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Abstract 14 

Background: The increasing availability of multi-omics datasets has created an opportunity to 15 

understand how different biological pathways and molecules interact to cause disease. However, there 16 

is a lack of analysis methods that can integrate and interpret multiple experimental and molecular data 17 

types measured over the same set of samples. 18 

Result: To address this challenge, we introduce moGSA, a multivariate single sample gene-set analysis 19 

method. It uses multivariate latent variable decomposition to discover correlated global variance 20 

structure across datasets and calculates an integrated gene set enrichment score using the most 21 

informative features in each data type. Integrating multiple diverse sources of data reduces the impact 22 

of missing or unreliable information in any single data type, and may increase the power to discover 23 

subtle changes in gene-sets.  We show that integrative analysis with moGSA outperforms existing single 24 

sample GSA methods on simulated data. We apply moGSA to two studies with real data. First, we 25 

discover similarities and differences in mRNA, protein and phosphorylation profiles of induced 26 

pluripotent and embryonic stem cell lines. Secondly, we report that three molecular subtypes are 27 

robustly discovered when copy number variation and mRNA profiling data of 308 bladder cancers from 28 

The Cancer Genome Atlas are integrated using moGSA. Our method provides positive or negative gene-29 

set scores (with p-values) of each gene set in each sample. We demonstrate how to assess the influence 30 

of each data type or gene to a moGSA gene set score.  With moGSA, there is no requirement to filter 31 

data to the intersect of features, therefore, all molecular features on all platforms may be included in 32 

the analysis.  33 

Conclusion: moGSA provides a powerful yet simple tool to perform integrated simple sample gene-set 34 

analysis. Its latent variable approach is fundamentally different to existing single sample GSA 35 

approaches. It is an attractive approach for data integration and is particularly suited to integrated 36 

cluster or molecular subtype discovery. It is available in the Bioconductor R package “mogsa”. 37 

Keywords 38 

Gene-set analysis, Multivariate analysis, Data integration, Omics, Bladder cancer, molecular subtype 39 

stratification 40 
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Introduction 41 

Technological innovations have enabled the acquisition of unprecedented amounts of multi-scale 42 

molecular, genotype and phenotype information. Advances in high-throughput sequencing allow 43 

quantification of global DNA variation and RNA expression in tissue or blood samples [1, 2]. Mass 44 

spectrometry (MS)-based proteomics has undergone rapid progress in recent years, and systematic MS 45 

analyses can now identify and quantify the majority of proteins expressed in a human cell line [3]. More 46 

and more studies report comprehensive molecular profiling using multiple different experimental 47 

approaches on the same set of biological samples. These data can potentially yield insights into the 48 

molecular machinery of biological systems. However, integrating, interpreting and generating biological 49 

hypothesis from such complex datasets is a considerable challenge. 50 

Our groups and others have described multivariate analysis (MVA) approaches that uncover latent 51 

correlated structure within and between omics datasets [4-7]. MVA use extensions of principal 52 

component analysis (PCA) to project data onto a lower dimensional space so that trends or relationships 53 

between multiple datasets, observations (cases) and features (e.g. genes) can be identified. MVA 54 

methods identify global correlated patterns among observations, and therefore do not require pre-55 

filtering of gene identifiers in each dataset to a common intersecting subset of features (genes/proteins). 56 

All features whether they have annotation or not can be included in the analysis. This is particularly 57 

important when analyzing experimental platforms that include novel genes, or use identifiers that are 58 

difficult to be mapped. A further attractive feature of latent variable approaches is that supplementary 59 

data such as gene-set information (e.g. Gene Ontology annotations) can be projected onto the MVA to 60 

aid interpretation [5, 6, 8].   61 

Gene-set analysis (GSA) is widely used in the analysis of genome scale data and is often the first step in 62 

the biological interpretation of lists of genes or proteins that are differentially expressed between 63 

phenotypically distinct groups [9]. These methods use external biological information to reduce 64 

thousands of genes or proteins into short lists of functional related gene-sets (e.g. cellular pathways, 65 

subcellular localization, transcription factors or miRNA targets), thus facilitating hypothesis generation. 66 

The simplest GSA based methods rely on over-representation analysis and only require a list of genes as 67 

input. Hypergeometric tests or Fisher’s exact test are often used to identify statistically significant 68 

overlap between a shortlist of genes or proteins and a database of gene-sets [10]. Gene-set enrichment 69 

analysis (GSEA) and significance analysis of function and expression (SAFE) not only require a list of 70 

genes, but also take advantage of quantitative information in omics data [11, 12]. More recently, 71 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 3, 2016. ; https://doi.org/10.1101/046904doi: bioRxiv preprint 

https://doi.org/10.1101/046904
http://creativecommons.org/licenses/by-nc/4.0/


 

4 
 

pathway topology approaches also consider the network structure of biological pathways in over-72 

representation analysis [13]. However, these methods are supervised tests that require predefined 73 

groups of samples using known experimental, clinical, phenotypic or conditional data (e.g. tumor vs. 74 

normal cases).  75 

Modern omics studies frequently explore a panel of experimental conditions or tissue samples with 76 

multiple phenotypes, for example The Cancer Genome Atlas (TCGA), ENCyclopedia of DNA Elements 77 

(ENCODE) projects [14] and other studies [15]. Such studies frequently wish to discover new molecular 78 

subtypes and thus traditional GSA methods which require known subsets have limited application in 79 

such cases. To address this issue, several unsupervised, single sample GSA (ssGSA) methods have been 80 

developed [16-19]. These methods do not require prior availability of phenotypic or clinical data. One of 81 

the most popular approaches is single-sample GSEA (ssGSEA) that ranks genes according to the empirical 82 

cumulative distribution function and calculates a single sample-wise gene-set score by comparing the 83 

scores of genes that are inside and outside a gene-set [18]. Another related method described recently, 84 

gene-set variation analysis (GSVA), also calculates sample-wise gene set enrichment as a function of the 85 

genes that are inside and outside a gene set. GSVA uses a similar Kolmogorov-Smirnov-like rank statistic 86 

to assess the enrichment score, but genes are ranked using a kernel estimation of a cumulative density 87 

function [16]. Each of these unsupervised single-sample GSA methods are designed for the analysis of a 88 

single dataset. To the best of our knowledge no GSA method exists which integrates and calculates a 89 

single sample GSA score on multiple datasets simultaneously.  90 

Here, we present a novel unsupervised single-sample gene-set analysis that calculates an integrated 91 

enrichment score using all of the information in multiple ‘omics datasets. We call this approach multiple 92 

omics GSA (moGSA). We show that moGSA has higher sensitivity and specificity to detect gene-sets 93 

compared to single dataset GSA and demonstrate that moGSA outperforms existing unsupervised GSA 94 

methods when applied to simulated data. We apply moGSA to both small and large scale data from 95 

multiple omics studies.  96 

Results  97 

moGSA integrates and discovers gene-sets that are enriched in features in two or more omics data 98 

matrices obtained on the same set of observations (Figure 1). Omics studies generate multiple data 99 

matrices such as RNA sequencing counts of gene expression, measurements of proteins, metabolites, 100 

lipids, DNA copy number variations and several other biological molecules that can be mapped to gene-101 
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sets. In each, the number of features frequently exceeds the number of observations (rows and columns 102 

of the matrix, respectively). In this paper, we refer to genes or other biological molecules as features for 103 

simplicity.  104 

 105 

Figure 1 - Schematic view of the moGSA algorithm. The algorithm requires pairs of matrices as input; 106 

multiple omics data matrices and corresponding gene-set (GS) annotation matrices. In step 1, the 107 

multiple matrices are analyzed with a multivariate analysis (MVA) method resulting in an observation 108 

space and gene space. Next, the gene-set annotation matrices are projected on the same space, and the 109 

resulting matrix contains the gene-set space. The last step is to reconstruct gene-set-observation through 110 

multiplying the observation and gene-set spaces.  111 

Figure 1 describes the three steps of the algorithm. Input quantitative or qualitative data matrices must 112 

have matched observations but may have different and unmatched features. The number of features 113 

may exceed the number of observations. In order to map features to gene-sets, moGSA requires an 114 

incidence matrix of gene to gene-set membership associations for each data matrix and in each “gene-115 

set annotation matrix”, a value of 1 indicates that a feature (e.g. gene) is a member of a gene-set. Rows 116 

of the gene-set annotation matrix contain the features and each column is an independent annotation 117 

vector for a gene-set. A feature may belong to multiple gene-sets simultaneously, that is a row sum may 118 

exceed 1. 119 
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In the first step, several (k) input data matrices are integrated using multiple factor analysis (MFA) [20]. 120 

MFA is a multiple table extension of principal component analysis (PCA) that is well suited to integrating 121 

multiple omics data since it reduces high dimensional omics data to a relatively small number of 122 

components that capture the most prominent correlated structure among different datasets [20]. To 123 

prevent datasets with more features or different scales to dominate a MFA, each dataset is weighted by 124 

dividing it by the first eigenvalue of a decomposition of each individual dataset. MFA generates matrices 125 

of latent variables (components) in observation (P) and feature (Q) space. The number of components 126 

typically equals the number of observations minus one. We retain and examine the first few 127 

components as these represent most of the variance in the data. Approaches for choosing the number 128 

of components are discussed later. In the next step (step 2) each gene-set annotation matrix (G1..k) is 129 

projected as additional information onto the gene-set space (Q1..k) generating a score for each gene-set 130 

in the same projected space (W1..k). In the final step (step 3), moGSA multiplies the latent variables of 131 

the observations (P) and latent variables of gene-sets (W1..k) to generate a matrix (Y) with a gene-set 132 

score (GSS) for each gene-set in each observation (Y).  133 

A gene-set with a high GSS value has features that explain a large proportion of the global correlated 134 

information among data matrices. These features could be from any or all data matrices, and may be 135 

non-overlapping, for example a GSS of a gene set with features A-H, could be driven by high levels of 136 

gene expression in genes A,B,C, and increased protein levels in proteins C,D,E and amplifications in copy 137 

number in gene H. The GSS matrix (Y) may be decomposed with respect to each dataset (X) or latent 138 

variable space (P,Q) so that the contribution of each individual dataset or component to the overall 139 

score can be evaluated (see Methods).  140 

moGSA outperforms existing single sample GSA methods  141 

Methods to perform integrated ssGSA on multiple ‘omics datasets are not yet described. Therefore, we 142 

compared the performance of moGSA to ssGSA methods that were developed for analysis of one 143 

dataset. One-table ssGSA methods were generally optimized for analysis of gene expression data and 144 

include the widely used GSVA and ssGSEA and naïve matrix multiplication (NMM) [16, 18].  145 

Figure 2 shows the performance of each method applied to 100 simulated datasets, each run simulated 146 

a study of 30 observations with three omics datasets that measured 1,000 features each (Figure S1; see 147 

Methods section). Each feature was a member of one of the 20 gene-sets. Each gene-set had 50 genes. 148 

The observations were grouped into 6 clusters and each cluster has 5 differentially expressed (DE) gene-149 

sets when compared to the other observations. Within DE gene-sets, 5, 10 and 25 out of 50 genes were 150 
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randomly simulated to be DE genes (DEG). The triplets were analyzed by moGSA directly, however 151 

matrices were concatenated for NMM, GSVA and ssGSEA as these methods can only accept one matrix 152 

as input. 153 

 154 

Figure 2 – Comparison of moGSA with NMM, GSVA and ssGSEA. The performance of methods was 155 

accessed by their ability to identify differentially expressed gene-sets over 100 simulations in every 156 

condition (as indicated by the area under the ROC curve; AUC). (A) Comparison of GSA methods using 157 

data with different signal-to-noise ratios. (B) Comparison of data with different number of differentially 158 

expressed (DE) genes in each of the DE gene-set. From left to right, 5, 10 and 25 of total 50 genes are 159 

differentially expressed in each of the three simulated data matrices if a gene-set is defined as DE gene-160 

sets. (C) Scree plots show representative eigenvalues in each of the conditions in (D). (D) AUCs with 161 

different proportion of variance are capture by top 5 components. From left to right, 25%, 30% and 50% 162 

of total variance are captured. The darker bars represent the top 5 components.  163 

We anticipated that moGSA might be especially powerful at identifying altered gene-sets in 164 

heterogeneous or noisy data. That is because moGSA, uses only the top few most informative latent 165 
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variables, thus omitting the signal of many features with little variance, which are potentially noise. 166 

Therefore we explored the power of the methods to detect DE gene-sets when there was a strong or 167 

weak gene expression signal. First we simulated increasing DEG signal to noise by changing the mean 168 

gene expression of DEGs in the cluster and secondly we altered the number of DE genes in a DE gene-set 169 

(5, 10 and 25 genes). As expected, the performance of all methods was better when signal-to-noise ratio 170 

or the number of DE genes in DE gene-sets increased (Figure 2A and 2B). moGSA consistently 171 

outperformed the other methods and the differences were even more apparent when the signal-to-172 

noise ratio was low or when there were few DE genes (5 or 10 of 50 genes) (Figure 2B).   173 

Next we compared the performance of each method using data with a simple or complex phenotype. In 174 

data with a simple phenotype a few components should easily capture most of the variance in the data. 175 

However in data with a complex phenotype for example a heterogeneous tumor dataset, with mixed 176 

histology, grade and response to treatment, there are many signals and many latent variables may be 177 

required to capture even half of the variance. Specificity and sensitivity of the methods detecting the DE 178 

gene-sets (measured as the area under the receiver operating characteristic curve; AUC) were evaluated. 179 

In the simulated data, observations were grouped into six clusters, each with highly correlated genes 180 

and these six clusters could be captured by the first five components. Therefore we simulated data such 181 

that the first 5 components captured 50%, 30% or only 25% of the total variance (Figure 2C). Again, 182 

moGSA outperformed the other methods and was relatively robust to changes in the variance retained 183 

(Figure 2D). The performance (AUC) of all methods decreased when greater variance was retained, 184 

which can be explained by higher intra-cluster correlation that leads to a lower signal-to-noise ratio (see 185 

methods).  186 

Given the many fundamental differences between moGSA and the other ssGSA methods, we repeated 187 

the simulations adjusting for technical aspects of the moGSA approach that might give it an “unfair 188 

edge”, but these did little to improve the performance of the others methods. Since, GSVA and ssGSEA 189 

were designed for analysis of single datasets, we compared the performance of GSVA and ssGSEA on a 190 

single datasets of the triplet compared to the concatenated triplet. Concatenating multiple data 191 

matrices neither improved nor decreased the performance compared to analysis of single datasets, 192 

most likely because the signal-to-noise ratio increased accordingly with concatenation (Figure S2). In 193 

addition, since MFA weights input matrices by their first singular value before moGSA, we examined the 194 

effect of data set weighting on the other methods, but found moGSA still outperformed ssGSEA and 195 

GSVA when data matrices of the triplet were weighted before concatenation (Figure S3). 196 
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Application of moGSA to stem cell mRNA and proteomics data 197 

We applied moGSA to study a dataset consisting of mRNA, protein and phospho-protein profiling of four 198 

cell lines − two embryonic stem cell lines (ESC; H1 and H9), one induced pluripotent cell line (iPSC; 199 

DF19.7) and a fibroblast cell line (newborn foreskin fibroblast; NFF). Induced pluripotent stem cells (iPSC) 200 

are adult cells that have been reprogrammed to be more like embryonic stem cells (ESC) and have great 201 

potential in the field of regenerative medicine. These cells express ESC markers and can differentiate 202 

into different cell types [21]. Induced pluripotent cells are often derived from NFF cells. The data was 203 

downloaded from [21]. 204 

 205 

Figure 3 – integrative gene-set analysis of iPS ES 4-plex data. (A) A heatmap shows the gene-set score 206 

(GSS) for significantly regulated gene-sets in the cell lines, the white colored blocks/cells indicates the 207 

change of gene-sets are non-significant. (B) Data-wise decomposition of the GSS for some of the gene-208 

sets. The contribution of each of the data is represent by a bar. The Y-axis is the data-wise decomposed 209 

gene-set score.  210 

After filtering low abundant features, there were 10,961; 5,817; and 7,912 unique mRNAs, proteins and 211 

phosphorylation sites features respectively (see Methods). Principal component analysis (PCA) of each 212 

individual dataset is shown in Figure S4. The strongest signal (first PCs) in all three datasets was the 213 

difference between NFF cells and the stem cell lines, and this difference was particularly apparent in the 214 

proteomics datasets. The second and third components represented subtle differences between iPSC 215 
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and ESC lines, thus we retained the top 3 components when we applied MFA to transform all of the data 216 

onto the same space and scale. The three datasets contributed similarly to the overall variance in the 217 

integrated analysis, as indicated by weighting of each dataset in MFA. The first eigenvalues (square of 218 

singular values) of each PCA were 0.24, 0.26 and 0.26 for the transcriptome, proteome and phospho-219 

proteome dataset respectively. MFA recapitulated the PCA of the individual datasets. Most of the 220 

variance was captured in the first component and it discriminated between NFF and other cell lines. The 221 

variance of the molecular differences between the ESC cells (captured on the second component) was 222 

greater than the difference between ESC and iPSC cell lines (component 3) (Figure S5).  223 

moGSA was used to annotate the features with gene ontology (GO) biological processes. There were 224 

228 GO terms (out of 825) that had significant up or down-regulated gene-set scores (GSSs) in at least 225 

one cell line (BH corrected p value < 0.01). There was gene overlap among many GO terms and 226 

hierarchical clustering analysis (Hamming distance and complete linkage) was used to group the 288 GO 227 

terms into 21 broad categories (Table S1). Gene-set scores of representative GO terms from each 228 

category are shown in Figure 3A. Biological processes associated with more differentiated cell types 229 

were associated with the NFF cells and included up-regulation of vesicle-mediated transport, immune 230 

related responses and cell adhesion. In contrast cell proliferation GO terms such DNA replication, and 231 

cell cycle processes had significantly higher GGS in the highly proliferative stem cell lines. These results 232 

confirm previous findings [21].  233 

In integrative analysis of multiple omics data, it is important to evaluate the relative contribution (either 234 

concordant or discrepant) of each dataset to the overall GSS. Data-wise decomposition of the GSSs (see 235 

Methods) are shown in Figure 3B. The three data sets have concordant contributions to most of the GO 236 

terms, including vesicle mediate transport, cell matrix adhesion, cell cycle processes in NFF line; 237 

chromosome organization and biogenesis in H9 and NFF cell lines.  238 

However, in other GO classes, we also observed differences in the contribution of mRNA, proteins and 239 

phosphor-protein data to the GSS. Chromosome organization and biogenesis had significant positive GSS 240 

in the stem cells and significant negative GSS in the NFF cells, and was driven by differences in the 241 

phosphorylation data. Another case where the mRNA and protein data were incongruent was the GO 242 

class “glycoprotein metabolic process”. It had GSS scores of 9.7 (p<0.001), -8.6 (p<0.01), -5.3 (p<0.01) 243 

and 0 (p>0.05) in NFF, iPSC, H9 and H1 cells respectively. Up-regulation in NFF mainly reflects up-244 

regulation on the protein level. However, down-regulation in iPSC DF19.7 cells is due to low expression 245 

of related mRNAs. The GO term wound healing has previously been shown to be differentially 246 
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upregulated in fibroblast NFF cells compared to ESC [21]. Consistently, we also found wound healing was 247 

upregulated in NFF compared to ESC; the GSS for wound healing were 14.2 (p<0.01), -5.4 (p<0.01), -5.2 248 

(p<0.01) and -3.6 (p<0.001) for NFF, iPSC, H9 and H1 cells respectively (Table S1). Down-regulation of 249 

wound healing in H9 cell line was dominated by mRNA data, and the two proteomics datasets 250 

contributed little to the negative GSS. In contrast to previous studies [21], we did not observe significant 251 

differences in wound healing between iPSC and ESC. This difference could be because moGSA is more 252 

sensitive (than single data GSA) in detecting gene-sets that have subtle but consistent changes in 253 

multiple datasets. More importantly, the contribution of individual gene-set could be evaluated by the 254 

decomposition of GSS with respect to datasets 255 

Application of moGSA to TCGA Bladder cancer data analysis 256 

Since moGSA performs unsupervised integrative single sample GSA, it is particularly useful approach for 257 

cluster discovery in multi ‘omics data. Therefore we applied moGSA to extract an integrative subtype 258 

model of BLCA from copy number variation (CNV) and mRNA data of 308 muscle invasive urothelial 259 

bladder cancer (BLCA) patients (obtained as part of the TCGA project). 260 

BLCA is a molecularly heterogeneous cancer with between 2 and 5 molecular subtypes (reviewed by 261 

[38]). Briefly, Sjödahl et al. first defined five major subtypes termed urobasal A (UroA), UroB, 262 

genomically unstable (GU), squamous cell carcinoma-like (SCCL) and ‘infiltrated’ [22]. The TCGA study 263 

defined four expression clusters (I–IV) [23] . The two subtype model consists of basal-like and luminal 264 

subtypes [24] which was extended by Choi et al. who defined a ‘p53-like’ luminal subtype apart from 265 

basal-like and luminal subtypes [25].   266 

Data were downloaded from the TCGA website and after filtering out features with low variance (see 267 

Methods), CNV and RNA-seq mRNA expression data contained 12,447 and 14,710 genes respectively, in 268 

which 7,644 genes were common to both datasets (Figure S4). Filtering of features is not required by 269 

moGSA but we filter low quality features as they are unlikely to contribute to the analysis. PCA of each 270 

individual dataset is shown in Figure S7. From scree plots of the first 10 eigenvalues, an elbow in each 271 

plot appears between 4-6 components suggesting this number of components are needed to capture 272 

most of the variance (Figure S7), which we anticipated given the known molecular heterogeneity in 273 

these data.  The first eigenvalue (square of singular value) of the PCA of BLCA mRNA and CNV data are 274 

0.0004 and 0.0003 respectively.  We applied a preliminary MFA on the data and Figure 4A shows the 275 

eigenvalues of the resulting components.  The top five components captured a quarter of the total 276 
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variance and were not dominated by either CNV or mRNA (CNV 50.6%, mRNA 49.4%). Also, these five 277 

components were not correlated with batches (TCGA batch ID), plates, shipping date or tissue source 278 

sites.  279 

 280 

Figure 4 – Data integration with moGSA and integrative subtype defined by latent variables. (A) Bar plot 281 

showing the eigenvalues of components defined by MFA. The top 5 components were selected in the 282 

analysis. (B) Effect of including additional component (1-12) on the identification of new genesets among 283 

the top 100 genesets (C) Prediction strength was used to evaluate the robustness of classification into 284 

two to eight subtypes. The boxplot shows the prediction strength of 100 randomizations. Two and Three 285 

are relative robust subtype models (prediction strength > 0.8). (D) Gene ontology (GO) and 286 

transcriptional target (TFT) gene-sets annotation of tumors. Heatmap showing the GSSs for selected 287 

gene-sets. The gene-sets “immune-related, apoptosis, G protein receptor, collagen, extracellular region 288 

and cell migration” are strong in the C1 (basal-like) subtype, whereas the mitochondrial related gene-289 

sets are over represented in the C3 (luminal A-like) subtype of tumors. (E) The most significant 290 
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transcriptional factor (TF) target gene-sets. The gene-set scores suggest that 4 out of the 5 TFs are 291 

hyperactive in the C1 subtype, except E2F family is active in the C2 subtype of cancer. The white spaces in 292 

(A) and (B) denote non-significant GSSs. (F) The scatter plots display the correlation between gene-set 293 

scores and the mRNA level of selected TFs. The expression of selected TFs is significantly correlated with 294 

their gene-set scores (also see Figure S16).  295 

In a typical analysis, we use a scree plot to select the number of components. The scree plot indicated 296 

that five components should capture sufficient variance for input to moGSA. We confirmed that this was 297 

the optimal number of components as input to moGSA, in the following experiment. We performed 298 

moGSA on the BLCA mRNA gene expression and CNV data (n=308) with a number of components ranged 299 

from 1 to 12. For each gene-set in the GSS matrix, gene-sets were ranked by the number of tumors in 300 

which they were significantly regulated (either positive or negative GSS, p<0.05), such that gene-sets 301 

that were significant in most tumors had highest rank. The distribution of the number of tumors in 302 

which gene-sets were significant at p<0.05, p<0.01, and p<0.001 is shown Figure S7. No gene-set was 303 

significant in all 308 tumors and most gene-sets were insignificant in all tumors (Figure S7). For p<0.05, 304 

we examined the 10, 20, 40, 100, 200, 500 and 1000 highest ranked gene-sets and examined the 305 

stability of gene-set ranking when additional components were included (Figure S8). Increasing the 306 

number of components (from 1 to 5) increased the stability of gene set lists, however there was little 307 

additional gain after five components (Figure S9). Among the top 100 ranked gene-sets, few new gene-308 

sets were identified after five components (Figure 4B).  309 

Therefore we used moGSA to perform single sample GSA analysis with 1,125 gene-sets on an MFA of the 310 

mRNA and CNV BLCA data in which five components were retained. The number of significant gene-sets 311 

per patient (p<0.05) ranged from 183 to 595 and these contained both gene-sets with positive and 312 

negative GSS. To identify the number of BLCA molecular subtypes, we performed consensus clustering  313 

on the five components, which resulted in a three-subtype model (Figure 4B and Figure S10-13). We 314 

performed several experiments, to confirm that three subtypes was optimal particularly since between 315 

2 and 5 subtypes have been previously reported in BLCA [23]. Whilst consensus clustering analysis 316 

indicated high confidence in either two or three subtypes (Figure S10B-D), silhouette analysis (Figure 317 

S10E) suggested three subtypes. Stability analysis showed there was no effect when different 318 

resampling proportions (50%, 60%, 70%, 80% and 90%) were used in the inner and outer loop of 319 

consensus clustering (Figure S11). A recent report highlighted limitations in consensus clustering [26], 320 

and therefore in parallel, we also used the “prediction strength” algorithm, to discover the number of 321 

stable subtypes that can be predicted from the data [27] (see Methods). Data were divided into training 322 
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and test, and a KNN classifier was used to iteratively predict the class of each patient. Though no good 323 

choice of K existed (Figure S12), this had minimal influence on the final result, which clearly supported 324 

three subtypes (Figure S13). Therefore using two independent approaches, we determined that the data 325 

(5 components of the integrated analysis) supported three BLCA molecular subtypes.  326 

 327 

Figure 5 – CNV and mRNA data contribute unequally to defining subtype and gene-set scores. (A) Data-328 

wise decomposition of gene-set scores for “cell cycle process”. The bar plot shows the normalized mean 329 

of data-wise decomposed GSSs in each subtype (the black vertical line on the bars show the 95% 330 

confidence interval of the mean). (B) The bar plot shows the gene influential scores (GISs) of genes in the 331 

“cell cycle process” gene-sets. The expression of the top 30 most influential genes in the gene-set are 332 

shown in (C). (D-F) Same as (A-C) for “G protein couple receptor activity”. Gene names in (F) with 333 

asterisks indicate genes from CNV data. 334 

The three BLCA subtypes identified in our integrative analysis overlapped with the BLCA subtypes 335 

identified in previous studies (Table S2, Figure S14). Our integrative BLCA subtypes consisted of two 336 

larger subtypes C1, C2 containing 148 and 103 patients respectively, and a smaller group C3 with 57 337 

patients. The smaller subtype, C3, was the most robust (Figure S10E, S11). The integrative subtype C1 338 

harbored a high number of patients in the type III and IV of the TCGA subtypes, the infiltrated and SCCL 339 
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subtypes of the Sjödahl study [22] and the basal-like subtype identified by Damrauer (BH corrected p-340 

value < 0.05, Table S2) [24]. Subtypes C2 and C3 were more similar to the Damrauer luminal subtype. 341 

But, the C3 subtype contained more low grade tumors and showed a strong overlap with the UroA 342 

subtype of the Sjödahl study and type I of the TCGA subtype model. Subtype C2 tumors overlapped with 343 

the genomically unstable subtype defined by Sjödahl (Table S2). Accordingly, we observed higher 344 

mutation rate in the C2 patients (Figure S15). In single sample gene-set analysis with moGSA, C1 patients 345 

had more significant GSS (p<0.05) than C2 or C3 (Figure S16).  346 

To further characterize BLCA, we focused on gene-sets that were differentially regulated in most 347 

patients. There were 73 gene-sets that were significantly regulated (positive or negative GSS, p 348 

value<0.05) in 200 or more of the 308 patients (Table S3 and Figure S17). Alternatively a lower cutoff 349 

would include more gene-sets that are regulated fewer tumors, fewer gene-set could be selected using 350 

a lower p-value (p<0.01, 0.001) or a supervised analysis could be used to select GSS that most 351 

discriminate groups of tumors. Cluster analysis of the GSS matrix (73 selected gene-sets x 308 tumors) 352 

revealed 3 clusters of gene-sets. A large cluster of 51 gene-sets had positive GSS scores in C1 but 353 

negative scores in C2 or C3. Two smaller clusters of gene-sets of 16 and 6 gene-sets had positive GSS 354 

scores in C2 and C3 respectively (Figure S17).  355 

 The large C1 gene-sets cluster was dominated by 31 gene-sets with terms associated with “immune 356 

response” which had significant strongly positive GSS in the C1 basal-like/SCC-like BLCA subtypes. 357 

Associations between immune regulation and the basal-like cluster have been previously reported [22], 358 

The remaining 20 gene-sets in the C1 cluster of gene-sets included terms associated with “extracellular”, 359 

function, cell morphogenesis, migration and muscle cell development, “apoptosis” (2 gene- sets), and “G 360 

protein coupled receptor” (6 gene-sets) (Figure S17, S18) and EMT related gene sets (Figure S19), which 361 

recent reports that the Basal-like subtype tend to have more muscle-invasive and metastatic disease at 362 

presentation [22]. The remaining gene-sets could broadly be defined by biological processes of “cell 363 

cycle” (9 gene-sets) and “DNA repair and chromosome related” (7 gene-sets) which had high GSS in C2 364 

(and some C1) and “mitochondrion” (4 gene-sets) in C3. A heatmap of the GSSs of representative gene-365 

set of each category is shown in Figure 4C and S17. We found that most of these gene-sets have been 366 

associated with subtype of bladder cancer. Increased cell-cycle and DNA repair GSS were associated 367 

with the “genomically unstable” luminal C2 cluster [28] (Figure S14, S16). The mitochondrial component 368 

has been described in bladder cancer and other cancers previously [28, 29], our study particularly 369 

associated this function with C3 low-grade papillary-like subtype in BLCA. However other gene-sets may 370 
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be associated with C3 that were excluded when GSS were filtered to those that were broadly significant 371 

in 200 or more patients. 372 

The GSSs clearly distinguished the three BLCA molecular subtypes. The most significant gene-sets, 373 

“immune response” and “immune system process” have significant positive or negative GSS in 270 and 374 

265 of 308 patients respectively (Table S3). The median GSS for the gene-set “immune system process” 375 

was 0.82, -0.75, -0.61 in C1, C2 and C3 respectively (Figure S17, S18) indicating that immune related 376 

processes have high gene expression or CNV in the C1 subtype and much lower in C2 and C3. Next, we 377 

determined the importance of individual genes in each gene-set by calculating a gene influential score 378 

(GIS) using a leave-one-out procedure (see methods). The maximum GIS value for a gene in a gene-set is 379 

1, which indicates that gene contributes a high proportion of variance to the overall variance of the GSSs. 380 

A GIS close to 1 often suggests a high correlation between the gene expression value and GSS. Gene 381 

influential score of the gene-set immune system process in BLCA suggested that the top ranked genes 382 

included ITGB2, SPI1, DOCK2, LILRB2 and LAT2. Other highly ranked genes included drug target genes 383 

such as CD4, IL6, the interferon induced proteins IFITM2 and IFITM3 and the G protein coupled 384 

receptors GPR183 and CMKLR1 (Table S4). Top positive influencers in “regulation of apoptosis” were 385 

also related to the immune response, such as STK17A, ANXA5 and BCL2A1, STAT1, Serpin B, TGFB and 386 

ANXA1 (Table S4). Moreover, several epithelial to mesenchymal transition (EMT) related gene-sets, such 387 

as “collagen” (including COL6A3, COL1A1, COL5A1 and COL3A1), “extracellular matrix proteins” (e.g. 388 

glycoproteins SRGN and FBN1) and mesenchymal gene-sets were elevated in C1 (Figure S19; Table S4).  389 

The C3 subtype tumors had higher GSSs in mitochondrial related gene-set and lower expression of genes 390 

related to cell cycle process and DNA replication. GIS analysis suggested that two families of genes, 391 

NADH dehydrogenases (NDUFs) and mitochondrial ribosomal proteins (ABCC1/MRP) influenced the 392 

mitochondrial proteins (Table S4). 393 

To identify transcription factors (TF) that may regulate gene expression in the three tumor subtypes, we 394 

used transcriptional factor target (TFT) gene-sets to annotate the tumors. Similar to the selection of GO 395 

terms, we focused on TFT gene-sets with more than 200 significant GSSs across 308 patients (Table S2). 396 

The GSSs of the E2F family target gene-set were significantly different in most of the tumors and are 397 

particularly low for the C3 tumors. The rest of the four identified TFs were highly elevated in the C1 398 

subtype. Among them, we identified an MADS (MCM1, Agamous, Deficiens, and SRF) box superfamily 399 

member, SRF and several TFs associated with transactivation of cytokine and chemokine genes, 400 

including NFkB1, ETS1 and IRF1 (Figure 4D). The genes exhibiting the largest GIS in the IRF1 and NFkB1 401 
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target gene-sets include ACTN1, CXorf21, ICAM1, MSN, TNFSF13B, IL12RB1 and CDK6 (Table S5). Further, 402 

we examined the correlations between GSSs and the mRNA expression. All five TFs showed that the TF 403 

mRNA and GSSs are significantly correlated (Figure 4E, Figure S20). The boxplot of GSS with respect to 404 

subtypes in Figure 4C and D are shown in Figure S18,S21.  405 

In order to identify the contribution of each dataset, we decomposed the GSSs with respect to the 406 

datasets or components. Figure 5A shows the means of data-wise decomposed GSSs in each subtype for 407 

“cell cycle process”, where we found that mRNA expression strongly influenced the GSS, particularly the 408 

low GSS of the C3 subtype patients. The gene influential score (GIS) analysis supports this finding as the 409 

top 30 most influential genes are all based on mRNA expression (Figure 5B), including RACGAP1, DLGAP5, 410 

FBXO5, AURKA, KERA (CNA2) and CDKN3 (Figure 5C). By contrast, both CNV and mRNA data influenced 411 

the gene-set “G protein coupled receptor activity” (Figure 5D) and the GIS analysis shows that the most 412 

influential genes include those from both mRNA and CNV data (Figure 5E). However, the CNV and mRNA 413 

expression patterns in the C3 subtype shows a clear difference for this gene-set (Figure 5F). Top gene 414 

influencers of “G protein couple receptor activity” included CNV of GRM6, NMUR2, PDGFRB and 415 

adrenergic receptors, the gene expression of ADGRL4 (ELTD1), CMKLR1 and PDGFRB (Figure 5F). In 416 

addition, the data-wise decomposition of GSS identified several GSSs that were only contributed by the 417 

mRNA data, including the immune system process, DNA replication and mitochondrion gene-set (Figure 418 

S21).  419 

Discussion 420 

In this paper, we introduced a new multivariate single sample gene-set analysis approach, moGSA that 421 

enables discovery of biological pathways with correlated profiles across multiple complex datasets. 422 

moGSA uses multivariate latent variable analysis to explore correlated global variance structure across 423 

datasets and then extracts the set of gene-sets or pathways with highest variance and most strongly 424 

associated with this correlated structure across observations. By combining multiple data types, we can 425 

compensate for missing or unreliable information in any single data type so we may find gene-sets that 426 

cannot be detected by single omics data analysis alone [4].  427 

moGSA uses the maximum variance of the concordant structure across of datasets to calculate the 428 

gene-set scores for each observation. This is fundamentally different from other gene-set enrichment 429 

analysis methods which use a ‘within observation summarization’ such as the mean or median of gene 430 

expression of genes in a gene-set. It has several characteristics that make it attractive for data 431 
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integration. First moGSA uses MFA, a multi-table extension of PCA to reduce the complexity of the 432 

original data by transforming high dimensional data to a small number of components (latent variables). 433 

The components with highest eigenvalues (largest variance) capture the most prominent structure 434 

among the different datasets. Excluding components with low variance may strengthen the signal-to-435 

noise ratio of data, as it reduces low variant, noise or artifact variance [30, 31]. In moGSA, the entire set 436 

of features from each platform is decomposed onto a lower dimension space. The linear combination of 437 

feature loadings is used in the calculation of the gene-set scores. Features that contribute low variance 438 

contribute little to the score and thus the dimension reduction within moGSA comes with an intrinsic 439 

filtering of noise. The advantages of intrinsic variance filtering of features can be clearly seen when we 440 

applied moGSA to simulated data. moGSA outperformed ssGSA approaches including ssGSEA and GSVA 441 

which do not include a noise-filtering component. Second, data integration of features is achieved at the 442 

gene-sets level rather than scoring individual features. This greatly facilitates the biological 443 

interpretation among multiple integrated datasets. There is no requirement to pre-filter features in a 444 

study or map features from different datasets to a set of common genes. Therefore, moGSA can be used 445 

to compare technological platforms that have different or missing features. 446 

There is great potential for applying multi-table unsupervised GSA approaches for discovery of new 447 

subtypes and pathways in integrated data analysis of complex diseases such as cancer. In this study, we 448 

applied moGSA in combination with clustering analysis. Dimension reduction approaches such as moGSA 449 

and MFA are well suited to cluster discovery data because these approaches consider the global 450 

variance in the data and as such are complementary to hierarchical or k-means clustering approaches 451 

which focus on the pair-wise distance between observations [31-33].  452 

The number of components is an important input parameter to consider when applying moGSA to gene-453 

set analysis or cluster discovery. Similar to PCA, the optimal number of MFA components may be 454 

assessed by examining the variance associated with each component. The first component will capture 455 

most variance and the variance associated with subsequent component decreases monotonically. Scree 456 

plots (Figure 2C, 4A) may be used to visualize if there is an elbow point in the eigenvalues, allowing one 457 

to select the components before the elbow point. Alternatively one may select the number of 458 

components that capture a certain proportion of variance (50%, 70%, etc). In addition, one may include 459 

components that are of biological interest. For example, in the iPS ES example, there is a clear biological 460 

meaning in the third component (ES vs iPS cell line). In analysis of the BLCA data, we examined a range 461 

of components (1-12), and show that there is little gain of information once a minimum number of 462 
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components with high variance are included (Figure 4B). In addition, the variance of retained 463 

components should not be dominated by one or a few datasets. To facilitate biological interpretation of 464 

components, the GSS could be decomposed with regard to components. In the BLCA example, the 465 

second and forth component are largely contributed by CNV, whereas mRNA is more important in 466 

defining the third and fifth components. Including five components ensured that both datasets 467 

contributed relatively similar variance to the global variance. 468 

An issue might arise with latent variables analysis if components with the large variance capture 469 

information unrelated to biological variance [30], such as technical artifacts or batch effects. In practice 470 

this is rare in MFA, because it focuses on components that capture global correlation among all datasets.  471 

Often batch effects are specific to a platform and thus a component that captures information that is 472 

entirely uncorrelated to the global structure will be omitted from the set of highly variant integrated 473 

components.  However it is still wise to perform careful batch effect control, especially in the large scale 474 

omics studies. A more detailed description of batch effect detection is described in [34].  475 

Another consideration when applying moGSA, is that it is most efficient in detecting gene-sets that have 476 

broad correlation patterns among data types. It may fail to discover gene-sets with few genes, 477 

particularly if they had low variances on the selected components.  478 

 479 

  480 
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Methods 481 

moGSA algorithm 482 

Input data and gene-set annotation matrix 483 

The inputs to moGSA are pairs of multiple matrices (XK, GK). XK is a set of matrices, denoted X1, ..., Xk, … 484 

XK, where K is the total number of quantitative matrices. Matrix Xk is a pk×n matrix of quantitative omic 485 

data, which contains pk rows of features (e.g. genes) measured over the same n observations. Each of 486 

the matrices X1, …, XK has a corresponding gene-set annotation matrix, G1, ..., Gk, …, GK. The gene-set 487 

annotation matrix Gk is a pk×m binary incidence matrix of gene to gene-set membership associations, 488 

where m is the number of gene-sets. The element gk[i,j] in Gk has the value 1 if the ith feature is a 489 

member of the gene-set j and 0 otherwise. Gk is constructed using predefined gene-set information such 490 

as the Gene Ontology [35, 36] GeneSigDb [37] or MSigDB [38]. 491 

 492 

moGSA step 1 multivariate integration 493 

The first step of the moGSA involves data integration with a multiple table multivariate analysis method. 494 

In this study, we use MFA because of its simplicity and computational efficiency. MFA can be viewed as a 495 

generalization of principal component analysis (PCA) for a multi-table problem [20]. We briefly describe 496 

MFA using the nomenclature of Abdi et al. 2013 [20].  497 

When integrating multiple data matrices, one must decide if all datasets should have equal weights, or if 498 

some data are “more important”, for example those with higher quality, fewer features, higher variance, 499 

etc. Simple tensor decomposition approaches, or PCA on a concatenated matrix, give every dataset 500 

equal weights and results are often dominated by the matrix (or matrices) with the large variance or 501 

most features. To correct for this, MFA weights datasets by dividing each by their first eigenvalue. The 502 

weight of each matrix is expressed as 503 

2

1,

1

k

k


   (1) 

Where 2

1k， is the first singular value of data matrix Xk. For convenience, the weights of matrices are 504 

stored in a diagonal matrix A, whose diagonal elements are  505 

  ],,,,[}diag{,},diag{,},diag{}diag{
T

111

TT
111AAAA KKkkKk     (2) 
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The transpose of a matrix is denoted by superscript T. 1k
T is a vector of 1 in the length of pk. As a result, A 506 

is a p×p diagonal matrix, the diagonal elements of A representing the weight of features in X1, ..., Xk. 507 

Similarly, the weight of each observation is an n×n diagonal matrix, M. In the present study, we use 508 

mii=1/n, namely, all observations are equally weighted.  509 

We then transpose and concatenate all Xk to a complete pxn matrix ( ): 510 

TTTT

1 ]|...||...|[ Kk XXXX   (3) 

After deriving the matrix weights, observation weights and the concatenated matrix, MFA is reduced to 511 

an analysis of the triplet (X, A, M). The solution of the problem is given by generalized singular value 512 

decomposition (GSVD): 513 

TT
QPX  with the constraint that IAQQMPP  TT  (4) 

 X is transpose so that P is a n×r matrix, Q is a p×r matrix, Δ is an r×r square matrix, the maximum 514 

number of r is the rank of X. The components of MFA, F, are given by 515 

PΔF   (5) 

where F has the same dimension as P. In the PCA framework, the matrix P contains the PCs or latent 516 

variables. We also call it sample space in this paper. The column vectors in P may be plotted on a two 517 

dimensional space to visualize the contribution of each observation to the variance captured by each PC. 518 

The matrix Q is the loading matrix or gene space. Because X is a concatenation of multiple matrices, the 519 

gene space matrices Q1, ..., Qk may also be concatenated or partitioned in the same manner, namely,  520 

TT
QQQQ ]||||[ TT

1 Kk   (6) 

 521 

moGSA step 2 project gene-set annotation matrix as supplementary data 522 

Different gene-sets have different candidate genes, therefore, in order to facilitate the comparison of 523 

gene-set score across gene-sets, we normalized the gene-set annotation matrix so that the sum of each 524 

column in G equals 1, that is, 525 




i

ji

ji

ji
g

g
g

],[

],[

],[
ˆ

ˆ
ˆ  

(7) 


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where ],[
ˆ

jig  is the elements on the ith row and jth column in the normalized gene-set annotation matrix526 

Ĝ . The gene-set score calculated using un-normalized gene-set annotation matrix for gene-sets in 527 

Figure 3 and 4 are shown in Figures S22 and S23.  528 

Next, we project the annotation matrix as supplementary data [35] to generate the gene-set space 529 

matrix Wk (m×r), which is calculated as a product of the normalized gene annotation matrix and loading 530 

matrix. 531 

AQGW
Tˆ  where 

TTTT

1 ]ˆ||ˆ||ˆ[ˆ
Kk GGGG   (8) 

Ĝ is the grand annotation matrix with dimension p×m. The overall gene-set space W (m×r matrix) could 532 

also be expressed as the sum of individual 𝐺𝑘 and Qk , that is, 533 





K

k

k

1

WW where kkkk QAGW
Tˆ  (9) 

 534 

moGSA step 3 reconstruction of gene-set-observation matrix 535 

The main output of MOGSA is a gene-set score (GSS) matrix, denoted by Y, whose rows are m gene-sets 536 

and columns are n observations. It is calculated as 537 

][TT][][T][][][T ˆˆ RRRRRR
AXGFWPΔAQGY   (10) 

where Q[R] and P[R] are the gene space and observation space within top R components. 
][ RΔ  is the 538 

diagonal matrix containing top R singular values. As a result, X[R] is the reconstruction of X using top R 539 

components. In practice, it is interesting to evaluate the contribution of a dataset or a component to the 540 

overall gene-set score. Therefore, we decompose gene-set scores with respect to data sets and 541 

components. The GSS matrix for dataset Xk and component r is calculated as 542 

Tr

k

r

k

r

k FWY   (11) 

we use superscript r to indicate the rth component and the subscript k to indicate the kth matrix (Xk). 543 

Similarly, 
r

kW denotes the rth dimension of gene-set space of matrix Xk, 
r

kF is the rth component of the 544 

sample space. The outer product of the two vectors results in a GSS matrix for a specific components 545 

and dataset. Consequently, the overall gene-set score for component r (i.e. component-wise 546 
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decomposed gene-set scores) is the sum of the gene-set score matrix of the components across all 547 

datasets, that is, 548 





K

k

r

k

r

k

k

r

k

r

1

T
FWYY  (12) 

Similarly, the overall gene-set score matrix by a single dataset (i.e. data-wise decomposed gene-set 549 

scores) is the sum of the matrices by all the components retained. 550 
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Therefore, the contribution of an individual dataset and/or component may be calculated. Finally, the 551 

complete gene-set score matrix is given by 552 
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which is the sum of all contributions by individual components and dataset. In practice, only the 553 

components with greatest variances (highest eigenvalues) should be retained in the analysis. If all 554 

components are retained, the result would be similar or exactly the same as naïve matrix multiplication 555 

(NMM; see later).  556 

Evaluation of the significance of gene-set scores (calculating p-values) 557 

The expression (7) and (10) say that, for each observation, a gene-set score could be viewed as the mean 558 

of gene expression (in the reconstructed expression values X[R]) of genes in a particular gene-set.  559 

If the candidate genes in a gene-set are randomly drawn from all features in X[R] (null hypothesis), the 560 

distribution of the means of selected genes is given by central limited theorem (CLT), 561 

),(~ xNx  with 
h

cx


   (15) 

Where 𝜇 is the mean of a column (observation) in X[R], 
x  is the sampling standard deviation of means, 562 

  is the standard deviation of the column in X[R]
, h is the number of candidate genes mapped to X in a 563 

gene-set and )1/()(  phpc  is the finite population correction factor (p is the number of features in 564 

X). It is used since each gene was only selected once in one gene-set.  565 
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Gene influential score 566 

Gene-sets are composed of genes, and therefore we calculate the contribution of each feature to the 567 

GSS, as it is interesting from a biological point of view to identify “driver” genes in a gene-set. In moGSA, 568 

feature contribution, denoted by gene influential score (GIS), is calculated via a leave-one-out procedure. 569 

The GSS of gene-set i, , for all the observations are  570 

][T

][][
ˆ R

ii AXGY   (16) 

where ][
ˆ

iG  is the gene-set annotation vector for gene-set i. Correspondingly, the gene-set score for ith 571 

gene-set excluding gene g is  572 

][T

][][
ˆ Rg

i

g

i AXGY
   (17) 

Where 
g

i



][Ĝ  is the gene-set annotation vector for gene-set i but without gene g. The influence of the 573 

gene g is measured by 574 
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ig

i
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sd
E

Y

Y


  (18) 

where )(sd  stands for the function of calculating standard deviation. For convenience, the feature 575 

influential score then is rescaled, such that the gene with maximum influence always equals 1. Therefore, 576 

a positive
g

iE ][ suggests that gene g tends to have a positive correlation with gene-set score of gene-set I, 577 

whereas a gene with a negative value tends to have a negative correlation.  578 

Data simulation 579 

We simulated 100 multiple ‘omics data projects. Each simulated dataset was a triplet (K=3) containing 580 

three data matrices (Figure S1), each matrix had the dimension 1000×30, representing 30 matched 581 

observations (n=30) and 1,000 features (pk=1,000). Each of dataset of features had an annotation matrix, 582 

which assigned each feature to one of 20 non-overlapping "gene-sets". The binary annotation matrix 583 

had dimensions 1,000 features × 20 gene-sets. Each gene-set contained 50 genes.  584 

The 30 observations were defined by 6 equal sized clusters with 5 samples per cluster.  585 

In each observation, 5 out of 20 gene-sets were simulated as differentially expressed (DE). Within the 586 

same cluster, the same set of DE gene-sets were randomly selected as we assume that differentially 587 

expressed (DE) gene-sets define the difference between clusters and observations. For a DE gene-set, a 588 

][iY
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number of genes were randomly simulated as DE genes (DEG), denoted as DEGj. Random selection of 589 

DEGs means that the DEGs in different datasets may overlap. In different simulations (Figure 2) we 590 

varied the number of DEGs per gene-set (eg 5, 10 and 25 out of 50) or mean signal to noise ratio. 591 

We used the following linear additive model adapted from [16], the expression or abundance of gene on 592 

ith row and jth column is simulated as 593 

ijijliijx    (19) 

where i = 1, …, p is gene specific effect. ),0N(~ sl    is the cluster effect. For observations 594 

belongs to the same cluster l, the same 
l was applied. The cluster effect factor (categorical variable) is 595 

introduced following the hypothesis that observations from the same clusters are driven by some 596 

common pathways or “gene-sets” and ensures that observations from the same cluster have a higher 597 

within than between cluster correlation. The six correlated clusters in the simulated data are captured 598 

by first five components. We adjust the variance of each cluster, so that different variance would be 599 

captured by the top five components. The cluster effect ),0N(~ sl   is sampled from a 600 

distribution with a mean of 0 and standard deviation s. The standard deviation (s) adjusts the correlation 601 

between observations in the same cluster, and thus each cluster can have different variances. In this 602 

study, we set s = 0.3, 0.5 and 1.0, which lead to 25%, 30% and 50% of total variance are captured by the 603 

top 5 components. )1,0N(~    is the noise factor. γij is a factor, if a gene is differentially 604 

expressed (DE): 605 









otherwise

DEGiifm j

ij
0

)1,N(~ 
  (20) 

Apart from the retained variance, two other parameters are tuned in the simulation study. First is the 606 

number of DEGs in a DE gene-set (5, 10 and 25 out of 50 DEGs). The second parameter is different 607 

signal-to-noise ratio, which is tuned through modifying m in (20). The candidate m are 0.3, 0.5 and 0.8 608 

standing for low, medium and high signal-to-noise ratio. In total, 100 projects of triplet datasets were 609 

generated. The three matrix triplets were analyzed by moGSA. NMM, GSVA and ssGSEA, only accept one 610 

matrix as input; therefore the three simulated matrices in one triplet set were concatenated. The 611 

performance was assessed by the area under the ROC curve (AUC).  612 
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Data 613 

Downloading and Processing of Bladder Cancer TCGA data 614 

Normalized mRNA gene expression, copy number variation (CNV), microRNA (miRNA) expression data 615 

and clinical information of BLCA were downloaded from TCGA (Date: 26/09/2014) using TCGA assembler 616 

[39]. The processed mRNA gene expression had been obtained on the Illumina HiSeq platform and the 617 

MapSplice and RSEM algorithm had been used for the short read alignment and quantification (Referred 618 

as RNASeqV2 in TCGA) [40, 41]. The gene level CNV was estimated by the mean of copy number of 619 

genomic region of a gene (retrieved by TCGA assembler directly). Patients that were present in both 620 

gene expression and the CNV data were included in the analysis (n=308).  621 

Before applying moGSA, minimal non-specific filtering of low variance genes was performed on both 622 

datasets. RNA sequencing data (normalized count + 1) were logarithm transformed (base 10). Genes 623 

were filtered to retain those with a total row sum greater than 300 and median absolute deviation (MAD) 624 

greater than 0.1, which retained 14,692 unique genes (out of 20,531 genes). Then, RNA-seq gene 625 

expression data were median centered. For the CNV data, genes with standard deviation greater than 626 

the median were retained.  627 

Genome instability in TCGA BLCA tumors 628 

GISTIC2.0 [42] data for copy number gains/deletion in 24,776 unique genes were downloaded from 629 

TCGA firehouse (http://gdac.broadinstitute.org/; download date 2015-03-09). The GISTIC encodes 630 

homozygous deletion, heterozygous deletion, low-level gain and high-level amplification as -2, -1, 1 and 631 

2 respectively. The four types of events were counted for each of the patients. The total number of 632 

events were calculated by sum all four types of events. 633 

Downloading and Processing of the iPS ES 4-plex data 634 

The transcriptomic (RNA-sequencing), proteomic and phoshphoproteomics data were downloaded from 635 

Stem Cell-Omic Repository (Table S1, S2 and S5 from http://scor.chem.wisc.edu/data.php) [21]. In this 636 

study, we used the 4-plex data, which consists of 17347 genes, 7952 proteins and 10499 sites of 637 

phosphorylation in four cell lines. For the transcriptomics data, the expression levels of genes were 638 

represented by RPKM values. Three replicates were available and we used the mean RPKM value of the 639 

three replicates. Genes with duplicated symbols and low expression (summed RPKM < 12) were 640 

removed. The iTRAQ quantification of protein and phosphorylation sites were performed by TagQuant 641 

[43], as describe in [21]. The protein and sites of phosphorylation with low intensity (summed intensity 642 
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<20) were removed. In the proteomics data, proteins that are not mapped to an official symbol were 643 

removed. Finally, all the data were logarithm transformed (base 10). After filtering, 10,961, 5817 and 644 

7912 features were retained in the transcriptomic, proteomic and phosphor-proteomic datasets. A few 645 

missing values still present and replaced with zero. The enrichment analysis was done on the gene 646 

symbol levels, the specific phosphorylation sites were not considered.  647 

Sources of Gene-set annotation 648 

Gene-sets from the Molecular Signature Database MSigDB (version 4.0) [38] were used in this analysis. 649 

The following MSigDB categories were included; MSigDB C2 curated pathways, C3 motiff pathways 650 

which included the transcription factor target (TFT) target gene-set and C5 gene ontology (GO) gene-sets 651 

which included biological process (BP), cellular component (CC) and molecular function (MF) GO terms.  652 

Among GO gene-sets, there were 825, 233 and 396 gene-sets in the BP, CC and MF categories 653 

respectively. There were 617 TFT gene-sets. The pathway databases, Biocarta, KEGG and Reactome had 654 

217, 186 and 674 gene-sets respectively. We excluded gene ontology terms that have more than 500 655 

genes and less than 5 genes mapped to datasets. For example, in the BLCA analysis, gene-sets (1,454 in 656 

total) were filtered to exclude those with less than 5 genes in a list of the concatenated features of CNV 657 

and mRNA data resulting in 1,125 retained gene-sets. 658 

Other GSA methods (including NMM) 659 

Single gene-set method, including GSVA and ssGSEA methods were implemented using the 660 

R/Bioconductor package GSVA [16]. Default settings were used for these methods. Naïve gene-set score 661 

Ynaive was calculated through matrix multiplication (NMM).   662 

XGY
Tˆnaive  (21) 

Therefore, the result of NMM is exactly the same as moGSA if all of the axes are retained. 663 

Clustering latent variable 664 

Consensus clustering was used [44, 45] to cluster the top five latent variables with Pearson correlation 665 

distance and Ward linkage for the inner loop clustering. Eighty percent of patients were used in the re-666 

sampling step of clustering. In addition, different percentages of patients in the resampling were 667 

evaluated. The results suggested the subtype model is robust with regard to different percentages of 668 

samples used in resampling (Figure S20). Average agglomeration clustering was used in the final linkage 669 

(linkage for consensus matrix) [44].  670 
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Prediction strength to determine the optimal number of subtypes 671 

We used the “prediction strength” algorithm to assess the number of subtypes that can be predicted 672 

from the data [22]. In prediction strength method, all samples were assigned a “true” subtype label 673 

according to the clustering obtained from a given number of clusters. Then, the patients were then 674 

divided into “training” and “testing” sets. KNN classifier was used to classify the patients in testing set. 675 

Cross-validation suggested that there is no obvious good choice of K (Figure S21), but the number of K 676 

does not have a big influence on the result (figure S22). We finally selected to use 9 nearest neighbors 677 

(the middle of evaluated numbers). For each test, the agreement in assignment between predicted and 678 

true labels were computed. The prediction strength is defined by the lowest proportion among all the 679 

subtypes. It indicates the similarity between the true and predicted labels and ranges from 0 to 1, where 680 

a value > 0.8 suggests a robust subtype classification [22]. Therefore, the model with the greatest 681 

number of subtypes and prediction strength > 0.8 can be considered “optimal”. In this study, we 682 

performed 100 random separations of training and testing sets and the prediction strength of each 683 

randomization was calculated. 684 

  685 
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List of Abbreviations 686 

ANOVA – analysis of variance 687 

AUC – area under the ROC curve 688 

BLCA – bladder cancer 689 

BP – biological process 690 

CC – cellular component 691 

CCA – canonical correlation analysis 692 

CIA – co-inertia analysis 693 

CLT – central limited theorem 694 

DE – differentially expressed 695 

DEGS – differentially expressed gene-set 696 

EMT – Epithelial to mesenchymal transition 697 

GIS – gene influential score 698 

GO – gene ontology 699 

GS – gene-set 700 

GSA – gene-set analysis 701 

GSEA – gene-set enrichment analysis 702 

GSS – gene-set score 703 

MAD - median absolute deviation 704 

MCIA – multiple co-inertia analysis 705 

MF – molecular function 706 

MFA – multiple factorial analysis 707 

MVA – multivariate analysis 708 
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NMM – naïve matrix multiplication 709 

PCA – principal component analysis 710 

ROC - Receiver operating characteristic 711 

SVD – singular value decomposition 712 

TCGA – the cancer genome atlas 713 

TF – transcriptional factor 714 

TFT – transcriptional factor target  715 
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