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Abstract

In HIV patients, the set-point viral load (SPVL) is the most widely used predictor of dis-
ease severity. Yet SPVL varies over several orders of magnitude between patients. The
heritability of SPVL quantifies how much of the variation in SPVL is due to transmissi-
ble viral genetics. There is currently no clear consensus on the value of SPVL heritability,
as multiple studies have reported apparently discrepant estimates. Here we illustrate that
the discrepancies in estimates are most likely due to differences in the estimation meth-
ods, rather than the study populations. Importantly, phylogenetic estimates run the risk
of being strongly confounded by unrealistic model assumptions. Care must be taken when
interpreting and comparing the different estimates to each other.


https://doi.org/10.1101/046797
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/046797; this version posted April 3, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Searching for set-point viral load heritability in HIV infection

During the asymptomatic phase of HIV infection, the viral load within a patient fluctu-
ates around a relatively stable value known as the set-point viral load. Set-point viral load
(SPVL) has proven to be highly relevant, as untreated patients with higher SPVL tend to
progress to AIDS faster than those with low SPVL, and consequentially SPVL is one of the
most widely used predictors of disease severity [1, 2]. What is particularly striking, how-
ever, is the amount of variation in SPVL between patients: SPVL varies over several orders
of magnitude between patients [1, 3-5]. Understanding the source of this wide variation in
SPVL in the patient population is key to understanding HIV pathogenicity and why certain
patients progress to AIDS rather quickly, while others progress much more slowly or not
at all.

'The potential contributions to SPVL variation can generally be split into four categories,
determined by:

(i) the specific genetic viral variant that infects a host;

(ii) the host genetics;

(iii) any interactions between host and viral genetics;

(iv) other extrinsic factors independent of host and viral genetics.
From a virus-centric view, we can group contributions (ii)-(iv) together, and hence the ques-
tion becomes to what degree the variation in HIV genetics explains the variation in SPVL
in the patient population, and by proxy how much viral genetics control the variation HIV
pathogenicity.

New HIV infections can occur after a virus is transmitted from a donor host to a recip-
ient host. Thus, from an evolutionary point of view, viral genetic information is passed on
and conserved from one infection to the next, whereas donor and recipient host genetics
are typically unrelated. In evolutionary theory, the concept of heritability quantifies pre-
cisely the question at hand [6]: How much of the observed variation in a trait is explained
by variation in the genetics that are passed on to the next generation? A heritability of
100% means that all of the trait variation is explained by transmissible genetic informa-
tion, while a heritability of 0% means that transmissible genetics explain none of the trait
variation. A number of recent publications have reported heritability estimates based on
different methods that range from as low as 5% to as high as 50% [7-14]. These studies
used partly different methods to estimate heritability, depending on the available data. The
crucial question thus arises as to whether these discrepant estimates reflect true differences
in the study populations, or whether the differences may rather be artifacts of the estimation
method used.

Every statistical model comes with a set of assumptions that must be fulfilled in order
for the results to be meaningful. Here, we aim to illustrate how some of these estimates of
heritability might be confounded by model assumptions that do not completely conform to
the dynamics of HIV transmission. Nevertheless, even when the assumptions are fulfilled,
the choice of estimation method alone can potentially lead to difterences in the heritability
estimates.
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Estimating the heritability of a viral trait

'The concept of heritability was initially developed to measure the degree of correspondence
between the trait value in an offspring and the trait value of its parents, and can be traced
back to Galton [15], though the first use of the term “heritability” remains elusive [16].
Most of the credit for developing the methods to estimate heritability go back to Fisher [17]
and Wright [18], although the common contemporary use corresponds to “narrow sense
heritability” as defined by Lush [19]: Heritability is the ratio of additive genetic variance,

(ng, and the sum of additive genetic and environmental variance, 02,ina population,

2
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where the total phenotypic variance, (Té

= (7§ + 02, is the sum of all contributions to
variance. Heritability can then be estimated from data of related individuals (e.g. parents
and their offspring) using regression methods [6, 17, 18].

Analogous to these methods that were developed for sexually reproducing individuals,
the trait variance of clonally reproducing organisms (such as viruses) can be partitioned into
variance components. In viral infections, only the virus genotype is passed on from one
infection to the next, and thus the heritability of a viral trait as defined by h? can be used
to quantify the relative influence of the variation in transmissible viral factors to the trait
of interest in a population [8, 20]. While the general framework of partitioning trait vari-
ance is the same in sexual and clonal populations, the underlying processes that generated
the observed variance are different. Thus, although the methods to estimate heritability in
sexual populations can generally be directly applied to viral heritability, care must be taken
when evaluating the applicability of the methods.

Furthermore, whenever heritability is estimated, it is also important to remember that
even though h? can be used to characterize the propensity of virus genetics to influence a
trait, the actual measured heritability depends on both the expressed variation of this trait in
a given population, as well as the variation in other factors that influence the trait. Therefore,
h? strongly depends on the population it is measured in, and can consequently vary between
study populations. This does not invalidate the usefulness of measuring #2, but rather means
that predictions on the basis of h? are primarily valid in the study population at hand and
care must be taken when using 2 for predictions in other populations.

Parent-offspring regression

Parent-offspring regression is tightly linked to the original definition of heritability and is
thus the most straightforward estimation method [17, 18]. 'The idea is to compare trait
values in parents to trait values in their respective offspring, or in the case of viral infections
compare traits from donors and recipients within transmission pairs. The applicability of
“donor-recipient” regression (DR) in the context of viral heritability has been recently re-
viewed in Fraser ez al. [8]. In short, DR assumes that viral traits are imperfectly passed on
from one infection to the next and determines the predictive ability of SPVL in a donor
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of SPVL in the recipient. Differences in SPVL between donors and recipients must then
either be due to non-viral genetic effects of type (ii)-(iv), or due to genetic changes that
accumulate as a result of intra-host evolution or genetic bottlenecks at transmission [20].
Viral heritability of SPVL is then the regression slope of recipient SPVL on donor SPVL,
akin to parent-offspring regression [6].

'The biggest difficulty in estimating heritability using donor-recipient regression lies in
observing direct transmission between pairs. Currently, the best source of such transmission
pairs are discordant couple study cohorts [8]. But even then, there is the possibility that
infection of the seronegative partner occurred from an unknown third-party. Furthermore,
such studies are restricted to specific study populations that may not be representative of the
general global HIV epidemic. Non-independence between different donor-recipient pairs
such as a mutual infector of the donors may further distort estimates.

Phylogenetic methods

To overcome the shortage of appropriate study populations, considerable hope has been
placed in estimating heritability from much more easily available sequence information us-
ing phylogenetic methods. Various phylogenetic methods have previously been employed
to estimate the heritability of SPVL [7, 9, 21]. All of these methods have been developed
in the context of ecological species and have yet to be validated for use on viral popula-
tions. The methods used include non-parametric estimates of phylogenetic signal [22], as
well parametric regression methods such as independent contrasts [23], the phylogenetic
mixed model [24], and Pagel’s A [25]. Non-parametric methods can be indicative of the
level of signal in a dataset, but are generally less useful when the goal is a quantitative es-
timate of heritability. The parametric regression methods are in essence an extension of
donor-recipient regression that can be applied to datasets where the relation between indi-
viduals goes beyond parents and offspring or direct transmission pairs. A consequence of
this extension is that a process model is required that links the observed genetic differences
to the number of transmission events and the time subjected to intra-host evolution. All of
the above methods assume that the genetic differences accumulate neutrally through time,
irrespective of the number of transmission events or selection on the trait of interest, which
generally is not the case for HIV. Hence, the reported estimates must therefore be inter-
preted together with such model assumptions. Despite being developed from difterent first
principles, in certain cases Pagel’s A is equivalent to the Phylogenetic Mixed Model (Box
1). In the following sections we thus only consider the Phylogenetic Mixed Model (PMM),

the most generic and appropriate method for viral heritability estimation.

Heritability estimation in simulated populations

In order to illustrate the effects of incorrect model assumptions about the evolutionary pro-
cess underlying the phylogenetic methods, we compare the different estimation methods
using mock data from simulations (Fig. 1). While simulated data have previously been
used to validate the respective heritability estimates for SPVL in HIV [7, 9, 26], the sim-
ulation models differ between publications and generally do not adequately represent key
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Figure 1: Estimating heritability in a simulated Wright-Fisher population. (a) At transmission, only the genetic contribution
to SPVL is passed on from donor to recipient. Differences in host contribution result in differences in SPVL between donors and
recipients with the same genetic contribution. (b) At every generation, parents are chosen from the previous generation. The
circle size of each individual is representative of its trait value. The genetic component (yellow circles) is passed on to the offspring
including potential genetic changes due to intra-host evolution. The red lines show the full ancestry of the individuals in the last
generation. (c) The distribution of the trait in the population may change from generation to generation and is shown for two
particular generations. The heritability in a population at a specific generation time is the genetic variance divided by the trait
variance. (d) Alternatively, the heritability in the final generation can be estimated using either a donor-recipient regression or a
phylogenetic method.

aspects of the evolution of SPVL across infections. Here, we use a simple previously pub-
lished model for HIV transmission across many generations in a Wright-Fisher population
that accounts for transmission bottlenecks and intra-host evolution [20].

An individual’s log SPVL is assumed to be a linear combination of both a transmissible
component, g, and a non-transmissible component, e, such that SPVL of individual i at
generation f is ¢;(t) = g;(t) + e;(t). For each individual 7 in the subsequent generation, a
donor, d(i), is chosen from the current generation, either uniformly (drift) or based on their
value of SPVL (selection). The genetic contribution of the donor is then transferred from to
the recipient, gi(f +1) = g4;)(t), including an potential additional change due to intra-
host evolution that follows a normal distribution with variance 02. Because the population
is finite, there is a generation T at which the whole population will have descended from the
same individual (Fig. 1), and the phylogeny or pedigree of the population can be traced back
to the common ancestor. Thus we can compare heritability estimates in this final generation
obtained using DR regression or the PMM.

We first consider the case where SPVL does not influence the likelihood of transmission,
and hence there is no selection on SPVL between hosts, since this is a key assumption
underlying the PMM. Note that the distribution in the genetic contribution to SPVL
may still change from generation to generation due to drift. The heritability estimated by
donor-recipient regression is consistent with the fraction of variances in the final generation,
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h? = (Té(T) / (T(I%(T) (Fig. 2a). Heritability estimates found using the PMM, however, do
not estimate the ratio of variances, but rather the amount of genetic variance that would be
expected from a drift process that has run for T generations, with an increment in variance
per generation, (Tiz, equal to that produced by intra-host evolution (Fig. 2b). The expected
amount of genetic variance at generation T thusis (7§ = T ¢?, which is generally not equal to
the variance estimate in the final generation. In addition to estimating differing quantities,
PMM also strongly underperforms in in precision compared to DR regression when only a
fraction of the population is sampled (Fig. 2c).

Next we consider the case where SPVL influences the likelihood of transmission of an
individual, as is known for HIV [5]. We compare both the PMM and DR to the popula-
tion heritability, i.e. the fraction of variance components, as there is no equivalent process
based interpretation of heritability for a non-neutral trait. Because DR regression only de-
pends on a single transmission event, the estimate is robust to the selection of donors based
on SPVL (Fig. 2d; see also [8]). Heritability estimates obtained using the PMM gener-
ally break down if the population evolved under selection on the trait of interest. This can
lead to an unpredictable underestimation or overestimation bias, and also misleading nar-
row confidence intervals (Fig. 2d). Such overconfidence in biased estimates is typical of
fitting parametric models. A certain parameter value might very clearly give the best fit of
the underlying process to the data and hence that parameter value has narrow confidence
intervals. However, the actual model process might still be a poor fit to the data. For a
population evolving under selection on the trait of interest, this generally leads to an un-
derestimation of the genetic contribution to variance, (Tg, when using the PMM (Fig 2e).

However, depending on the esimate of the overall variance, 02, under the PMM (Box 1),
this unpredictably leads to either overestimation or underestimation of heritability under

the PMM (Fig 2d).

Comparing donor-recipient and phylogenetic estimates

As we have illustrated, estimates from DR regression and the PMM cannot be immedi-
ately compared to each other. Donor-recipient regression estimates the heritability in the
current population under the assumption that all individuals are independent. This corre-
sponds to calculating the sample variance of the genetic contributions of all individuals in
the populations, and dividing by the sample variance of the phenotype of all individuals in
the population. It is therefore a measure of the sampled population at the current point
in time, irrespective of the evolutionary history. In this sense, donor-recipient regression
is robust to variations in the evolutionary model that generated the genetic variance in the
population. The phylogenetic mixed model estimates the process heritability under the as-
sumption that the genetic contribution to the variance in the population increased linearly
through time, i.e. through drift. This corresponds to calculating the expected variance in a
population that has evolved from a common ancestor at some time T in the past. This latter
heritability is therefore a measure of the process that gave rise to the current population and
thus depends on the evolutionary history of the population. Hence, a mismatch between
the evolutionary process that is assumed in the PMM and the true process that occurred can
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Figure 2: Heritability estimation using donor-recipient regression and the Phylogenetic Mixed Model. Wright-Fisher
populations of 10000 individuals were simulated as described in Fig. 1. At each generation, the genetic contribution in recipients is
chosen from a normal distribution centered on the value of the donor with variance (71.2 (seealso [20]). a. Maximum likelihood heri-
tability estimates of DR regression (blue) and the PMM (red) compared to population heritability as defined by the ratio of variances.
Vertical lines indicate the profile likelihood confidence intervals. b. The PMM consistently estimates the process heritability based
on the expected genetic variance at generation T, given a per-generation incremental increase of 0’1-2 (darkred). c. Estimates from
DR regression remain robust even at low sampling levels of 10% and 1%, compared to the PMM. DR and PMM estimates are com-
pared to the population and process heritability, respectively. d. Heritability estimates using DR and PMM when SPVL influences
the likelihood of transmission. e. The PMM estimates a linear variance generating process, which can be different from the actual
process that generated the variance. For a-¢, 100 random parameter sets were uniformly chosen from log 0’§ € [-0.3,1],

logo? € [-0.3,0.3], logo? [—2.3, —1]. Ford, 100 random parameter sets were chosen acording to the true
transmission potential for HIV [5: o7 € [0.5,1.5],log 07 € [—1.3,0],log o7 € [-0.3,0.3],logoz € [0.7,2].
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strongly confound the estimates in an unpredictable way. Viral phylogenies reconstructed
from real data are also mostly non-ultrametric and consequently the process time T has to
be chosen arbitrarily, which can further affect heritability estimates (see Box 2).

Which interpretation of heritability we are interested in depends on how h? is used for
prediction. One common use of #? is to determine the amount of genetic variation that
can be potentially found. A large h? increases the statistical power of GWAS studies to
detect common genetic variants that influence a trait [27, 28]. Another common use of
h? is to predict the response to selection [6]. A classic result in population genetics relates
the magnitude of change in phenotype in the subsequent generation to the product of the
heritability and the strength of selection. The larger h?, the larger the effect of selection on
a population. Both of these uses are only concerned with genetic variance in the current
population, irrespective of its evolutionary history. Therefore, h? estimates from DR stud-
ies are most appropriate. We can also make use of heritability estimates to understand the
evolution of HIV. From one infection to the next, two main processes can contribute to ge-
netic changes: First, intra-host evolution can result in the accumulation of genetic changes
in the viral population that may then be transmitted. Second, transmission bottlenecks may
select a minority variants from the viral population which is then transmitted. When the
assumptions about the process are correct, then phylogenetic mixed model can estimate the
rate at which such transmissible genetic changes take place.

Concluding remarks and outlook

'The discrepancy in reported estimates has lead to some confusion about the reliability and
usefulness of estimating heritability of SPVL. We speculate that most of the differences in
heritability estimates comes from differences in the estimation methods, rather than actual
differences in the data. One must thus decide, which of the methods produces estimates
that are more relevant to the research questions being asked. The increasing amount of
available viral sequence data presents an intriguing opportunity to radically increase the
number of data points. However, larger n does not guarantee better estimates if phyloge-
netic methods are used instead of donor-oftspring regression. In our mock data, we see
that phylogenetic methods potentially need at least an order of magnitude more data to
achieve similar confidence in the estimates. More importantly, the model assumptions that
accompany the phylogenetic methods cannot be blindly ignored. In the case of SPVL in
HIV these is strong evidence of selection for optimal levels of SPVL [5, 29]. We thus
require extensions to the phylogenetic methods that incorporate more realistic evolution-
ary processes that account for such balancing selection, such as an Ornstein-Uhlenbeck
process [30]. Yet in cases where the selective process is unknown or may have fluctuated
over the evolutionary history, constructing an appropriate evolutionary model can be chal-
lenging. 'Therefore, estimates from phylogenetic methods cannot be readily preferred over
estimates from donor-recipient studies without properly scrutinizing the adequacy of the
model assumptions.
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Glossary

Asymptomatic phase HIV infections are generally split into three characteristic stages: (I)
Primary infection; (II) Asymptomatic phase; (III) AIDS phase.

Viralload The density of virus in the blood of a patient. It is a proxy for the amount of
virus in the rest of the body.

Set-point viral load 'The viral load during phase II fluctuates around a remarkably stable
level, the set-point viral load.

Genetic variance Amount of variance in the trait (e.g. SPVL) that is due to differences in
transmissible viral genetics.

Environmental variance Amount of variance in the trait (e.g. SPVL) that is due to any-
thing other then viral genetics.

Viral heritability 'The fraction of phenotypic variance that is explained by transmissible ge-

netic factors.

Donor-recipient regression Method to estimate heritability by regressing the trait values
in the recipients on the traits values of the donors.

Seronegative Negative for HIV infection.
Serodiscordant couples Sexual partnerships where only a single individual is infected.
Pedigree Ancestral tree linking parents to their offspring.

Genetic bottlneck Sudden decrease in population size where only a few genetic variants
are selected. This leads to a drastic decrease in genetic variation in the population.

Genetic drift Change in the genotype distribution over time due to the finite size of a
population.
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Box 1: Equivalence between phylogenetic methods

For a single trait value evolving along a tree, it is straightforward to derive the maximum
likelihood estimators for Pagel’s A (PL) and the Phylogenetic Mixed Model (PMM) at a
given level of heritability. To do this, both PL and the PMM assume that the sampled trait
values are distributed according to a multivariate normal distribution with covariance matrix

E(h?) or Z(A) for PMM and PL, respectively. Multivariate normal maximum likelihood

estimators for both the mean, y, and the overall variance, (742), of a fixed covariance struc-

ture, X.(h?), for a specific value of h? are easily derived (Box 3). The maximum likelihood
estimate of h? can then be found by subsequently numerically maximizing the likelihood
over values of h? (or A for PL). Despite following the same statistical framework, there are

small differences in the derivation of X for PL. and the PMM.

The Phylogenetic Mixed Model 'The idea of PMM is that the phenotype, ¢;, of individual

i, consists of a genetic, g;, environmental, ¢;, and a mean, y, contribution,

pi=p+gite

Under a linear statistical model, we can interpret the environmental contribution as a ran-
dom error. We assume that the environmental contributions, e, are the same for all indi-
viduals,

e ~ N(0,021,),

where I, is the identity matrix with dimension n. We further assume that the genetic
contributions, g, are random samples from a multidimensional normal distribution with a
covariance matrix equal to the genetic relatedness matrix G (Fig. I),

g~ N(0, ang).
'The phenotype distribution then is,
¢ ~ N(u, UéG + 021,).

'The variance of this normal distribution can also be written in terms of the total phenotypic
variance, 02 = U§ + 02, and the heritability, h? = gz/ a2, resulting in a final covariance
matrix

LpMM = U;G + 02, = O’q% (hZG + (1 - h2> ]In> , (1)

The entries g;; of G are proportional to the joint evolutionary time of the individuals 7 and j
relative to some evolutionary origin T (Fig. I). If a;; is the time of the most recent common
ancestor of individuals 7 and j, then g;; = 1 — a;;/T. The origin T is the time of the most
recent common ancestor of all individuals, such that the smallest entry in G is 0 and the
diagonal elements are 1.
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Pagel’s Lambda 'The idea behind the PL method is to find an optimal rescaling parameter,
A, of the internal branches of the tree, such that the new ancestor times are b;; = Aa;j, but
the diagonal elements are unchanged, b;; = a;;. Under this rescaling, the covariance matrix
is

ZPL = O'(ZP (/\G/ + GD) ’ (2)
where G’ is equal to G with the diagonal removed, G’ = G — Gp.

Comparing PL and PMM A comparison between the PMM and PL becomes more clear
by rewriting Eq. 1 in terms of G’ and Gp,

Lpmm = 0 (hZG’ +h?Gp + (1 — hz)lln> ,

For ultrametric trees, all individuals are sampled at the same time f; = 0, and thus all the

gii = 1,and Gp = I,;. In this case,

ZpMM = 0 (hZG' + Hn) ,
Zpp = 05 (AG' +1),

for which the equivalence between PL and PMM becomes evident by setting h? = A.

For non-ultrametric trees, not all g;; are the same and thus the two methods can no
longer be made identical by simply setting A = h?. The rescaling in PL only applies to
the internal branches, which can be interpreted such that individuals that are sampled later
and thus have larger entries in Gp also have larger environmental contributions. This,
however, would only make sense if the environmental contribution increases linearly with
time of sampling. A more sensible assumption is that the environmental contribution is
independent of the time of sampling, and hence the PMM is the proper formulation of a
neutrally evolving trait along a tree.
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Figure I: Graphical representation of the genetic relationship matrix for a Wright-Fisher population. The strength of
the covariance between two individuals depends on the amount of shared ancestry in the tree. White entries corresponds to a
covariance of 0 and black to a covariance of 1.
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Figure Il: The PMM estimates a per-unit increase in genetic variance. For ultrametric trees, the estimated genetic varaince
in the population is equal to the total height of the tree, T', times the estimated per-unit increase in genetic variance, (712. For non-
ultrametric trees, the choice of the process time determines the amount of estimated genetic variance and hence the heritability.
Common choices are the mean sampling time of all the tips, (#), or the total height of the tree, T

Box 2: Care must be taken when applying the PMM to non-ultrametric
trees

An issue with applying the PMM to non-ultrametric trees is that the ancestry matrix, A,
needs to be rescaled by an arbitrary parameter. The entries, a;j, of the ancestry matrix
represent the total time of shared ancestry of two individuals between the present and the
root of the tree at some time T in the past. For ultrametric trees, all the tips of the tree align
to the present, and hence the diagonal elements of A are all T. Thus, an obvious choice of
rescaling is G = A/T. 'The genetic variance component, 02, estimated using the PMM
is then interpreted as the expected amount of genetic variance that accumulated during the
time T. The per unit time increase of genetic variance, (Tiz = (ng /T, is the parameter of the
underlying model of linear increase in variance in the PMM (Fig. II).

For non-ultrametric trees, the tips in the tree no longer all align to the present. Thus,
the choice of normalization for A is less evident. We can write Eq. 1 from Box 1 using the

ancestry matrix and (Tiz directly,
2 2
YPMM = i A+ Ug]In-

'The mathematical framework to estimate variance components using the PMM thus re-
mains valid for covariance matrices from non-ultrametric trees and can be used to estimate
the variance component (782 and the per unit time variance component (71-2. However, in

order to estimate the heritability, 07 must be multiplied by an arbitrary time T,

2
h2 — ot
0T + 02

(3)

Equation 3 gives the heritability estimate for a population at time T since the beginning of
the process at the root of the tree. For ultrametric trees, choosing T = T is the same as
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rescaling the ancestry matrix, A, to the genetic relatednes matrix, G. For non-ultrametric
trees, common choices of T are the present time, T, or the mean sampling time of all the
tips (Fig. II). Importantly, the specific choice of T will determine the quantitative esi-
mate of heritability and results in slghlty different interpretations. By choosing the present
time, T = T, the estimated heritability applies to the overall (potentially unknown) patient
population that exists at the present time. Choosing T as the mean sampling time across all
individuals returns an estimate of heritability that applies to the pooled sampled population,
represented by a hypothetical individual that was sampled at time T.
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Box 3: Obtaining maximum likelihood estimates for heritability

Here, we recapitulate [31] on how to obtain heritability estimates by finding the values of
(u, (Tq%, h?) that maximize the likelihood for the SPVL data under a multivariate normal

distribution with covariance matrix X = Utlz)V. Using the expressions for the covariance

matrix X (h?) from Box 1, the log-likelihood of the SPVL data, ¢, is simply

1

Inf=—-—
2
%

1
(¢—mV (P —p) =5 (2703) = 5|V,

where g = (u,...,1)T. The maximum likelihood (ML) estimates as a function of h?
for the mean and variance are easily found by setting the first-order derivatives of the log-
likelihood equal to zero,

N 1Tv—1¢
) = 1Tv1 ’
20 (@=w)TV g —p)
0p(h°) = " :

The ML estimate of h? can then be found numerically by optimizing the log-likelihood over
values of i%. Similarly, confidence intervals for h? are derived using the profile likelihood
method.

These ML estimates require computing the matrix inverse, V! = (kG + (1 — h?)IL,) -
which can be computationally intensive. Historically, diagonalizing or inverting even mod-
erately sized matrices was computationally prohibitive. Henderson [32] presented a trick
that avoids matrix inversion by including unobserved ancestors as latent variables. This ap-
proach to estimating heritability is used for restricted maximum likelihood estimation in
the proprietary software ASReml [33], and for Bayesian MCMC heritability estimation in
the open source R package MCMCglmm [34].

However, diagonalizing even large matrices is much less prohibitive these days, allowing
for a much more straightforward calculation of h? estimates using the above expressions.
Importantly, Housworth ez al. [31] showed that estimates of h? could be rapidly obtained
by only diagonalizing the genetic relatedness matrix once, G = QDQT, where Q is the
matrix of eigenvectors of G, and D is the diagonal matrix of eigenvalues. The normalized
covariance matrix is then,

V=0 (hZD + (1 _ hz) ]In) QT = QD'Q7,

where D' is a diagonal matrix with elements d; = h?¢; + (1 — h?), and §; is the i-th eigen-
value of G. This allows for the rapid computation of the matrix inverse, V"1 = QD’ - Q7,

where D' = diag(dﬁl). Finally, the last missing term to compute the likelihood is the
determinant, |V| = [T\, d;;.
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