (c) cosmo_meeg_chan_neighborhood produces
a channel neighborhood that selects channels within a certain spatial radius. The output space of this neighborhood has a
single dataset dimension chan. Note that the input dataset has 9 pairs of planar gradiometers making 18 sensors in total,
whereas the neighborhood has 9 single ‘combined’ gradiometers. (d) Illustration of neighboring features for each center
feature in the neighborhood. For each combined gradiometer in the neighborhood, its neighbors consists of all time points,
and all planar gradiometers that are within a certain radius. (e) Searchlight output when using the neighborhood defined
in (c) with a cross-validation measure (not shown). The output has one sample (classification accuracy) and nine features
(one for each combined gradiometer). (f) Schematic illustration of the dataset in (e), showing a topology of classification
accuracies for each combined planar gradiometer.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 6, 2016. ; https://doi.org/10.1101/047118doi: bioRxiv preprint

https://doi.org/10.1101/047118
http://creativecommons.org/licenses/by/4.0/

Fig. 14: Example of neighborhood over channel by time dimension
1. The same M/EEG dataset as in Figures 12 and 13, with two dataset dimensions, chan (sensors) and time. (b) Topology

plot of data for the first sample (row) in the dataset, for the third time bin. (c) cosmo_cross_neighborhood, which
crosses to the time neighborhood from Figure 12 and the channel neighborhood from Figure 13, produces a channel interval
neighborhood, that selects neighboring channels within a certain spatial radius. The output space of this neighborhood has
two dataset dimensions, chan and time. (d) Illustration of neighboring features for each center feature in the neighborhood.
For each combined gradiometer and time point in the neighborhood, its neighbors consists of all time points that are at most
one unit of time from the center, and for which the planar gradiometers are within a certain radius. (e) Searchlight output
when using the neighborhood defined in (c) with a cross-validation measure (not shown). The output has one sample
(classification accuracy) and 45 features (one for each pair of time points and combined gradiometers). (f) Schematic
illustration of the dataset in (e) for a single time point. For each time point, there is a topology of classification accuracies
for each combined planar gradiometer.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 6, 2016. ; https://doi.org/10.1101/047118doi: bioRxiv preprint

https://doi.org/10.1101/047118
http://creativecommons.org/licenses/by/4.0/

Fig. 15: Example of volume-to-surface searchlight using a dataset structure, a neighborhood, and a measure.
A (tiny) volumetric dataset (a) contains response patterns to three conditions (targets) and a single chunk. Using the dataset and

surface models (not shown), a surface-based neighborhood (b) is constructed. Note that the feature attributes for the input
volumetric dataset contain voxel indices, whereas the surface-based neighborhood contains node indices.

A surface-based searchlight map is based on a dataset ds, a neighborhood nh, a function handle to a measure, and (optionally)
options opt for the measure. Each searchlight center location is associated with an element in neighbors, containing a set of

feature indices in the input dataset. Using these indices, the dataset is (c) sliced, resulting in a (smaller) sliced dataset (d) which is
used as the input to a measure. Applying the measure results in an output dataset (f) associated with a single center location,

which (here) contains pair-wise distances between samples in the input dataset. After repeating this for each center location, the
output datasets (f) are stacked along the feature dimension and combined with the feature attributes fa and dataset attributes a
from the neighborhood. The result (g) is a surface-based dataset that contains all pair-wise distances between patterns in local

regions around each node on the surface from the input dataset.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 6, 2016. ; https://doi.org/10.1101/047118doi: bioRxiv preprint

https://doi.org/10.1101/047118
http://creativecommons.org/licenses/by/4.0/

Third, fixed-threshold cluster-based correction is also a popular method and available in all major neuroimaging pack-
ages. It requires defining an uncorrected feature-wise threshold first. Using some estimate of the smoothness of the
data (e.g., AFNI, SPM, BrainVoyager) or through a sample randomization scheme (e.g., FieldTrip), a critical cluster
size is computed, using either Monte Carlo simulations (e.g. AFNI, BrainVoyager, FieldTrip) or Random Field The-
ory (SPM). However, this method has one main disadvantage: the use of a fixed feature-wise threshold. Different
thresholds may lead to entirely different surviving clusters. For example, if a map has one large cluster with mod-
erately significant statistics, and another small cluster with very significant statistics, then using a low-significance
threshold makes the first cluster survive but not the second, whereas a high-significance threshold has the opposite
effect. Apart from increasing the researcher’s degrees of freedom, it can also lead to instability in clustering results,
because small differences in the input can determine whether two clusters below the critical size are connected beyond
the feature-wise threshold (and may survive correction) or not.

To address this, Threshold-Free Cluster Enhancement (TFCE; Smith & Nichols, 2009) computes an aggregate score
for each feature after the statistical input map has been thresholded over a wide range of levels. It avoids the issues
associated with a fixed-threshold approach, and also supports different smoothing levels of the data, allows for inter-
preting local maxima across a cluster with large spatial extent, and has been validated for both fMRI and M/EEG data
(Mensen & Khatami, 2013; Salimi-Khorshidi, Smith, & Nichols, 2011).

CoSMoMVPA supports Threshold-Free Cluster Enhancement in combination with a neighborhood structure that is
computed automatically based on input dataset dimensions. This means that multiple comparison correction can be
achieved for all datasets with dataset dimensions supported in CoSMoMVPA, including data with volume, surface,
source space, sensor space, time, and frequency dimensions; and combinations of those. Using such a neighborhood,
Threshold-Free Cluster Enhancement through Monte Carlo simulations is supported at the group level through a
function cosmo_montecarlo_cluster_stat. Appropriate randomized datasets can either be computed using
sample-based randomization (as also implemented in FieldTrip; Maris & Oostenveld, 2007), or through randomization
at the individual participant level (Stelzer, Chen, & Turner, 2012). For comparison purposes, there is also support for
fixed-threshold cluster-based correction, although this method is not recommended.

Altogether, the building blocks presented here can be used for a wide variety of MVPA approaches for fMRI and
M/EEG data, supporting commonly used measures and a generalized searchlight.

4 Design descisions

4.1 The Matlab / GNU Octave language

CoSMoMVPA is implemented in the intersection of the Matlab and GNU Octave languages. Using the Matlab /
Octave platform means it can use several existing toolboxes to support a variety of input and output formats, and
use surface-based neighborhood definitions through the surfing toolbox (Oosterhof, Wiestler, & Diedrichsen, 2011).
Importantly, M/EEG data preprocessed in EEGLAB or FieldTrip can be imported in CoSMoMVPA, and MVPA results
can be visualized in FieldTrip directly.

Matlab (and, to a lesser extent, GNU Octave), is a popular platform in cognitive neuroscience research, with many
other widely used packages running on it. Examples include Psychtoolbox (Brainard, 1997) for running experimental
paradigms, FieldTrip (Oostenveld et al., 2011) and EEGLAB (Delorme & Makeig, 2004) for M/EEG analysis and
visualization, and SPM (Friston et al., 1994) for fMRI analysis and visualization. It is also widely used for general
scientific data analysis. As a result, many researchers may already be familiar with the Matlab / GNU Octave language,
which would limit the time investment to learn CoSMoMVPA.

Although many institutions provide Matlab licenses to their students and staff, a disadvantage of a Matlab-only toolbox
(without GNU Octave support) is that (1) access to the license is required to use Matlab, and (2) the full internal
workings of data processing cannot be studied in full detail. CoSMoMVPA does not have these disadvantages, which
makes it available for those who do not have access to a Matlab license. Indeed, CoSMoMVPA runs on fully open
source platforms such as the NeuroDebian distribution. From a scientific perspective, this means that the analyses
performed by CoSMoMVPA can be studied, verified and reproduced in arbitrary detail. From a practical perspective,

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 6, 2016. ; https://doi.org/10.1101/047118doi: bioRxiv preprint

https://doi.org/10.1101/047118
http://creativecommons.org/licenses/by/4.0/

this makes it feasible to run analyses on a computing cluster with no limits on the number of processing cores used,
or on cloud-based computing services such as Amazon web services. Another advantage, explained in more detail
below, is that the software can be tested automatically using online services that run on open source software only.

At the same time, GNU Octave does (as of 2015) not support all features present in Matlab, and many toolboxes
specifically aimed at the Matlab platform are not fully compatible with GNU Octave. This may limit adoption of this
platform, although GNU Octave is under active development and it is expected that it will support, in the future, more
features that are currently Matlab-specific.

It should be noted that Python is another popular programming language, which (unlike Matlab) is fully open source.
PyMVPA provides some advanced functionality currently not present in CoSMoMVPA. To support advanced users
who want to use such functionality, PyMVPA provides data interchange with CoSMoMVPA through a cosmomodule.
In particular, datasets and neighborhoods from CoSMoMVPA can be used directly in PyMVPA, so that all MVP
functionality present in PyMVPA can be applied to CoSMoMVPA data (including searchlight analyses); results can
be exported from PyMVPA and loaded in CoSMoMVPA. A particular use case is MVPA of M/EEG data, for which
input/output support and neighborhood definitions in PyMVPA is limited.

4.2 Maintainable architecture

This section discusses the architecture of CoSMoMVPA, and is mostly aimed for those interested in the design and
development of CoSMoMVPA. It can be skipped by those whose are only interested in using the software.

The design of the architecture forms the basis of software. It has been proposed (Spinellis & Gousios, 2009) that it is
desirable for an architecture to follow the following principles / properties:

• versatility: offer “good enough” mechanisms to address a variety of problems with an economy of expression.

CoSMoMVPA supports all commonly used MVPA analyses in the fMRI and M/EEG data domains,
and typical analyses require only a few lines of code. Support for a wide variety of neuroimaging
formats means that it can interchange data with a variety of packages for analysis and visualization.
CoSMoMVPA uses a modular approach, following the Unix philosophy that each function should
do one thing, and do it well. Functions serve as building blocks that can be combined for complex
analysis pipelines.

• conceptual integrity: offer a single, optimal, non-redundant way for expressing the solution of a set of similar
problems.

Through a common dataset and neighborhood structure across fMRI and M/EEG datasets, and uni-
form classification and measure function signatures. This solves the general problem of how to
represent data across a variety of dimensions in space (fMRI and M/EEG voxels, fMRI node indices,
and M/EEG channels), time, and frequency bins.

• independently changeable: keep its elements isolated so as to minimize the number of changes required to
accommodate changes.

Functions in CoSMoMVPA that implement particular classifiers, measures, neighborhoods can be
changed independently, if necessary. For example, if one were to change how data is normalized
when used in a representational similarity analysis searchlight, then only changes in the measure
are required, not in the searchlight code itself, or the neighborhood functionality. The user can also
implement their own classifiers, measures, or neighborhoods, which can be incorporated directly
with the existing functions to support region-of-interest or searchlight analyses.

• automatic propagation: maintain consistency and correctness, by propagating changes in data or behavior across
modules.

The source code for documentation, code examples, and exercises is maintained in a single place. The
documentation build system uses Sphinx-doc (Brandl et al., 2008) and Sphinx extensions (Mikofski,
2009, Troffaes, 2011), so that documentation and the output from running code examples is trans-
lated into HTML format automatically—its output is used as the content of the website. The build

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 6, 2016. ; https://doi.org/10.1101/047118doi: bioRxiv preprint

https://doi.org/10.1101/047118
http://creativecommons.org/licenses/by/4.0/

system supports exercise code, which is standard Matlab / GNU Octave code with special comment
tags % >@@> and % <@@<< around lines to be used as an exercise. Such code is transformed into
two versions: a full version with all the code, and a skeleton version which has the code in between
the tags replaced by a comment stating ‘your code comes here’. This facilitates writing exercises and
ensures that the full exercise code is consistent with skeleton code. The use of the build system en-
sures that the contents of the HTML documentation and website is consistent across documentation,
code examples, and exercises.

• growth accommodation: cater for likely growth.

Using the git version control system and github to coordinate distributed development means that
contributions can be reviewed and, if quality standards are met, included in the code base through a
convenient web interface. Through git, any modification in the code is recorded, and for any file its
changes over time, and who made the changes, are tracked and can be reported. The use of git and
github for distributed development has been, and is currently, used successfully in the PyMVPA
project.

Most software packages are not static: over time, more functionality is added, and bugs are fixed.
CoSMoMVPA uses a modular architecture that we believe is easily extensible to include support for
new functionality, including data formats, classifiers, and measures.

• entropy resistance: maintain order by accommodating, constraining, and isolating the effects of changes.

Through the lifetime of a project, as functionality is added, improved or changed, entropy will in-
crease, for example when the same functionality is implemented, over time, in various modules,
leading to code duplication. Code duplication leads to more maintenance efforts, and can lead to in-
consistencies if changes are applied in one place but not others. Entropy can also increase when new
functionality is added incrementally for specific use cases, even if such use cases can be expressed
more succinctly through a single module that implements common functionality.

The general approach to combat entropy is refactoring operations, where code is rewritten to make it
more modular and maintainable without changing its behaviour. The main risk of such operations is
breaking existing functionality, in particular in a project the size of CoSMoMVPA (over 10,000 lines
of code), where changes in one function may result in unexpected behavioural changes in another
function. We use a test suite that can be run using either xUnit (Eddins, 2013; on the Matlab platform
only) or MOxUnit (Oosterhof, 2015b; runs on both Matlab and GNU Octave). Through the use of
a test suite with high (above 90%) code coverage, any broken functionality is likely to be detected
rapidly. As in PyMVPA, the test suite can be run manually and is also run automatically through an
online continuous integration testing service. (As of 2016, we use the travis system, which provides
free testing services for open source projects). Every time when code is (proposed to be) included in
the official branch (through a github pull request) or updated directly (through git push), the
suite is run automatically by the travis system, and developers notified by email if any test failed.
(Changes in) code coverage are reported through a customly written MOcov toolbox (Oosterhof,
2015a) and the coveralls.io service. Through such continuous integration testing, changes in the
code can be made with relatively high confidence, because if anything would break it is likely to be
detected quickly through failing tests.

4.3 Limitations

While CoSMoMVPA aims to be versatile and easy to use, it does not provide a graphical user interface. There are two
reasons for this. First, the wide variety of options available in CoSMoMVPA means that writing the code for a user
interface would take significant resources. Second, using scripts instead of a GUI has the advantage that analyses are
sharable and reproducible.

CoSMoMVPA also does not support data preprocessing and has limited visualization abilities. This is because other
packages for fMRI (SPM, AFNI, BrainVoyager, FSL) and M/EEG (FieldTrip and EEGLAB) already do this. Instead,

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 6, 2016. ; https://doi.org/10.1101/047118doi: bioRxiv preprint

https://doi.org/10.1101/047118
http://creativecommons.org/licenses/by/4.0/

CoSMoMVPA provides support for a wide variety of formats, so that preprocessed data from these packages can be
imported, and MVPA results can be exported for visualization and further analyses.

5 Conclusion

In the present work, we presented CoSMoMVPA, an open source Matlab / GNU Octave toolbox for MVPA that runs
on open source platforms. It supports all commonly-used MVPA techniques and a wide variety of imaging formats. It
can easily be integrated into existing pipelines, using existing preprocessed data as input for MVPA, and exportomg
results for visualization or further analyses with other packages. Through a unified approach to MVPA of fMRI and
M/EEG, a generalized searchlight allows for data-driven localization of effects across space, time, and frequencies.
State-of-the-art correction for multiple comparisons is provided to maximize sensitivity while controlling for type-1
errors.

CoSMoMVPA aims to provide basic building blocks for classification analysis, representational similarity analysis,
the time generalization method, and generalized searchlight analyses. These building blocks can be combined to form
sophisticated analysis pipelines. Its architecture is versatile, modular and flexible, which we believe makes it easy to
use for non-experts, and extensible by more advanced users for purposes not envisioned by the developers.

CoSMoMVPA is designed to accommodate future growth, and uses software engineering best practices for develop-
ment and quality control, including code version control, an automated test suite with high code coverage, continuous
integration testing, and a build system for documentation. As new algorithms for analysing neuroimaging data are
designed and implemented, we believe they can easily be added in the future.

We hope that through its simple and consistent design, CoSMoMVPA lowers the barriers to adoption of advanced
multivariate techniques, and provides more cognitive neuroscientists easy access to a wider and more effective set of
tools for analyzing brain data, which in turn increases the pace of new discoveries about brain function.

6 Acknowledgements

We thank Gunnar Blohm and Sara Fabri for inviting two of the authors (NNO and ACC) to organize a workshop
at the 2013 Summer School in Computational Sensory-Motor Neuroscience (CoSMo), which formed the basis of
CoSMoMVPA; Gunnar Blohm for providing us with the CoSMo logo; Michael Hanke and Yaroslav Halchenko for
their work on PyMVPA, which inspired the semantics and data structure of datasets as well as the development pro-
cess; Yaroslav Halchenko, Matteo Visconti di Oleggio Castello and Jens Scharzbach for code contributions; Jens
Scharzbach for help with improving and adding exercises; Stephania Bracci for providing a dataset in BrainVoy-
ager format; Nathan Weisz and Gianpaolo Demarchi for providing an M/EEG dataset; Jimmy Shen for providing a
free/open source NIFTI library; Joern Diedrichsen and Tobias Wiestler for contributions to the LDA classifier and
the free/open source surfing toolbox; Guillaume Flandin for providing the free/open source GIfTI library for Matlab;
Robert Oostenveld and colleagues for providing the free/open source FieldTrip package; Ziad Saad and Gang Chen
for providing the free/open source AFNI Matlab toolbox; Jochen Weber for providing the free/open source NeuroElf
toolbox; Steve Eddins for providing the MATLAB xUnit Test Framework; and Thomas Smith for inspiration of the
documentation testing functionality. We thank the following people for contributing valuable suggestions, advice,
support, or code to CoSMoMVPA: Talia Brandman, Robert W. Cox, Sarah Belinda Aimee Degosciu, Hanna Gertz,
Yaroslav Halchenko, Thomas Hartmann, Clayton Hickey, Daniel Kaiser, James Keidel, Sukhbinder Kumar, Cristina
Lava, Seth Levine, Stefania Mattioni, Mike Miller, Sam Nastase, Nicholas Peatfield, Liuba Papeo, Alexis Perez, Jia
Hou Poh, Daria Proklova, Reshanne Reader, Anne Roefs, Mohamed Tawfik, Luca Turella, and Moritz Wurm. We
thank Karen Cuculiza, Scott Fairhall, and Marius Peelen for useful comments on an earlier draft of this manuscript.
This work has been supported by the Autonomous Province of Trento, Italy, Call ‘Grandi Progetti 2012’, project
‘Characterizing and improving brain mechanisms of attention - ATTEND’.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 6, 2016. ; https://doi.org/10.1101/047118doi: bioRxiv preprint

https://doi.org/10.1101/047118
http://creativecommons.org/licenses/by/4.0/

7 Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

References

Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436.
Brandl, B., Ronacher, A., Shimizukawa, T., Neuhäuser, D., Waltman, J., Ruana, R., . . . et al. (2008). Sphinx.

https://github.com/sphinx-doc/sphinx.
Chan, A. M., Halgren, E., Marinkovic, K., & Cash, S. S. (2011). Decoding word and category-specific spatiotemporal

representations from MEG and EEG. NeuroImage, 54(4), 3028–3039.
Chang, C.-C., & Lin, C.-J. (2011). LIBSVM: A library for support vector machines. ACM Transactions on Intelligent

Systems and Technology, 2, 27:1–27:27.
Chen, Y., Namburi, P., Elliott, L. T., Heinzle, J., Soon, C. S., Chee, M. W., & Haynes, J. D. (2011). Cortical surface-

based searchlight decoding. NeuroImage, 56, 582-–592.
Chumbley, J. R., & Friston, K. J. (2009). False discovery rate revisited: FDR and topological inference using Gaussian

random fields. NeuroImage, 44(1), 62–70.
Cichy, R. M., Pantazis, D., & Oliva, A. (2014). Resolving human object recognition in space and time. Nature

neuroscience, 17(3), 455–462.
Clithero, J. A., Smith, D. V., Carter, R. M., & Huettel, S. A. (2011). Within- and cross-participant classifiers reveal

different neural coding of information. NeuroImage, 56(2), 699–708.
Connolly, A. C., Guntupalli, J. S., Gors, J., Hanke, M., Halchenko, Y. O., Wu, Y. C., . . . Haxby, J. V. (2012). The

Representation of Biological Classes in the Human Brain. Journal of Neuroscience, 32(8), 2608–2618.
Cox, D. D., & Savoy, R. L. (2003). Functional magnetic resonance imaging (fMRI) "brain reading": detecting and

classifying distributed patterns of fMRI activity in human visual cortex. NeuroImage, 19(2 Pt 1), 261–270.
Cox, R. W. (1996). AFNI: software for analysis and visualization of functional magnetic resonance neuroimages.

Computers and biomedical research, an international journal, 29(3), 162–173.
Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics

including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21.
Detre, G. J., Polyn, S. M., Moore, C. D., Natu, V. S., Singer, B. D., Cohen, J. D., . . . Norman, K. A. (2006). The

multi-voxel pattern analysis (mvpa) toolbox. In Poster presented at the annual meeting of the organization for
human brain mapping (florence, italy). available at: http://www.csbmb.princeton.edu/mvpa.

Eddins, S. (2013). MATLAB xUnit Test Framework. http://www.mathworks.it/matlabcentral/fileexchange/22846-
matlab-xunit-test-framework.

Edelman, S., Grill-Spector, K., Kushnir, T., & Malach, R. (1998). Toward direct visualization of the internal shape
representation space by fMRI. Psychobiology, 26(4), 309–321.

Etzel, J. A., Zacks, J. M., & Braver, T. S. (2013). Searchlight analysis: Promise, pitfalls, and potential. NeuroImage,
78(C), 261–269.

Flandin, G. (2008). GIfTI library for Matlab. http://www.artefact.tk/software/matlab/gifti.
Friston, K. J., Jezzard, P., & Turner, R. (1994). Analysis of functional MRI time-series. Human Brain Mapping, 1,

153–171.
Goebel, R., Esposito, F., & Formisano, E. (2006). Analysis of functional image analysis contest (FIAC) data

with brainvoyager QX: From single-subject to cortically aligned group general linear model analysis and self-
organizing group independent component analysis. Human brain mapping, 27(5), 392–401.

Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C., . . . others (2013). Meg and
eeg data analysis with mne-python. Frontiers in neuroscience, 7.

Hanke, M., Halchenko, Y. O., Sederberg, P. B., Hanson, S. J., Haxby, J. V., & Pollmann, S. (2009). PyMVPA: A
python toolbox for multivariate pattern analysis of fMRI data. Neuroinformatics, 7(1), 37–53.

Hanke, M., Halchenko, Y. O., Sederberg, P. B., Olivetti, E., Fründ, I., Rieger, J. W., . . . Pollmann, S. (2009).
PyMVPA: A Unifying Approach to the Analysis of Neuroscientific Data. Frontiers in neuroinformatics, 3, 3.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 6, 2016. ; https://doi.org/10.1101/047118doi: bioRxiv preprint

https://doi.org/10.1101/047118
http://creativecommons.org/licenses/by/4.0/

Haxby, J. V., Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L., & Pietrini, P. (2001). Distributed and overlapping
representations of faces and objects in ventral temporal cortex. Science, 293(5539), 2425–2430.

Haxby, J. V., Guntupalli, J. S., Connolly, A. C., Halchenko, Y. O., Conroy, B. R., Gobbini, M. I., . . . Ramadge,
P. J. (2011). A Common, High-Dimensional Model of the Representational Space in Human Ventral Temporal
Cortex. Neuron, 72(2), 404–416.

Haynes, J.-D., & Rees, G. (2006). Decoding mental states from brain activity in humans. Nature Reviews Neuro-
science, 7(7), 523–534.

Hebart, M. N., Görgen, K., & Haynes, J.-D. (2014). The Decoding Toolbox (TDT): a versatile software package for
multivariate analyses of functional imaging data. Frontiers in neuroinformatics, 8, 88.

Kauhanen, L., Nykopp, T., Lehtonen, J., Jylänki, P., Heikkonen, J., Rantanen, P., . . . Sams, M. (2006). EEG and
MEG brain-computer interface for tetraplegic patients. IEEE transactions on neural systems and rehabilitation
engineering : a publication of the IEEE Engineering in Medicine and Biology Society, 14(2), 190–193.

King, J.-R., & Dehaene, S. (2014). Characterizing the dynamics of mental representations: the temporal generalization
method. Trends in cognitive sciences.

Kriegeskorte, N., Goebel, R., & Bandettini, P. (2006). Information-based functional brain mapping. Proceedings of
the National Academy of Sciences of the United States of America, 103(10), 3863–3868.

Kriegeskorte, N., & Kievit, R. A. (2013). Representational geometry:integrating cognition, computation,and the brain.
Trends in cognitive sciences, 1–12.

Kriegeskorte, N., Mur, M., & Bandettini, P. (2008). Representational similarity analysis - connecting the branches of
systems neuroscience. Frontiers in systems neuroscience, 2, 4.

Kriegeskorte, N., Mur, M., Ruff, D. A., Kiani, R., Bodurka, J., Esteky, H., . . . Bandettini, P. A. (2008). Matching
categorical object representations in inferior temporal cortex of man and monkey. Neuron, 60(6), 1126–1141.

Leske, S., Tse, A., Oosterhof, N. N., Hartmann, T., Müller, N., Keil, J., & Weisz, N. (2014). The strength of alpha and
beta oscillations parametrically scale with the strength of an illusory auditory percept. NeuroImage, 88, 69–78.

Linden, D. E. J., Oosterhof, N. N., Klein, C., & Downing, P. E. (2012). Mapping brain activation and information
during category-specific visual working memory. Journal of neurophysiology, 107(2), 628–639.

Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data. Journal of Neuroscience
Methods.

Mensen, A., & Khatami, R. (2013). Advanced EEG analysis using threshold-free cluster-enhancement and non-
parametric statistics. NeuroImage, 67, 111–118.

Mikofski, M. (2009). Sphinxcontrib-matlab: Sphinx ”matlabdomain” extension.
https://pypi.python.org/pypi/sphinxcontrib-matlabdomain.

Mitchell, T., Hutchinson, R., Niculescu, R., Pereira, F., Wang, X., Just, M., & Newman, S. (2004). Learning to decode
cognitive states from brain images. Machine Learning, 57, 145–175.

Nili, H., Wingfield, C., Walther, A., Su, L., Marslen-Wilson, W., & Kriegeskorte, N. (2014). A toolbox for represen-
tational similarity analysis. PLoS Computational Biology, 10(4), e1003553.

Norman, K. A., Polyn, S. M., Detre, G. J., & Haxby, J. V. (2006). Beyond mind-reading: multi-voxel pattern analysis
of fMRI data. Trends in cognitive sciences, 10(9), 424–430.

Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.-M. (2011). FieldTrip: Open source software for advanced
analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience,
2011, 156869.

Oosterhof, N. N. (2015a). MOcov - a coverage report generator for Matlab and GNU Octave.
https://github.com/MOcov/MOcov.

Oosterhof, N. N. (2015b). MOxUnit - an xUnit framework for Matlab and GNU Octave.
https://github.com/MOxUnit/MOxUnit.

Oosterhof, N. N., tipper, S. P., & Downing, P. E. (2012). Visuo-motor imagery of specific manual actions: A multi-
variate pattern analysis fMRI study. NeuroImage, 63(1), 262–271.

Oosterhof, N. N., Wiestler, T., & Diedrichsen, J. (2011). Surfing toolbox. https://github.com/nno/surfing.
Oosterhof, N. N., Wiestler, T., Downing, P. E., & Diedrichsen, J. (2011). A comparison of volume-based and surface-

based multi-voxel pattern analysis. NeuroImage, 56(2), 593–600.
Oosterhof, N. N., Wiggett, A. J., Diedrichsen, J., tipper, S. P., & Downing, P. E. (2010). Surface-based informa-

tion mapping reveals crossmodal vision-action representations in human parietal and occipitotemporal cortex.
Journal of neurophysiology, 104(2), 1077–1089.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 6, 2016. ; https://doi.org/10.1101/047118doi: bioRxiv preprint

https://doi.org/10.1101/047118
http://creativecommons.org/licenses/by/4.0/

Peelen, M. V., Wiggett, A. J., & Downing, P. E. (2006). Patterns of fMRI activity dissociate overlapping functional
brain areas that respond to biological motion. Neuron, 49(6), 815–822.

Penny, W, & Friston, K. J. (2003). Mixtures of general linear models for functional neuroimaging. IEEE Transactions
on Medical Imaging, 22(4), 504–514.

Pereira, F., & Botvinick, M. (2011). Information mapping with pattern classifiers: a comparative study. Neuroimage,
56(2), 476–496.

Perreau Guimaraes, M., Wong, D. K., Uy, E. T., Grosenick, L., & Suppes, P. (2007). Single-Trial Classification of
MEG Recordings. IEEE Transactions on Biomedical Engineering, 54(3), 436–443.

Pistohl, T., Schulze-Bonhage, A., & Aertsen, A. (2011). Decoding natural grasp types from human ECoG. NeuroIm-
age, 59, 248–260.

Saad, Z., & Chen, G. (1999). AFNI Matlab toolbox. https://github.com/afni/afni/.
Salimi-Khorshidi, G., Smith, S. M., & Nichols, T. E. (2011). Adjusting the effect of nonstationarity in cluster-based

and TFCE inference. NeuroImage, 54(3), 2006–2019.
Schrouff, J., ROSA, M. J., Rondina, J. M., Marquand, A. F., Chu, C., Ashburner, J., . . . Mourao-Miranda, J. (2013).

PRoNTo: Pattern Recognition for Neuroimaging Toolbox. Neuroinformatics, 11(3), 319–337.
Shen, J. (2010). NIFTI toolbox. http://www.mathworks.com/matlabcentral/fileexchange/8797-tools-for-nifti-and-

analyze-image.
Smith, S. M., & Nichols, T. E. (2009). Threshold-free cluster enhancement: addressing problems of smoothing,

threshold dependence and localisation in cluster inference. NeuroImage, 44(1), 83–98.
Spinellis, D., & Gousios, G. (2009). Beautiful Architecture. "O’Reilly Media, Inc.".
Stelzer, J., Chen, Y., & Turner, R. (2012). Statistical inference and multiple testing correction in classification-based

multi-voxel pattern analysis (MVPA): Random permutations and cluster size control. NeuroImage, 1–14.
Torvalds, L., Hamano, J. C., King, J., Duy, N. T. N., Schindelin, J., Nieder, J., . . . others (2005). git: the stupid content

tracker. https://git-scm.com.
Troffaes, M. C. M. (2011). Sphinxcontrib-bibtex: A Sphinx extension for BibTeX style citations.

https://pypi.python.org/pypi/sphinxcontrib-matlabdomain.
Tucciarelli, R., Turella, L., Oosterhof, N. N., Weisz, N., & Lingnau, A. (2015). MEG Multivariate Analysis Reveals

Early Abstract Action Representations in the Lateral Occipitotemporal Cortex. Journal of Neuroscience, 35(49),
16034–16045.

Weber, J. (2010). Neuroelf. http://neuroelf.net.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 6, 2016. ; https://doi.org/10.1101/047118doi: bioRxiv preprint

https://doi.org/10.1101/047118
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Analysis examples
	Classification
	Representational similarity analysis
	Locating effects in space and time
	Generalization over time

	CoSMoMVPA concepts
	Dataset structure
	Dataset dimensions
	Dataset operations
	Dataset input/output
	Classifiers
	Partitions
	Dataset measures
	Neighborhoods
	Searchlight
	Multiple comparison correction

	Design descisions
	The Matlab / GNU Octave language
	Maintainable architecture
	Limitations

	Conclusion
	Acknowledgements
	Conflict of interest statement
	References

