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ABSTRACT 

Failure to detect low-abundance microRNAs (miRNAs), for example, in circulating plasma, 

may occur for a variety of reasons, including presence of enzyme inhibitors. Recently, we 

received the unusual but intriguing suggestion that miR-16-5p acts as a co-factor of reverse 

transcriptases, facilitating more efficient reverse transcription of miRNAs and thus 

enhanced detection of low-abundance miRNAs. We tested this hypothesis by incubating 

reverse transcriptase with several concentrations of synthetic miR-16-5p and then 

performing stem-loop RT-qPCR with serial dilutions of miRNA osa-MIR168a. Our results do 

not support a role for miR-16 as a co-factor of reverse transcriptase. 
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INTRODUCTION 

Previously, we reported a lack of quantitative PCR (qPCR)-based detection of plant miRNAs, 

or xenomiRs, in blood of primates that received a plant miRNA-replete dietary substance 

[1]. Technical controls and digital droplet PCR revealed that any late amplification signal 

was consistent with non-specific amplification, while synthetic standard curves 

demonstrated assay sensitivity down to tens or even single digits of copies. These findings 

were not surprising, since dietary RNA is labile, is exposed to a series of harsh 

environments in the alimentary canal, and has no well characterized routes of uptake into 

and distribution within mammals [2–4]. Other groups have reported similar results [5–9] in 

humans and rodents using a variety of qPCR and sequencing methods. 

 

A colleague who expressed skepticism at our results because of a previous report of 

xenomiR detection [10] presented an intriguing hypothesis. Specifically, low-level 

exogenous plant miRNAs in mammals were not detected because the reverse transcriptase 

we used [acquired from Applied Biosystems by Thermo Fisher (ABI)], required pre-

incubation with a small RNA co-factor for optimal activity: 

 “By the way, I guess that you are all using ABI reverse-transcriptase (RTase). 

If so, I would suggest that (you) mix synthetic mi(R)-16 with RT, incubate for 

30min at 16 C, then use the mixture to do your qRT-PCR for detecting low 

level(s) of miRNA (endogenous and exogenous plant miRNA), even low level(s) 

of mRNA.” 

Although no explanation was given as to why miR-16 might be necessary, we were 

interested in determining whether this simple additional step prior to reverse transcription 

and qPCR would lend even more sensitivity to already highly sensitive assays. Therefore, we 

tested the hypothesis that miR-16-5p acts as a co-factor for reverse transcriptase enzyme. 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 4, 2016. ; https://doi.org/10.1101/047001doi: bioRxiv preprint 

https://doi.org/10.1101/047001
http://creativecommons.org/licenses/by/4.0/


 4

 

MATERIALS AND METHODS 

Synthetic oligonucleotides corresponding to hsa-miR-16-5p (sequence 

UAGCAGCACGUAAAUAUUGGCG, also referred to as “miR-16” or “hsa-miR-16”) and osa-

MIR168a-5p (UCGCUUGGUGCAGAUCGGGAC) were ordered from Integrated DNA 

Technologies (IDT). RT enzyme (MultiScribe™ RT enzyme, Applied Biosystems/Life 

Technologies, now Thermo Fisher) was pre-incubated for 30 minutes at 16°C with synthetic 

miR-16 at four concentrations: high (400 nM), mid (4 nM), low (400 fM), and none. A 

dilution series of synthetic osa-MIR168a standard was prepared, with dilutions separated 

by two-fold (dilutions 1 and 2) and four-fold (dilutions 3-6). Following RT reaction, dilution 

per manufacturer’s instructions, and preparation of the second-step amplification reactions, 

there were an estimated 10,000, 5,000, 1,250, 80, and 20 copies of synthetic osa-MIR168a 

per qPCR reaction. Two-step RT-qPCR assays were from Applied Biosystems/Thermo 

Fisher under Catalog number # 4427975 (inventoried miRNA assays): hsa-miR-16-5p 

(000391) and osa-MIR168a-5p (007594_mat). RT and qPCR steps were performed as 

described previously [11] with a CFX96 qPCR system (BioRad). 

 

RESULTS 

When MIR168a was measured in dilution series, as expected, cycle of quantitation (Cq) 

values for the first two standard dilutions were separated by approximately one cycle, while 

Cq for the remaining dilutions were separated by approximately two cycles (Figure 1). The 

greatest variability was observed at the highest standard dilution, also as expected. At the 

highest concentration of synthetic miR-16, slightly later amplification (by around half a 

cycle on average for the first five standard dilutions) was observed. miR-16 was also 

assayed to confirm the presence of the presumed cofactor (Figure 1).  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 4, 2016. ; https://doi.org/10.1101/047001doi: bioRxiv preprint 

https://doi.org/10.1101/047001
http://creativecommons.org/licenses/by/4.0/


 5

 

DISCUSSION 

These results do not support the hypothesis that synthetic miR-16 acts as a reverse 

transcriptase co-factor to enhance reverse transcription and subsequent detection of 

miRNA such as plant miRNA osa-MIR168a in standard stem-loop reverse 

transcription/hydrolysis probe qPCR assays. Indeed, at the highest pre-incubation 

concentration of miR-16, there was a decrease in sensitivity. The performance of some 

TaqMan assays (including, in our hands, the osa-MIR168a and ath-MIR156a assays), may 

leave only limited room for improvement, and that within a low concentration range that 

for most source materials would have no relevance for canonical miRNA-mediated 

regulation: hundreds to thousands of copies per cell [12]. Although one could postulate that 

miRNAs that we did not test here would be better reverse-transcribed in the presence of 

miR-16, it is unclear how this effect would be mediated, and we do not plan to investigate 

this hypothesis further.  
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Figure 1. No enhancing effect of miR-16-5p as a reverse transcriptase co-factor.  

Synthetic miR-16-5p was incubated with reverse transcriptase (Thermo Fisher) for 30 

minutes at 16°C at the following concentrations: none ("No 16), 400 fM ("Low 16), 4 nM 

(Mid 16), and 400 nM (Hi 16). Reverse transcription reactions were performed to detect 

serially diluted synthetic osa-MIR168a (left) or hsa-miR-16-5p (right) in the same reactions. 
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