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Abstract 12 

One way to analyze the relationship between species attributes (e.g. functional traits) and sample 13 

attributes (e.g. environmental variables) via the matrix of species composition is by calculating 14 

the community-weighted mean of species attributes (CWM) and relating it to sample attributes 15 

by correlation, regression, ANOVA etc. This weighted-mean approach is used in a number of 16 

ecological fields (e.g. functional and vegetation ecology, biogeography, hydrobiology or 17 

paleolimnology), and represents an alternative to other methods used to relate species and sample 18 

attributes via the species composition matrix such as the fourth-corner approach. 19 
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 The problem with the weighted-mean approach is that in certain cases it yields biased 20 

results in terms of both effect size and significance, and this bias is contingent upon the beta 21 

diversity of the species composition matrix. The reason is that CWM values calculated from 22 

samples of communities sharing some species are not independent from each other. This lack of 23 

independence influences the number of effective degrees of freedom, which is usually lower than 24 

the actual number of samples, and the difference further increases with decreasing beta diversity 25 

of the data set. Discrepancy between the number of effective degrees of freedom and the number 26 

of samples in analysis turns into biased effect sizes and an inflated Type I error rate in those 27 

cases where the significance of the relationship is tested by standard tests, a problem which is 28 

analogous to analysis of two spatially autocorrelated variables. Consequently, reported results of 29 

studies using rather homogeneous (although not necessarily small) compositional data sets may 30 

be overly optimistic, and results of studies based on data sets differing by their beta diversity are 31 

not directly comparable. 32 

 Here, I introduce guidelines on how to decide in which situation the bias is actually a 33 

problem when interpreting results, recognizing that there are several types of species and sample 34 

attributes with different properties and that ecological hypotheses commonly tested by the 35 

weighted-mean approach fall into one of three broad categories. I also compare available 36 

analytical solutions accounting for the bias (namely modified permutation test and sequential 37 

permutation test using the fourth-corner statistic) and suggest rules for their use. 38 

 39 

Key Words: degrees of freedom; fourth-corner approach; functional traits; modified permutation 40 

test; sequential permutation test; species indicator values  41 
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Introduction 42 

Weighted-mean approach is a method to analyze the relationship between species attributes and 43 

sample attributes by calculating community-weighted means of species attributes (CWM), which 44 

can be directly related to sample attributes by correlation, regression, ANOVA or other methods. 45 

Species attributes are species properties (traits), behavior (species ecological optima) or 46 

phylogenetic age, while sample attributes are characteristics of community samples measured in 47 

the field (environmental variables) or derived from a matrix of species composition (like species 48 

richness or positions of samples in ordination diagrams). 49 

 The weighted-mean approach is used in a wide range of ecological fields. In functional 50 

ecology, testing the effect of environmental variables on changes in CWM is one of the 51 

approaches that demonstrates the effect of environmental filtering on trait-mediated community 52 

assembly (Díaz et al. 1998; Shipley 2010). Similarly, CWM is used to predict changes in 53 

ecosystem properties, such as biomass production or nutrient cycling (Garnier et al. 2004; Vile et 54 

al. 2006), or ecosystem services like fodder production or maintenance of soil fertility (Díaz et al. 55 

2007). In biogeography, grid-based means of species properties (such as animal body size, range 56 

size or evolutionary age) are linked to macroclimate or diversity (Hawkins and Diniz-Filho 57 

2006). Vegetation ecologists use species indicator values (e.g. those of Ellenberg et al. 1992) to 58 

estimate habitat conditions from calculated mean species indicator values of vegetation samples 59 

and relate them to soil, light or climatic variables (Schaffers and Sýkora 2000). In hydrobiology, 60 

reliability of the saprobic index of Sládeček (1973) based on weighted mean of diatom indicator 61 

values, or similar indices (e.g. trophic diatom index, Kelly and Whitton 1995) is evaluated by 62 

relating them to measured water quality parameters. Similarly, in paleoecology the method used 63 
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to reconstruct acidification of lakes from fossil diatom assemblages preserved in lake sediments 64 

is based on weighted means of diatom optima along the pH gradient (ter Braak and Barendregt 65 

1986), and as one of the transfer functions (e.g. Birks et al. 1990) is considered to be a tool 66 

which has “revolutionised paleolimnology” (Juggins 2013). Other, more specific examples 67 

include relating the community specialization index (mean of species specialization values 68 

weighted by their dominance in the community) to environmental variables (Clavero and 69 

Brotons 2010, Carboni et al. 2016), or attempts to verify whether plant biomass can be estimated 70 

from tabulated plant heights and species composition as the mean of species heights weighted by 71 

their cover in a plot (Axmanová et al. 2012).  72 

 Although the weighted-mean approach technically relates two sets of variables (CWM 73 

and sample attributes), three matrices are in fact involved in the computation background 74 

(notation here follows the RLQ analysis of Dolédec et al. 1996): matrix of sample attributes R 75 

with m sample attributes of n samples (n × m); matrix of species composition L with abundance 76 

(or presence-absence) of p species in n samples (n × p); and matrix of species attributes Q with s 77 

species attributes for p species (s × p). The weighted-mean approach is just one of the possible 78 

options for relating species attributes (Q) to sample attributes (R) via a matrix of species 79 

composition (L): it combines Q with L into a matrix of weighted-means M and relates it to R. 80 

An alternative solution, although rarely used, is to combine a matrix of sample attributes R with 81 

species composition L by calculating the weighted-mean of sample attributes (optima of 82 

individual species along a given sample attribute or species centroids) and relate these values to 83 

species attributes Q (e.g. ter Braak and Looman 1986). A third option is to use methods suitable 84 

for simultaneously handling all three matrices (R, L and Q), such as the fourth-corner approach 85 
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(Legendre et al. 1997), the related ordination method, called RLQ analysis (Dolédec et al. 1996), 86 

and other alternatives (Jamil et al. 2013, Brown et al. 2014). 87 

 In the weighted-mean approach, the relationship between CWM and sample attributes, 88 

analyzed by correlation/regression/ANOVA, is often tested by a standard parametric or 89 

permutation test (called simply standard test throughout this study). However, not all types of 90 

ecological questions, which are usually solved by the weighted-mean approach, should actually 91 

be tested by standard test. In certain situations and types of null hypotheses, the weighted-mean 92 

approach combined with standard tests generates biased results, which are more optimistic than 93 

would be actually warranted by analyzed data. This bias includes unreliable estimates of effect 94 

size (e.g. correlation coefficients in the case of correlation, or r2 in the case of linear regression) 95 

and an inflated Type I error rate, leading to more frequent rejection of the null hypothesis than 96 

would be expected. The key point before applying the weighted-mean approach is to explicitly 97 

decide what is actually the relationship between species attributes or sample attributes and 98 

species composition, and which of these relationships is actually fixed and which is random 99 

(more on the terms “fixed” and “random” below). This decision should be based on critical 100 

inspection of the context of the study question and tested null hypothesis. Inspiration for this 101 

issue can be seen in the application of the fourth-corner approach (Legendre et al. 1997), for 102 

which Dray and Legendre (2008) demonstrated the problem of deciding on the right permutation 103 

test (from five permutation models) to test the actual question in hand, with a risk of inflated 104 

Type I error rate in the case of a wrong choice. For the weighted-mean approach, this issue was 105 

highlighted by Zelený and Schaffers (2012) in a specific context of relating mean Ellenberg 106 

indicator values (species attributes) to sample attributes derived from species composition matrix 107 
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(like ordination scores or species richness), and by Peres-Neto et al. (2012, 2016) in the context 108 

of metacommunity phylogenetics and species functional traits. These studies also proposed 109 

numerical solutions: Zelený and Schaffers (2012) introduced a modified permutation test, an 110 

alternative to the standard permutation test between CWM and sample attributes in which 111 

species rather than sample attributes are permuted, and Peres-Neto et al. (2012, 2016) suggested 112 

employing the sequential test (ter Braak et al. 2012), using the fourth-corner statistic (Legendre 113 

et al. 1997). Additionally, Šmilauer and Lepš (2014, p. 158) mentioned this issue in the context 114 

of the CWM-RDA method (Kleyer et al. 2012). 115 

 Here, I first define several types of species or sample attributes, differing by their origin 116 

and relationship to a matrix of species composition. Then I review categories of questions and 117 

null hypotheses that are commonly analyzed by the weighted-mean approach. I use simulated 118 

data to show for which of these categories there is a risk of biased results if tested by standard 119 

test and how this bias depends on the beta diversity of a compositional data set. I argue that the 120 

bias is caused by a mismatch between the number of samples in the weighted-mean analysis and 121 

the actual number of effective degrees of freedom, since community samples sharing some of the 122 

species with other samples do not count for the full degree of freedom in this analysis. Note that 123 

for numerical simplicity, I ignore intraspecific variation in species attributes. Finally, I review 124 

and compare methods available for solving the problem of inflated Type I error rate in the 125 

weighted-mean approach, namely the modified permutation test (Zelený and Schaffers 2012) and 126 

the sequential permutation test based on the fourth-corner statistic (Peres-Neto et al. 2012, 2016), 127 

and suggest guidelines for their use. Although the examples, ecological interpretations and 128 

reasoning used here are focused on the relationship of species functional traits or species 129 
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indicator values with sample attributes analyzed by the weighted-mean approach, the general 130 

context is also valid for other types of species and sample attributes linked by the weighted-mean 131 

approach. 132 

 133 

Types of species and sample attributes 134 

When considering alternative types of questions commonly analyzed by the weighted-mean 135 

approach, it proves useful to distinguish whether species and sample attributes are fixed or 136 

random, and internal or external. The distinction between fixed and random attributes depends 137 

on whether they are specific for a given data set and this specificity is acknowledged by the 138 

question/hypothesis being tested (this link is deemed as given, and not further questioned or 139 

tested). Fixed attributes are specific and acknowledged, while random attributes represent a 140 

subset of some larger pool of values and their link to species composition is not acknowledged 141 

by the hypothesis being tested. In the narrow sense of permutation tests, fixed attributes should 142 

not be permuted among each other, while random attributes can be. For interpretation, the effect 143 

of fixed attributes is limited only to a given set of attribute values and in the context of 144 

community data sets included in the analysis and cannot be generalized beyond, while the effect 145 

of random attributes can be interpreted more broadly and also beyond the data set used in the 146 

study.  147 

 The main difference between internal and external attributes is their origin. Internal 148 

attributes are numerically derived from a matrix of species composition, while external attributes 149 

are typically measured or estimated variables, not directly derived from a species composition 150 

matrix. Internal species attributes are, for example, species optima calculated as the weighted-151 
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means of sample attributes or as species scores on ordination axes, and similarly internal sample 152 

attributes are sample scores on ordination axes, species richness of individual samples or the 153 

assignment of samples into groups based on compositional similarity (e.g. by numerical 154 

classification). External species attributes, on the other hand, are measured traits or tabulated 155 

species indicator values, and external sample attributes are measured or estimated environmental 156 

variables or experimental treatments. While the link of external species or sample attributes to 157 

species composition may be fixed or random and depends on the context, internal attributes are 158 

always fixed, since they refer only to the context of the data set from which they have been 159 

derived and their randomization would make no sense. 160 

 To give a few examples: species traits measured on individuals from plots of given 161 

community data sets can be considered as fixed and external, while species traits taken from 162 

large trait databases and measured often in a completely different context should be considered 163 

as random and external. Sample ordination scores derived from a matrix of species composition 164 

are fixed and internal sample attributes, while environmental variables measured in the field or 165 

derived from GIS layers may be considered as random and external. Indeed, the distinction 166 

between fixed and random is often arbitrary and depends on the authors’ decision and the 167 

theoretical context of the study, and the same variables can be seen as fixed or random in 168 

different contexts. For example, if results are expected to have local validity (e.g. whether the 169 

CWM of species height in a given agricultural system can predict the harvested biomass), 170 

species attributes can be seen as fixed; if the species height will be measured again in the same 171 

community, results will be similar, but not generally applicable to other communities. If the aim 172 

is to generalize results (e.g. to assess whether the species height itself, as tabulated in the national 173 
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floras, can be used as a tool to predict biomass yield), species attributes should be treated as 174 

random and the analysis should be modified accordingly, so that even a local study can 175 

contribute to a more general description of this relationship. 176 

 In the original description of the fourth-corner problem (Legendre et al. 1997), both 177 

species and sample attributes were considered as fixed, while the matrix of species composition 178 

was considered as random, and different permutation models were applied to test alternative 179 

hypotheses. In the weighted-mean approach, the decision as to whether attributes are fixed or 180 

random also influences the choice of a meaningful way to test the relationship, and is therefore 181 

crucial in the selection of the correct statistical test. All hypotheses (as discussed further) make 182 

an implicit or explicit assumption that either species or sample attributes are fixed, with a link to 183 

species composition acknowledged a priori and not further questioned (and also not tested). 184 

 185 

Types of hypotheses tested by weighted-mean approach 186 

Considering the distinction between fixed and random (sample or species) attributes, questions 187 

and hypotheses commonly tested by the weighted-mean approach fall into one of the three 188 

categories (see Table 1 for summary). Category A assumes that while sample attributes are fixed, 189 

species attributes are random; category B is opposite to the previous category, with sample 190 

attributes considered random and species attributes fixed; and, finally, category C assumes that 191 

both species and sample attributes are random. Below, I review in detail individual categories, 192 

with examples of ecological questions/hypotheses for each of them. 193 

Category A – species attributes are random, sample attributes are fixed 194 
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Hypotheses in this category explicitly acknowledge the link between sample attributes and 195 

species composition, or the link is implicit from the context or numerical background of the 196 

study. The null hypothesis states that species attributes are not linked to species composition, 197 

while the alternative hypothesis states that they are. Questions focused on relating CWM to 198 

internal sample attributes (i.e. those derived numerically from the matrix of species composition) 199 

fall into this category (e.g. relating mean Ellenberg indicator values to sample scores in 200 

unconstrained ordination to interpret the ecological meaning of ordination axes; Zelený and 201 

Schaffers 2012). In addition, studies with external sample attributes considered to be fixed, such 202 

as experimental treatments, fall into this category in the case when their effect on species 203 

composition is acknowledged, and the question is about how species attributes respond to it. An 204 

additional level of complexity is added in studies dealing with grid data where both CWM and 205 

internal sample attributes (e.g. species richness derived from community data) are spatially 206 

autocorrelated due to the spatial coherence of species distribution (B. Hawkins, pers. comm.). 207 

Zelený and Schaffers (2012) showed that standard tests have inflated the Type I error rate for this 208 

category of hypotheses, and as an alternative introduced the modified permutation test, 209 

permuting species attributes instead of sample attributes, as further discussed in this study.  210 

Category B – species attributes are fixed, sample attributes are random 211 

Hypotheses in the second category explicitly assume that the species attributes are linked to 212 

species composition. The null hypothesis states that sample attributes are not linked to species 213 

composition, while the alternative hypothesis states that they are. Examples are trait-based 214 

studies asking whether species traits can explain the effect of environmental filtering on species 215 

abundance in a community. These studies operate with an assumption that species traits (as 216 
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species attributes) are functional, i.e. they influence the abundance of species in a community, 217 

and the question being evaluated is whether the sample attributes (environmental factor) act as an 218 

environmental filter on species abundance. Descriptive studies without ambitions to be more 219 

generalized also fall into this category – e.g. the relationship between the CWM of species 220 

indicator values (e.g. mean Ellenberg indicator values) and measured environmental variables, if 221 

the interpretation is restricted only for the community data set included in the study. Finally, 222 

studies using internal species attributes (derived from species composition, e.g. as the weighted-223 

mean of sample attributes or as scores on ordination axes) also belong to this category. 224 

Category C – both species and sample attributes are random 225 

This category of hypotheses includes mostly observational studies without prior knowledge or 226 

expectations about a link between any of the matrices. The null hypothesis states that there is no 227 

link between species and sample attributes via the matrix of species composition because either 228 

the species attributes or the sample attributes (or both) are not linked to the matrix of species 229 

composition. To reject this null hypothesis means to prove that both species and sample 230 

attributes are actually linked to species composition. Empirical studies describing the general 231 

relationship between sample attributes and species attributes, without explicitly or implicitly 232 

acknowledging some underlying assumptions or mechanisms, belong to this category. Examples 233 

are studies relating the CWM of functional traits to environmental variables without a clear 234 

assumption that traits are functional, allowing to question whether particular traits are actually 235 

linked to species composition or not. In the case of studies with species indicator values, these 236 

include relating mean indicator values to environmental variables with the aim of generalizing 237 

the result also beyond the scope of the studied community data set (e.g. answering the question 238 
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of whether Ellenberg indicator values for soil reaction per se are good predictors of measured 239 

soil pH, i.e. not only in the context of a given community data set).  240 

 241 

Illustration of the bias and its dependence on beta diversity 242 

If hypotheses from categories A and C are tested by the weighted-mean approach based on 243 

correlation or regression and combined with the standard test, results may be highly biased, both 244 

in terms of the estimated model parameters and the inflated Type I error rate (Zelený and 245 

Schaffers 2012, Peres-Neto et al. 2016), and the magnitude of the bias changes with the beta 246 

diversity of the compositional data set. I will illustrate this bias using simulated community data, 247 

in which the set of communities with increasing beta diversity will be generated and 248 

accompanied by matrices of species and sample attributes related (or not) to species composition 249 

(creating four scenarios relevant to hypotheses in categories A, B and C). The same simulated 250 

data set will be later used to demonstrate the performance of available statistical solutions. 251 

Description of 2D simulated community data set 252 

Each simulated community data set includes the set of three matrices (sample attributes R, 253 

species composition L, and species attributes Q), with the link between species or sample 254 

attributes and species composition (or both) broken by the permutation of attributes. This creates 255 

four scenarios (Fig. 1, identical with scenarios 1–4 of Dray and Legendre 2008): 1) both sample 256 

and species attributes linked to species composition; 2) sample attributes linked to species 257 

composition, species attributes not; 3) species attributes linked to species composition, sample 258 

attributes not; 4) none of species or sample attributes linked to species composition. For 259 
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hypotheses in category A defined above, scenario 2 represents the null hypothesis, for category B 260 

scenario 3 is the null hypothesis, and for category C the scenarios 2, 3 and 4 represent alternative 261 

states of null hypothesis (Table 1). Scenario 1 represents the power test for all three categories 262 

(i.e. it measures the probability of getting significant results if the alternative hypothesis is true).  263 

 Additionally, I also examined how observed bias depends on the beta diversity of the 264 

species composition matrix, which influences the number of effective degrees of freedom in 265 

analysis (as explained in detail in the section Justification of the bias). An algorithm generating 266 

community data is structured by two virtual ecological gradients, and will be called 2D simulated 267 

community data set throughout this paper (this is an extension of the original one-gradient 268 

algorithm of Fridley et al. 2007). The first gradient has constant length for all generated data sets 269 

and serves as a surrogate for the measured environmental variable; in the analysis, positions of 270 

samples along this gradient are used as sample attributes, while the simulated species optima 271 

along this gradient are used as species attributes. The length of the second gradient is variable, 272 

and increasing its length increased the beta diversity of the data set (Appendix S1: Table S1 and 273 

Fig. S1). The length of the first gradient was arbitrarily set to 1000 units and the range of species 274 

niche widths was between 500 and 1000 units. The length of the second gradient varied between 275 

1000 to 10 000 units; for simplicity, here I assume that 1000 units of the second gradient 276 

represents one community, i.e. enlarging the second gradient from 1000 to 10 000 units (by steps 277 

of 1000 units) generates a set of data sets with 1 to 10 communities. Community samples were 278 

created by randomly choosing locations along the first and second gradient, and the species 279 

composition for each sample was derived by the random assignment of a fixed number of 280 
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individuals to species identities weighted by the relative abundance of species with non-zero 281 

probability of occurrence at a given location of the gradient (see Appendix S1 for further details). 282 

 Note that the model generating the 2D simulated community data is different from the 283 

one generating the simulated data sets used by Dray and Legendre (2008) and Peres-Neto et al. 284 

(2016), which used only one environmental gradient and generated rather homogeneous 285 

communities (Appendix S1: Table S1 vs Appendix S4: Table S2). The other difference is how 286 

each algorithm achieves the increase in beta diversity: while in the 2D simulated data set this is 287 

done by prolonging the second virtual gradient (which increases gamma diversity while keeping 288 

the mean alpha diversity rather constant), in the 1D simulated data set of Dray and Legendre 289 

(2008) the beta diversity is increased by narrowing the niche breadth of individual species 290 

(keeping the gamma diversity of the data set constant but decreasing the mean alpha diversity). 291 

For comparison with other published studies, all analyses were also repeated with the 1D 292 

simulated community data generated according to Dray and Legendre (2008), with results 293 

available in Appendix S4. 294 

 All analyses were conducted using R-project (v. 3.3.1, R Core Team 2015); complete R 295 

scripts are available in Data S1 and all functions are in R-packages weimea (abbreviation for 296 

weighted mean; source code of v. 0.60 in Data S2). 297 

Weighted-mean approach with standard test applied on simulated data 298 

For each of the four scenarios (1–4) I created ten levels of beta diversity, and for each 299 

combination of scenario × level of beta diversity I created 1000 datasets (4 scenarios × 10 levels 300 

of beta diversity × 1000 replications = 40 000 data sets). For each data set I calculated the CWM 301 
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of species attributes, related it to sample attributes using Pearson’s r correlation and tested its 302 

significance using the parametric t-test (for additional results for least-square regression and r2 303 

see Appendix S2: Fig. S1). For each level of community beta diversity in each scenario, I 304 

counted the proportion of correlations significant at α = 0.05 (note that this proportion is 305 

identical to the proportion of significant regressions). 306 

 From the three scenarios with no direct link between species and sample attributes 307 

(scenarios 2, 3 and 4), analysis of data generated by scenario 2 reveals the bias – the correlation 308 

coefficient deviates from zero more than in other cases (Fig. 2), and the test of significance 309 

shows an inflated Type I error rate (Fig. 3). This bias decreases with increasing beta diversity of 310 

the species composition matrix (Fig. 2 & 3, Scenario 2): for the most homogeneous data set 311 

(level of beta diversity = 1), the range of Pearson’s r correlation coefficients (expressed as 2.5% 312 

and 97.5% quantiles) is between -0.751 and 0.751, with 60% of correlations significant, while 313 

for the most heterogeneous data set with a high beta diversity (level of beta diversity = 10) the  314 

range of Pearson’s r values is between -0.381 and 0.354, with 15% of correlations significant 315 

(compared to 2.5 and 97.5% quantile range values of r observed in scenarios 3 and 4 being on 316 

average between -0.278 and 0.281, with the expected number of significant results being close to 317 

5%). Similarly inflated are the values of coefficient of determination (r2; Appendix S2: Fig. S1, 318 

Scenario 2) calculated by least-square linear regression. Applying the standard test on the 319 

simulated community data set of Dray and Legendre (2008) shows analogously biased results 320 

(Appendix S4: Table S1 and Fig. S2).  321 

 322 

Justification of the bias 323 
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Since the CWM of species attributes are calculated from species attributes assigned to individual 324 

species and from species composition of individual samples, they inherit some information from 325 

both sources. The numerical difference between the calculated CWM values of two community 326 

samples is necessarily constrained by a difference in these samples’ species composition: two 327 

samples with identical species composition (or identical relative species abundances) have 328 

identical calculated weighted-means, and two samples with slightly different species 329 

composition will have CWM values rather similar. Non-independence of CWM values has 330 

consequences for the analysis with sample attributes, if these are themselves in some way related 331 

to species composition. Two values of the CWM calculated from community samples sharing 332 

some species do not bring two independent degrees of freedom into analysis, because samples 333 

used for their calculation are not independent and the difference in their CWM is predictable (to 334 

some extent) from the difference in their species composition. This problem scales up to the data 335 

set level: in case of two compositional data sets with the same number of samples used in the 336 

weighted-mean approach, the data set that is compositionally more homogeneous has a lower 337 

number of effective degrees of freedom compared to the more heterogeneous one. 338 

 If CWM values are calculated from species composition data in which some samples 339 

share some species, and at the same time sample attributes are (in some way) related to species 340 

composition, analysis of the CWM with sample attributes resembles the analysis of two spatially 341 

autocorrelated variables. Samples of spatially autocorrelated variables located nearby in 342 

geographical space have more similar values than expected if the values are randomly selected 343 

and are therefore not statistically independent (Legendre and Legendre 2012). A new observation 344 

does not bring completely new information, because its value can be partly derived from the 345 
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value observed in a nearby site, and the effective number of samples (i.e. the effective number of 346 

degrees of freedom) is lower than the real number of samples. Since for standard parametric tests 347 

the number of degrees of freedom is important for choosing the correct statistical distribution for 348 

a given sample size, disparity between the real number and effective number of samples leads to 349 

the selection of narrower confidence intervals and hence a higher probability of obtaining 350 

significant results (Bivand 1980, Legendre 1993).  351 

 In the case of the weighted-mean approach, it is not the proximity in a geographical space, 352 

but the proximity in a compositional space, which reflects distances between samples expressed 353 

as their compositional dissimilarity. The bias is not present if one or both of the variables (CWM 354 

and sample attributes) are not autocorrelated in the compositional space. This happens if either 355 

sample attributes are not related to the species composition matrix, or in the improbable case of a 356 

species composition matrix having so high a beta diversity that individual samples do not share 357 

any species and calculated CWM values are therefore not related to species composition. In case 358 

of spatially autocorrelated variables this is analogous to the situation where only one or none of 359 

the variable are spatially autocorrelated, in which case the bias caused by autocorrelation does 360 

not appear.  361 

 The bias in the community-weighted mean approach is therefore limited to cases where 362 

species composition of samples is at least partly overlapping and sample attributes are linked to 363 

species composition (i.e. they are fixed). This is true for all internal sample attributes derived 364 

from the matrix of species composition, since they are linked to the matrix of species 365 

composition due to their numerical origin, and also for some of external sample attributes, if 366 
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these are considered to be fixed (for examples see section Types of species and sample 367 

attributes). 368 

 The dissimilarity in species composition of two samples directly related to the difference 369 

in their CWM values can be quantified by Whittaker’s index of association (Whittaker 1952, in 370 

Legendre and Legendre 2012 as D9), which can be numerically derived from differences between 371 

two calculated CWM values (see proof in Appendix S3). The single value of beta diversity for a 372 

given data set can be obtained using the beta diversity metric of Legendre and De Cáceres (2013), 373 

also calculated from the symmetric matrix of dissimilarities (measured by Whittaker’s index of 374 

association) among all pairs of samples. This beta diversity metric is not dependent on the size of 375 

the data set, and the underlying Whittaker’s index of association is directly related to the 376 

weighted-mean approach. 377 

 378 

Available solutions and their comparison 379 

To my knowledge two approaches have been introduced that attempt to solve the bias in the 380 

weighted-mean approach, namely the modified permutation test introduced (in the context of the 381 

CWM of species indicator values) by Zelený and Schaffers (2012), and the sequential 382 

permutation test using the fourth-corner statistic, introduced first in the electronic appendix of 383 

Peres-Neto et al. (2012, Appendix A) and later in a more elaborated version in Peres-Neto et al. 384 

(2016). Here I review the strengths and weaknesses of both approaches, test their performance 385 

using simulated community data and suggest guidelines for their use. Both a 2D simulation 386 

community data set and a 1D simulated data set according to Dray and Legendre (2008) have 387 

been used, with results of the former reported in the main paper and the latter in Appendix S4. 388 
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Note that hypotheses in category B are not prone to bias if the weighted-mean approach with 389 

standard test is used, and reviewed solutions are therefore relevant only for categories A and C.  390 

Modified permutation test: comparison with the results of a null model 391 

Comparison with results of a null model is analogous to testing the relationship between 392 

autocorrelated variables using toroidal shift, when one variable is permuted in a way that it 393 

preserves the original degree of spatial autocorrelation (Fortin and Dale 2005). Alternatively, one 394 

can generate random variables with the same degree of spatial autocorrelation as that of the 395 

original variable (Deblauwe et al. 2012). In the case of weighted-mean analysis with variables 396 

autocorrelated in the compositional space, such variables can be generated by calculating the 397 

CWM from randomized (or randomly generated) species attributes (CWMrand). CWMrand inherits 398 

the same level of compositional autocorrelation as those of the CWM values of the real species 399 

attributes (CWMobs), because they are calculated by the same algorithm from the same species 400 

composition matrix. One can generate the null distribution of a test statistic (like t-value for 401 

correlation or F-value for regression) by repeated calculation of CWMrand each time with newly 402 

randomized (or newly generated) species attribute values, and compare the observed statistic 403 

(relating CWMobs to sample attributes) to this null distribution. This is identical to the modified 404 

permutation test, introduced to test the relationship between the CWM of species attributes with 405 

sample attributes by Zelený and Schaffers (2012) in the context of relating the CWM of species 406 

indicator values (e.g. those tabulated in Ellenberg et al. 1992) with internal variables (e.g. species 407 

richness or ordination scores based on the same species composition data set). 408 

 I illustrated the behavior of the modified permutation test using the 2D simulated 409 

community data sets. I calculated the correlation of the CWM of species attributes with sample 410 
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attributes for all four scenarios in communities of increasing beta diversity, and tested the 411 

significance of this correlation using the modified permutation test. Results show that in contrast 412 

to the standard permutation test, the originally inflated Type I error rate in the case of scenario 2 413 

disappears (Fig. 4). At the same time, in the case of scenario 3 the test is slightly conservative for 414 

homogeneous data sets. The same conclusion applies if the modified permutation test is used on 415 

Dray and Legendre’s simulated community data set, in which the results for scenario 3 are even 416 

more conservative (almost no significant correlations, Appendix S4: Table S1 and Fig. S2a), 417 

since the community data set has rather low beta diversity (Appendix S4: Table S2). Additional 418 

detail power analysis on the simulated community data set with added random noise reveals that 419 

the modified permutation test loses power when both sample size and species number decrease 420 

(Appendix S4: Fig. S1a), and also with a decrease in the beta diversity of the data set (due to 421 

increased species tolerance, Appendix S4: Fig S1b).  422 

 The modified permutation test is suitable for testing hypotheses in category A, which 423 

assume that species attributes are random, while sample attributes are fixed (linked to species 424 

composition) and for which scenario 2 is relevant for testing the null hypothesis. It should, 425 

however, not be used for testing the hypotheses in the category B and C, since for both 426 

categories is relevant scenario 3 with fixed species attributes, which should not randomized 427 

(which is what modified permutation test is doing). 428 

Sequential permutation test with the fourth-corner statistic 429 

Dray and Legendre (2008) noted that the fourth-corner statistic r, introduced by Legendre et al. 430 

(1997), is “equal to the slope of the linear model, weighted by total species abundance, with the 431 

niche centroids as the response variable and the species trait as the explanatory variable.” This 432 
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analogy was further elaborated by Peres-Neto et al. (2012, Appendix A) and Peres-Neto et al. 433 

(2016), who presented an algorithm for how to use the fourth-corner statistic r in the weighted-434 

mean approach. In short, both R and Q matrices are first centered by the weighted mean of row 435 

sums of L (in the case of R) and column sums of L (in the case of Q), and then standardized. 436 

Then, the fourth-corner r statistic is the slope of weighted regression between the weighted mean 437 

of centered plus standardized Q and centered plus standardized R, weighted by row sums of L. 438 

The main advantage of the fourth-corner statistic is the option to use the sequential permutation 439 

test introduced by ter Braak et al. (2012), which combines results of tests based on permuting 440 

sample attributes (model 2 in Legendre et al. 1997) and species attributes (model 4). If the first 441 

test is significant, then the second test is done, and overall significance of the result is equal to 442 

the higher of these two tests’ P-values. When applied to the 2D simulated community data set, 443 

this test gives unbiased results for all scenarios (Appendix S2: Fig. S3), although being more 444 

conservative in the case of homogeneous data sets in scenario 4, which is relevant for questions 445 

in category C. Results calculated on the simulated data set of Dray and Legendre (2008) confirm 446 

this finding (Appendix S4: Table S1 and Fig. S2b). Power analysis (Appendix S4: Fig. S1c,d) 447 

reveals a performance very similar to that of the modified permutation test. The sequential test 448 

with the fourth-corner statistic is therefore suitable for testing hypotheses from all three 449 

categories, although in the case of category B it is not needed (standard permutation test gives 450 

unbiased results) and in the case of category C it is overly conservative for homogeneous 451 

community data sets (scenario 4 on Fig. 4). A disadvantage is that the sequential test with the 452 

fourth-corner statistic is restricted only to the weighted regression/correlation between centered 453 

and standardized species and sample attributes, weighted by row sums of a species composition 454 

matrix (L), and is therefore more like a special case of weighted-mean approach (which also 455 
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includes other methods such as non-weighted regression, correlation or ANOVA and does not 456 

require standardizing species and sample attributes).  457 

 458 

Discussion 459 

The main motivation of this study was to show that the results of the weighted-mean approach 460 

critically depend on the correct decision being made regarding the test used for statistical 461 

inference. To help in this decision process, I suggested that each hypothesis can be classified into 462 

one of the three categories, given the explicit (or implicit) assumptions about the role of species 463 

and sample attributes. For each category, I suggested an optimal strategy for testing the 464 

significance of the relationship between the CWM and sample attributes, summarized in Table 1. 465 

The choice of the appropriate category is not always straightforward. For example, trait studies 466 

testing whether an environment is filtering the species into a community via their functional 467 

traits routinely assume that such traits are functional, and in the weighted-mean approach are 468 

therefore considered as fixed (category B). However, this assumption may not always be 469 

justified; traits included in these analyses are often those readily available in databases and/or 470 

relatively easy to measure, but these do not necessarily need to be really the functional ones 471 

(Mlambo 2014). In case of compositionally relatively homogeneous data sets, even the traits 472 

with no ecological meaning may show a high and significant relationship to environmental 473 

variables if tested by standard tests. I believe that this calls for a revision of such commonly 474 

applied practice. 475 

 The analogy between the bias in the weighted-mean approach to the bias in the analysis 476 

of spatially autocorrelated variables suggests some other alternatives to reduce or remove the 477 
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bias. One is to stratify the data set to reduce redundancy in species composition among samples 478 

and increase the overall beta diversity of the compositional dataset, e.g. by removing one sample 479 

from pairs of samples with similar species composition. Although methods for stratification 480 

based on species composition are available (e.g. Lengyel et al. 2011), this potentially results in 481 

throwing out a large number of expensive data. Another option would be to apply some 482 

correction for effective degrees of freedom in analysis, analogous to a method estimating the 483 

effective number of samples in the case of autocorrelated variables (Dutilleul 1993), or to apply 484 

methods capable of dealing with autocorrelated residuals (analogy of geographically weighted 485 

regressions). 486 

 The analogy of the weighted-mean approach to the analysis of spatially autocorrelated 487 

variables also provides a solution to the question of how to deal with missing values for some of 488 

the species. Species with missing attribute values are not used for weighted-mean calculation, so 489 

they do not contribute to the compositional autocorrelation of CWM values. The point of the 490 

modified permutation test is to generate random variables with the same compositionally 491 

autocorrelated structure as the weighted mean calculated from the original species attributes. For 492 

this, the matrix of species composition, which inherits the compositional autocorrelation into 493 

weighted-mean values, should also remain the same for calculation of weighted means from 494 

randomly generated species attribute values. This would not be the case if the species with 495 

missing attribute values remains in both the composition and species attributes matrices, because 496 

permuting missing values would cause the weighted mean of permuted species attributes to be 497 

calculated every time with different species composition matrix (the species which in a given 498 

permutation run would be assigned missing values will not be included in this weighted-mean 499 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 30, 2016. ; https://doi.org/10.1101/046946doi: bioRxiv preprint 

https://doi.org/10.1101/046946
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 

 

calculation). The solution is to remove species with missing species attributes from both the 500 

species attributes and the species composition matrix, and in the case of the modified 501 

permutation test to permute only existing species attribute values. In the case where more species 502 

attributes are analyzed (e.g. three different functional traits) and the species has missing species 503 

attribute values for some attributes and not for others, the species should be removed from the 504 

species composition matrix only for the purpose of calculating and testing the weighted mean of 505 

that species’ attributes for which the species value is missing, and not for the others. Although 506 

not explicitly mentioned in the studies describing the sequential test with the fourth-corner r 507 

(Peres-Neto et al. 2012, 2016), I suggest that the same should also be done in the case of this 508 

approach. 509 

 The power test using the simulated data set showed that the power of both the modified 510 

permutation test and the sequential permutation test with the fourth-corner statistic decreases 511 

with a decrease in the number of species and/or number of samples. This makes these tests less 512 

suitable for smaller and relatively homogeneous data sets with few species (e.g. less than 40), 513 

since the probability of Type II error (i.e. not rejecting the null hypothesis, which is false) 514 

strongly increases. Additionally, in the case of a relatively homogeneous compositional data set 515 

the modified permutation test is overly conservative for scenario 3, while the sequential 516 

permutation test with the fourth-corner statistic is conservative for scenario 4. Both tests are 517 

therefore less suitable for testing hypotheses in category C in the case of a relatively 518 

homogeneous compositional data set.  519 

 In this study, I explicitly ignored intraspecific variation in species attributes, focusing 520 

only on the use of data set-wide mean species attribute values. Indeed, intraspecific variation 521 
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may be important; e.g. in the context of functional traits, the intraspecific variation gains 522 

increasing attention (Albert et al. 2012), and a relevant question is whether the inclusion of 523 

intraspecific variation (e.g. by including trait values that are sample-specific, not data set-wide) 524 

influences the potential bias reported in this study or not. This question requires further 525 

examination, which goes beyond this study, but in my opinion including another source of 526 

variation (species-level variation in species attributes) does not remove the problem of the bias 527 

itself, but makes the estimation of the bias and its correction more complex. 528 

 Finally, relevant consideration is whether the weighted-mean approach is actually the best 529 

analytical solution for the question being explored. In some cases, the question is explicitly 530 

focused on relating community-level values of species attributes, like mean Ellenberg indicator 531 

values (serving as an estimate of ecological conditions for individual sites) or the CWM of traits 532 

(as one of the functional-diversity metrics and as a community-level trait value), and the use of 533 

the weighted-mean approach is fully justified. Yet, in other cases, when the question is focused 534 

on relating individual species-attributes to sample attributes, the weighted-mean approach may 535 

not be the best analytical choice. The use of alternative options, such as the fourth-corner or RLQ 536 

analysis, for which the problem of inflated Type I error rate and choice of suitable permutation 537 

test have already been solved, can be a better solution. 538 

 539 

Conclusions 540 

In this study, I attempted to draw attention to the problem of the weighted-mean approach, which 541 

I believe is largely overlooked and generally not acknowledged, although it represents a source 542 

of potentially serious misinterpretations. Since in certain fields the weighted-mean approach is 543 
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gaining increasing momentum (e.g. in functional ecology with the CWM of species functional 544 

traits as one of the functional-diversity indices), I suggest that the time is ripe to critically assess 545 

in which situations and for which types of hypotheses the commonly used standard parametric or 546 

permutation tests are inappropriate, since they yield results that may be overly optimistic. I offer 547 

simple guidelines on how to decide whether, in a given context of a study, the standard 548 

methodology gives correct or biased results, and I review available solutions for those cases 549 

where it does not. 550 

 551 

Acknowledgements 552 

This study was supported by the Czech Science Foundation (P505/12/1022). My thanks go to 553 

Bill Shipley and Cajo ter Braak for critical comments as reviewers of the previous versions of 554 

this manuscript, which motivated me to heavily rework it, and also to Pedro Peres-Neto and 555 

Stephen Dray for discussion of differences between the modified permutation test solution and 556 

the fourth-corner one during the ISEC 2014 conference in Montpellier. 557 

 558 

Literature cited 559 

Albert, C. H., F. de Bello, S. Lavorel, and W. Thuiller. 2012. On the importance of intraspecific 560 

variability for the quantification of functional diversity. Oikos 121:116–126. 561 

Axmanová, I., et al. 2012. Estimation of herbaceous biomass from species composition and 562 

cover. Applied Vegetation Science 15:580–589. 563 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 30, 2016. ; https://doi.org/10.1101/046946doi: bioRxiv preprint 

https://doi.org/10.1101/046946
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 

 

Birks, H. J. B., J.M. Line, S. Juggins, A. C. Stevenson, and C. J. F. ter Braak. 1990. Diatoms and 564 

pH reconstruction. Philosophical Transactions of the Royal Society B Biological Sciences 565 

327:263–278. 566 

Bivand, R. 1980. A Monte Carlo study of correlation coefficient estimation with spatially 567 

autocorrelated observations. Quaestiones Geographicae 6:5–10. 568 

Brown, A. M., D. I. Warton, N. R. Andrew, M. Binns, G. Cassis, and G. Helois. 2014. The 569 

fourth-corner solution – using predictive models to understand how species traits interact with 570 

the environment. Methods in Ecology and Evolution 5:344–352. 571 

Carboni, M., D. Zelený, and A. Acosta. 2016. Measuring ecological specialization along a 572 

natural stress gradient using a set of complementary niche breadth indices. Journal of Vegetation 573 

Science, DOI: 10.1111/jvs.12413. 574 

Clavero, M., and L. Brotons. 2010. Functional homogenization of bird communities along 575 

habitat gradients: accounting for niche multidimensionality. Global Ecology and Biogeography 576 

19:684–696. 577 

Deblauwe, V., P. Kennel, and P. Couteron. 2012. Testing pairwise association between spatially 578 

autocorrelated variables: a new approach using surrogate lattice data. PLOS One 7:e48766. 579 

Díaz, S., M. Cabido, and F. Casanoves. 1998. Plant functional traits and environmental filters at 580 

a regional scale. Journal of Vegetation Science 9:113–122. 581 

Díaz, S., S. Lavorel, F. de Bello, F. Quétler, K. Grigulis, and T. M. Robson. 2007. Incorporating 582 

plant functional diversity effects in ecosystem service assessments. Proceedings of the National 583 

Academy of Sciences USA 104:20684–20689. 584 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 30, 2016. ; https://doi.org/10.1101/046946doi: bioRxiv preprint 

https://doi.org/10.1101/046946
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 

 

Dolédec, S., D. Chessel, C. J. F. ter Braak, and S. Champely. 1996. Matching species traits to 585 

environmental variables: a new three-table ordination method. Environmental and Ecological 586 

Statistics 3:143–166. 587 

Dray, S., and P. Legendre. 2008. Testing the species traits-environment relationships: the fourth-588 

corner problem revisited. Ecology 89 3400–3412. 589 

Dutilleul, P. 1993. Modifying the t test for assessing the correlation between two spatial 590 

processes. Biometrics 49:305–314. 591 

Ellenberg, H., H. E. Weber, R. Düll, V. Wirth, W. Werner, and D. Paulissen. 1992. Zeigerwerte 592 

von Pflanzen in Mitteleuropa. Second Edition. Scripta Geobotanica 18:1–248. 593 

Fortin, M.-J., and M. R. T. Dale. 2005. Spatial analysis. A guide for ecologists. Cambridge 594 

University Press, New York, USA. 595 

Fridley, J. D., D. B. Vandermast, D. M. Kuppinger, M. Manthey, R. K. Peet. 2007. Co-596 

occurrence based assessment of habitat generalists and specialists: a new approach for the 597 

measurement of niche width. Journal of Ecology 95:707–722. 598 

Garnier, E., et al. 2004. Plant functional markers capture ecosystem properties during secondary 599 

succession. Ecology 85:2630–2637. 600 

Hawkins, B. A., and J. A. F. Diniz-Filho. 2006. Beyond Rapoport’s rule: evaluating range size 601 

patterns of New World birds in a two-dimensional framework. Global Ecology and 602 

Biogeography 15:461–469. 603 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 30, 2016. ; https://doi.org/10.1101/046946doi: bioRxiv preprint 

https://doi.org/10.1101/046946
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 

 

Jamil, T., W. A. Ozinga, M. Kleyer, and C. J. F. ter Braak. 2013. Selecting traits that explain 604 

species-environment relationships: a generalized linear mixed model approach. Journal of 605 

Vegetation Science 24:988–1000. 606 

Juggins, S. 2013. Quantitative reconstructions in palaeolimnology: new paradigm or sick science? 607 

Quaternary Science Reviews 64:20–32. 608 

Kelly, M. G., and B. A. Whitton. 1995. Biological monitoring of eutrophication in rivers. 609 

Hydrobiologia 384:55–67. 610 

Kleyer, M., S. Dray, F. de Bello, J. Lepš, R. J. Pakeman, B. Strauss, W. Thuiller, and S. Lavorel. 611 

2012. Assessing species and community functional responses to environmental gradients: which 612 

multivariate methods? Journal of Vegetation Science 23:805–821. 613 

Legendre, P. 1993. Spatial autocorrelation: trouble or new paradigm? Ecology 74:1659–1673. 614 

Legendre, P., R. Galzin, and M. L. Harmelin-Vivien. 1997. Relating behavior to habitat: 615 

solutions to the fourth-corner problem. Ecology 78:547–562. 616 

Legendre, P, and L. Legendre. 2012. Numerical ecology, Third English Edition. Elsevier Science, 617 

Amsterdam, The Netherlands. 618 

Legendre, P., and M. De Cáceres. 2013. Beta diversity as the variance of community data: 619 

dissimilarity coefficients and partitioning. Ecology Letters 16:951–963. 620 

Lengyel, A., M. Chytrý, and L. Tichý. 2001. Heterogeneity-constrained random resampling of 621 

phytosociological databases. Journal of Vegetation Science 22:175–183. 622 

Mlambo, M. C. 2014. Not all traits are ‘functional’: insights from taxonomy and biodiversity-623 

ecosystem functioning research. Biodiversity and Conservation 23:781–790. 624 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 30, 2016. ; https://doi.org/10.1101/046946doi: bioRxiv preprint 

https://doi.org/10.1101/046946
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 

 

Peres-Neto, P. R., M. A. Leibold, and S. Dray. 2012. Assessing the effects of spatial contingency 625 

and environmental filtering on metacommunity phylogenetics. Ecology 93:S14–S30. 626 

Peres-Neto, P. R., S. Dray, and C. J. F. ter Braak. 2016. Linking trait variation to the 627 

environment: critical issues with community-weighted mean correlation resolved by the fourth-628 

corner approach. Ecography, 10.1111/ecog.02302 629 

Schaffers, A. P., and K. V. Sýkora. 2000. Reliability of Ellenberg indicator values for moisture, 630 

nitrogen and soil reaction: comparison with field measurements. Journal of Vegetation Science 631 

11:225–244. 632 

Shipley, B. 2010. From plant traits to vegetation structure. Chance and selection in the assembly 633 

of ecological communities. Cambridge University Press, Cambridge, UK. 634 

Sládeček, V. 1973. System of water quality from the biological point of view. Archiv für 635 

Hydrobiologie 7:1–218. 636 

Šmilauer, P, and J. Lepš. 2014. Multivariate analysis of ecological data using CANOCO 5, 637 

Second Edition. Cambridge University Press, Cambridge, UK. 638 

ter Braak, C. J. F., and L. G. Barendregt. 1986. Weighted averaging of species indicator values: 639 

its efficiency in environmental calibration. Mathematical Biosciences 78:57–72. 640 

ter Braak, C. J. F., and C. W. N. Looman. 1986. Weighted averaging, logistic regression and the 641 

Gaussian response model. Vegetatio 65:3–11. 642 

ter Braak, C. J. F., A. Cormont, and S. Dray. 2012. Improved testing of species traits-643 

environment relationships in the fourth-corner problem. Ecology 93:1525–1526. 644 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 30, 2016. ; https://doi.org/10.1101/046946doi: bioRxiv preprint 

https://doi.org/10.1101/046946
http://creativecommons.org/licenses/by-nc-nd/4.0/


31 

 

Vile, D., B. Shipley, and E. Garnier. 2006. Ecosystem productivity can be predicted from 645 

potential relative growth rate and species abundance. Ecology Letters 9:1061–1067. 646 

Whittaker, R.H. 1952. A study of summer foliage insect communities in the Great Smoky 647 

Mountains. Ecological Monographs 22:1�44. 648 

Zelený, D., and A. P. Schaffers. 2012. Too good to be true: pitfalls of using mean Ellenberg 649 

indicator values in vegetation analyses. Journal of Vegetation Science 23:419–431. 650 

 651 

Supplemental materials 652 

Appendix S1. Description of an algorithm generating simulated community data along two 653 

environmental gradients (2D simulated community dataset). 654 

Appendix S2. Weighted-mean approach applied to 2D simulated community data sets: 655 

additional results. 656 

Appendix S3. The dissimilarity index between two CWM values and the beta diversity measure. 657 

Appendix S4. Evaluation of permutation tests using 1D simulated data from Dray and Legendre 658 

(2008). 659 

Data S1. R-code for all analyses. 660 

Data S2. Source code for the R library weimea, version v. 0.62 (actual version can be found on 661 

https://github.com/zdealveindy/weimea/).  662 

  663 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 30, 2016. ; https://doi.org/10.1101/046946doi: bioRxiv preprint 

https://doi.org/10.1101/046946
http://creativecommons.org/licenses/by-nc-nd/4.0/


32 

 

Table 1 664 

Overview of the characteristics for the three categories of hypotheses tested by the weighted-665 

mean approach. For each category, the corresponding assumption about a link between sample 666 

attributes (R) or species attributes (Q) and species composition (L) is provided, as well as the 667 

null vs alternative hypothesis, a scenario within the simulated data relevant in the context of a 668 

given category (see Fig. 1), and the recommended test (standard: standard parametric or 669 

permutation test; modified: modified permutation test; sequential with 4c: the sequential 670 

permutation test with the fourth-corner statistic). 671 

Category of hypotheses A B C 

Assumption 
sample attributes 
fixed 

species attributes 
fixed 

no assumptions 

Null hypothesis Q <-//-> L R <-//-> L 
R <-//-> Q,  
i.e. R <-//-> L and/or 
Q <-//-> L 

Alternative hypothesis Q <--> L R <--> L 
R <--> Q,  
i.e. R <--> L and 
Q <--> L 

Relevant scenario(s) Scenario 2 Scenario 3 Scenarios 2, 3 and 4 

Recommended 
test 

standard no (biased result) yes no (biased result) 

modified yes no* no* 

sequential 
with 4c 

yes yes (but not needed) yes** 

* species attributes in Scenario 3 are fixed and should not be permuted 672 

** but too conservative if the beta diversity of the species composition matrix is low 673 

<-//-> - no link between the two matrices, <--> - link between the two matrices. 674 
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Figure captions 675 

Figure 1. Conceptual differences between scenarios 1–4 in the weighted-mean approach. In 676 

scenario 1, both sample attributes (R) and species attributes (Q) are fixed, linked to matrix of 677 

species composition (L), while in the other three scenarios one or both attributes are considered 678 

random, without the link to species composition. In the simulated data example, the link of 679 

attributes to species composition is cancelled by permuting the values of species attributes 680 

(scenario 2), sample attributes (scenario 3) or both (scenario 4). In the schema, the matrix of 681 

species attributes is transposed (Q’) to match the dimension of the matrix of species composition 682 

(L). 683 

Figure 2. Pearson’s r correlation coefficients among CWM and sample attributes for each of the 684 

four scenarios and ten levels of beta diversity (1000 correlations for each combination have been 685 

conducted). Grey horizontal bars are outliers. 686 

Figure 3. Proportion of significant correlations (P < 0.05) between CWM and sample attributes, 687 

tested by standard parametric t-test. For each of the four scenarios and ten levels of beta diversity, 688 

1000 tests have been conducted. 689 

Figure 4. Proportion of significant correlations (P < 0.05) between CWM and sample attributes, 690 

tested by modified permutation test (white bars) and sequential test with fourth-corner r statistic 691 

(grey bars). For each of the four scenarios and ten levels of beta diversity, 1000 tests have been 692 

conducted for each method. 693 
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Figure 3 701 
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