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Abstract

Haplotype assembly or read-based phasing is the problem of reconstructing both haplotypes of a diploid
genome from next-generation sequencing data. This problem is formalized as the Minimum Error Correction
(MEC) problem and can be solved using algorithms such as WhatsHap. The runtime of WhatsHap is exponen-
tial in the maximum coverage, which is hence controlled in a pre-processing step that selects reads to be used for
phasing. Here, we report on a heuristic algorithm designed to choose beneficial reads for phasing, in particular
to increase the connectivity of the phased blocks and the number of correctly phased variants compared to the
random selection previously employed in by WhatsHap. The algorithm we describe has been integrated into the
WhatsHap software, which is available under MIT licence from https://bitbucket.org/whatshap/whatshap.

1 Introduction

In diploid species, mother and father each pass on one
copy of every chromosome to their offspring. The task
of reconstructing these two chromosomal sequences,
which are called haplotypes, is known as phasing or
haplotyping (Tewhey et al., 2011; Glusman et al.,
2014). Next-generation sequencing (NGS) reads that
are sufficiently long to cover two or more heterozy-
gous variants are phase informative and can be used
for this purpose. The computational problem of in-
ferring the two haplotypes from (aligned) NGS data
is known as read-based phasing or haplotype assembly.
Its most common and most successful formalization is
the Minimum Error Correction (MEC) problem, which
is NP-hard (Cilibrasi et al., 2007). Among others, the
ideas of fixed-parameter tractability (FPT) have been
applied to attack this problem (He et al., 2010; Patter-
son et al., 2015).

The runtime of the WhatsHap algorithm (Patterson
et al., 2015) is exponential in the maximum coverage
but only linear in the number of phased variants and
independent of the read length. These properties make
it particularly suited for long-read data (such as deliv-
ered by PacBio or Oxford Nanopore devices). However,
the exponential runtime in the maximum coverage re-
quires the preprocessing step of ensuring this quantity
to be bounded. This is achieved by discarding reads in
regions of excess coverage. Patterson et al. (2015) use
a user-specified parameter for the maximum coverage
and select reads in a random way: the reads are enu-
merated in random order and each read is retained if
it is phase informative and adding it does not violate
the coverage constraint (given the previously selected
reads). Figure 1 illustrates that such a random selec-
tion can lead to undesirable results.

In this paper, we propose an alternative algorithm
to select reads under a given coverage constraint. It
is a greedy heuristic that aims to exhibit the following
desirable properties:

1. as many heterozygous variants as possible should
be covered,

2. the covered variants should be covered by as many
reads as possible,

3. reads covering many variants at once should be
preferred,

4. high-quality reads (in terms of mapping and base-
calling quality) shall be preferred over low quality
ones,

5. all variants should be well connected by reads, i.e.
the number of connected components in the result-
ing graph (nodes: variants, edges: two variants
covered by a selected read) should be low, and

6. each pair of variants should be independently con-
nected by different paths as often as possible.

Many different formalizations for the read selection
problem based on these desirable properties are con-
ceivable. How to best trade-off these partly conflicting
properties is an open research question and little litera-
ture on it exists. Mäkinen et al. (2015) propose to max-
imize the minimum coverage by means of a flow-based
approach. In the following, we introduce a heuristic
algorithm that we show to work well in practice. That
is, we demonstrate that haplotype assembly performed
on the selected reads yields good results.
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Figure 1: Example of selecting reads (horizontal lines)
that cover five different SNPs (indicated by dashed ver-
tical lines) with a maximum coverage of two. Top:
unfortunate selection (green); although no more reads
can be added without violating the coverage constraint,
SNP 3 is not covered at all and SNPs 1 and 2 are not
connected to SNPs 3 and 4. Bottom: better selection
(red) that covers and connects all SNPs.

ref
1 2 3 4 5

Figure 2: Example of two slices (indicated by coloured
reads) that cover five different SNPs with a maximum
coverage of four. Every slice covers every SNP and
set up different connectivity patterns between the five
SNPs.

2 Read Selection Algorithm

As a first step, all reads covering less than two het-
erozygous variants can be discarded since they are not
phase informative. In the following, we thus assume all
reads to cover at least two heterozygous variants.

Our algorithms works iteratively. In each iteration,
a subset of reads is selected, which we call a slice. All
slices are disjoint, that is, reads already part of a slice
are not considered in later iterations. Each slice tries
to cover all variants (Goal 1 in Section 1) and to con-
nect as many variants as possible (Goal 5), while using
as few reads as possible. Figure 2 illustrates that each
slice could archieve these goals. Therefore, every indi-
vidual slice connects (in the best case) all variants to
each other and hence provides a connection between
each pair of variants which is independent of the other
slices, catering to Goal 6.

Each iteration, i.e. selecting reads for a slice, consists
of two phases, which both use a score measuring the
“usefulness” of a read (detailed in Section 2.1 below):
First, reads are enumerated ordered by score and those
that cover at least one variant thus far uncovered (in

the present slice) are greedily added. Second, reads
bridging two connected components within that slice
are added, again greedily in the order induced by the
score. Before adding a read (in either of the two steps),
we test whether doing so would violate the coverage
constraints and, if so, discard it.

These two steps are repeated to add slice after slice
until no further reads are left.

2.1 Scoring

We introduce a scoring function that intends to select
reads that cover as many variants as possible (Goal 3)
and have a high quality (Goal 4). Paired-end or mate-
pair reads can cover variants that are not consecutive.
We call uncovered variants that lie between covered
variants (for a given read pair) holes. Selecting read
pairs with holes is undesirable because holes contribute
to the (physical) coverage at a particular variant, but
do not any information.

To define the scoring function, we introduce the fol-
lowing notation. Let R be the set of all reads. For
R ∈ R, let variants(R) and holes(R) denote the set
of variants covered by R and the set of holes of R,
respectively. Furthermore, quality(R, V ) denotes the
base quality of the nucleotide in read R covering vari-
ant V ∈ variants(R). By Rs ⊂ R, we refer to the set
of reads already selected for the current slice.

We define three different scores for a read R. The
first one is defined through

scorestatic(R) := |variants(R)| − |holes(R)|.

It is called scorestatic because its value does not
change in the course of the algorithm. In contrast,
scoredyn changes as reads get added to a slice:

scoredyn(R) := |variants(R)|
−|variants(R) ∩ variants(Rs)|
−|holes(R)|,

where variants(Rs) refers to the set of all variants
covered by reads in Rs, formally

variants(Rs) :=
⋃

R′∈Rs

variants(R′).

Therefore, scoredyn(R) is the number of variants cov-
ered by R that are not yet covered by any read in Rs

minus the number of holes. It is thus useful to assess
the value of adding R to slice Rs. The third score we
consider is defined as

scorequal(R) = min
v∈variants(R)

quality(R, V ),

that is, it gives the quality value of the variant covered
by that read with worst quality. To rank reads, we
compare them by the tuple score

scoretuple(R) =(
scoredyn(R), scorestatic(R), scorequal(R)

)
,

that is, two reads are first compared by means of
scoredyn, then (in case of a tie) by scorestatic, and
as a last ressort by scorequal.
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Algorithm 1 Score-based read selection

1: procedure ReadSelection(readset, max cov)
2: selected reads ← empty set
3: undecided reads ← empty set
4: for R in readset do
5: if |variants(R)| ≥ 2 then
6: undecided reads.Add(R)
7: end if
8: end for
9: while undecided reads not empty do

10: (reads in slice, reads violating coverage) ← SelectSlice(undecided reads, max cov)
11: selected reads.Add(reads in slice)
12: undecided reads.Remove(reads in slice)
13: undecided reads.Remove(reads violating coverage)
14: bridge reads ← Bridging(reads in slice, undecided reads, max cov) . Optional bridging step
15: selected reads.Add(bridge reads) . Optional bridging step
16: end while
17: return selected reads

18: end procedure

2.2 Algorithm

Pseudo code of our read selection algorithm is given
as Algorithm 1. At first, all reads that cover at
least two heterozygous variants are stored in the set
undecided reads (lines 4 to 8). In the course of the
algorithm they are moved to selected reads or dis-
carded. Each iteration of the while loop in Line 9 cre-
ates one slice by calling SelectSlice and Bridging
and terminates when no undecided reads are left.

In SelectSlice (see Algorithm 2), a priority
queue is constructed from undecided reads, using
scoretuple as a scoring function. Based on this pri-
ority queue a set of reads is selected, extracting the
best reads one after each other until every variant is
covered once or no usable reads are left. This function
maintains a set already covered snps with variants
covered by any read selected so far. Based on this set,
the variants additionally covered by this read are de-
termined (snps covered by this read). Only reads
for which this set is non-empty and which do not vio-
late the coverage constraint are selected and added to
reads in slice. Since scoredyn of a read depends on
the reads that have already been selected in a slice, we
need to update these scores. Adding a read can lead
to changed scores for other reads that cover the same
SNPs, while not affecting reads that cover a disjoint set
of variants. In lines 19 to 27 of Algorithm 2, the set of
reads to be updated is determined, the scores recom-
puted and updated accordingly in the priority queue.
Note that this requires an extra index that maps vari-
ants to all reads covering them (which is not explicitly
mentioned in the pseudo code).

The function Bridging given in Algorithm 3 is
called by Algorithm 1 (in Line 14) to add reads that can
lower the number of connected components and hence
increase connectivity. Again, reads are enumerated or-
dered by score. A union-find data structure Cormen
et al. (2009) is used to determine whether a read con-
nects two components and, in case it does, the read is

1 2 3 4 5 6

Blocks

Readset

1 2 3 4 5 6

Blocks

Readset

Figure 3: Illustration of reads, selected in the bridg-
ing step of the scoring based read selection. The blue
blocks indicate connected components of reads selected
previously (in Algorithm 2); the horizontal lines repre-
sent yet undecided reads. Reads highlighted in red are
selected because they connect previously unconnected
blocks. Top: single-end reads. Bottom: two lines in
one row represent a paired-end read, i.e. there is phase
information between the two reads in a pair.

greedily added. Figure 3 illustrates this bridging step.

3 Evaluation

The evaluation of our score-based read selection is
based on the comparison of this approach with the ran-
dom approach. We generated (simulated) benchmark
data sets using the same procedure as for evaluation
presented by Patterson et al. (2015). Furthermore, we
added a variant of our approach that omits the bridging
step. We ran the three read selection methods to gener-
ated data sets with 5× and 15× target coverage. After
read selection, the pruned read sets are phased using
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Algorithm 2 Select one slice of reads

1: procedure SelectSlice(undecided reads, max cov)
2: already covered snps ← empty set
3: reads in slice ← empty set
4: reads violating coverage ← empty set
5: pq ← ConstructPriorityqueue(undecided reads)
6: while pq is not empty do
7: snps covered by this read ← empty set
8: (score, read) ← pq.Pop
9: for V in variants(read) do

10: if V.pos not in already covered snps then
11: snps covered by this read.Add(V.pos)
12: end if
13: end for
14: if adding read would exceed max cov for at least one position then
15: reads violating coverage.Add(read)
16: else
17: if snps covered by this read not empty then
18: reads in slice.Add(read)
19: reads to be updated ← empty set
20: for pos in snps covered by this read do
21: already covered snps.Add(pos)
22: reads to be updated.Add(all reads in pq covering pos)
23: end for
24: for R in reads to be updated do
25: new score ← UpdatedScore(R, snps covered by this read)
26: pq.ChangeScore(R, new score)
27: end for
28: end if
29: end if
30: end while
31: return (reads in slice, reads violating coverage)
32: end procedure

Algorithm 3 Bridging part of score based read selection

1: procedure Bridging(reads in slice, undecided reads, max cov)
2: pq ← ConstructPriorityqueue(undecided reads)
3: positions ←

⋃
R∈reads in slice variants(R) ∪

⋃
R∈undecided reads variants(R)

4: components ← UnionFind(positions)
5: bridge reads ← empty set
6: for read in reads in slice do
7: components.Merge(variants(read))
8: end for
9: while pq not empty do

10: (score, read)← pq.Pop
11: if |components.CoveredBy(variants(read))| ≥ 2 then
12: if adding read would not exceed max cov for at least one position then
13: bridge reads.Add(read)
14: components.Merge(variants(read))
15: end if
16: end if
17: end while
18: return bridge reads

19: end procedure
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WhatsHap and compared to the ground truth phasing.
We examined the number of phased SNPs (phased), the
number of unphased SNPs (unphased) the number of
phased blocks (# blocks) and the number of correctly
SNPs (true phased). Results are displayed in Table 1.
Almost independent of the dataset the scoring-based
read selection with the bridging surpasses the random
approach in the number of correctly phased variants.
Even without bridging, the scoring-based read selection
provides an increased correctly phased variants com-
pared to the random approach for all but one data set.
The number of blocks in the scoring-based read selec-
tion with bridging is lower than the number of blocks
in the random approach.

4 Discussion

As shown above, our novel score-based read selection
provides some benefits in the connectivity and also in
the increased number of phased or correctly phased
variants. The overall quality has improved and the
number of seleted reads under the same given coverage
increased compared to the random approach. The al-
gorithm described here has hence been integrated into
the WhatsHap software.

We are currently comparing our heuristic approach
to the flow-based algorithm proposed by Mäkinen et al.
(2015). Our algorithm was designed to also work
well when combining different types of reads (such as
PacBio and Illumina mate pairs), which we plan to
evaluate systematically in the future.
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