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ABSTRACT While genetic diversity can be quantified accurately from high coverage sequencing, it is often desirable
to obtain such estimates from low coverage data, either to save costs or because of low DNA quality as observed for
ancient samples. Here we introduce a method to accurately infer heterozygosity probabilistically from very low coverage
sequences of a single individual. The method relaxes the infinite sites assumption of previous methods, does not require
a reference sequence and takes into account both variable sequencing errors and potential post-mortem damage. It is
thus also applicable to non-model organisms and ancient genomes. Since error rates as reported by sequencing machines
are generally distorted and require recalibration, we also introduce a method to infer accurately recalibration parameter
in the presence of post-mortem damage. This method does also not require knowledge about the underlying genome
sequence, but instead works from haploid data (e.g. from the X-chromosome from mammalian males) and integrates over
the unknown genotypes. Using extensive simulations we show that a few Mb of haploid data is sufficient for accurate
recalibration even at average coverages as low as 1-3x. At similar coverages, out method also produces very accurate
estimates of heterozygosity down to 10−4 within windows of about 1Mb. We further illustrate the usefulness of our
approach by inferring genome-wide patterns of diversity for several ancient human samples and found that 3,000-5,000
samples showed diversity patterns comparable to modern humans. In contrast, two European hunter-gatherer samples
exhibited not only considerably lower levels of diversity than modern samples, but also highly distinct distributions of
diversity along their genomes. Interestingly, these distributions were also very differently between the two samples,
supporting earlier conclusions of a highly diverse and structured population in Europe prior to the arrival of farming.
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The genetic diversity at a particular location in the genome is
the result of its evolutionary past. Comparing the genetic

diversity between individuals or regions of the genome thus
gives insight into differences in their respective evolutionary his-
tories. For a diploid individual, the heterozygosity of a genomic
region (the fraction of sites in a region at which the individual
carries two alleles) is the result of mutations that occurred since
the two alleles shared a common ancestor. It is thus a function
of the local mutation rate, but also genetic drift and selection,
which affected the time that passed since the common ancestor.
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Variation in local mutation rates and, due to recombination, also
in the strength of selection and genetic drift leads to variable di-
versity across the genome. Comparing heterozygosity between
regions can thus identify locations that were affected differently
by selection, or those with an increased mutation rate, while
comparing heterozygosity between individuals may highlight
differences in the demographic histories of populations.

While heterozygosity is readily obtained from high quality
genotype calls by counting, it is much harder to infer accurately
from low coverage genomes. This is primarily due to a substan-
tial probability of observing only one of the two alleles and to
sequencing errors, which occur at rates orders of magnitude
higher than the expected heterozygosity in many species, includ-
ing humans. Additional biases may be introduced by relying
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on a reference genome or by post-mortem DNA damage (PMD)
when working with ancient DNA. A natural way of circumvent-
ing these issues is to infer genetic diversity probabilistically by
taking many of the mentioned issues into account, and several
such methods have been developed over the past decade. John-
son and Slatkin (2006), for instance, developed a method for esti-
mating the population scaled mutation rate θ = 4Nµ, where N is
the population size and µ the mutation rate, from large metage-
nomic data sets in the presence of sequencing errors. Shortly
after, multiple moment based estimators were introduced to
infer heterozygosity from a single individual (Hellmann et al.
2008; Jiang et al. 2008). Lynch (2008) then introduced a likelihood
based estimator that relaxed the assumption of a known error
rate by jointly estimating it together with heterozygosity from
the data itself. Despite the additional parameter, this likelihood
based estimator is generally more accurate, even if his imple-
mentation is ill-behaved at very low coverages (Lynch 2008).

Here we present a direct extension of the approach by Lynch
(2008) that relaxes the assumption of infinitely many sites, does
not require base frequencies to be known a priori and takes
additional biases introduced by PMD fully into account. We
achieve this by modeling genotype frequencies using the classic
substitution model of Felsenstein (1981), which allows for back
mutations, and by modeling PMD explicitly.

We further relax the assumption of a constant error rate.
While variable error rates along and between individual reads
is a well characterized feature of all current sequencing tech-
nologies, the provided estimates of these (the quality scores) are
not reliable and must be recalibrated, particularly when cover-
age is low. This is commonly achieved by learning error rates
from sites assumed a priori to be invariant, for instance by mask-
ing polymorphic sites, repetitive elements and large structural
variants (DePristo et al. 2011). While we have extended this
approach to tolerate PMD (Hofmanová et al. 2015), it requires
detailed knowledge of the study species, which is often lacking
for non-model organisms.

We circumvent this problem by using a reference-free recali-
bration approach that makes use of the base-quality information
provided by sequencing machines. We rely on haploid sequences
such as those from the X-Chromosome in male mammals and
integrate over all possible but hidden genotypes while taking
PMD and covariates such as position in read or read context into
account. This renders our approach essentially free of reference
biases since the reference is only required for aligning raw reads
by mapping and current mapping techniques tolerate sequence
divergence of up to 10% (e.g. Lunter and Goodson 2011).

Using computer simulations we show that our method reli-
ably estimates local genetic diversity in single, diploid individu-
als even with average coverage below 2x for windows of ∼ 1Mb.
We further show that a few Mb of data at equally low coverage is
sufficient to properly recalibrate distorted quality scores. Finally
we use the here developed methods to infer the genome-wide
pattern of diversity for several ancient and modern human sam-
ples. We found that these patterns differ between European and
African samples, but that samples from a few thousand years
ago cluster well with modern samples. In contrast, European
hunter-gatherer individuals differ strongly from modern Euro-
peans, but also from each other, illustrating the high diversity
that existed in Europe before the neolithic transition.

Theory

Here we develop a method to estimate heterozygosity from a
collection of aligned reads by integrating out the uncertainty
of the local genotype as well as the potential effects of post-
mortem DNA damage (PMD). Specifically, we are interested in
inferring the stationary base frequencies π = {πA, πC, πG, πT},
along with the rate of substitutions θ = 2Tµ along the genealogy
connecting the two alleles of an individual within a genomic
region. Here, T corresponds to the time to the most recent
common ancestor of the two lineages and µ to the mutation rate
per base pair per generation. Notably, it is not possible to infer T
and µ independently, and we therefore only attempt to estimate
the compound substitution rate θ from the data.

To estimate θ, we will extend Felsenstein’s model of substitu-
tions (Felsenstein 1981) to account for the uncertainty in the local
genotypes. However, we will assume that base-specific rates of
sequencing errors and PMD are known constants, motivated by
the observation that rates of sequencing errors and PMD can be
learned accurately from genome-wide data prior to inferring θ
and π, as we will show below.

Inferring Heterozygosity
Substitution model Let us denote the hidden genotype at site
i by gi where gi consists of a pair of nucleotides kl with k, l =
A, G, C, T. Under the substitution model, the probability of ob-
serving a specific genotype gi = kl given the base frequencies
π = {πA, πC, πG, πT} and the substitution rate θ is given by

P(gi = kl|θ, π) =

{
πk(e−θ + πk(1− e−θ)) if k = l,
πkπl(1− e−θ) if k 6= l.

(1)

Emission probabilities This model is easily extended to inte-
grate out the uncertainty in observed genotypes. To do so we
adopt a model similar to Lynch (2008) and those commonly used
for genotype calling (Li 2011, e.g.). We will further closely follow
the notation recently introduced by Hofmanová et al. (2015).

The observed data di at site i shall correspond to what is
typically obtained when individual reads of next generation
sequencing approaches were mapped to a reference genome.
Here we will assume that all sequencing reads were accurately
mapped and hence that reads with low mapping qualities have
been filtered out. The data di obtained at site i thus consists of a
list of ni observed bases di = {di1, . . . , dini}, dij = A, C, G, T.

We chose to model the observed data di at site i as a function
of the underlying genotype gi as well as the rates of sequenc-
ing errors and PMD, which we assume to be known for each
observed base. Let us denote these base specific rates by εij and
Dij, respectively, for j = 1, . . . , ni and further assume that the
sequencing errors and PMD occur independently between reads.
The likelihood of the full data at site i is thus given by

P(di|gi, εi) =
ni

∏
k=1

P(dij|gi, εij),

where εi = {εi,1, . . . , εi,ni}.
Let us first develop the emission probability P(dij|gi, εij) for

the case of no PMD (Dij = 0). Following Lynch (2008) and
commonly used approaches (Li 2011, e.g.), we will assume that a
sequencing read is equally likely to cover any of the two alleles of
an individual and that sequencing errors may result in any of the
alternative bases with equal probability εij/3. The probability
of observing a base dij given the underlying genotype gi = kl is
then given by
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P(dij|gi = kl, εij) =


1− εi,j if k = l = dij
ε
3 if k 6= di,j, l 6= dij
1
2 −

εij
3 if k 6= l, k = dij or l = dij

.

Post-mortem DNA damage We will now extend this model with
the possibility of PMD. The most common form of PMD is C
deamination, which leads to a C → T transition on the affected
strand and a G → A transition on the complimentary strand
(e.g. Briggs and Stenzel 2007). These deaminations do not occur
randomly along the whole read, but are observed much more fre-
quently at the beginning of a read. This is due to fragment ends
being more often single-stranded and thus subject to a much
higher rate of deamination. Here we will develop our model
for this form of PMD following the formulation of Skoglund
et al. (2014), but we note that it is readily extended to incorporate
other forms of PMD as well.

We feel that the rationale of our approach is best explained
with a specific example. Consider di,j = T given the underlying
genotype gi = CT. There are three possible ways to obtain a T:
i) by sequencing an allele T without error, ii) by sequencing an
allele C affected by PMD without error, iii) or by sequencing an
allele C not affected by PMD with error. We thus have

P(dij = T|gi = CT, εij, Dij)

=
1
2

(
(1− εij) + Dij(1− εij) + (1− Dij)

εij

3

)
(2)

where Dij denotes the probability that a C → T PMD occurred
at the base of read j covering site i.

The emission probabilities for all combinations of dij and gi
derived following the same logic are found in the Appendix.
Since we consider both εij and Dij to be known constants and in
an effort to unburden the notation, we will refer to the emission
probabilities simply as P(di|gi) in the following.

Inference using EM-Algorithm Assuming sites to be indepen-
dent, the full likelihood of our model is given by

L(θ, π) = P(d|θ, π) =
I

∏
i=1

P(di|θ, π)

=
I

∏
i=1

∑
g

P(di|gi = g)P(gi = g|θ, π),

where the sum runs over all combinations g = AA, AG, . . . , TT.
To find the maximum likelihood estimate (MLE) of the model

parameters θ and π, we will adopt an Expectation-Maximization
(EM) algorithm. The complete likelihood of our model is given
by

Lc(θ, π; d, g) =
I

∏
i=1

P(gi, di|θ, π) =
I

∏
i=1

P(di|gi)P(gi|θ, π)

and thus the complete data log-likelihood by

lc(θ, π; d, g) =
I

∑
i=1

(log P(di|gi) + log P(gi|θ, π)) .

The expected complete data log-likelihood is calculated as

Q(θ, π; θ′, π′) = E [lc(θ, π; d, g) | d; θ′, π′]

=
I

∑
i=1

∑
g
[log P(di|g) + log P(g|θ, π)]P(g|di; θ′, π′)

where the sum runs over all combinations g = AA, AG, . . . , TT.
Only the second part Q2 of this sum depends on the parameters
θ, π. We have

Q2(θ, π; θ′, π′) =
I

∑
i=1

∑
g

log P(g|θ, π)P(g|di; θ′, π′)

= ∑
g

log P(g|θ, π)
I

∑
i=1

P(g|di; θ′, π′)

= ∑
g

Pg log P(g|θ, π)

where we use the shorthand notation Pg =
I

∑
i=1

P(g|di; θ′, π′).

We have by Bayes’ Theorem

Pg =
I

∑
i=1

P(di|g)P(g|θ′, π′)

∑g P(di|g)P(g|θ′, π′)
. (3)

Let us write out Q2 explicitly:

Q2(θ, π; θ′, π′) = ∑
k

Pkk

[
log πk + log(e−θ + πk(1− e−θ))

]
+ ∑

k
∑
l 6=k

Pkl

[
log πk + log πl + log(1− e−θ)

]
.

We have to maximize Q2 subject to the constraint

∑
k

πk = πA + πG + πC + πT = 1.

For this reason we form the Lagrangian

L(θ, π, µ) = Q2(θ, π; θ′, π′)− µ(∑
k

πk − 1)

where µ is the Lagrange multiplier. We get the following partial
derivatives of the Lagrangian:

∂

∂πk
L = Pkk

(
1

πk
+

1− e−θ

e−θ + πk(1− e−θ)

)
+ ∑

l 6=k

2Pkl
πk
− µ,

∂

∂θ
L = −e−θ ∑

k

Pkk(1− πk)

e−θ + πk(1− e−θ)
+

e−θ

1− e−θ ∑
k

∑
l 6=k

Pkl ,

∂

∂µ
L = ∑

k
πk − 1.

We have to set these equations to zero and solve for πk, θ, and µ.
With the parameter transformation ρ = e−θ/(1− e−θ), the

equations can be rewritten as (k = 1, . . . , 4):

Fk(π, ρ, µ) := Pkk

(
1 +

πk
ρ + πk

)
+ 2 ∑

l 6=k
Pkl − µπk = 0,

F5(π, ρ, µ) := I −∑
k

Pkk(ρ + 1)
ρ + πk

= 0,

F6(π, ρ, µ) := ∑
k

πk − 1 = 0. (4)

To streamline the notation, we will rename our variables:

(π1, . . . , ρ, µ)→ x = (x1, . . . , x5, x6).

We will solve the above system

F(x) = 0 (5)
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with the Newton-Ralphson method. We thus need to determine
the 6× 6 Jacobian matrix Jij = ∂Fi/∂xj. These are the non-zeros
entries of the Jacobian where k = 1, . . . , 4:

Jkk =
Pkkx5

(xk + x5)2 − x6,

J5k = (x5 + 1)
4

∑
l=1

Pll
(xl + x5)2 ,

J6k = 1,

Jk5 = − Pkkxk
(xk + x5)2 ,

Jk6 = −xk,

J55 =
4

∑
l=1

Pll(1− xl)

(xl + x5)2 . (6)

We can now approximate the zero of (5) with the iteration

xnew = xold − J−1(xold)F(xold). (7)

After a few iterations, we get the new estimate for the orig-
inal parameters by setting πk = xk for k = 1, . . . , 4, and
θ = − log(x5/(1− x5)).

A brief outline of an efficient implementation of the algorithm
is given in the Appendix.

Confidence intervals We calculate an approximate confidence
interval for θ using the Fisher information. To simplify the
calculations we consider the πk as constant. The observed Fisher
information at the ML value θ̂ is

I(θ̂) = − ∂2

∂θ2 log L(θ̂, π)

= −
I

∑
i=1

∂2

∂θ2 log

[
∑
g

P(di|gi = g)P(gi = g|θ̂, π)

]
.

and the corresponding derivatives are

∂

∂θ
P(gi = kl|θ, π) =

{
(π2

k − πk)e−θ if k = l,
πkπle−θ if k 6= l.

(8)

Observe that ∂2

∂θ2 P(gi = kl|θ, π) = − ∂
∂θ P(gi = kl|θ, π).

From this we easily get that

I(θ̂) =
I

∑
i=1
Ri(Ri + 1) (9)

where we have set

Ri =
∑g P(di|g) ∂

∂θ P(g|θ̂, π)

∑g P(di|g)P(g|θ̂, π)
. (10)

An approximate (1− α) confidence interval is now given by

θ̂ ± z1−α/2 I(θ̂)−1/2.

Estimating base-specific error rates
The challenge of inferring genetic diversity from next-generation
sequencing data lies in the fact that the per base error rates are
orders of magnitude higher than the expected heterozygosity of
many species (Lynch 2008). While this issue can easily be over-
come with high coverages, accurate inference from low-coverage
data relies on an exact knowledge of base-specific error rates.

Crude estimates of these rates are usually directly provided by
the sequencing machines themselves. However, these estimates
are often inaccurate and are recommend to be recalibrated for
genotype calling (DePristo et al. 2011).

The most commonly used approach for recalibration is BQSR
(Base Quality Score Recalibration) implemented in GATK De-
Pristo et al. (2011); McKenna et al. (2010). This approach infers
new quality scores by binning the data into groups based on
covariates such as the raw quality score, the position in the read
or the sequence context. All bases within such a bin are assumed
to share the same error rate, which can be readily inferred if the
true underlying sequence is known. As an alternative, Cabanski
et al. (2012) proposed to fit a logistic regression to the full data
where the response variable is the probability of a sequencing
error and the explanatory variables are the raw quality scores
and covariates such as position in the read or base context.

For our purpose, these methods suffer from two shortcom-
ing: first, they can not be applied to ancient DNA since they do
not take PMD into account. Second, both require a reference se-
quence as well as knowledge on polymorphic positions such that
they can be excluded from the analysis. While we have shown
how to extend the BQSR method to ancient DNA (Hofmanová
et al. 2015), we here develop an approach that also integrates
over the unknown reference sequence.

To do so, we will assume that there exists a genomic region
for which the individual does not show any polymorphism. A
good example of such a genomic region are non-homologous
sequences from sex chromosomes in heterogametic individuals
(e.g. most of the X chromosomes in mammalian males), and
we will describe our approach having this type of data in mind.
However, we note that our approach is also readily applied to
diploid regions that are known to be monomorphic, such as
positions that are highly conserved among species or positions
retained after filtering out those with high minor allele counts
(Cabanski et al. 2012).

Model As above, let us denote hidden genotype at site i by gi
where gi is one of the nucleotides A, G, C, T. At each site i there
are ni reads and we denote by dij, j = 1, . . . , ni the base of read j
covering site i. A sequencing error occurs with probability εij.
These probabilities shall now be given by a model

εij = ε(qij, β), (11)

where qij = (qij1, . . . , qijL) is a given external vector of informa-
tions and β = (β0, . . . , βL) are the parameters of the model that
have to be estimated. While our approach is flexible regarding
the choice of included covariates, we will here consider the raw
quality score, the position within the read, the squares of these to
account for a non-linear relationships, and all two-base contexts
consisting of the bases of the read at positions i− 1 and i.

Following Cabanski et al. (2012) we impose the logit model

εij(qij, β) =
exp(ηij(β))

1 + exp(ηij(β))
(12)

with

ηik(β) = β0 +
L

∑
l=1

qijl βl .

In the case of monomorphic or haploid sites only, the prob-
ability of the read vector di given the hidden state gi can be
written more generally as

P(di|gi, β) =
ni

∏
j=1

[
(1− Dij)(1− εij) + Dij

εij

3

]
, (13)
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Here, the dependence on the parameters β is given by (12),

Dij = D(dij, qij, gi) =



0 if gi = dij = A or T
DC→T(qij) if gi = C, dij = C
1− DC→T(qij) if gi = C, dij = T
1− DG→A(qij) if gi = G, d,j = A
DG→A(qij) if gi = G, dij = G
1 otherwise

,

and DC→T(qij) and DG→A(qij) refer to the known probability
that a C → T or G → A PMD occurred at the position covering
site i in read j.

EM-Algorithm We propose an EM algorithms for this estimation
that is similar to the one above, but assume here that the base
frequencies πg, g = A, G, C, T are known, i.e. can be derived
accurately from counting in the region. The complete data log-
likelihood of our model is given by

lc(β|d, g) =
I

∑
i=1

(
log P(di|gi, β) + log πgi

)
.

From this we get the expected complete data log-likelihood

Q(β; β′) = E
[
lc(β|d, g)|d, β′

]
=

I

∑
i=1

∑
g

(
log P(di|g, β) + log πg

)
P(g|di, β′).

For the M-step we need only to consider the first part of Q(β; β′):

Q1(β; β′) =
I

∑
i=1

∑
g

P(g|di, β′) log P(di|g, β),

where

P(g|di, β′) =
P(di|g, β′)πg

∑
h

P(di|h, β′)πh

by Bayes’ formula. From (13) we get more explicitly

Q1(β; β′) = ∑
i,g,j

′ log
(

1− Dij + Bijεij

)
,

where we used the abbreviations Bij =
4
3 Dij − 1 and

′
∑
i,g,j

. . . =
I

∑
i=1

∑
g

P(g|di, β′)
ni

∑
j=1

. . . .

In order to maximize Q1 for β, we calculate the gradient
vector F(β) = ∇βQ1(β; β′) with components

Fm(β) =
∂

∂βn
Q1(β; β′) = ∑

i,g,j

′ Bij

1− Dij + Bijεij

∂εij

∂βm
, (14)

for m = 0, . . . , L. From (12) we obtain

∂εij

∂βm
= εij(1− εij)

∂ηij

∂βm
.

Observe that ∂ηij/∂β0 = 1 and ∂ηij/∂βm = qijm for m =
1, . . . , L.

We solve F(β) = (0) with the Newton-Ralphson method
with the Jacobian matrix Jmn = ∂Fm/∂βn. From (14) we get

Jmn(β) = ∑
i,g,k

′
[

Bij

1− Dij + Bijεij

∂2εij

∂βm∂βn

−
B2

ij

(1− Dij + Bijεij)2

∂εij

∂βm

∂εij

∂βn

]

where
∂2εij

∂βm∂βn
= εij(1− εij)(1− 2εij)

∂ηij

∂βm

∂ηij

∂βn
.

Putting everything together we obtain

Jmn(β) = ∑
i,g,k

′
[

Bijεij(1− εij)

(1− Dij + Bijεij)2

×
(
(1− Dij)(1− 2εij)− Bijε

2
ij

) ∂ηij

∂βm

∂ηij

∂βn

]
.

The Newton-Ralphson iteration is

βnew = βold − J−1(βold)F(βold).

Estimating Rates of Post-Mortem Damage
As mentioned above, the most common form of PMD is C deam-
ination, which leads to a C → T transition on the affected strand,
and a G → A transition on the complimentary strand (e.g. Briggs
and Stenzel 2007). These deaminations occur more frequently
in single stranded DNA, and are therefore observed more fre-
quently close to natural break-points, i.e. at the ends of the DNA
fragments. Consequently, the rates of PMD, while specific to
the sample and the sequencing protocol used, are generally de-
caying roughly exponentially with distance from the ends of
the read Skoglund et al. (2014). Since ancient DNA is highly
fragmented, one read can often cover an entire DNA molecule,
and hence C → T and G → A transitions may be seen in a single
read, but are accumulated and opposite ends.

Here we follow Jónsson et al. (2013) and estimate PMD rates
directly from genome-wide counts of C → T and G → A tran-
sitions as a function of distance within the read. For this we
first build the three-dimensional table T where each entry Trsp
corresponds to the number of observed bases r read at a site with
reference base s at position p within a read. While these counts
depend on the divergence between the sequenced individual
and the reference genome used for mapping, we here develop
an approach that takes this divergence into account.

Position specific estimator Let us denote by µrs the probability
of a true difference between the sequenced individual and the
reference such that the reference has base r and the sequenced
individual base s. Since the reference and a sequenced chromo-
some form a genealogy on which these mutations occurred, it is
safe to assume that µrs = µsr. We will further assume that the
observed counts in a cell Trsp not affected by PMD are a direct
function of µrs. We thus have

Trsp ∼ B(Tr·p, µrs),

where B(·, ·) is the binomial distribution and

Tr·p = ∑
b∈A,C,G,T

Trbp.
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For cells affected by PMD, such as TCTp, we then have

TCTp ∼ B(TC·p, µCT + (1− µCT)DC→T),

where DC→T is the rate of C → T PMD.
Under the assumption that µrs = µsr, we obtain an ML esti-

mate of DC→T (and analogously for DG→A) as

D̂C→T,p =
fCT,p − fTC,p

1− fTC,p
,

where

frs,p =
Trsp

Tr·p
.

We note that this approach may lead to an ML estimate of
D < 0 when fCT < fTC. In this case we set D = 0, and our
estimator thus corresponds to a maximum a posteriori estimate
using a uniform prior P(D) ∼ U[0, 1].

We further note that this approach assumes that all differ-
ences observed between reads and the reference are due to di-
vergence or PMD, but not sequencing errors. While sequencing
errors, divergence and PMD can not be jointly inferred, addi-
tional insight into the accuracy of our approach is gained by
studying the alternative extreme case in which all difference ob-
served between reads and the reference are assumed to be due to
PMD or sequencing errors alone. By denoting the genome-wide
sequencing error rate by ε, the relevant equations become

T TTCp ∼ B(TT·p, ε)

and

TCTp ∼ B(TC·p, DC→T(1− ε) + (1− DC→T)ε),

and the ML estimate

D̂C→T =
fCT − fTC
1− 2 fTC

.

Since average sequencing error rates are on the order of 1%,
they dominate the table T only in cases when fTC are small (on
the order of 1%). As a consequence, the error when estimating
the rates of PMD due to the omission of the factor of 2 in the
denominator is never larger than 1% of the estimated value.

Exponential model Since the rate of PMDs is generally low far
away from the read ends, position specific estimates may become
noisy for these positions, particularly if data is limited. We thus
also introduce a method to estimate parameters of a model of
exponential decay with the position in the read. The use of such
a model was first introduced by Skoglund et al. (2014), and we
implement here a slightly more general version of their function.
Specifically, we will assume that the probability of observing
base T when the reference sequence is a C at position p is given
by

P(dij = T|gi = C, p, ε) = µCT + (1− µCT)
(
a + be−cp) ,

where µCT again denotes true differences between the individual
and the reference.

To obtain ML estimates for the parameters of this probability
function we again turn to the Newton-Raphson algorithm as
shown in the following. However, we note that some of the
parameters are non-identifiable, and we thus show here how to
obtain estimates for the parameters of the probability function

P(dij = T|gi = C, p, ε) = α + δe−γp.

The log likelihood of the data is then given by

l(α, δ, γ) = ∑
p
TCTp log(µ+ δe−αp)+∑

p
TCCp log(1−µ− δe−αp),

the gradient vector F(α, δ, γ) by

F(α, δ, γ) =


Fα

Fδ

Fγ

 = ∑
p

TCTp

α + δe−γp


1

e−γp

−pδe−γp



+ ∑
p

TCCp

1− α− δe−γp


−1

−e−γp

pδe−γp


and the Jacobian matrix J(α, δ, γ) by

J(α, δ, γ) =


Fαα Fαδ Fαγ

Fαδ Fδδ Fδγ

Fαγ Fδγ Fγγ


= ∑

p

np

(α + δe−γp)2 J′p + ∑
p

Np − np

(1− α− δe−γp)2 J′′p ,

where

J′p =


−1 −e−γp pδe−γp

−e−γp −e−2γp −pαe−γp

pδe−γp −pαe−γp p2αδe−γp


and

J′′p =


−1 −e−γp pδe−γp

−e−γp −e−2γp p(1− α)e−γp

pδe−γp p(1− α)e−γp −p2(1− α)δe−γp

 .

The Newton-Raphson iteration for θ = (α, δ, γ)T is given by

θnew = θold − J−1(θold) F(θold). (15)

From these estimates we now obtain estimates for our param-
eters µCT , a, b and c as follows. First, and under the assumption
that αCT = αTC, we obtain the ML estimate

α̂CT = α̂TC =
∑p TTCp

∑p TTTp
.

Then, a =
δ

1− µ̂CT
, b = γ and c =

α− µCT
1− µCT

. We use the anal-

ogous logic to infer PMD patterns for G → A damages, but
measuring positions from the opposite endof the read.

Implementation
All approaches mentioned were implemented in a custom C++
program available at our lab website. We used functions in-
cluded in the library BamTools for manipulating bam files (Bar-
nett et al. 2011).
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A B C D

Figure 1 Power to infer θ from low coverage data. Results from sets of 100 simulations with post-mortem damage for different
average coverage, window size and true θ values. (A) Estimated θ̂ in windows of 1 Mb as a function of average coverage. (B) Es-
timated θ̂ as a function of window size and fixed average coverage of 1x. (C) Accuracy of estimating θ = 10−3 quantified as the
median relative error (|1 − θ̂/θ|) over replicates indicated by contour lines as a function of both coverage and window size. (D)
True versus estimated θ for different average coverages (see color legend). Polygons indicate the 95% quantile of estimated θ̂ val-
ues among all replicates. The diagonal black line indicates the expectation for perfect estimation. In panels A,B and D, replicates
resulting in a θ̂ < 10−5 are not shown, but their percentage across replicates are printed below the horizontal black line.

Simulations

Generating simulations
In this section we illustrate the power and accuracy of our infer-
ence approaches with simulations. These were generated using
a custom made R script that implements the following steps:

1. The first chromosome of length L was simulated using ran-
dom bases with frequencies π = {0.25, 0.25, 0.25, 0.25}.

2. The second, homologous chromosome was simulated ac-
cording to the Felsenstein (1981) substitution model (eq. 1)
with π and a chosen θ value.

3. Sequencing reads of 100 bases were then generated by copy-
ing from one of the two chromosomes with equal probabil-
ity and by choosing a starting position uniformly between
positions 1− L and L until the desired average coverage
was reached. All reads copied from the second chromosome
were considered to map to the reverse strand.

4. Post-mortem damage (PMD) was simulated on all reads
with probabilities following an exponential decay with in-
creasing position in the read as proposed by Skoglund et al.
(2014) to match realistic patterns. Specifically, we simulate
PMD at position p within the read with probability

D = (1− λ)p−1 p + C,

where λ = 0.3 and C = 0.01 for both C → T and G → A
but with p counted from the 3’ and 5’ ends, respectively.

5. For each simulated base, a phred-scaled quality score was
simulated and sequencing errors were then added with
probabilities given by these scores. If not stated otherwise,
quality scores were simulated from a normal distribution
with mean µQ and standard deviation σQ, truncated at
zero. When testing our recalibration approach, however,
the quality scores were simulated from a uniform distri-
bution U[5, 60] and then transformed according to eq. 12
with coefficients β to obtain the true error rate, with which
sequencing errors were simulated.

6. The simulated data was finally used to generate a reference
FASTA file containing the first chromosome and a SAM file
containing the reads. The latter was then transformed into
a BAM file using samtools Li et al. (2009).

Power to infer Heterozygosity

To check the power of our approach to infer θ from low coverage
data, we first simulated data within a 1 Mb window with a true
θ = 10−3 for various coverages. The specific value of θ = 10−3

was chosen to reflect the median heterozygosity in a modern,
non-African human individual.

We found the median of our θ estimates across replicates to be
very close to the true value, but the variance to be a function of
coverage. At low coverage (< 1x), θ was often overestimated, or
inferred as zero. This is not surprising as the information about
genetic diversity can only come from sites covered at least twice,
which is rare at average coverages < 1x. As soon as average
coverage exceeded 1.5x, however, our approach estimated θ at
10−3 very accurately (Fig. 1A).

We next performed simulations with a fixed coverage of 1x,
but varying the window size (Fig 1). Interestingly, we found that
an increase in window size has a positive effect on the estimate
accuracy, similarly to an increase in coverage, suggesting that
larger windows help to increase accuracy if coverage is very low.
To illustrate this effect, we performed simulations at various
window sizes and coverages and recorded the relative estima-
tion error for a series of replicates. As expected, we found the
median relative estimation error to be a direct function of the
product of window size and coverage (Fig 1C), thus suggesting
our method to perform well also at average coverages below 1x
if the window size is large enough.

Using a third set of simulations, we found that at equal cov-
erage and window size, higher θ values are estimated more
accurately than lower values (Fig. 1D). This is expected since
in the case of low θ, only few heterozygous sites are present
in a given window, rendering the estimate more dependent on
the detection of individual sites. Nonetheless, we found our
approach to infer θ > 10−4 very accurately in a window of 1Mb
if the average coverage exceeds 3x.

All results above were generated assuming base-specific qual-
ity scores to be normally distributed with µQ = 20 and standard
deviation σQ = 4.5, which is the minimum quality expected
with current sequencing approaches. Sequences generated with
higher quality will positively affect estimation accuracy. Indeed
we found that simulating data with µQ = 40 or µQ = 60 re-
sulted in much lower estimation error, effectively rendering the
estimation of θ feasible even at very low average coverage (2).
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A B

Figure 2 Effect of sequencing quality on power to estimate θ. Results from sets of 100 simulations to assess the power to estimate
θ of 10−4 and 10−3 for panels A and B, respectively, for different average base qualities distributed normally with mean 20, 40 or
60 and a standard deviation of 4.5, but truncated at 0. Polygon shapes indicate the 95% confidence interval for estimated θ̂ over all
replicates, excluding those resulting in θ̂ < 10−5 (the percentage excluded across are printed below the horizontal black line). All
simulations were conducted with PMD and the true PMD probability functions were used during the estimation.

A B C D

Figure 3 Accuracy in inferring recalibration parameters. Results from sets of 100 simulations are shown where sequence data
from a haploid 1Mb region was simulated assuming a uniform distribution of observed quality scores (U[5, 60]) that were then
transformed to true qualities according to eq. 12 with βq = 1.5,β2

q = 0.05,βp = −0.1, β2
q = 5 · 10−5 and all context coefficients at 1.0.

All simulations were conducted with PMD and the true PMD probability functions were used during the estimation.

For instance, we found that at an average coverage of 0.8x, more
than 90% of windows with θ = 10−4 and µQ = 60 were es-
timated within less than half an order of magnitude from the
true value. At µQ = 20, this accuracy was only reached with an
average coverage of 3.2x.

Accuracy of Recalibration

The results discussed so far were all obtained under the assump-
tion that quality scores provided by the sequencing machine are
accurate. Unfortunately, this is rarely the case, making recal-
ibration of the quality scores necessary for most applications,
and in particular when trying to infer genetic diversity from low
coverage data. Here we developed an approach to recalibrate
quality scores without prior knowledge of the underlying se-
quencing information. Instead, we simply assume that a part of
the sequence is known to be monomorphic, such as for instance
the haploid X-chromosome in mammalian males.

To investigate the power of our approach to infer recalibra-
tion parameters, we simulated sequencing reads from a haploid
region where the quality scores provided in the SAM files were
distorted. We did this by first simulating fake quality scores from
a uniform distribution U[5, 60] and then transforming them into
true quality scores according to eq. 12. We used the following
coefficients: all context coefficients = 1.0, the coefficients for the
raw quality score βq = 1.5, the square of the raw quality score
βq2 = 0.05, the position within the read βp = −0.1 and the
square of the position within the read βp2 = 5 · 10−5. These

values were chosen to reflect a distortion observed in real data
from the ancient human samples analyzed in this study (see
below). They also result in both a relatively strong distortion as
well as decent error rates for the evaluation of our approach.

We found all coefficients to be inferred with high accuracy
from a 1Mb window with an average coverage above 1x (Fig. 3).
If the amount of data was much lower than that, estimates were
generally less accurate. In particular, we found the coefficients
for the quality (βq and βq2 ) to be often slightly overestimated
at low coverages, likely because many sequencing errors go
undetected since they can only be inferred at sites covered at
least twice. However, this bias can be alleviated with larger
window sizes if coverage is very low (see below).

Accuracy of full pipeline

We finally used simulations to assess the accuracy of the full
pipeline, that is, when inferring first the pattern of PMD, then
the recalibration coefficients given the inferred PMD pattern,
and lastly using the recalibrated quality scores along with the
inferred PMD pattern to estimate θ. In these simulations, the
distortion of quality scores was, in addition to the four effects
included above (βq = 1.5, β2

q = 0.05, βp = −0.1 and β2
q =

5 · 10−5), also affected by sequence context in that simulated
sequencing errors were 1.5 times more likely to result in a C or
G than in an A or T.

Regardless of the true θ value we used, we detected a strong
bias in our estimates whenever very little data was used (Fig. 4).
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A B C

Figure 4 Accuracy in estimating θ using the full pipeline. Results from sets of 50 simulations each consisting of data from a hap-
loid as well as a diploid region used to conduct recalibration and inference of θ, respectively. The data sets in panels A, B and C
were simulated with different true values of θ, which are indicated with the dashed lines and were 10−2, 10−3 and 10−4, respec-
tively. Each data set was simulated with PMD as well as distorted base quality scores according to eq. 12 with βq = 1.5,β2

q =

0.05,βp = −0.1, β2
q = 5 · 10−5. In addition, these simulations also included context effects in that sequencing errors were simulated

to result 1.5 times more often in a C or G than in an A or T. The average coverage indicated is for the diploid data, while the hap-
loid data was simulated with half the coverage. Line segments and polygons correspond to the median and the 90% quantile of all
estimated θ̂ within the set of simulations, respectively.

This is a direct result of the overestimation of the quality scores
during the recalibration step as reported above, which leads to
an overestimation of diversity. Encouragingly, however, this bias
is overcome with only slightly more data. Indeed we found 1Mb
of data with an average coverage of well below 1x to be sufficient
to accurately infer θ ≥ 10−3 and pf 1x for θ = 10−4. Notably,
even lower average coverages were sufficient when data was
available for 10Mb. Finally,we found an average coverage of 4x
to be sufficient when conducting recalibration and inference in
windows as small as 0.1Mb. These results thus suggest that our
approach may be useful not only for hemizygous individuals
with large chunks of haploid DNA (the sex chromosomes), but
may also work well in other individuals when using mtDNA or
ultra conserved elements for recalibration.

Application

We illustrate the benefit of our approach by inferring θ for several
ancient human male samples and comparing these estimates
to those obtained for several male individuals from the 1000
Genomes Project. For the ancient genomes we first inferred PMD
patterns using the exponential model introduced here, then used
the first 20Mb of the X chromosome to perform recalibration in-
dividually for each read group, taking the inferred PMD pattern
into account. Finally, we used both the inferred PMD patterns
as well as the recalibrated quality scores to infer θ in windows
of 1Mb in the whole genome, excluding windows closer than
5Mb to Telomeres or Centromeres as defined by the track Gap
in group Mapping and Sequencing in the UCSC Table Browser
(Karolchik et al. 2008). The samples that we analyzed this way
were 1) two European hunter-gatherer individuals (Jones et al.
2015), namely the Mesolithic genome “Kotias” from Kotias Klde
cave from Western Georgia (KK1), and the western European
Late Upper Palaeolithic genome, “Bichon” from Grotte du Bi-
chon, Switzerland (Bich), approximately 17.700 years old 2) an
individual from the Bronze age burial site at Ludas-Varjú-dülö,
Hungary (BR2 Gamba et al. 2014) and 3) a 4500 years old male
from Mota Cave in the southern Ethiopian highlands (Mota Gal-

lego Llorente and Jones 2015). All these samples had relatively
high coverage (>10x) and thus allowed us to infer fine scaled
patterns of heterozygous along the genomes, even for regions
with low diversity (θ < 10−4).

For comparison, we also inferred diversity patterns for nine
modern males from three populations that were analyzed as part
of the 1000 genomes project phase 3 (alignment files downlaoded
from ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/).
These were the British males HG00115, HG00116 and HG00117,
the Tuscany males NA20509, NA20511 and NA20762, and the
Yoruban males NA18486, NA18519 and NA18522. As shown
in Fig. 5A, these nine individuals portray the expected pattern
of higher diversity in African than European individuals, but
they also revealed significant variation among individuals of the
same population (t-test, p < 10−5 in at least 2 out of 3 possible
comparisons in each population). Larger differences in overall
diversity was observed among the ancient samples analyzed.
Unsurprisingly, the African sample Mota exhibited the highest
diversity of all ancient samples, which was also higher than the
diversity observed in modern day Europeans, yet lower than
modern day Yorubans. The ancient sample with the second
highest diversity was the Bronze Age sample BR2, whose di-
versity falls well within the range of estimates obtained from
modern day Europeans. In contrast, the two European hunter-
gatherer samples KK1 and Bichon showed much lower diver-
sity than modern day Europeans with their median estimates
being 15-25% lower than the median estimates of modern Eu-
ropeans. These results thus suggest that while hunter-gatherer
populations had much lower diversity, the diversity found in
Europeans about 3,000 years ago was very comparable to the
diversity observed today. This conclusion is in perfect agree-
ment with with a temporal trend in the total length of runs of
homozygoisty (ROH) inferred from imputed genotypes among
ancient samples from Hungary that spanned a period from 5,700
- 1,000 BC and also included the sample BR2 (Gamba et al. 2014).

The inference of local diversity patterns also allows us to
compare the distribution of diversity in the genome between
individuals, regardless of the overall level of diversity. This
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Figure 5 Local diversity in ancient and modern humans. A) Heterozygosity (θ) inferred in 1Mb windows along the first 75 Mb
of chromosome 1 (excluding windows closer than 5Mb of the telomere) for two modern Europeans (TSI2 and GBR2) and two an-
cient European hunter-gatherers (KK1 and Bich). Solid lines indicate the MLE estimate, shades indicated the 95% confidence in-
tervals and dashed lines the genome-wide median for each sample. B) Distribution of estimates θ̂ in 1Mb windows across the first
22 chromosomes of each sample. C) Similarity in the pattern of θ along the genome visualized by hierarchical clustering using 1 -
Spearman correlation as distance.

analysis revealed a substantial phylogenetic signal in the dis-
tribution of diversity as quantified by Spearman correlations.
For instance, the diversity pattern is more strongly correlated
among modern Yorubans (Spearman correlations between 0.55 -
0.60) than between Yorubans and Europeans (0.40 - 0.50). Simi-
larly, the diversity pattern of the ancient African samples Mota
is most strongly correlated with that of modern day Yorubans
(0.491 - 0.537), and much less so with modern day Europeans
(0.362 - 0.433). Interestingly, European samples are more diverse
in their patterns than Africans (Spearman correlations between
0.42 - 0.48) and their pair-wise correlations do not exceed those
obtained when comparing African and European individuals.
Nonetheless, hierarchical clustering groups all modern day Eu-
ropeans together and also puts the Bronze age sample BR2 at
the basis of that clade (Fig. 5B).

The lowest pair-wise correlations (0.28 - 0.39) were found
in comparisons involving the two European hunter-gatherer
samples KK1 and Bich, with the overall lowest being the cor-
relation between these samples (0.28). This is also illustrated
visually when plotting our estimates of the first 75Mb of chro-
mosome 1 where we found relatively high concordance in local
diversity among the two European samples, but vastly different
patterns among the hunter-gatherer samples (Fig. 5C). These
results suggest that despite very comparable overall levels of di-
versity, the distribution of diversity along the genome was very
diverse among European hunter-gatherer populations and very
different from the one observed among modern day individuals.
Multiple observations support such a conclusion: first, the two
samples analyzed here represent two vastly different geographic
regions, with one being samples in Switzerland and the other in
Georgia, and were previously reported to belong to two different
clades that split 45,000 years ago as inferred from genotyping
data (Jones et al. 2015). Second, the ancestry of modern Euro-
peans traces only partly back to European hunter-gatherers with
early Neolithic people from the Aegean (Hofmanová et al. 2015)

and Yamnaya steppe herders (Haak et al. 2015) contributing the
majority of the modern day genetic make up. Finally, the two Eu-
ropean hunter-gatherer samples both exhibit many but unique
regions of very low diversity (θ̂ < 10−4 in 4% of all windows,
compared to 0.00 - 0.03% in all modern Europeans), likely the
result of small population sizes with some level of consanguinity
in the population (Pemberton et al. 2012).

Discussion

Quantifying genetic diversity and comparing it between dif-
ferent individuals and populations is fundamental to under-
standing the evolutionary processes shaping genetic variation.
Unfortunately, the inference of heterozygosity is confounded
by both sequencing errors resulting in false diversity as well as
the statistical power to identify heterozygous sites, particularly
when coverage is low. Several methods have been developed to
learn about heterozygosity probabilistically, that is, without the
need to first call genotypes. A rather recent such approach (Bryc
et al. 2013) proposes to leverage data from external reference in-
dividuals to obtain an unbiased estimate of the probability that
a specific sites is heterozygous. The expected heterozygosity
is then estimated from these site specific estimates. Since this
approach requires per site estimates to be accurate, only sites
with a coverage of 5x or higher can be included in the analysis,
which severely limits the scope of the application.

An alternative is to infer heterozygosity probabilistically from
a collection of sites. Among the earliest such methods was a
likelihood based estimator (Lynch 2008), which infers heterozy-
gosity of an individual jointly with the rate sequencing errors.
We presented a natural extension of this approach that relaxes
the infinite sites assumption and integrates post-mortem dam-
age (PMD), a particular feature of ancient DNA. We then showed
that this allows for unbiased estimates a much lower coverage
than the original estimator, which was found to be ill-behaved
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at coverages below 4x (Lynch 2008).
A downside of our approach is that it assumes sequencing er-

rors to be known, while the original approach estimates the rate
of sequencing errors jointly with heterozygosity. This, however,
allows us to relax the assumption of constant error across all
reads and to benefit from the quality information provided by
current sequencing technologies. Yet since these provided qual-
ity scores are often distorted, we also introduced here a method
to recalibrate the quality scores for low coverage genomes. In
contrast to commonly used methods for recalibration (e.g. De-
Pristo et al. 2011; McKenna et al. 2010; Cabanski et al. 2012), our
approach does not require information about the underlying se-
quence context. It only assumes sites to be monomorphic while
integrating over the uncertainty of the sequence itself. Examples
of regions known to be monomorphic are the sex chromosomes
in hemizygous individuals. But since we found that our method
recalibrates quality scores with high accuracy and reliably even
based on DNA stretches as short as 1Mb, we are confident that
it will work even on ultra conserved elements or plasmid DNA.
Finally, we note that if multiple individuals are sequenced to-
gether, they are likely affected by the same distortion of quality
scores and can hence be recalibrated with parameters inferred
from a subset of them (e.g. the male samples).

As an illustration, we applied the here developed methods to
modern and ancient human samples of various coverage. While
our approach to infer heterozygosity incorporates the possibility
of PMD, it assumes that the probability of a PMD event occur-
ring is known. We thus also introduce two methods to infer
these probability functions from raw data that are robust to
divergence between the sample and the reference genome. By in-
ferring PMD patterns for each sample, then the recalibration pa-
rameters, and finally local diversity in 1Mb windows, we found
that both ancient and modern African samples exhibited much
larger diversity than European individuals. In addition, the
diversity inferred from two ancient European hunter-gatherer
samples was much lower than that of modern samples, which
is likely explained by smaller population sizes. Besides overall
differences in diversity, also the pattern of diversity along the
genome revealed a strong geographic clustering among modern
and ancient samples. The exceptions were the two European
hunter-gatherers that showed patterns very different from both
modern samples as well as from one another, further corrobo-
rating the view (Jones et al. 2015) that these samples represent
different and ancient clades that contributed only marginally to
the genetic make-up of modern day Europeans.
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Appendix

Emission probabilities in the presence of post-mortem damage
Following Lynch (2008) and commonly used approaches (Li 2011, e.g.), we assume here that a sequencing read is equally likely to
cover any of the two alleles of an individual and that sequencing errors may result in any of the alternative bases with equal probability
εij/3. In the absence of post-mortem damage (PMD), the probability of observing a base dij given the underlying genotype gi = kl is
then given by

P(dij|gi = kl, εij) =


1− εi,j if k = l = dij
ε
3 if k 6= di,j, l 6= dij
1
2 −

εij
3 if k 6= l, k = dij or l = dij

,

In ancient DNA, differences between the base observed within a read and the underlying alleles may also be the result of PMD. Let
us denote by DC→T(qij) and DG→A(qij) the known probability that a C → T or G → A PMD occurred at the position covering site i in
read j, respectively. In the presence of PMD, the probability of observing a base dij given the underlying genotype gi = kl is given by

P(dij|gi = kl, εij, qij) =



(1− DG→A(qij))
εj

3
+ DG→A(qij)(1− εj) if dij = A, gi = GG

(1 + DG→A(qij))(1− εj)

2
+

(1− DG→A(qij))εj

6
if dij = A, gi = AG

DG→A(qij)(1− εj)

2
+

(2DG→A(qij))εj

6
if dij = A, gi = CG, GT

(1− DC→T(qij))(1− εj) + DC→T(qij)
εj

3
if dij = C, gi = CC

(1− DC→T(qij))(1− εj)

2
+

(1 + DC→T(qij))εj

6
if dij = C, gi = AC, CG, CT

(1− DG→A(qij))(1− εj) + DG→A(qij)
εj

3
if dij = G, gi = GG

(1− DG→A(qij))(1− εj)

2
+

(1 + DG→A(qij))εj

6
if dij = G, gi = AG, CG, GT

(1− DC→T(qij))
εj

3
+ DC→T(qij)(1− εj) if dij = T, gi = TT

DC→T(qij)(1− εj)

2
+

(2− DC→T(qij))εj

6
if dij = T, gi = AC, CG

(1 + DC→T(qij))(1− εj)

2
+

(1− DC→T(qij))εj

6
if dij = T, gi = CT

1− εi,j if dij = A, gi = AA or dij = T, gi = TT

1
2
− εi,j if dij = A, gi = AC, AT or dij = T, gi = AT, GT

ε

3
otherwise

.

Implementation of the EM algorithm to infer θ

Here we present an efficient implementation of the algorithm to infer θ for a genomic region containing I sites:

1. Calculate the matrix of emission probabilities P(di|gi) for all positions and genotypes according to the formulas given in the
Appendix.

2. Estimate the initial base frequencies π from the base frequencies among all reads in the window.

3. Set the initial θ to the genome-wide expectation.

4. Run the EM algorithm by repeating the following steps until convergence is reached:
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(a) Set θ′ = θ, π′ = π, ρ′ = e−θ′/(1− e−θ′ ) and µ′ = 0.

(b) Calculate substitution probabilities P(g|θ′, π′) for all genotypes g according to eq. 1 using the current estimates of θ′ and π′.

(c) Calculate Pg =
I

∑
i=1

P(g|di; θ′, π′) for all genotypes g according to eq. 3.

(d) Find the new estimates of the parameters θ and π using the Newton-Ralphson method by setting x = {π′, ρ′, µ′} and
repeating the following steps until convergence:

i. Calculate vector F according to eq. 4.
ii. Calculate J−1 according to eq. 6.

iii. Update x according to eq. 7.

(e) estimate new parameter estimates as πk = xk and θ = − log(x5/(1 + x5)).
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