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Abstract 17 

A common way to analyse relationship between matrix of species attributes (like functional traits 18 

of indicator values) and sample attributes (e.g. environmental variables) via the matrix of species 19 

composition is by calculating community-weighted mean of species attributes (CWM) and 20 

relating it to sample attributes by correlation, regression, ANOVA or other method. This 21 

weighted-mean approach is used in number of ecological fields (e.g. functional and vegetation 22 

ecology, biogeography, hydrobiology or paleolimnology), and represents an alternative to other 23 

methods relating species and sample attributes via species composition matrix (like the fourth-24 

corner problem and RLQ analysis). 25 

 Here, I point out two important problems of weighted-mean approach: 1) in certain cases, 26 

which I discuss in detail, the method yields highly biased results in terms of both effect size and 27 

significance of the relationship between CWM and sample attributes, and 2) this bias is 28 

contingent upon beta diversity of species composition matrix. CWM values calculated from 29 

samples of communities sharing some species are not independent from each other and this lack 30 

of independence influences the number of effective degrees of freedom. This is usually lower 31 

than actual number of samples entering the analysis, and the difference further increases with 32 

decreasing compositional heterogeneity of the dataset. Discrepancy between number of effective 33 

degrees of freedom and number of samples in analysis turns into biased effect sizes and inflated 34 

Type I error rate in case that significance of the relationship is tested by standard tests, a problem 35 

which is analogous to analysis of two spatially autocorrelated variables.  36 

 Consequences of the bias is that reported results of studies using rather homogeneous 37 

(although not necessarily small) compositional datasets may be overly optimistic, and results of 38 
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studies based on datasets differing by their compositional heterogeneity are not directly 39 

comparable. I describe the reason for this bias and suggest guidelines how to decide in which 40 

situations the bias is actually a problem for interpretation of results. I also introduce analytical 41 

solution accounting for the bias, test its validity on simulated data and compare it with an 42 

alternative approach based on the fourth-corner approach.  43 

 44 

Introduction 45 

Weighted-mean approach is a method to analyse link between species attributes and sample 46 

attributes by calculating community-weighted means of species attributes (CWM), which can be 47 

directly related to sample attributes by correlation, regression, ANOVA or other methods (Fig. 1). 48 

Species attributes are species properties (traits), behaviour (species ecological optima) or 49 

phylogenetic age, while sample attributes are characteristics of community samples measured in 50 

the field (environmental variables) or derived from matrix of species composition (species 51 

richness or positions of samples in ordination diagrams). 52 

Weighted-mean approach is used in wide range of ecological fields. In functional ecology, 53 

testing the effect of environmental variables on changes in CWM is one of the approaches 54 

demonstrating the effect of environmental filtering on trait-mediated community assembly (Diaz 55 

et al. 1998; Shipley 2010; Laliberté et al. 2012). Similarly, CWM are used to predict changes in 56 

ecosystem properties, such as biomass production or nutrient cycling (Garnier et al. 2004; Vile et 57 

al. 2006), or ecosystem services like fodder production or maintenance of soil fertility (Diaz et al. 58 

2007). In biogeography, grid-based means of species properties (like animal body size, range 59 

size or evolutionary age) are linked to macroclimate or diversity (Blackburn & Hawkins 2004, 60 
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Hawkins & Diniz-Filho 2006, Hawkins et al. 2014). Vegetation ecologists use species indicator 61 

values (e.g. those of Ellenberg et al. 1992 or Landolt 1977) to estimate habitat conditions from 62 

calculated mean species indicator values of vegetation samples and relate them to soil, light or 63 

climatic variables (Schaffers & Sýkora 2000, Wamelink et al. 2002, 2005). In hydrobiology, 64 

reliability of saprobic index of Sládeček (1973) based on weighted mean of diatom indicator 65 

values, or similar indices (e.g. trophic diatom index, Kelly & Whitton 1995) is evaluated by 66 

relating them to measured water quality parameters. Similarly, in paleoecology the method used 67 

to reconstruct acidification of lakes from fossil diatom assemblages preserved in lake sediments 68 

is based on weighted means of diatom optima along pH gradient (ter Braak & Barendregt 1986) 69 

and as one of the transfer functions, (e.g. Birks et al. 1990) is considered to be a tool which have 70 

“revolutionised paleolimnology” (Juggins 2013). Other, more specific examples include relating 71 

community specialization index (mean of species specialization values weighted by their 72 

dominance in community) to environmental variables (Clavero & Brotons 2010, Fajmonová et al. 73 

2013), or attempts to verify whether plant biomass can be estimated from tabulated plant heights 74 

and species composition as mean of species heights weighted by their cover in a plot (Axmanová 75 

et al. 2012).  76 

 Important thing to note is that although weighted-mean approach is technically relating 77 

two sets of variables (CWM and sample attributes), three matrices are in fact involved in the 78 

computation background (notation here follows RLQ analysis of Dolédec et al. 1996): matrix of 79 

sample attributes R with m sample attributes of n samples (n × m), matrix of species composition 80 

L with abundances (or presences-absences) of p species in n samples (n × p) and matrix of 81 

species attributes Q with s species attributes for p species (s × p). Weighted-mean approach is 82 
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just one of possible options how to tackle the problem of relating species attributes (Q) with 83 

sample attributes (R) via matrix of species composition (L): it combines Q with L into matrix of 84 

weighted-means M and relates it to R (Fig. 1). Alternative solution is to combine matrix of 85 

sample attributes R with species composition L by calculating weighted-mean of sample 86 

attributes (optima of individual species along given sample attribute or species centroids) and 87 

relate these values to species attributes Q (e.g. ter Braak & Looman 1986). Third option is to use 88 

methods suitable for simultaneously handling all three matrices (R, L and Q), such as the fourth-89 

corner approach (Legendre et al. 1997), related ordination method called RLQ analysis 90 

(Dolédec et al. 1996) and other alternatives (Jamil et al. 2013, Brown et al. 2014). 91 

 In weighted-mean approach, relationship between CWM and sample attributes is in most 92 

cases tested by standard parametric or permutation test. However, not all types of ecological 93 

questions, which are usually solved by weighted-mean approach, should actually be tested by 94 

standard tests. In certain situations and types of null hypotheses, weighted-mean approach 95 

combined with standard tests generates biased results, which are more optimistic than would be 96 

actually warranted by analysed data. This bias includes unreliable estimates of effect size (e.g. 97 

correlation coefficients in case of correlation or r2 in case of linear regression) and inflated Type 98 

I error rate, leading to more frequent rejection of the null hypothesis than would be expected. 99 

The key point before applying the weighted-mean approach is to explicitly decide, based on 100 

critical inspection of the context of the study question and tested null hypothesis, what is actually 101 

the relationship between species attributes or sample attributes and species composition, and 102 

which of these relationships is actually fixed and which is random (more on the terms “fixed” 103 

and “random” below). Inspiration for this issue can be seen in application of the fourth-corner 104 
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approach (Legendre et al. 1997), for which Dray & Legendre (2008) demonstrated the problem 105 

of deciding the right permutation test (from five permutation models) to test the actual question 106 

in hand, with a risk of inflated Type I error rate in situation of wrong choice. For weighted-mean 107 

approach, this issue was shown by Zelený & Schaffers (2012) in a specific context of relating 108 

mean Ellenberg indicator values (species attributes) to sample attributes derived from species 109 

composition matrix (like ordination scores or species richness), and also by Peres-Neto et al. 110 

(2012) in the context of metacommunity phylogenetics. Both studies proposed numerical 111 

solutions: Zelený & Schaffers (2012) introduced modified permutation test, based on permuting 112 

species instead of sample attributes, and Peres-Neto et al. (2012) suggested to use sequential test 113 

(ter Braak et al. 2012) using the fourth-corner statistic (Legendre et al. 1997). Additionally, 114 

Šmilauer & Lepš (2014) touched on this issue in the context of CWM-RDA method (Kleyer et al. 115 

2012). 116 

 In this study, first I review categories of questions and null hypotheses which are 117 

commonly analysed by weighted-mean approach. Using simulated data, I show for which 118 

category there is a risk of biased results if tested by standard tests, and describe in detail what 119 

exactly causes this bias. Namely, I argue that the bias is caused by mismatch between number of 120 

samples in weighted-mean analysis and actual number of effective degrees of freedom, since 121 

community samples sharing some of the species with other samples do not count for the full 122 

degree of freedom in this analysis. I will also demonstrate that the amount of bias depends on the 123 

compositional heterogeneity (beta diversity) of the species composition matrix in a way that with 124 

increasing heterogeneity the bias decreases, which makes comparison of results between datasets 125 

of different compositional heterogeneity difficult. Note that for numerical simplicity, I ignore 126 
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intraspecific variation in species attributes. Finally, I will review methods available for solving 127 

the problem of inflated Type I error rate in weighted mean approach (namely modified 128 

permutation test of Zelený & Schaffers 2012 and solution based on combining fourth-corner 129 

statistic and sequential permutation test in weighted regression as introduced by Peres-Neto et al. 130 

2012) and introduce novel solution, here called two-step permutation test. Although the 131 

examples, ecological interpretations and reasoning used here are focused on relationship of 132 

species functional traits or species indicator values with sample attributes analysed by weighted-133 

mean approach, the general context is valid also for other types of species and sample attributes 134 

linked by weighted-mean approach. 135 

 136 

Types of species and sample attributes 137 

When thinking about possible alternative types of questions which are commonly being analysed 138 

using weighted-mean approach, it proves as useful to distinguish whether species and sample 139 

attributes are fixed or random. Terminology behind distinction into fixed and random is diverse 140 

(Gelman 2005); here I don’t use this terms in the sense of ANOVA (fixed vs random terms), 141 

neither in the sense inferring their importance (fixed factors are important while random are 142 

nuisance factors). As fixed attributes I consider those which are specific for given dataset and 143 

related to given species or samples, and this specificity is acknowledged by the 144 

question/hypothesis being tested in a way that this link is deemed as given, and not further 145 

questioned or tested. Random attributes represent a subset of some larger pool of values, and 146 

their link to species composition is not acknowledged by the question being tested. In the narrow 147 

sense of permutation tests, fixed attributes should not be permuted among each other, while 148 
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random attributes can. For interpretation, effect of fixed attributes is limited only for given set of 149 

attribute values and in the context of community datasets included in the analysis and is not 150 

likely to be generalized beyond, while in case of random attributes interpretation is focused on 151 

the general effect of given attribute, not only the subset of attribute values used in the study. 152 

Species traits measured on individuals from plots of given community datasets can be considered 153 

as fixed, while species traits taken from large trait databases and measured often in completely 154 

different context should more likely be considered as random. Similarly, species richness or 155 

sample ordination scores derived from community matrix are more likely fixed sample attribute, 156 

while environmental variables measured in the field or derived from GIS layers may be 157 

considered as random. Indeed, this distinction is often dependent on author’s view of the 158 

problem and on the theoretical context of the study, and the same variables can be seen as fixed 159 

or random in different context.  160 

 In the original description of the fourth-corner problem (Legendre et al. 1997), focused 161 

on linking fish behavioral and biological characteristics to environmental variables, both species 162 

and sample attributes have been considered as fixed, and random was matrix of species 163 

composition. Alternative permutation models were then used to test alternative hypotheses about 164 

the mechanisms assembling the community (like environmental control over individual species 165 

or species assemblages, lottery or random species attributes). In weighted-mean approach, 166 

decision about fixed or random nature of attributes directly influences the decision for 167 

meaningful way to test the relationship, and is therefore crucial for selecting correct statistical 168 

test. Important is to note that all hypotheses tested by weighted-mean approach make (implicit or 169 

explicit) assumption that either species or sample attributes are fixed, and their link to species 170 
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composition is a priori acknowledged and therefore not questioned (and not tested). In some 171 

cases, whether the species or sample attributes are better considered as fixed or random depends 172 

also on the need to generalize the results of the study. If the results should be used e.g. for local 173 

application (e.g. whether CWM of species height in given agricultural system can predict well 174 

the harvested biomass), species attributes can be seen as fixed, since the results will be used 175 

solely in the context of the studied system – if the same values are measured again for the same 176 

community, the results should be similar, but not applicable generally to other communities. If 177 

the aim is to generalize the results (e.g. to assess whether the species height itself, as tabulated in 178 

the floras, can be used as a tool to predict biomass yield), it is more reasonable to treat the 179 

species attributes as random and modify the analysis accordingly, so as even local study can 180 

contribute to more general description of such pattern. 181 

 Another useful distinction of attribute types is whether the sample or species attributes 182 

are internal or external. The main difference is that internal attributes are numerically derived 183 

from matrix of species composition, while external attributes are typically measured or estimated 184 

variables, not directly derived from species composition matrix. Internal species attributes are 185 

species optima calculated as weighted-means of sample attributes or as species scores on 186 

ordination axes, and similarly internal sample attributes are e.g. sample scores on ordination axes, 187 

species richness of individual samples or assignment of samples into groups based on 188 

compositional similarity (e.g. by numerical classification). External species attributes, in contrary, 189 

are measured traits or tabulated species indicator values, external sample attributes are measured 190 

or estimated environmental variables or experimental treatments. While the link of external 191 

species or sample attributes to species composition may be fixed or random and depends on the 192 
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context, internal attributes should always be considered as fixed, since they refer only to the 193 

context of the dataset from which they have been derived. 194 

 195 

Types of hypotheses tested by weighted-mean approach 196 

Considering the distinction between fixed and random (sample or species) attributes, questions 197 

and hypotheses commonly tested by weighted-mean approach fall into one of the three 198 

categories (see Table 1 for summary). Category 1 assumes that while sample attributes are fixed, 199 

species attributes are random; category 2 is opposite to the previous, with sample attributes 200 

considered random and species attributes fixed; and, finally, category 3 assumes that both 201 

species and sample attributes are random. Below, I review in detail individual categories with 202 

examples of ecological questions/hypotheses for each of them. 203 

Category 1 – species attributes are random, sample attributes are fixed 204 

Hypotheses in this category explicitly acknowledge the link between sample attributes and 205 

species composition, or the link is implicit from the context or numerical background of the 206 

study, and they focus on testing the link of species attributes to species composition. The null 207 

hypothesis which is tested states that species attributes are not linked to species composition, 208 

while alternative hypothesis states that they are. Questions focused on relating CWM to internal 209 

sample attributes derived computationally from matrix of species composition fall into this 210 

category (e.g. relating mean Ellenberg indicator values to sample scores on unconstrained 211 

ordination, often used to interpret ecological meaning of ordination axes; Zelený & Schaffers 212 

2012). Also studies with external sample attributes considered to be fixed, like experimental 213 
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treatments, fall into this category in case that their effect on species composition is 214 

acknowledged, and the question is about how does species attributes response to it. Additional 215 

level of complexity is added in studies dealing with grid data with both CWM and internal 216 

sample attributes (e.g. species richness derived from community data) spatially autocorrelated 217 

due to spatial coherence of species distribution (B. Hawkins, pers. comm.). Zelený & Schaffers 218 

(2012) showed that standard parametric and permutation tests has inflated Type I error rate for 219 

this category, and as an alternative introduced modified permutation test, permuting species 220 

attributes instead of sample attributes as further discussed in this study.  221 

Category 2 – species attributes are fixed, sample attributes are random 222 

Hypotheses in the second category assume that the species attributes are linked to species 223 

composition, and the null hypothesis states that sample attributes are not linked to species 224 

composition, while alternative hypothesis states that they are. Example are trait-based studies 225 

asking whether species traits can explain effect of environmental filtering on species abundances 226 

in community; these studies operate with an assumption that species traits (as species attributes) 227 

are functional, i.e. they influences the abundances of species in community, and the question 228 

being evaluated is whether the sample attributes (environmental factor) acts as an environmental 229 

filter on species abundances. Also descriptive studies without ambitions to be more generalized 230 

fall into this category – e.g. relationship between CWM of species indicator values (e.g. mean 231 

Ellenberg indicator values) and measured environmental variables, if the interpretation is 232 

restricted only for the community dataset included in the study. Finally, studies using internal 233 

species attributes (derived from species composition, e.g. as weighted-mean of sample attributes 234 

or as scores on ordination axes) also belong to this category. 235 
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Category 3 – both species and sample attributes are random 236 

This category of hypotheses includes mostly observational studies without prior knowledge or 237 

expectations about link between any of matrices. The null hypothesis states that there is no link 238 

between species and sample attributes via the matrix of species composition because either 239 

species attributes or sample attributes (or both) are not linked to species composition. To reject 240 

this null hypothesis means to prove that both species and sample attributes are actually linked to 241 

species composition. Empirical studies describing general relationship between sample attributes 242 

and species attributes without explicitly or implicitly acknowledging some underlying 243 

assumptions or mechanisms belong to this category. Examples are studies relating CWM of 244 

functional traits to environmental variables without clear assumption that traits are functional, 245 

allowing to question whether particular trait are actually linked to species composition or not. In 246 

case of studies with species indicator values, these include relating mean indicator values to 247 

environmental variables with aim to generalize the result also out of the studied dataset (e.g. 248 

answering the question whether Ellenberg indicator values for soil reaction per se are good 249 

predictors of measured soil pH, i.e. not only in the context of given community dataset).  250 

 251 

Illustration of the bias using simulated community data 252 

In the next section, I will use simulated community data to illustrate performance of standard 253 

parametric test, if this is used to test hypotheses from each category defined above. The benefit 254 

of simulated data is the possibility to keep certain parameters fixed and to manipulate only those 255 

parameters whose effect is studied – in this case fixed are numbers of samples in the dataset, and 256 
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manipulated are links between species or sample attributes and species composition, and also 257 

compositional heterogeneity of community data.  258 

 Each artificial community dataset includes the set of three matrices (sample attributes R, 259 

species composition L, and species attributes Q), with the link between species or sample 260 

attributes and species composition (or both) broken by permutation of attributes. This creates 261 

four scenarios (Fig. 2, identical with scenarios 1-4 of Dray & Legendre 2008): scenario 1 - both 262 

sample and species attributes are linked to species composition, scenario 2 - sample attributes 263 

are linked to species composition, but species attributes are not, scenario 3 - species attributes 264 

are linked to species composition, but sample attributes are not, and scenario 4 - none of species 265 

or sample attributes are linked to species composition. For hypotheses in category 1 defined 266 

above, the scenario 2 represents the null hypothesis, for category 2 scenario 3 is the null 267 

hypothesis, and for category 3 the scenarios 2, 3 and 4 represent alternative states of null 268 

hypothesis (Table 1). Scenario 1 represents the power test for all three categories (i.e. it measures 269 

probability of getting significant results if the alternative hypothesis is true). Additionally, I also 270 

examined how observed bias depends on compositional heterogeneity (beta diversity) of 271 

community matrix, which influences the number of effective degrees of freedom in analysis (as 272 

explained in detail further in the section Justification of the bias). Note that all analyses in this 273 

paper were conducted using R-project (v. 3.2.3, R Core Team 2015); complete R scripts are 274 

available in Appendix S5, and all functions have been wrapped into R-packages weimea 275 

(abbreviation for weighted mean; source code for v. 0.58 available as Appendix S6). 276 

Description of simulated data 277 
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I created an algorithm generating community data which are structured by two virtual ecological 278 

gradients (by extending the original one-gradient algorithm of Fridley et al. 2007 based on 279 

concept of Minchin 1987). The first gradient has constant length for all generated datasets and 280 

serves as a surrogate for measured environmental variable; in the analysis, positions of samples 281 

along this gradient are used as sample attributes, while the optima of species along this gradient 282 

are used as species attributes. The length of the second gradient is variable and its increasing 283 

length increases the compositional heterogeneity of species composition matrix. Community 284 

samples based on this simulated community ecospace were created by randomly locating 285 

samples along the first gradient, and species composition for each sample was derived by 286 

random assignment of fixed number of individuals to species identities weighted by relative 287 

abundances of species with non-zero probability of occurrence at given location of the gradient 288 

(see Appendix S1 for further details). With short second gradient, the resulting simulated 289 

community dataset was compositionally relatively homogeneous, with samples located nearby 290 

along the first gradient (with similar value of sample attribute) sharing rather high proportion of 291 

species. Increasing the length of the second gradient increased the compositional heterogeneity 292 

of the dataset, since two nearby samples may have quite different species composition (Fig. S1 in 293 

Appendix S1). Note that although scenarios 1-4 are conceptually analogous to scenarios 1-4 in 294 

Dray & Legendre (2008) used in the context of the fourth-corner approach, the model 295 

generating simulated communities is different, since Dray & Legendre (2008) used one-gradient 296 

model, which generates rather homogeneous communities, while I used two-gradients model, 297 

generating set of communities of increasing compositional heterogeneity. 298 

Weighted-mean approach with standard parametric tests applied on simulated data 299 
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Using the algorithm described above, for each of the four scenarios (1-4) I created ten levels of 300 

compositional heterogeneity, and for each combination of scenario × level of heterogeneity I 301 

created 1000 datasets (4 scenarios × 10 levels of heterogeneity × 1000 replications = 40 000 302 

datasets). For each dataset I calculated CWM of species attributes, related it to sample attributes 303 

using Pearson’s r correlation and tested its significance using parametric t-test (for additional 304 

results for least-square regression and r2 see Fig. S2 in Appendix S2). For each level of 305 

community heterogeneity in each scenario I counted proportion of correlations significant at α = 306 

0.05 (note that this proportion is identical to the proportion of significant regressions). 307 

 From the three scenarios with no direct link between species and sample attributes 308 

(scenarios 2, 3 and 4), analysis of data generated by scenario 2 (Fig. 3) reveals the bias – the 309 

correlation coefficient deviates from zero more than in other cases (Fig. 3), and the test of 310 

significance shows inflated Type I error rate (Fig. 4). This bias is decreasing with increasing 311 

heterogeneity of the species composition matrix (Fig. 3 & 4, Scenario 2): for the most 312 

homogeneous dataset (number of communities = 1), the range of Pearson’s r correlation 313 

coefficients (expressed as 2.5% and 97.5% quantiles) is between -0.751 and 0.751 with 60% of 314 

correlations significant, while for the most heterogeneous dataset with high beta diversity 315 

(number of communities = 10) the  range of Pearson’s r values is between -0.381 and 0.354 with 316 

15% of correlations significant (compared to 2.5 and 97.5% quantile range values of r observed 317 

in scenarios 3 and 4 being in average between -0.278 and 0.281, with expected number of 318 

significant results being close to 5%). Similarly inflated are values of coefficient of 319 

determination (r2; Fig. S2, Scenario 2) calculated by least-square linear regression. 320 
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 Dray & Legendre (2008) showed that the fourth-corner approach, if tested by the 321 

permutation test based on reshuffling sample attributes (or rows of species composition matrix, 322 

respectively, model 2 in their paper) also reveals inflated Type I error rate in case of scenario 2. I 323 

applied the fourth-corner analysis also on the simulated community data described above. 324 

Results show, in line with Dray & Legendre (2008), biased values of the fourth-corner statistic 325 

and inflated Type I error rate for the model 2 permutation test (Figs. S3 & S4, Appendix S2), 326 

with the bias (and inflated Type I error rate) decreasing with increasing compositional 327 

heterogeneity (Fig S3 & S4 with Scenario 2, Appendix S2). 328 

 329 

Justification of the bias 330 

Simulation study above showed that if hypotheses in category 1 or 3, for which scenario 2 is 331 

relevant, are tested by standard parametric or permutation tests, results are prone to biased 332 

estimates of model parameters and inflated Type I error rate, and the bias is contingent upon 333 

compositional heterogeneity of the community dataset. In this section, I explore the reasons for 334 

this bias, which will be used as a theoretical base for solution proposed in the next section, and 335 

also explain the link of bias to compositional heterogeneity. Note that only hypotheses in 336 

category 1 and 3 are influenced by this bias, since for the category 2 with fixed species and 337 

random sample attributes, scenario 2 is not relevant and the bias therefore does not occur. 338 

 A peculiar feature of CWM of species attributes is their “numerical burden”, namely that 339 

they are calculated from species attributes assigned to individual species and from species 340 

composition of individual samples, and therefore inherit part of information from both sources. 341 

The numerical difference between calculated CWM values of two community samples is indeed 342 
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constrained by a difference in species composition of these two samples - if they have identical 343 

species composition (or identical relative species abundances), their calculated weighted-means 344 

do not differ (because they cannot), and if their species composition differs only slightly, the 345 

difference in their weighted-mean values is likely to be small. This property of weighted-mean 346 

values, which are not independent from each other, has notable consequences for analysis with 347 

sample attributes, if these are themselves related to species composition. In fact the situation is 348 

analogous to the analysis of two spatially autocorrelated variables, just the autocorrelation is not 349 

happening in the geographical space, but in the compositional space (more about this analogy in 350 

the next section). Two values of CWM calculated from community samples sharing some 351 

species do not bring two independent degrees of freedom into analysis, because samples used for 352 

their calculation are not independent - difference in their CWM are predictable (to some extent) 353 

from difference in their species composition in a way that the more similar is species 354 

composition of two community samples, the more similar must be also their calculated CWM. 355 

This problem scales up to the dataset level: in case of two compositional datasets with the same 356 

number of samples used in weighted-mean approach, the dataset which is compositionally more 357 

homogeneous has lower number of effective degrees of freedom compared to the more 358 

heterogeneous one. 359 

 Although there are many ways how to quantify compositional heterogeneity of the dataset, 360 

promising is to use beta diversity measure based on Whittaker’s index of association (Whittaker 361 

1952; in Legendre & Legendre 2012 as D9). This index can be numerically derived from 362 

differences in species composition between two calculated CWM values, and therefore quantifies 363 

the dissimilarity in species composition which is directly related to weighted-mean approach 364 
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analysis (Appendix S3). To obtain single value of beta diversity for given dataset, one may use 365 

beta diversity metric of Legendre & De Cáceres (2013) quantifying the variation in species 366 

composition, which can be calculated also from symmetric matrix of dissimilarities among all 367 

pairs of samples (here using Whittaker’s index of association). Advantage of this beta diversity 368 

metric is that it is independent on the size of the dataset, and the underlying dissimilarity 369 

coefficient is directly related to weighted-mean approach. 370 

Below, I will first illustrate what I mean by the differences in effective number of degrees 371 

of freedom in analysis. I use a simple example focused on relationship between community-372 

weighted mean of traits with environmental variables, and compare two contrasting sampling 373 

designs differing substantially by number of effective degrees of freedom they bring to the 374 

analysis. Then, I elaborate in more detail the analogy to analysis of two spatially autocorrelated 375 

variables, since it offers deeper insight to the problem and inspiration for potential solutions. 376 

Two sampling designs: difference in effective number of degrees of freedom 377 

The following example will illustrate the mismatch between number of effective degrees of 378 

freedom and number of samples in analysis, using species functional traits. The weighted mean 379 

of species functional traits, if combined with environmental variables, is used to investigate 380 

whether the environment filters species into community via their trait properties. Assumption 381 

behind is that the traits are functional, meaning that they directly influence the probability of 382 

species occurrence in community under given environmental conditions, and this hypothesis 383 

therefore classifies into the category 2 described above. For example, plant species specific leaf 384 

area (SLA, Reich et al. 1992) is known to be related to the plant requirements for light, and 385 

shade tolerant species restricted to more shady habitats have larger thinner leafs with higher SLA 386 
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values (e.g., Lambers et al. 2008). One may therefore expect that light acts as an environmental 387 

filter for species entering given community, and this filtering is (at least partly) happening 388 

because of species specific SLA. To support this reasoning, let’s conduct imaginary experiment: 389 

collect a dataset about composition of understory species in the forest and analyse it by the 390 

weighted-mean approach. Let’s keep things simple in this example and assume that we will 391 

compare two forest types, one with open and one with closed canopy, to see whether the closed 392 

canopy filters the understory species with high SLA. When preparing the design of data 393 

collection, we have two options. The first is to choose two vegetation types (e.g. at the level of 394 

association) with contrasting canopy openness, search for them in the study area (this could be 395 

just one forest complex with mosaic of both vegetation types, or a larger region where these 396 

vegetation types occur), sample their species composition and measure the light in the canopy 397 

and SLA of individual species. The second option is to sample open- and closed-canopy forests 398 

without any restrictions about their species composition, possibly in wider area. Following the 399 

first sampling design we get dataset where samples of open-canopy forest are compositionally 400 

similar to each other, as well as samples made in closed-canopy forest (but the composition of 401 

open-canopy forest is different from the close-canopy one). In the second scenario we probably 402 

get samples which all are having rather different species composition. 403 

 A simplified example how the species composition of six samples collected by these two 404 

sampling designs would look likes in extreme cases is on Fig. 5. In the case of the first sampling 405 

design, three and three samples have exactly the same species composition, while in the case of 406 

the second design, species composition of each sample is distinctly different from the others (no 407 

species are shared among any pair of samples). In the first case, three and three samples have the 408 
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same weighted-mean values since their species composition is identical. In the second case, three 409 

and three samples have also the same weighted-mean values, not because of identical species 410 

composition, but because samples from the same canopy cover category (open or closed) are 411 

made to have similar distribution of trait values (although the species taxonomic identities are 412 

completely different). 413 

 Indeed, the real data would fall somewhere in between these two cases, but this example 414 

illustrates well the concept of effective degrees of freedom in weighted-mean analysis. The 415 

relationship of the light availability to weighted-mean of SLA is exactly the same in both cases 416 

(if analysed e.g. by one-way ANOVA in this situation, when environmental variable is 417 

categorical with two levels, open-canopy forest with more light and close-canopy forest with less 418 

light). The difference is in the number of effective samples, which each sampling design offers 419 

for answering our question whether light serves as an environmental filter of species occurrence 420 

in the community via species SLA. Three community samples with completely different species 421 

composition, yet similar CWM of SLA (low for open- and high for closed-canopy forest) offers 422 

considerably better information about interaction between and SLA per se, then do the three 423 

samples with identical species composition (and hence also identical low or high CWM of SLA). 424 

Also, what if our assumption is wrong and the SLA is in reality not a functional trait, and hence 425 

belongs to category 3 instead of category 2? Let’s replace the real trait values by random one (by 426 

randomizing species attributes among species in table), calculate CWM and test their difference 427 

between open- and closed-canopy stands (and repeat this process 1000 times). In case of the first 428 

sampling design, 87% of tests detect significant difference (874 significant results of one-way 429 

ANOVA at P < 0.05), while in case of the second sampling design the probability is near the 430 
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expected Type I error rate of 5% (54 significant results out of 1000). This agrees with the result 431 

of weighted-mean approach applied on simulated data saying that inflation of Type I error rate is 432 

high for homogeneous datasets (the case of the first sampling design) and decreases with 433 

increasing compositional heterogeneity (being effectively zero in dataset with all samples 434 

completely dissimilar as in case of the second sampling design). 435 

Analogy to the analysis of spatially autocorrelated variables 436 

The situation when weighted-mean approach is based on species composition data, in which 437 

some pairs of samples have the same or similar species composition and sample attributes are 438 

related to species composition, resembles an analysis of two spatially autocorrelated variables. In 439 

case of spatially autocorrelated variables, samples located more close to each other in 440 

geographical space have more similar values than expected if the values are randomly selected 441 

(Legendre & Legendre 2012). In case of weighted means, it is not the proximity in geographical 442 

space, but the proximity in compositional space, which reflects distances between samples 443 

expressed as their compositional dissimilarity. 444 

 It has been shown that when analysing two positively spatially autocorrelated variables, 445 

spatial autocorrelation biases the results of statistical tests, inflating the type I error rate and thus 446 

resulting into too optimistic results (Legendre 1993). The problem is not with autocorrelation of 447 

individual variables themselves, but with spatially autocorrelated residuals when analysing their 448 

relationship (e.g. by linear regression). From the point of view of the degrees of freedom, 449 

samples located nearby in geographical space are not statistically independent, behaving to a 450 

certain degree as pseudoreplications (Legendre & Legendre 2012). A new observation does not 451 

bring completely new information, because its value can be partly derived from the value of a 452 
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nearby site, and the effective number of samples (i.e., effective number of degrees of freedom) is 453 

lower than the real number of samples. Since for standard parametric tests the number of degrees 454 

of freedom is important for choosing the correct statistical distribution, appropriate for a given 455 

sample size, disparity between the real number and effective number of samples leads to 456 

selection of narrower confidence intervals and hence a higher probability of obtaining significant 457 

results (Bivand 1980; Legendre 1993). 458 

The same reasoning applies also for analysis of two compositionally autocorrelated 459 

variables. Two weighted-mean values calculated from two samples with similar species 460 

composition do not bring two full degrees of freedom to the analysis, as would be case of two 461 

weighted-mean values calculated from samples with distinctively different species composition. 462 

In a simple example with two sampling designs above, if we want to know whether species SLA 463 

really increases with decreasing light in the understory, we would learn more about this from two 464 

samples in the shaded understory which have different species composition and yet both have 465 

high CWM of SLA, than from two samples which both have similar species composition (and 466 

hence also similar CWM of SLA).  467 

 If sample attributes are not related to species composition, than the problem with 468 

effective number of degrees of freedom is not present; although weighted-means are still 469 

compositionally autocorrelated, sample attributes are not – in case of spatially autocorrelated 470 

variables this is analogous to situation when one variable is spatially autocorrelated, but the other 471 

is not, in which case the bias caused by autocorrelation doesn’t appear. The situation which 472 

requires attention due to potential bias is therefore limited to cases when sample attributes are 473 

linked to species composition (i.e. they are fixed). This is the case of all internal sample 474 
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attributes derived from matrix of species composition, since they are linked to matrix of species 475 

composition (fixed) due to their numerical origin, and also the case of some of external sample 476 

attributes, if these are considered to be fixed (for examples see section Types of species and 477 

sample attributes). 478 

 479 

Proposed solutions 480 

Analogy between the bias in weighted-mean approach to the bias in analysis of spatially 481 

autocorrelated variables suggests potential toolbox for solving the problem. A simple option 482 

would be to stratify the dataset to reduce redundancy in species composition among samples, i.e. 483 

from pairs of samples with similar species composition remove one of them. Although methods 484 

for stratification based on species composition are available (e.g. Lengyel et al. 2011), it 485 

potentially results into throwing out a large number of expensive data. Alternative option would 486 

be to apply some correction for effective degrees of freedom in analysis, analogously to 487 

Dutiluel’s method introduced for estimating effective number of samples in case of 488 

autocorrelated variables (Dutilleul 1993). The option I will further investigate here is based on 489 

comparison of results obtained by weighted-mean approach with those generated by a null model.  490 

Modified permutation test: comparison with the results of a null model 491 

Comparison with results of a null model is an analogy to testing the relationship between 492 

autocorrelated variables using toroidal shift, when one variable is permuted in a way that it 493 

preserves the original degree of spatial autocorrelation (Fortin & Dale 2005). Alternatively, one 494 

can generate random variables with the same degree of spatial autocorrelation as of the original 495 
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variable (Deblauwe et al. 2012). In case of compositionally autocorrelated variables used for 496 

weighted-mean analysis, such variables can be generated for weighted-mean values, by 497 

calculating weighted mean from randomized (or randomly generated) species attributes. Such 498 

weighted-mean of randomized species attributes inherits the same level of compositional 499 

autocorrelation as have the weighted-mean values of the real species attributes, because they are 500 

calculated by the same algorithm from the same species composition matrix. One can generate 501 

the null distribution of a test statistic (like t-value for correlation or F-value for regression) for 502 

each weighted-mean of randomized species attributes related to original sample attributes, and 503 

compare the observed statistic (relating the weighted-mean of real species attributes to sample 504 

attributes) to this null distribution. This is identical with the modified permutation test, 505 

introduced to test the relationship between weighted mean of species attributes and sample 506 

attributes by Zelený & Schaffers (2012) in case of relating mean Ellenberg indicator values with 507 

variables derived from ordination/classification based on the same species composition dataset. 508 

 To illustrate behaviour of the modified permutation test, I used the set of artificial 509 

community data as above, calculated the correlation between weighted-mean of species attributes 510 

and sample attributes for all four scenarios in communities of increasing heterogeneity, and 511 

tested the significance of this correlation using modified permutation test. Results show that in 512 

contrast to standard permutation test, inflated Type I error rate in case of the scenario 2 513 

disappears (Fig 6b). At the same time, in case of scenario 3 (species composition related to 514 

species attributes, but not to sample attributes) the test is overly conservative for homogeneous 515 

datasets. Additional power analysis (Appendix S4) reveals that the modified permutation test 516 

loses the power with decreasing sample size and mainly with decreasing number of species 517 
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which are being permuted (Fig S5 in Appendix S4). Modified permutation test seems therefore 518 

suitable for testing hypotheses in the category 1, which assume that species attributes are random, 519 

while sample attributes are fixed (linked to species composition) and for which scenario 2 is 520 

relevant for testing the null hypothesis. It is, however, not optimal for hypotheses in the category 521 

3, which assume that both species and sample attributes are not fixed (not linked to species 522 

composition), since in scenario 3, which is also relevant as an alternative null hypothesis for this 523 

category, the results are overly conservative (although only for the most homogeneous dataset, 524 

Fig. 6). 525 

Use of the fourth-corner statistic and the sequential test 526 

Dray & Legendre (2008) noted that the fourth-corner statistic r, introduced by Legendre et al. 527 

(1997), is “equal to the slope of the linear model, weighted by total species abundances, with the 528 

niche centroids as the response variable and the species trait as the explanatory variable”. This 529 

analogy was further elaborated by Peres-Neto et al. (2012, Appendix A), who presented 530 

algorithm how to use the fourth-corner statistic in weighted-mean approach. In short, both R and 531 

Q matrices are first centred by weighted mean of row sums of L (in case of R) and column sums 532 

of L (in case of Q), and rescaled; then, the fourth-corner r statistic is the slope of regression 533 

between weighted mean of standardized Q and standardized R, weighted by row sums of L. 534 

Advantage of the fourth-corner statistic is an option to use sequential permutation test introduced 535 

by ter Braak et al. (2012), which gives unbiased test of significance for all scenarios (for 536 

application on the simulated community data used above, see Fig. S3 & S4 in Appendix S2). 537 

This sequential permutation test combines results based on permuting sample attributes (model 2) 538 

and species attributes (model 4); if the first one is significant, than the second test is done, and 539 
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overall significance of the result is equal to the higher of these two test’s P-values. Disadvantage, 540 

on the other side, is the fact that the combination of fourth-corner statistic and sequential test 541 

applies only to the regression between standardized (centred and rescaled) species and sample 542 

attributes, weighted by row sums of species composition matrix (L), and (to my knowledge) it 543 

cannot be used to test correlation, non-weighted regression or ANOVA between non-centred and 544 

standardized CWM and sample attributes. 545 

Two-step permutation test 546 

As an analogy to the sequential test used together with the fourth-corner statistic, here I introduce 547 

two-step permutation test, which gives unbiased results for relationship between CWM and 548 

sample attributes for range of statistical metrics (t-value for correlation and F-value for linear 549 

regression tested here). The test is based on combination of standard and modified permutation 550 

test; while both tests give unbiased results for scenario 4, standard test gives unbiased results also 551 

for scenario 3 (in which sample attributes are not related to species composition), while modified 552 

permutation test gives unbiased results for scenario 2 (where sample attributes are related to 553 

species composition). The idea behind the two-step permutation test is to first test whether 554 

sample attributes (R) are related to matrix of species composition (L), without considering (or 555 

even knowing) the values of species attributes (Q). This could be achieved e.g. by constrained 556 

ordination, when sample attributes are used as explanatory variables explaining variation in 557 

species composition. Here I introduce more general solution (called LR permutation test within 558 

this paper as a notice that relationship between R and L matrices is tested), which can be directly 559 

connected to particular test statistic (e.g. t-value for correlation). The LR permutation test 560 

consists of the following steps: (i) generate artificial set of species attributes as species centroids 561 
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calculated from real sample attributes, (ii) use these species attributes to calculate CWM, (iii) 562 

calculate observed test statistic for relationship between artificial CWM and real sample 563 

attributes, and (iv) test this relationship. The test is based on comparing observed values of the 564 

test statistic (calculated in step iii) with the null distribution of the test statistic, generated in the 565 

following way: 1) randomize sample attributes, 2) use them to calculate species attributes as 566 

species centroids from weighted-means of sample attributes, 3) use these species attributes to 567 

calculate CWM, and 4) relate these calculated CWM with randomized sample attributes from 568 

step 1) to obtain the expected test statistic; repeat steps 1) to 4) n-times (n = number of 569 

permutations). If this test is significant, it means that the sample attributes are related to matrix of 570 

species composition, and relationship of CWM with sample attributes is consequently tested by 571 

modified permutation test. If the test is not significant, standard permutation test is used. When 572 

applied on the set of artificial communities used above, this sequential test gives unbiased values 573 

of Type I error rate for all three scenarios (2, 3 and 4) and for all levels of compositional 574 

heterogeneity (Fig. 6).  575 

 576 

Discussion 577 

Main motivation of this study was to show that results of weighted-mean approach critically 578 

depend on the correct decision about the test used for statistical inference. To help in this 579 

decision process, I suggested that each hypothesis can be classified into one of the three 580 

categories, given the explicit (or implicit) assumptions about the role of species and sample 581 

attributes. For each category, I suggested optimal strategy for testing the significance of 582 

relationship between CWM and sample attributes. The decision about appropriate category is not 583 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 5, 2016. ; https://doi.org/10.1101/046946doi: bioRxiv preprint 

https://doi.org/10.1101/046946
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 

 

always straightforward, although the decision whether species attributes should be considered as 584 

fixed or random changes classification of the hypothesis from category 2 (with recommended 585 

standard parametric or permutation test) into category 3 (with two-step permutation test). For 586 

example, trait studies, which are testing whether environment is filtering the species into 587 

community via their functional traits, routinely assume that such traits are functional, and in 588 

weighted-mean approach are therefore considered as fixed (category 2). However, this 589 

assumption may not always be justified; traits included in these analyses are often those readily 590 

available in databases and/or relatively easy to measure, but these do not necessarily need to be 591 

really the functional ones (Fox 2012, Mlambo 2014). In case of compositionally relatively 592 

homogeneous datasets, even the traits with no ecological meaning may show high and significant 593 

relationship to environmental variables if tested by standard tests. I believe that this calls for 594 

revision of such commonly applied practice. 595 

Differences in effective degrees of freedom among datasets complicate comparison of 596 

results between studies based on datasets of different compositional heterogeneities. Studies 597 

conducted on datasets of relatively low beta diversity may obtain stronger and more likely 598 

significant relationship between weighted-mean of species attributes and sample attributes than 599 

studies on datasets of relatively higher beta diversity, even in case that the real link of species 600 

attributes to species composition is missing (Figs. 3 & 4, Scenario 2). This situation is analogous 601 

to biased estimates of model parameters and inflated Type I error rate in analysis of spatially 602 

autocorrelated variables. An option how to deal with this problem is to routinely report, in each 603 

case-study using weighted-mean approach, some standardized value of compositional 604 

heterogeneity. Although this would not remove bias in results of these studies, it would at least 605 
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allow for comparison of the potential for bias among different studies. Good metric for this 606 

purpose should be independent on the sample size, and should pertain dissimilarity in species 607 

composition which is relevant for differences in community-weighted means; here, I suggested 608 

beta diversity measure based on Whittaker’s index of association (Appendix S3) following the 609 

approach summarized by Legendre & De Cáceres (2013). 610 

 Specific question is how to deal with missing values of species attributes for some of the 611 

species. Should species with missing species attributes remain in the matrix of species attributes 612 

and species composition? And in a case of the modified and two-step permutation tests, should 613 

the missing values be kept and permuted among species? The analogy to spatial autocorrelation 614 

issue offers clear answers for these questions. Species with missing attribute values are not used 615 

for weighted-mean calculation, so they do not contribute to the compositional autocorrelation of 616 

weighted-mean values. The point of the modified (and subsequently also two-step) permutation 617 

test is to generate random variables with the same compositionally autocorrelated structure as the 618 

weighted mean calculated from the original species attributes. For this, matrix of species 619 

composition, which inherits the compositional autocorrelation into weighted-mean values, 620 

should remain the same also for calculation of weighted-means from randomly generated species 621 

attribute values. This would not be the case if the species with missing attribute values remains 622 

in both matrices, because permuting missing values would cause the weighted mean of permuted 623 

species attributes being calculated every time with different species composition matrix (the 624 

species which in given permutation run would be assigned missing values will not be included in 625 

this weighted-mean calculation). The solution is hence to remove species with missing species 626 

attributes from both species attributes and species composition matrix, and in the case of 627 
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modified permutation test to permute only existing species attribute values. In case that more 628 

species attributes are analyzed (e.g. three different functional traits, or six different species 629 

indicator values) and species has missing species attribute value for some attributes and not for 630 

the others, the species should be removed from species composition matrix only for the purpose 631 

of calculating and testing weighted mean of that species attributes for which the species value is 632 

missing, and not for the others. 633 

 Power test using simulated dataset showed that the power of both two-step as well as 634 

modified permutation test decreases with decreasing number of species in the dataset (and less 635 

strongly also with decreasing number of samples). This makes these tests less suitable for 636 

smaller and relatively homogeneous datasets with few species (e.g. less than 40), since the 637 

probability of Type II error (i.e. not rejecting the null hypothesis which is false) strongly 638 

increases. Similarly, both two-step and modified permutation tests are overly conservative for 639 

scenario 3. For modified permutation test this is not a problem, since for the hypotheses for 640 

which the scenario 3 is null hypothesis (category 2) the modified permutation test is not 641 

recommended method (see Table 1). The two-step permutation test is also overly conservative, 642 

but only only in case of the most homogeneous community dataset, and with increasing 643 

compositional heterogeneity this issue diminishes (Fig. 6 and Table S2).  644 

In this study, I explicitly ignored intraspecific variation in species attributes, focusing 645 

only on use of dataset-wide mean species attribute values. Indeed, intraspecific variation may be 646 

important; e.g. in the context of functional traits, the intra-specific variation gains an increasing 647 

attention (Albert et al. 2012), and relevant question is whether the inclusion of intra-specific 648 

variation (e.g. by including trait values which are sample-specific, not dataset-wide) influences 649 
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the potential bias reported in this study or not. This question requires further examination, which 650 

goes beyond this study, but in my opinion including another source of variation (species-level 651 

variation in species attributes) does not remove the problem of the bias itself, but makes the 652 

estimation of the bias and its correction more complex. 653 

Finally, relevant consideration is whether the weighted-mean approach is actually the best 654 

analytical solution for question which is being explored. In some cases, the question is explicitly 655 

focused on relating community-level values of species attributes, like mean Ellenberg indicator 656 

values (serving as an estimates of ecological conditions for individual sites) or CWM of traits (as 657 

one of the functional-diversity metrics and as a community-level trait value), and use of 658 

weighted-mean approach is fully justified. Yet, in other cases, when the question is focused on 659 

relating individual species-attributes to sample attributes, weighted-mean approach may not be 660 

the best analytical choice. Use of alternative options, like fourth-corner or RLQ analysis, for 661 

which the problem of inflated Type I error rate and choice of suitable permutation test have been 662 

already solved, can be a better solution. 663 

 664 

Conclusions 665 

In this study, I attempted to draw attention to the problem in weighted-mean approach which I 666 

believe is largely overlooked and generally not acknowledged, although it represents a source of 667 

potentially serious misinterpretations. Since in certain fields the weighted-mean approach gains 668 

increasing momentum (e.g. in functional ecology with CWM of species functional traits as one 669 

of the functional-diversity indices), I suggest that time is ripe to critically asses in which 670 

situations and for which types of hypotheses the commonly used standard parametric or 671 
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permutation tests are not appropriate, since they yield results which may be overly optimistic. I 672 

offer simple guidelines how to decide whether in given context of a study the standard 673 

methodology gives correct or biased results, and suggest solutions available in case that it does 674 

not. 675 
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Table 1 807 

Overview of the characteristics for the three categories of hypotheses tested by weighted-mean 808 

approach. For each situation, corresponding assumption about link between sample attributes (R) 809 

or species attributes (Q) to species composition (L) is given, as well as null vs alternative 810 

hypothesis, scenario relevant in the context of given category (see Fig. 2), and recommended test. 811 

Category Assumption Null hypothesis Alternative 

hypothesis 

Relevant 

scenario 

Recommended 

test 

1 sample 

attributes 

fixed 

(R <--> L) 

Q <-//-> L Q <--> L Scenario 2 modified 

permutation test 

2 species 

attributes 

fixed 

(Q <--> L) 

R <-//-> L R <--> L Scenario 3 standard 

parametric or 

permutation test 

3 no 

assumptions 

R <-//-> Q,  

i.e. R <-//-> L 

and/or Q <-//-> L 

R <--> Q,  

i.e. R <--> L 

and Q <--> L 

Scenarios 2, 

3 and 4 

two-step 

permutation test 

 812 
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Figure captions 814 

Figure 1. Computational schema of the weighted-mean approach to analyse relationship between 815 

species attributes and sample attributes via matrix of species composition. R - matrix of sample 816 

attributes (e.g. environmental variables), L - matrix of species composition (Ls – L standardized 817 

by sample totals to simplify the equation), Q - matrix of species attributes (e.g. traits, species 818 

indicator values), M - matrix of weighted means of species attributes (e.g. CWM). The colour 819 

gradient within the matrix M (weighted mean of species attributes) from dark to light grey 820 

illustrates that this matrix includes information from both matrix of species composition (dark 821 

grey) and matrix of species attributes (light grey). 822 

Figure 2. Schema showing conceptual differences between scenarios 1-4 in weighted-mean 823 

approach. In scenario 1, both sample attributes (R) and species attributes (Q) are fixed, linked to 824 

matrix of species composition (L), while in the other three scenarios one (or both) of attributes 825 

are considered random, without the link to species composition. In simulated data example, the 826 

link of attributes to species composition is cancelled by permuting the values of species attributes 827 

(scenario 2), sample attributes (scenario 3) or both (scenario 4). In the schema, matrix of species 828 

attributes is transposed (Q’) to match the dimension of matrix of species composition (L). 829 

Figure 3. Pearson’s r correlation coefficients among CWM and sample attributes for each of the 830 

four scenarios and ten levels of compositional heterogeneity of species matrix (1000 correlations 831 

for each combination have been conducted). Grey horizontal bars are outliers. 832 

Figure 4. Proportion of significant correlations (P < 0.05) between CWM and sample attributes, 833 

tested by standard parametric t-test. For each of the four scenarios and ten levels of 834 

compositional heterogeneity of species matrix, 1000 tests have been conducted. 835 
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Figure 5. Simplified example of two community datasets (each with six samples) collected in 836 

plots of two different environmental conditions (A and B, e.g. open- vs closed-canopy forest). 837 

First sampling design (a) restricts choice into only two vegetation types (one open- and one 838 

closed-canopy forest), and results into three and three plots with identical species composition. 839 

Second sampling design (b) does not restrict the sampling by choice of community type (any 840 

forest with open- or closed-canopy can be sampled), resulting in situation when none of six 841 

samples share any species in common. For each dataset, three matrices are presented: 842 

sample × species compositional matrix, matrix of sample attributes (in this case with two-level 843 

categorical variable) and matrix of species attributes (quantitative variable in range 1 to 5). x - 844 

presence of species in the sample. 845 

Figure 6. Proportion of significant correlations (P < 0.05) between CWM and sample attributes, 846 

tested by three different permutation tests: standard, modified and two-step. For each of the four 847 

scenarios and ten levels of compositional heterogeneity of species matrix, 1000 tests have been 848 

conducted. 849 
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Figure 1 851 
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Figure 2 853 
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Figure 3 856 
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Figure 4 859 
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