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ABSTRACT 

 

The availability of large-scale population genomic sequence data has resulted in an explosion in 

efforts to infer the demographic histories of natural populations across a broad range of 

organisms. As demographic events alter coalescent genealogies they leave detectable signatures 

in patterns of genetic variation within and between populations. Accordingly, a variety of 

approaches have been designed to leverage population genetic data to uncover the footprints of 

demographic change in the genome, thereby elucidating population histories. The vast majority 

of these methods make the simplifying assumption that the measures of genetic variation used as 

their input are unaffected by natural selection. However, natural selection can dramatically skew 

patterns of variation not only at selected sites, but at linked, neutral loci as well. Here we assess 

the impact of recent positive selection on demographic inference by characterizing the 

performance of three popular methods through extensive simulation of datasets with varying 

numbers of linked selective sweeps. In particular, we examined three different demographic 

models relevant to a number of species, finding that positive selection can bias parameter 

estimates of each of these models—often severely. Moreover, we find that selection can lead to 

incorrect inferences of population size changes when none have occurred. We argue that the 

amount of recent positive selection required to skew inferences may often be acting in natural 

populations. These results suggest that demographic studies conducted in many species to date 

may have exaggerated the extent and frequency of population size changes. 
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INTRODUCTION 

 

The widespread availability of population genomic data has spurred a new generation of studies 

aimed at understanding the histories of natural populations from a host of model and non-model 

organisms alike. In particular, genome-scale variation data allows for inference of demographic 

factors such as population size changes, the timing and ordering of population splits, migration 

rates between populations, and the founding of admixed populations (Pool et al. 2010; Pickrell 

and Pritchard 2012; Sousa and Hey 2013). Such efforts can refine our picture of demographic 

events inferred from the archaeological record (e.g. Fagundes et al. 2007; Goebel et al. 2008), or 

reveal such events in species where no archaeological data are available, and can aid 

conservation efforts by complementing census data (e.g. Hájková et al. 2007; Garrick et al. 

2015). 

 Population genomic datasets are well suited for this task simply because demographic 

changes leave their mark on patterns of genetic variation. Recent population growth for example 

will result in an excess of rare variation compared to equilibrium expectations (Fu 1997), while 

population contraction will result in an excess of intermediate frequency alleles (Maruyama and 

Fuerst 1985). In recent years researchers have devised a variety of methods that seek to detect 

the population genetic signatures of these demographic events. These include approximate 

Bayesian computation (ABC) methods, where simulation is used to approximate the posterior 

probability distributions of a demographic model’s parameters through the use of a collection of 

population genetic summary statistics without specification of an explicit likelihood function 

(Tavaré et al. 1997; Pritchard et al. 1999; Beaumont et al. 2002; Marjoram et al. 2003; Excoffier 

et al. 2005; Wegmann et al. 2010). Other approaches, such as ∂a∂i (Diffusion Approximations 
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for Demographic Inference; Gutenkunst et al. 2009), use the probability density of the site 

frequency spectrum (SFS) under a given demographic model and parameterization to calculate 

the likelihood of the observed SFS (Marth et al. 2004; Gutenkunst et al. 2009), thereby allowing 

for optimization of model parameters. More recently, methods based on the sequentially 

Markovian coalescent (SMC; McVean and Cardin 2005; Marjoram and Wall 2006) have been 

devised (Li and Durbin 2011; Sheehan et al. 2013; Schiffels and Durbin 2014), to infer how a 

population’s size has changed over time through the description of patterns of genetic variation 

along a recombining chromosome. 

Applications of these inference methods have revealed much about the demographic 

histories of various species. For instance, early studies of human genomic variation found that 

non-African populations experienced a considerable population bottleneck (Marth et al. 2003), 

most likely associated with migration out of Africa (Reich et al. 2001; Adams and Hudson 2004; 

Voight et al. 2005), followed by more recent recovery. Later studies refined the estimated timing 

of this bottleneck to ~50 kya (Fagundes et al. 2007; Gravel et al. 2011; Lukić and Hey 2012), 

uncovered a second bottleneck associated with the divergence of European and Asian 

populations (Keinan et al. 2007; Gutenkunst et al. 2009; Gravel et al. 2011), and inferred that the 

recovery from this bottleneck proceeded through continuous exponential growth (Fagundes et al. 

2007; Gutenkunst et al. 2009). Numerous studies have found strong genetic signals of admixture 

in many different human subpopulations (Meinilä et al. 2001; Parra et al. 2001; Martínez-Cortés 

et al. 2012; Patterson et al. 2012; Moorjani et al. 2013; Auton et al. 2015). Finally, recent studies 

of large population samples capable of observing very rare alleles found evidence that this 

growth has accelerated dramatically within the last several thousand years (Coventry et al. 2010; 

Tennessen et al. 2012; Gao and Keinan 2016). Similarly, recent studies in Drosophila 
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melanogaster show evidence of a severe out-of-Africa bottleneck (Begun and Aquadro 1993), 

but occurring within the last 20,000 years (Li and Stephan 2006; Thornton and Andolfatto 2006). 

There is also growing support from population genetic studies for African-European admixture 

in the North American population of D. melanogaster (Duchen et al. 2013; Bergland et al. 2015; 

Kao et al. 2015). 

While demographic inference from population genomic data in its various forms has 

proven to be successful technique, a unifying assumption of these various inference methods 

(ABC, SFS-based, and SMC-based approaches.) is that the genetic data in question are strictly 

neutral and free from the effects of linked selection in the genome. While this is an important 

simplifying assumption, it may be the case that in many populations a sizeable fraction of the 

genome is influenced by natural selection (Hahn 2008; Sella et al. 2009; Corbett-Detig et al. 

2015). Indeed natural selection can produce skews in patterns of genetic variation that are quite 

similar to those generated by certain non-equilibrium demographic histories. For example, 

positive selection driving a mutation to fixation (i.e. a selective sweep; Maynard Smith and 

Haigh 1974) may resemble a population bottleneck (Simonsen et al. 1995). Conversely, many 

demographic perturbations are well known to cause unacceptably high rates of false positives for 

many classical tests for selection (Simonsen et al. 1995; Przeworski 2002; Akey et al. 2004; 

Jensen et al. 2005; Nielsen et al. 2005). Thus, if natural selection has a substantial impact on 

genome-wide patterns of variation, then many demographic parameter estimates could be biased 

(Hahn 2008; Gazave et al. 2014). Indeed this has been shown to be the case for at least some 

scenarios of background selection (Ewing and Jensen 2016), where purifying selection reduces 

levels of neutral polymorphism at linked sites. 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 5, 2016. ; https://doi.org/10.1101/047019doi: bioRxiv preprint 

https://doi.org/10.1101/047019
http://creativecommons.org/licenses/by/4.0/


 6 

Here, we examine the potential impact of linked positive selection on three of the most 

widely used methods for demographic inference: ABC (Pritchard et al. 1999; Beaumont et al. 

2002), ∂a∂i (Gutenkunst et al. 2009), and PSMC (pairwise sequentially Markovian Coalescent; 

Li and Durbin 2011). We demonstrate that selection can substantially bias parameter estimates, 

often leading to overestimates of the severity of population bottlenecks and/or the rate of 

population growth. Moreover, we show that selective sweeps can result in the selection of the 

incorrect demographic model: if a reasonably small fraction of loci used for inference are linked 

to a selective sweep, one may incorrectly infer that a constant-size population experienced a 

bottleneck. Finally, we discuss the implications of our results for inferences made in humans and 

Drosophila, and recommend steps that could partially mitigate the bias caused by selection. 

 

 

RESULTS 

 

The impact of positive selection on variation under four demographic scenarios 

In order to test the potential impact of positive selection on demographic inference, we simulated 

four different population size histories: a constant population size model, a bottleneck model, an 

exponential growth model, and a population contraction followed by later exponential growth 

(fig. 1; Methods). We begin by demonstrating the impact of linked selective sweeps on genetic 

diversity, as measured by π (Nei and Li 1979) and Tajima’s D (Tajima 1989), under each of 

these models. For each model, the selection coefficient, s, for each sweep was set to 0.05, and 

selection was modeled as a “hard” sweep involving the single origin of an advantageous 

mutation going to fixation (Methods). In fig. 1, we show the mean values of these two statistics 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 5, 2016. ; https://doi.org/10.1101/047019doi: bioRxiv preprint 

https://doi.org/10.1101/047019
http://creativecommons.org/licenses/by/4.0/


 7 

at increasing distances from a selective sweep  (where distance is measured by the total 

crossover rate, c, over s) under each of the four demographic models examined. 

 Under our constant population size model, a recent selective sweep with s=0.05 has a 

marked effect on genetic polymorphism at the site of the sweep (fig. 1A): on average π is 

reduced approximately 8-fold (6.03, versus a neutral expectation of 47.99), and Tajima’s D is 

well below zero (mean D: -2.16). At increasing distances, both of these statistics recover toward 

their expectation under neutrality, which they have nearly reached at c/s=1. At intermediate 

distances Tajima’s D passes through a range where its value is above the expectation of 

approximately zero, as has been observed previously (Teshima et al. 2006; Schrider et al. 2015). 

Under our bottleneck scenario (fig. 1B), which is Marth et al.’s (2004) model of European 

human population size history, a selective sweep causes a very similar reduction in diversity and 

skew away from intermediate allele frequencies (mean π: 6.49, and mean D: -2.27, versus neutral 

expectations of 47.33 and -0.67, respectively). With increasing genetic distance from a sweep 

under the bottleneck model, π and Tajima’s D recover in a similar manner as under constant 

population size. 

 Exponential growth is often used to model recent population expansions in lieu of 

instantaneous population size change, and indeed such growth appears to be a key feature of 

human population history (Fagundes et al. 2007; Gravel et al. 2011; Tennessen et al. 2012). We 

therefore examined a model based on the same parameterization of strong growth from Gravel et 

al.’s (2011) estimated European model but omitting the population contractions and most ancient 

expansion (fig. 1C). Under this model we find that the impact of positive selection is less severe 

than under either the equilibrium or bottleneck models: π is reduced only ~2-fold from a neutral 

expectation of 6.57 to 3.17 when a sweep occurs immediately adjacent to the sampled locus, 
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while Tajima’s D only drops from -2.06 to -2.40. This demonstrates in part how demography can 

mimic the action of selection.  At increasing distances from the sweep these summary statistics 

approach their neutral expectations very quickly relative to the equilibrium and bottleneck 

models. For instance, at c/s of 0.2, π and Tajima’s D have recovered to 6.34 and -2.00, 

respectively. Thus, while positive selection still has a fairly far-reaching effect on linked neutral 

polymorphism under exponential growth, it is subtler than under constant population size 

because even in unselected regions summaries of variation deviate for equilibrium expectations 

in a manner that resembles selection. 

 Finally, we examined a three-epoch model with a population contraction and then 

subsequent exponential growth. Currently, this contraction-then-growth model is used to 

represent non-African human population size histories (e.g. Fagundes et al. 2007; Gutenkunst et 

al. 2009; Gravel et al. 2011; Tennessen et al. 2012). Our parameterization shown in fig. 1D is a 

simplified version of the European model from Gravel et al. (2011). Under this contraction-then-

growth model, we find that π experiences a ~3-fold reduction (from 40.08 to 13.91 on average) 

when a recent sweep is adjacent to the sampled locus—more modest than the equilibrium and 

bottleneck models, but slightly more severe than the growth model. Tajima’s D experiences a 

dramatic reduction when c/s=0, more similar to that under equilibrium and bottleneck models 

(from a mean of 0.22 to -1.55). As c/s increases, both π and D quickly recover toward their 

neutral expectations as in the growth scenario: when c/s=0.2, π is 38.40 on average, while D is 

0.26. We note that the shallower and narrower valleys of diversity experienced around selective 

sweeps under both this model and the growth model could impair the sensitivity of efforts to 

identify selective sweeps in humans and other species where such population size histories 

appear common (Schrider and Kern 2016). 
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Demographic parameter estimates are biased by positive selection 

We sought to quantify the impact of positive selection on demographic parameter estimation 

under our bottleneck, growth, and contraction-then-growth models. First, we simulated 

population samples experiencing no selection and asked how well we could recover the true 

parameters of the model using diffusion approximations to the SFS via the ∂a∂i software package 

(Gutenkunst et al. 2009), or with a set of commonly used summary statistics via ABC (Thornton 

2009; Csilléry et al. 2012); we address the effects of selection on PSMC later, as this method 

requires a different sampling scheme. Briefly, we used both of these methods to fit the focal 

demographic model to data sampled from 500 unlinked simulated loci, and repeated this process 

on 100 replicate simulated “genomes” (Methods). We then gradually increased the value of f, the 

fraction of these sampled loci linked to hard selective sweeps (within a distance of c/s ≤ 1.0; 

Methods). At values of f ranging from 0 to 1, we repeated parameter estimation to assess the 

extent to which a given amount of selection biases our inference. 

 

Population bottleneck 

When using ∂a∂i to infer the optimal set of parameters of a bottlenecked population (fig. 1B) 

experiencing no positive selection, our estimates were quite accurate (fig. 2): our average 

parameter estimate for the ancestral effective population size, NeA, was 10,060 individuals (a 

0.6% deviation from the true parameter value); our mean estimate for the time of recovery from 

the bottleneck, TR, was 3,120 generations ago (4.0% deviation); our estimated effective 

population size during the bottleneck, NeB was 1,999 individuals (0.05% deviation) on average; 

and our mean estimate of the present-day effective population size, Ne0, was 20,465 (2.3% 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 5, 2016. ; https://doi.org/10.1101/047019doi: bioRxiv preprint 

https://doi.org/10.1101/047019
http://creativecommons.org/licenses/by/4.0/


 10

deviation). Moreover, our inferences were fairly consistent, with most parameter estimates being 

fairly close to the true value (fig. 2). However, while repeating this analysis with increasing 

numbers of loci linked to a selective sweep, our parameter estimates became increasingly biased. 

Even a small value of f produces significant underestimates of the population sizes Ne0 and NeB 

(fig. 2). For example, the mean inferred value of NeB decreases to 1,764 when f=0.2 (an 11.8% 

underestimate), to 1,402 when f=0.5 (29.9% underestimate), and to 717 when f=1.0 (64.2% 

underestimate). A more subtle but consistent downward bias of Ne0 also appears with increasing 

f: Ne0 is estimated at 19,650 at f=0.2 (1.8% underestimate), 18,371 when f=0.5 (8.1% 

underestimate), and 15,561 when f=1.0 (22.2% underestimate). By contrast, estimates of the 

ancestral effective population size (NeA) and the time since the recovery (TR) are largely 

unaffected unless f is fairly high (≥0.8), in which case the values of these two parameters are 

somewhat overestimated (fig. 2). 

 Like inference using the SFS (i.e. ∂a∂i), our ABC procedure was able to infer the true 

parameters with minimal bias when run on simulated population samples experiencing no 

positive selection: the mean estimates were 10,104 for NeA (1.4% difference from true value), 

2,917 for TR (2.7% difference), 2,311 for NeB (15.6% difference), and 20,078 for Ne0 (0.4% 

difference). However, we note that the NeB estimate was fairly inconsistent (with the middle 50% 

of estimates ranging from 1,447 to 3,373), while other parameter estimates exhibited much lower 

variance. When positive selection is introduced, we obtain significantly biased estimates of all 

parameters when f≥0.2, and all but NeA are significantly biased when f is only 0.1. These biases 

are in the same direction as observed using ∂a∂i (underestimates for Ne0 and NeB, and 

overestimates for NeA and TR), but almost always substantially larger. Indeed, for f≥0.2, our 

estimates of NeB and TR are at the boundaries of our prior parameter ranges, respectively (the 
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upper bound of 3,500 for TR and the lower bound of 100 for NeB). Also note that when f 

increases to >0.2, estimates of TR are also at the upper bound of our prior: we are inferring a very 

short but extreme bottleneck. Thus, for our bottleneck model, ABC based on our set of summary 

statistics appears to be more sensitive to selection than ∂a∂i. Overall, the presence of positive 

selection seems to cause both methods to overestimate the extent of population contraction, and 

to underestimate the degree of recovery from the bottleneck. For the simulated datasets used in 

these analyses, whenever a locus was linked to a selective sweep, the distance from the sweep, 

c/s was drawn uniformly between 0 and 1. We also repeated these analyses when fixing the value 

of c/s, and in supplementary fig. S1 we show our distribution of parameter estimates obtained 

using both ∂a∂i and ABC on 111 different combinations of f and c/s. This figure demonstrates 

that, for a given fraction of neutral loci linked to a selective sweep, increasing the proximity to 

the sweep increases bias, as expected. 

Note that for our ABC inference we examined only the means of several population 

genetic summary statistics (Methods). Including the variances caused estimates to behave non-

monotonically, because whenever f is not equal to one or zero the distribution of summary 

statistic values is a mixture of two models, and therefore has inflated variance, resulting in less 

accurate parameter estimation. We also show our parameter estimates when including variances 

in supplementary fig. S1. 

 

Population growth 

Next, we examined the impact of positive selection on parameter estimates for our model of 

population growth (fig 1C). When our simulated genomes experienced no recent selective 

sweeps, we again achieved good accuracy when using ∂a∂i (fig. 3): our mean estimates of NeA, 
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TG, and Ne0 were 1,040 (0.8% difference from true value), 955 (3.8% difference), and 36,610 

(2.0% difference), respectively. Increasing f again biases our estimates, but the effect is subtler 

than for the bottleneck case. This is probably a consequence of the reduced scale of the impact of 

positive selection on flanking variation under this model relative to the bottleneck model (fig 1). 

The most notable pattern that we observe for this model is that TG decreases with increasing f, 

while the population size estimates are largely unaffected: when f=0.5 our average estimate is 

905 (1.6% difference from true value), versus 872 when f=0.8 (5.3% difference), and 855 when 

f=1.0 (7.1% difference). In other words, widespread selective sweeps will cause one to infer 

slightly more recent but more pronounced exponential growth. When c/s is relatively small, our 

error rates are substantially higher (supplementary fig. S2). Thus, stronger positive selection 

could still seriously impair ∂a∂i’s demographic inferences under this population size history. 

 We then used ABC to perform parameter estimation under the growth model. In the 

neutral case, our estimated parameters were largely concordant with the true values, with the 

exception of some bias observed for TG (mean estimate of 801, which is 13% below the true 

value). Our estimates of NeA were also far more dispersed than those obtained from ∂a∂i (fig. 3). 

Further, unlike our estimates with ∂a∂i, increasing the value of f substantially biases our ABC 

estimates. For example, Ne0 is 39,497 when f=0 (10% greater than the true value), but increases 

to 42,851 when f=0.5 (an overestimate of 19%), 49,030 when f=0.8 (an overestimate of 37%), 

and 62,889 when f=1.0 (an overestimate of 75% plus a dramatic increase in variance). The 

degree to which TG is underestimated also increases with f: the average estimate is 769 at f=0.2 

(16% below the true value), 717 at f=0.5 (22% bias), 667 at f=0.8 (27.5% bias), and 623 at f=1.0 

(32.2% bias).  Again, we demonstrate the effect of varying the distance c/s of sampled loci from 

the selective sweep, as well as the effect of performing ABC on the variances of summary 
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statistics in addition to their means, in supplementary fig. S2. Overall, we observe that under our 

growth model positive selection will cause inferences of more recent, faster population growth, 

with this effect being far subtler when using ∂a∂i than ABC with our set of summary statistics. 

 

Population contraction followed by growth 

Finally, we assessed our ability to recover the parameters of our contraction-then-growth model 

(fig. 1D) with increasing amounts of positive selection. Without selection, ∂a∂i estimates NeA, 

TG, and Ne0 with reasonably high accuracy (fig. 4): 14,773 on average for NeA (2.1% over the 

true value), 862 for TG (6.3% under the true value), and 37,999 for Ne0 (5.8% over the true 

value). However, TC and NeC are substantially overestimated at 2,530 (24.0% over the true value) 

and 1,350 on average (30.8% over the true value). As we increase f, our estimates of NeA, TC, and 

NeC are inflated, TG is increasingly underestimated, and Ne0 is largely unaffected. The effect on 

TC is the largest resulting in a seemingly linear increase with f: our estimate is 2,886 when f=0.2 

(an overestimate of 41.47%), 3,712 when f=0.5 (overestimate of 82.0%), 5,329 when f=0.8 

(overestimate of 161.2%), and 7,082 when f=1.0 (overestimate of 247.2%). NeA and NeC increase 

more slowly: to 29,069 (an overestimate of 100.8%) and 2183 (an overestimate of 111.6%) when 

f=1.0, respectively, while TG on the other hand decreases to 642 when f=1.0 (underestimate of 

30.2%). Thus, positive selection typically results in our ∂a∂i-estimated demographic model to 

have more protracted population contraction, with larger initial and contracted population sizes. 

Results for varying values of c/s are shown in supplementary fig. S3. 

 When repeating these analyses using ABC given our set of summary statistics (fig. 4), we 

find that under neutrality TG is grossly underestimated, NeC is slightly overestimated, and NeA 

and Ne0 are estimated with greater accuracy  (14,435 or 0.27% under the true value, and 34,373, 
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or 4.3% under the true value, respectively). Thus, we infer a more protracted but slightly less 

severe population contraction than the true population size history. Even so we proceed to 

characterize what the effect of linked selection on parameter estimates using ABC as before. 

Indeed our estimates become more biased as we add increasing amounts of positive selection. 

Most notably, Ne0 exhibits a substantial downward bias as we increase f, and is estimated at 

31,970 when f=0.2 (11% underestimate), 28,105 when f=0.5 (21.7% underestimate), 25,829 

when f=0.8 (28% underestimate), and 24,735 when f=1.0 (31.1% underestimate). Also, as f 

becomes large NeC shifts from being slightly overestimated to significantly underestimated, and 

estimates of NeA become slightly upwardly biased. Thus we find that under this model positive 

selection again biases parameter estimates, though not in the same manner for ∂a∂i and ABC: 

while ∂a∂i infers a longer phase of reduced population size along with an inflated ancestral size 

and less severe contraction, our ABC procedure infers a more severe contraction followed by a 

less complete recovery. We show our inference results on the full grid of c/s and f values, as well 

as when including variances of summary statistics, in supplementary fig. S3. 

 

Effect of positive selection on population size history inference using PSMC 

The pairwise sequentially Markovian coalescent (PSMC) is a widely used method that infers a 

discretized history of population size changes from a single recombining diploid genome (Li and 

Durbin 2011). Such inference is possible because coalescence times between the two allelic 

copies in a diploid, which are governed by the effective population size, will change at the 

breakpoints of historical recombination events, and the resulting distribution of coalescence 

times across the genome thus contains information about population size history. However this 

method necessitates sampling a large stretch of a recombining chromosome. In order to test the 
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impact of positive selection on inferences from PSMC, we simulated constant-size populations 

of 10,000 individuals, sampling a 15 Mb chromosomal region from two haploid individuals. We 

performed 100 replicates of this simulation for each of four scenarios (Methods): the standard 

neutral model; a population experiencing one fairly recent sweep (reaching fixation 0.2×Ne 

generations ago) somewhere in this region; a population experiencing three recurrent sweeps 

(fixed 0, 0.2, and 0.4×Ne generations ago); and a population experiencing five sweeps (0, 0.1, 

0.2, 0.3, and 0.4×Ne generations ago). We find that under neutrality, very little population size 

change is inferred on average (though there is a fair bit of variance; fig. 5A). However, when 

there has been only a single selective sweep, a population bottleneck near the time of the sweep 

is inferred, in which the population contracts to approximately two-thirds of its original size 

before recovering (fig. 5B). When there have been three or five recurrent selective sweeps the 

inferred population contraction becomes increasingly severe (fig. 5C-D). In the five-sweep case, 

we typically infer a contraction down to roughly one-fourth of the original size, often with no 

subsequent recovery in (perhaps because these scenarios involve a very recent sweep; Methods). 

Thus, we find that positive selection can dramatically skew population size histories deduced by 

PSMC. 

 

Positive selection produces spurious support for non-equilibrium demographic histories 

Demographic inference methods are often used not only to infer parameters of a model, but 

increasingly to select the best fitting among several competing models (e.g. Adams and Hudson 

2004; Fagundes et al. 2007; Duchen et al. 2013). To ask whether positive selection might affect 

the outcome of demographic model selection, we simulated genomes with constant population 

size, again sampling loci for which some fraction, f, is located within c/s ≤ 1 of a selective 
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sweep. We then performed model selection among our four demographic histories (fig. 1) using 

both ∂a∂i and ABC (Methods). 

 Prior to performing model selection with ∂a∂i, we first examined the degree of support 

for each model when fit to each dataset using the Akaike information criterion (AIC). Examining 

the differences in AIC between models, we found that even a moderate number of selective 

sweeps will cause non-equilibrium demographic scenarios to have far stronger support than the 

true equilibrium history (supplementary fig. S4). This is especially so for the bottleneck and 

contraction-then-growth models, which achieve better support than the equilibrium model even 

at small values of f. For example, when f=0.2 the bottleneck model receives an AIC lower than 

the equilibrium model in 90% of cases, and the contraction-then-growth model has a lower AIC 

72% of the time (supplementary fig. S4). By contrast, the pure growth model is supported to a 

lesser extent (a lower AIC in 54% of cases), and occasionally failed to optimize properly, settling 

on a very low-likelihood parameterization—an indication of a poorly fitting model. The better fit 

of the bottleneck and contraction-then-growth models is likely because they better model the 

genealogy of a region experiencing a selective sweep: much of the ancestral variation flanking 

the selected site is removed during the sweep (analogous to contraction), while being replaced by 

the subset of alleles within the rapidly expanding class of individuals containing the selected 

mutation (analogous to expansion). 

We conducted formal model selection as described in the Methods, conservatively 

selecting the equilibrium model unless one of the other models had an AIC at least 50 units 

higher. We note that it would be preferable to perform parametric bootstraps from competing 

models to compare the distributions of AIC values, but in the interest of computational efficiency 

we instead choose this heuristic. Even with this conservative cutoff, we selected a non-
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equilibrium model for 15% of simulated data sets with f=0.2, for 47% of datasets with f=0.3, and 

for 91% of datasets when f=0.6 (Table 1). Thus even if a minority of loci are linked to a recent 

selective sweep then SFS-likelihood based approaches may prefer the wrong demographic 

model. Interestingly, in every case where a non-equilibrium model was the unambiguous best fit 

to the data this model choice was the bottleneck scenario. 

Next, we performed model selection on our constant-size population samples using ABC 

(Methods). For each of these datasets, we estimated Bayes factors for each pairwise comparison 

of demographic models. Again, we find that non-equilibrium demographic models may begin to 

receive stronger support than the constant-size model once a sizable fraction of loci are linked to 

selective sweeps. For example, when f=0.4, the bottleneck model has nominally stronger support 

(Bayes factor >1) than the equilibrium model for 55% of datasets, the growth model has stronger 

support than equilibrium in 9% of datasets, and the contraction-then-growth model has stronger 

support in 4% of datasets  (supplementary fig. S5). When f is increased to 0.8, we observe even 

stronger support for non-equilibrium models, with 100% of the bottlenecks datasets, 79% of the 

contraction-the-growth datasets, and 26% of the growth model datasets having a Bayes factor > 1 

when compared to the constant-size model. We used these Bayes factors to perform model 

selection in a manner similar to our analysis with ∂a∂i, conservatively selecting the equilibrium 

model if there was no alternative model that was a significantly better fit to the data (i.e. having a 

Bayes factor relative to the equilibrium model of ≥20). Again, we find that even if a minority of 

loci are linked to a sweep, then there is a substantial probability that the constant-size model will 

not be selected: for 6% of datasets we select a non-equilibrium model when f=0.2, for 34% of 

datasets with f=0.3, and for 99% of datasets when f=0.6 (Table 2). As with ∂a∂i-optimized 

models, we found that in every instance where we were able to unambiguously select a single 
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non-equilibrium demographic history as the best fit we chose the bottleneck model. When we 

include the variances of our set of summary statistics in our ABC procedure, we find that non-

equilibrium models are strongly supported in an even higher proportion of simulated data sets, 

though in this case we typically select the contraction-then-growth model rather than the 

bottleneck model (supplementary table S1). 

 

DISCUSSION 

 

It is well known that natural selection profoundly affects genealogies and therefore patterns of 

genetic polymorphism (Kaplan et al. 1989; Hudson and Kaplan 1994), thus it is reasonable to 

expect that linked selection will bias demographic inference that assumes strict neutrality of 

population genomic data. Indeed, background selection has recently been shown to skew 

demographic inferences using the site frequency spectrum (Ewing and Jensen 2016). Here, we 

show through extensive simulation that positive selection can severely impair demographic 

model selection and parameter estimation based on the SFS, summary statistics of variation, and 

reduced approximations of the ancestral recombination graph (i.e. PSMC). The extent to which 

this is so depends on the fraction of genetic loci examined during inference that are affected by a 

recent sweep, and the ratio of the genetic distance between the locus and the target of selection to 

the selection coefficient (c/s). 

When the fraction of loci affected by linked selection is low, we have shown that point 

estimates of population parameters estimated under the correct demographic scenario are 

reasonably accurate using both SFS-based inference and ABC with summary statistics (figs. 2-

4)—the exact fraction, however, depends on the model in question. However, unless f is quite 
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low our results indicate that when model selection is applied using either SFS-based or ABC 

inference, linked selection can bias model choice (Tables 1 and 2). In many of our simulated 

datasets we have assumed that loci linked to sweeps are on average a c/s distance of 0.5 away 

from the sweep (i.e. drawn uniformly from between 0 and 1). In real genomes this may 

correspond to quite a large physical distance: for instance if we assume a selection coefficient of 

0.05 (i.e. selection as strong as in our simulations) and a crossover rate of 2 cM/Mb (similar to 

estimates in Drosophila; e.g. Comeron et al. 2012) this corresponds to a physical distance of 1.25 

Mb. If instead we assume a crossover rate of 1 cM/Mb (similar to estimates from humans; e.g. 

Kong et al. 2010), this corresponds to a physical distance of 2.5 Mb. While we have assumed a 

fairly high value of s that may not be representative of all selective sweeps, known sweeps in 

humans may often have selection coefficients fairly close to 0.05 (Peter et al. 2012). 

Thus, even if there are a small number of recent selective sweeps, the majority of the 

genome may nonetheless be sufficiently impacted by linked selection to produce biased 

demographic inferences. For example, if a human population experienced 1,200 recent sweeps 

fairly evenly spaced across the genome (the equivalent of one recent sweep in ~5% of genes), 

every site in the genome would be within a c/s distance of 0.5 from the nearest sweep (i.e. f = 

1.0). In Drosophila, this would be the case if there were 120 evenly spaced recent sweeps. This is 

a very small number indeed, equivalent to a single recent sweep affecting <1% of all genes. 

Indeed in Drosophila the fraction of loci affected by recent positive selection may be quite large 

(Begun et al. 2007; Langley et al. 2012). Numerous studies have estimated that the fraction of 

adaptive amino acid substitutions in D. melanogaster is considerable, with estimates ranging 

from 10-50% (Smith and Eyre-Walker 2002; Bierne and Eyre-Walker 2004; Langley et al. 2012; 

Mackay et al. 2012). Positive selection may therefore be particularly troublesome for 
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demographic inference in Drosophila and other organisms were adaptive natural selection is 

similarly pervasive. In humans, where positive selection is perhaps less common (Hernandez et 

al. 2011), this may be less of a thorny issue. However, some have argued that selection may be 

pervasive in the human genome as well (Boyko et al. 2008; Enard et al. 2014) , and certainly 

humans show many adaptations to local environments (e.g. Li et al. 2007; Perry et al. 2007; 

Tishkoff et al. 2007; Barreiro et al. 2008; Bryk et al. 2008). Nonetheless, the 10-fold larger 

number of sweeps (under our parameterization) required to produce the same level of bias 

suggests that the confounding effect of demography in humans may be less problematic than in 

Drosophila. However, given uncertainty in the number, location, strength, and type (see below) 

of selective sweeps we are unable to quantify the extent to which demographic inferences in 

either species are skewed by adaptation. 

A new and promising class of methods for inferring demographic histories rely on 

estimating approximations to the ancestral recombination graph (ARG) using a sequentially 

Markovian coalescent (Li and Durbin 2011; Schiffels and Durbin 2014). In particular, because 

PSMC is applied to a single diploid genome, it has been used to infer population size histories in 

numerous species for which one or more genome sequences are available, in many cases finding 

support for large changes in population size (Groenen et al. 2012; Albert et al. 2013; Prado-

Martinez et al. 2013; Zhan et al. 2013; Freedman et al. 2014; Green et al. 2014; Wallberg et al. 

2014; Auton et al. 2015; Lamichhaney et al. 2015). Our findings suggest that natural selection 

may alter the shape of, and inflate the degree of change in, these inferred histories. Indeed 

because of the specific way in which a sweep perturbs the ARG locally during the coalescent 

history of a chromosome, PSMC inference on regions that have experienced one or a few sweeps 

in the past may lead to erroneous estimation of a population bottleneck. If sweeps continue until 
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the present day, PSMC inference might appear to support a population contraction rather than a 

bottleneck, though this may very well be a result of PSMC having lower power for very recent 

population dynamics (Li and Durbin 2011). Under a truly recurrent sweep model (Stephan et al. 

1992) it is unclear what the behavior of inference using PSMC might be. Note that with PSMC 

we infer population size changes from a large simulated chromosomal segment—corresponding 

to ~15 Mb in the human genome—experiencing only a single selective sweep 0.2×Ne 

generations ago. This is equivalent a total of ~200 fairly recent sweeps across the human 

genome. 

Our results are broadly concordant with a recent examination of the ability of the 

McDonald–Kreitman (or MK) test (McDonald and Kreitman 1991) to infer the fraction of 

substitutions that were adaptive (α) under a simulated recurrent hitchhiking scenario with 

constant population size (Messer and Petrov 2013). Their study found that Eyre-Walker and 

Keightley’s DFE-alpha method (Eyre-Walker and Keightley 2009), which simultaneously 

estimates α, the distribution of fitness effects, and a two-epoch population size history, 

incorrectly inferred the presence of population size changes (Messer and Petrov 2013). It is 

therefore reasonable to assume that positive selection could have a substantial confounding effect 

on a variety of population genomic methods for demographic inference in practice, beyond those 

considered here. In the empirical literature, numerous recent studies of demographic history have 

found support for contractions and recent expansions of natural populations (Thornton and 

Andolfatto 2006; Fagundes et al. 2007; Gravel et al. 2011; Tennessen et al. 2012; Duchen et al. 

2013). While such population size changes are probably common, and our results do not call the 

major findings of these studies into question, they do suggest that natural selection exaggerates 

the inferred intensity of these changes. 
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Our study has examined only a single model of adaptive natural selection, and therefore 

has several limitations. Throughout we have assumed that positive selection occurs only through 

completed hard selective sweeps. Indeed soft sweeps (Innan and Kim 2004; Hermisson and 

Pennings 2005; Pennings and Hermisson 2006; Garud et al. 2015) and partial sweeps (Hudson et 

al. 1994; Sabeti et al. 2002; Voight et al. 2006), may be widespread, and differ in their effects on 

linked polymorphism (Orr and Betancourt 2001; Meiklejohn et al. 2004; Przeworski et al. 2005; 

Teshima et al. 2006; Schrider et al. 2015; Vy and Kim 2015). Polygenic selection, in which 

alleles at several different loci underlying a trait under selection will experience a change in 

frequency, is also thought to be widespread (Pritchard et al. 2010; Berg and Coop 2014). Such 

polygenic adaptation is known to leave its own unique signature on patterns of population 

genetic variation (Berg and Coop 2014). These alternative modes of positive selection could 

skew demographic inferences in a different manner than what we have observed in this study. 

Positive selection may also affect estimation of multi-population demographic scenarios: though 

we did not examine this here, Mathew and Jensen recently showed that selective sweeps will 

impair parameter estimates for a two-population isolation-with-migration model (Mathew and 

Jensen 2015). Thus our results, combined with those of Mathew and Jenson (2015), Ewing and 

Jensen (2016), and Messer and Petrov (2013), strongly suggest that the problem of natural 

selection skewing demographic inference is a general one. 

The observations we have made here also suggest some steps that can be taken to 

mitigate the impact of positive selection. First, we note that in general ∂a∂i (i.e. SFS-based 

inference) appears to be somewhat more robust to selection than our ABC approach based on 

summary statistics. Perhaps this is because ∂a∂i uses an SFS summed across loci, such that more 

polymorphic regions will have a greater weight on the shape of the SFS (simply because they 
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contribute more observations). Thus the extent to which regions most affected by sweeps 

contribute to the SFS is diminished implicitly, as these regions will exhibit less variation. 

Relying on the SFS rather than summaries of variation that to a greater extent depend on the 

number of segregating sites may therefore reduce selection’s confounding effect on inferred 

relative population size changes, though estimates of 4Nμ and therefore the absolute population 

size may be biased. We also found that including variances of summary statistics when 

performing ABC can dramatically inflate error, especially when an intermediate number of loci 

are linked to sweeps, perhaps because this mixture of two evolutionary models (neutrality and 

positive selection) inflates the variance. Omitting variances may therefore reduce the 

confounding effect of selection in some cases. 

Finally, we have shown convincingly that the proximity of selective sweeps to genomic 

regions used for inference (as measured by c/s) has a large effect on the magnitude of bias 

(supplementary figs. 1-3). Thus, it is of paramount importance to select regions located as far 

away in genetic distance as possible from genes and other functional DNA elements (Gazave et 

al. 2014). While this is so, it may not be possible to move far enough away from potential targets 

of selection to completely eliminate any bias (as discussed above). Moreover, it is essential to 

omit regions with lowered recombination rates, where the impact of linked selection will be 

strongest (Begun and Aquadro 1992). Our results also motivate the challenging task of 

simultaneous estimation of parameters related to natural selection and demographic history 

(Eyre-Walker and Keightley 2009; Mathew and Jensen 2015; Sheehan and Song 2016). Until an 

approach to obtain accurate estimates of demographic parameters in the face of natural selection 

is devised, population size histories inferred from population genetic datasets will remain 

significantly biased. 
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METHODS 

 

Simulating demographic and selective histories to test inference methods 

To test the robustness of ∂a∂i and ABC to positive selection, we generated coalescent 

simulations from four different demographic scenarios: 1) a constant population size model; 2) a 

three-epoch population bottleneck (the European model from Marth et al. 2004); 3) a model of 

recent exponential population growth; 4) and a three-epoch model with a population contraction 

followed by a period of stasis and then recent exponential population growth (a simplified 

version of the European model from Gravel et al. 2011). We refer to this scenario as the 

contraction-then-growth model. These models and their parameters are shown in fig. 1. 

 For each demographic model, we simulated 100 observed genomes experiencing no 

natural selection, each of which was summarized by a collection of 500 unlinked loci sampled 

from 200 haploid individuals. We then repeated these simulations while stipulating that a 

specified fraction of loci (f) were linked to a recent selective sweep where the selected mutation 

reached fixation immediately prior to sampling. The selection coefficient, s, for this mutation 

was always set to 0.05, with a completely additive fitness effect (h=0.5). For each simulation 

including a selective sweep, we specified the genetic distance of the sweep from the sampled 

locus by the ratio c/s, where c is the crossover rate per base pair multiplied by the physical 

distance to the sweep, and s is again the selection coefficient. We examined values of f that were 

multiples of 0.1 between 0.1 (10% of loci linked to a sweep) and 1.0 (100% of loci linked to a 

sweep). Values of c/s examined were multiples of 0.1, raging from 0.0 (the sweep occurred 

immediately adjacent to the locus being used for inference) to 1.0 (~4.17 Mb given our value of s 
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and our recombination rate; see below). We generated sets of simulations with a given value of f 

by combining the appropriate numbers of neutral simulations and simulated loci linked to a 

sweep. For each combination of f and c/s (110 combinations in total), we generated 100 sets of 

500 unlinked loci. 

We also simulated large chromosomal regions to which we applied PSMC. These 

simulations were of 15 Mb regions with a constant-size population (Ne=10,000), from which two 

individuals were sampled. These 15 Mb regions either experienced no selective sweeps, one 

selective sweep fixing 0.4×Ne generations ago, three selective sweeps (fixing 0.4×Ne 

generations ago, 0.2×Ne generations ago, and immediately prior to sampling) or five selective 

sweeps  (0.4×Ne, 0.3×Ne, 0.2×Ne, 0.1×Ne, or 0 generations prior to sampling). The location of 

each sweep was thrown down randomly along the chromosome. For each scenario, 100 replicate 

simulations were generated. 

For all simulations we used parameters relevant to human populations: a recombination 

rate of 1.0×10-8, (approximately equal to the sex-averaged rate from Kong et al. 2010) and a 

mutation rate of 1.2×10-8 (from Kong et al. 2012). Simulations were performed with our 

coalescent simulator discoal_multipop (https://github.com/kern-lab/discoal_multipop), and 

example command lines with the appropriate population mutation/recombination rates and 

population size changes for each demographic scenario are shown in supplementary table S2. 

 

Parameter estimation and model selection with ∂a∂i 

We downloaded version 1.6.3 of ∂a∂i (Gutenkunst et al. 2009), which we programmed to 

optimize the parameters of the bottleneck, growth, and contraction-then-growth models. For each 

model we used a two-step constrained optimization procedure to find the combination of 
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demographic parameters that have the highest likelihood given the site frequency spectrum 

measured across all 500 unlinked loci in the simulated genome. First we performed a coarse 

optimization using the Augmented Lagrangian Particle Swarm Optimizer (Jansen and Perez 

2011), and then refined this solution using Sequential Least Squares Quadratic Programming 

(Kraft 1988). Both of these techniques are implemented in the pyOpt package (version 1.2.0) for 

optimization in python (Perez et al. 2012).  

To asses the accuracy of point estimation of parameters in the face of varying amounts of 

and genetic distances to selective sweeps, we optimized the parameters of each demographic 

model against each data set simulated under that model, comparing estimated values to the true 

values. As shown in the Results, this approach was quite successful recovering the true 

parameter values of each demographic model when applied to data simulated under neutrality. 

However, one exception was the bottleneck model, for which the optimal solution was typically 

a shorter but more severe bottleneck than the one we had simulated. We therefore fixed the 

bottleneck duration to the true value (500 generations), after which ∂a∂i was able to estimate the 

remaining parameter values with acceptable accuracy. 

To assess the support for a given demographic model, we obtained for a simulated data 

set the likelihood of each demographic model under the optimal parameters estimated by ∂a∂i, 

and then from this likelihood and the number of parameters of the model calculated the AIC 

(Akaike 1974). For the constant population size model, there are no optimized parameters, so the 

AIC is simply minus 2 times the log-likelihood of the model. Model selection was performed for 

each data set simulated with constant population size, with or without selection. For each model 

with variable population size, the python script we used to perform parameter optimization and 

obtain the likelihood of the optimal parameterization has been deposited on GitHub 
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(https://github.com/kern-lab/demogPosSelDadiScripts), as has the script used to obtain the 

likelihood under the constant population size model. 

To perform formal model selection, we asked for a given simulated data set whether any 

non-equilibrium model had an AIC at least 50 units greater than that of the equilibrium model. If 

so, we asked whether any of our three non-equilibrium models had an AIC at least 50 units than 

the other two, in which case we selected that model; otherwise we classified the simulated data 

set as “ambiguous but non-equilibrium.” If no non-equilibrium model had an AIC at least 50 

units greater than the equilibrium model, then we conservatively classified the simulated data set 

as “equilibrium.” 

 

Parameter estimation and model selection using ABC 

For each of our three non-equilibrium demographic models, we used ABC to estimate the model 

parameters in each “observed genome” simulated under the model. To this end, we summarized 

patterns of variation within each genome by calculating the means and variances of �, the 

number of segregating sites, Tajima's D, ��� (Fay and Wu 2000), and the number of distinct 

haplotypes for each of the 500 sampled unlinked loci. We then created a sampling dataset for 

each demographic model consisting of 5.0×105 simulated genomes evolving in the absence of 

selection, again with each genome represented by 500 unlinked loci, each of sample size 200. 

For these sampling datasets, the demographic parameters were drawn uniformly from prior 

distributions (shown for each model in supplementary table S3), and were summarized by the 

same set of statistics used for the “observed genomes.” For the bottleneck and contraction-then-

growth models, our initial efforts to estimate parameters under neutrality failed to approximate 

the true parameterizations. We therefore fixed the values of the times of population contraction 
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parameters of these models (referred to as TB and TC respectively) during both parameter 

estimation and model selection: these parameters were always set to the true values during 

sampling simulations, and their values were not estimated. After this change, we were able to 

estimate the parameters of each model under neutrality with reasonable accuracy. 

We utilized the ABCreg software package (https://github.com/molpopgen/ABCreg) to 

perform parameter estimation for each of our four demographic models (Thornton 2009). We 

applied the conventional tangent transformation procedure to the parameters sampled from our 

prior distributions via passing the –T flag. We also set the tolerance parameter, -t = 0.001, thus 

retaining 0.1% of our sample data for use in estimating the posterior parameter distributions. 

ABCreg uses a weighted linear regression approach to the retained sampling simulations in order 

to estimate the posterior probability densities of the parameters (Beaumont et al. 2002). From 

each parameter’s estimated posterior distribution we used the maximum a posteriori estimator 

(posterior mode) as our point estimate. We also repeated parameter estimation on each observed 

dataset using the means of summary statistics only. 

We performed model selection on our simulated observed genomes with constant 

population size and varying degrees of positive selection. Our model selection procedure 

considered each of our four demographic models. For the constant-size model we constructed a 

new sampling set of 5.0×105 simulated datasets, and for the three variable-size models we used 

the same sampling sets generated for parameter estimation. We used the R package abc to 

conduct model choice, performing logistic regression-based estimation of the posterior 

probabilities of a model (Csilléry et al. 2012). We separately examined all pair-wise model 

selection scenarios: constant size vs. growth; constant size vs. contraction-then-growth; constant 

size vs. bottleneck; bottleneck vs. contraction-then-growth; bottleneck vs. growth demography; 
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and contraction-then-growth vs. growth. We summarized model support with the Bayes factor as 

calculated by the abc package; in cases where this calculation resulted in division by zero (i.e. 

where the posterior probability of a model was estimated to be zero), we set the Bayes factor to 

be equal to the largest one observed among datasets with the same combination of demographic 

model, f, and c/s. 

We performed model selection in a manner similar to our approach with ∂a∂i, asking for 

a given simulated data set whether any non-equilibrium model had a Bayes factor of at least 20 

when compared to the equilibrium model. If so, we asked whether any of our three non-

equilibrium models had a Bayes factor ≥20 when compared to each of the two, in which we 

selected that model; otherwise we classified the simulated data set as “ambiguous but non-

equilibrium.” Analogous to our model selection with ∂a∂i, if no non-equilibrium model had a 

Bayes factor ≥20 when compared to the equilibrium model, then we conservatively classified the 

simulated data set as “equilibrium.” 

 

Inferring population size histories with PSMC 

We ran PSMC in order to infer the history of population size changes of our 15 Mb simulations 

from which two individuals were sampled (see above). Briefly, we converted our simulation 

output to the same format generated by running msHOT-lite 

(https://github.com/lh3/foreign/tree/master/msHOT-lite) with the –l flag. We then ran PSMC’s 

ms2psmcfa.pl script with default parameters to generate input for PSMC, which we ran with 

default parameters. Finally, we ran PSMC’s psmc2history.pl script with default parameters to 

output the inferred population size history. We then rescaled the output from units of Ne to years 

(after rescaling to generations and assuming a 30 year generation time) and numbers of 
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individuals using the estimated value of θ. For each selective scenario, we ran PSMC separately 

on all 100 simulated population samples. Finally, for the purposes of visualization we obtained a 

median estimate of population size across time by examining a large number of time points (one 

every 100 years) across the entire period examined, and at each time point taking the median 

population size estimate from all 100 simulations. 
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Fig. 1. Demographic models used in this study. For each model, a diagram of the population size 
history is shown on the left (not to scale) along with the values of each parameter. On the right, 
the values of π and Tajima’s D are shown for windows sampled at varying distances (measured 
by the total crossover rate over the selection coefficient, c/s) from a hard selective sweep. (A) A 
model with constant population size. (B) A population bottleneck (parameterization from Marth 
et al. 2004). (C) Recent exponential population growth. (D) A three-epoch model with a 
population contraction and recent exponential growth (a simplified version of the European 
model from Gravel et al. 2011). 
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Fig. 2. Bottleneck model parameter estimates from ∂a∂i and ABC. Parameter estimation was 
performed on simulated data sets either evolving neutrally, or with some fraction of loci (f) used 
for inference linked to a selective sweep. Each box plot summarizes estimates from 100 
replicates for each scenario. Note that TB, the bottleneck onset time, is absent from this figure 
because it was fixed it to the true value (Methods). 
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Fig. 3. Exponential growth model parameter estimates from ∂a∂i and ABC. Parameter estimation 
was performed on simulated data sets either evolving neutrally, or with some fraction (f) of loci 
used for inference linked to a selective sweep. Each box plot summarizes estimates from 100 
replicates for each scenario. 
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Fig. 4. Contraction-then-growth model parameter estimates from ∂a∂i and ABC. Parameter 
estimation was performed on simulated data sets either evolving neutrally, or with some fraction 
of loci (f) used for inference linked to a selective sweep. Each box plot summarizes estimates 
from 100 replicates for each scenario. Note that when performing ABC, time of population 
contraction (TC), was fixed to the true value and therefore this parameter is only shown for ∂a∂i. 
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Fig. 5. Population size histories inferred by PSMC. Inferred size histories for each of 100 
replicate simulations are shown as thin gray lines, and the median across all replicates is shown 
as the thicker line. In all cases the simulated population’s size was constant throughout. (A) 
Population size histories inferred from neutral simulations. (B) Inferences from simulations with 
one selective sweep, for which the fixation time is shown as a dashed green vertical line. (C) 
Inferences from simulations with three recurrent selective sweeps. Fixation times for the two 
older sweeps are shown as dashed green vertical lines, while the most recent sweep fixed 
immediately prior to sampling. (D) Five recurrent selective sweeps, with fixation times for the 
four oldest shown as dashed vertical lines; again, the most recent sweep fixed immediately prior 
to sampling. 
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Table 1: The fraction of simulated data sets for which each demographic model was 
selected by ∂a∂i. 

f Bottleneck Growth 
Contraction-then-

growth 
Non-equilibrium 

(ambiguous) Equilibrium 
0 0.0% 0.0% 0.0% 0.0% 100.0% 

0.1 1.0% 0.0% 0.0% 1.0% 98.0% 
0.2 5.0% 0.0% 0.0% 10.0% 85.0% 
0.3 14.0% 0.0% 0.0% 33.0% 53.0% 
0.4 41.0% 0.0% 0.0% 55.0% 4.0% 
0.5 77.0% 0.0% 0.0% 23.0% 0.0% 
0.6 91.0% 0.0% 0.0% 9.0% 0.0% 
0.7 100.0% 0.0% 0.0% 0.0% 0.0% 
0.8 99.0% 0.0% 0.0% 1.0% 0.0% 
0.9 100.0% 0.0% 0.0% 0.0% 0.0% 
1 100.0% 0.0% 0.0% 0.0% 0.0% 

 
 
 
Table 2: The fraction of simulated data sets for which each demographic model was 
selected by ABC. 

f Bottleneck Growth 
Contraction-then-

growth 
Non-equilibrium 

(ambiguous) 
Equilibrium 

0 0.0% 0.0% 0.0% 0.0% 100.0% 
0.1 0.0% 0.0% 0.0% 1.0% 99.0% 
0.2 0.0% 0.0% 0.0% 6.0% 94.0% 
0.3 2.0% 0.0% 0.0% 32.0% 66.0% 
0.4 25.0% 0.0% 0.0% 45.0% 30.0% 
0.5 88.0% 0.0% 0.0% 2.0% 10.0% 
0.6 99.0% 0.0% 0.0% 0.0% 1.0% 
0.7 100.0% 0.0% 0.0% 0.0% 0.0% 
0.8 100.0% 0.0% 0.0% 0.0% 0.0% 
0.9 100.0% 0.0% 0.0% 0.0% 0.0% 
1 100.0% 0.0% 0.0% 0.0% 0.0% 
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SUPPLEMENTARY FIGURE AND TABLE LEGENDS 
 
Supplementary fig. S1. Bottleneck model parameter estimates from ∂a∂i, ABC using summary 
statistic means, and ABC using both means and variances. Parameter estimation was performed 
on simulated data sets either evolving neutrally, or with some fraction (f) of loci used for 
inference linked to a selective sweep at some distance (measured by c/s). Each box plot 
summarizes estimates from 100 replicates for each scenario. Note that TB, the bottleneck onset 
time, is absent from this figure because it was fixed it to the true value (Methods). 
 
Supplementary fig. S2. Growth model parameter estimates from ∂a∂i, ABC using summary 
statistic means, and ABC using both means and variances. Parameter estimation was performed 
on simulated data sets either evolving neutrally, or with some fraction (f) of loci used for 
inference linked to a selective sweep at some distance (measured by c/s). Each box plot 
summarizes estimates from 100 replicates for each scenario. Note that TB, the bottleneck onset 
time, is absent from this figure because it was fixed to the true value (Methods). 
 
Supplementary fig. S3. Contraction-then-growth model parameter estimates from ∂a∂i, ABC 
using summary statistic means, and ABC using both means and variances. Parameter estimation 
was performed on simulated data sets either evolving neutrally, or with some fraction (f) of loci 
used for inference linked to a selective sweep at some distance (measured by c/s). Each box plot 
summarizes estimates from 100 replicates for each scenario. Note that TC, the time of population 
contraction, is present only for ∂a∂i because for ABC this parameter was fixed to the true value 
(Methods). 
 
Supplementary fig. S4. Differences in AIC between equilibrium and non-equilibrium models 
when fitted by ∂a∂i to simulated constant-size populations with varying degrees of positive 
selection. For the growth model, a small number of simulated optimized very poorly, leading to 
large AICs, and therefore large differences between the growth and equilibrium AIC. The upper 
limit of the y-axis of this plot was truncated to allow visualization of AIC differences for the bulk 
of the data for which optimization was more successful (though box and whisker lengths still 
reflect the presence of these outliers in the set). 
 
Supplementary fig. S5. Bayes factors from ABC’s model selection comparing equilibrium and 
non-equilibrium demographic models. 
 
Supplementary table S1. The fraction of simulated data sets for which each demographic model 
was selected by ABC when including variances of summary statistics. 
 
Supplementary table S2. Example command lines to simulate each demographic model using 
discoal_multipop. 
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Supplementary table S3. Priors on parameter values of each demographic model for ABC 
sampling simulations. 
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