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Abstract

The impact of evolutionary processes in cancer and its implications for drug response, biomarker
validation and clinical outcome requires careful consideration of the evolving mutational landscape of
the cancer. Genome sequencing allows us to identify mutations but the prevalence of those mutations
in heterogeneous tumours must be inferred. We describe a method that we call OncoPhase to compute
the prevalence of somatic point mutations from genome sequencing analysis of heterogeneous tumours
that combines information from nearby phased germline variants. We show using simulations that the
use of phased germline information can give improved prevalence estimates over the use of somatic
variants only.

1 Introduction

Cancer exhibits extensive intra-tumour heterogeneity with multiple sub-populations of tumour cells
containing both common and private somatic mutations. Within- and between-patient tumour het-
erogeneity is now seen as one of the major obstacles in precision medicine and the development of
effective therapy strategies. Recent advances in genome sequencing technologies have enabled routine
targeted or whole genome sequencing of tumour samples allowing the somatic landscape of a tumour
to be surveyed but the existence of tumour heterogeneity makes it challenging to initially detect the
existence of somatic mutations but also to determine the percentage of cancer cells harbouring those
mutations (the prevalence). As the ability of cancers to evolve is increasingly recognised as an impor-
tant factor in therapeutic success or failure [1–4], it is important to have accurate estimation of the
prevalence of mutations to understand the evolution of the disease. The latter problem has recently
given rise to a plethora of statistical approaches to reconstruct the underlying subclonal architecture
of a tumour from sequencing of tumour samples containing mixed cell populations [5–10].

State-of-the-art methods for subclonal architecture reconstruction use statistical models that de-
scribe latent unobserved mutational profiles for an unknown number of tumour cell subpopulations
which exist in different proportions in any given tumour sample. The inference problem is to infer the
properties and prevalence of these subclones given the sequencing data which only gives an aggregated
count of the number of variant (and non-variant) reads across all the cell populations in the tumour
sample. One popular approach is to cluster the observed variant allele frequencies (VAFs) of each sin-
gle nucleotide variant (SNV). The variant allele frequency is the ratio of the number of variant reads

1

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 31, 2016. ; https://doi.org/10.1101/046631doi: bioRxiv preprint 

https://doi.org/10.1101/046631
http://creativecommons.org/licenses/by-nc/4.0/


to the total number of reads covering that genomic locus. Each cluster of VAF therefore corresponds
to one lineage in the evolutionary tree describing the sequence of mutational events affecting the tu-
mour. This approach can be taken one step further by actually inferring the phylogenetic relationships
themselves [6, 9].

Current mainstream high-throughput sequencing typically adopts a short-read approach that se-
quences many short DNA fragments (30-300bp) in a highly multiplexed, parallel fashion enabling
many times coverage of the whole genome. These short fragments are reassembled to provide se-
quential genomic coverage information by aligning to reference sequences. The result is that phase
information is lost during the sequencing process precluding the ability to directly observe if a sequence
variant lies on the same chromosome as another. However, recent adaptations of existing sequencing
technologies and emerging new technologies (single molecule and nanopore techniques) have enabled
longer physical reads to be obtained spanning 10s of kilobases or synthetic reads that potentially span
many megabase regions.

In this paper we describe a methodology to quantify the cellular prevalence of single nucleotide
variants (SNVs) using phase information. Our specific focus is on the accurate estimation of the
prevalence of particular SNVs as supposed to full subclonal decomposition that is, we want to be able
to provide to the answer “what proportion of cancer cells have this somatic mutation?”. Complete
subclonal decomposition approaches utilise information across multiple SNVs to infer the prevalence
and mutational profile of each subclone and the phylogenetic relationships between these subclones.
The space of possible subclonal architectures is exponentially large, multiple subclonal configurations
maybe compatible with the observed data and the prevalence of any individual SNV can vary depend-
ing on the lineage/tree combination to which it is attached.

Instead of tackling this complexity, our methodology relies on the fact that, within a population of
tumour cells, germline variants (single nucleotide polymorphisms or SNPs) are always present in all
the cells but SNVs may not. For any SNV, if we consider a SNP phased to it then that SNV, whenever
present, will always be on the same chromosome with the SNP. In the case when neither the germline
or somatic variant are affected by somatic copy number alterations (SCNAs), the ratio between the
counts of sequencing reads supporting the SNV and the count of sequencing reads supporting the SNP
will give an estimation of the somatic mutation prevalence. In the presence of SCNAs, if the copy
number change occurred before the mutational event then the SNV will be less abundant than the
SNP. In contrast, if the SNV occurs before the SCNA than the abundance of SNVs will match the
SNPs. We exploit these relationships to show that the estimate of prevalence for phased SNVs can
be increased. Furthermore, we are able to resolve ambiguities using the phase information due to the
unknown latent subclonal architecture that cannot be done by looking exclusively at SNVs.

Accurate estimation of individual somatic mutations is important in applications where the mu-
tational status of specific genes may have utility in assessing the efficacy of targeted therapies or
stratified approaches to treatment. The methods we developed are implemented in a software package
called OncoPhase that is freely available (https://github.com/chedonat/OncoPhase). OncoPhase
uses haplotype phase information to accurately compute mutational prevalence. In the following we
describe the mathematical formulation underlying the methodology and then illustrate its application
in both simulated and real data settings.

2 Methods

OncoPhase uses a combination of phased SNV and SNP allele-specific sequence read counts and local
allele-specific copy numbers to determine the prevalence of the SNV. Figure ?? gives a schematic of
the methodology.

2.1 Input specification

OncoPhase takes 7 (1 optional) input parameters:

1. (λM , µM ) the allele counts for the somatic variant and reference allele at the mutation site M ,
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2. (λG, µG) the allele counts for the alternate and reference allele at the germline SNP G (where
the alternate allele at G is in phased with the variant allele at M),

3. (σG, ρG) the allele-specific (alternate and reference) copy number at the locus G which can be
obtained from appropriate copy number calling methods [11–13],

4. (Optional) ψ an estimate of the normal cell contamination

2.2 Prevalence computation

At each SNV, OncoPhase assumes the existence of three cellular sub-populations in the proportions
θ = (θG, θA, θB): (i) cells having a normal genotype with no mutations and no copy number alteration,
(ii) cells harbouring either an SNV or a copy number alteration (but not both) and (iii) cells harbouring
both the SNV and the copy number alteration. The cellular prevalence is therefore given by:

Prev(M) = θB + δ(C = 1)θA (1)

where C ∈ {0, 1} is a latent indicator variable which has value 1 if the SNV occurs before the copy
number alteration event and zero otherwise.

The variant allele frequency of the SNV vM is given by:

vM =


θA + σGθB

2θG + 2θA + TcnθB
, C = 1,

θB
2θG + TcnθA + TcnθB

, C = 0,

and the corresponding variant allele frequency for the phased SNP is given by:

vG =


θG + θA + σGθB

2θG + 2θA + TcnθB
, C = 1,

θG + σGθA + σGθB
2θG + TcnθA + TcnθB

, C = 0,

.
Given the latent variable C and the observed variant allele frequencies (vM , vG), the system of

equations are linear in the parameters θ and can be solved using constrained linear solvers subject to
the constraints θG + θA + θB = 1 and 0 ≤ θG, θA, θB ≤ 1. As C is unknown but only consists of two
possibilities, the system can be solved for both possible configurations and the configuration giving
the least residual error with respect to predicting the observed variant allele frequencies chosen.

Interestingly, in the absence of measurement noise, there is a closed-form solution for the prevalence
of the mutation M given by

Prev(M) =


λM
λG

(φGσM + (1− φG)), if C = 0,

φG + (λM − λG)φGσM + λM (1− φG)
λG

, if C = 1,

where φG = λG−µG
µG(σG−1)−λG(ρG−1) . The existence of this closed form solution is instructive for under-

standing the utility of the use of phased information as we will detail in the following section.
In principle, the method can be used with any flanking SNP which is close to the SNV whether

phased or not. However, in the absence of direct phasing information, it would also be necessary to
solve the equations for the alternate phasing configurations.

3 Results

We conducted a simulation study to examine the utility of phasing information for estimating muta-
tional prevalence. We simulated sequencing data, using a range of coverage levels (30, 60, 120 and
1000X), for the scenario depicted in Figure 2 which shows 6 sub-clonal cell types and their phylogenetic
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relationships. The simulation uses a variety of somatic point mutations and copy number changes. We
treat the coverage levels as fixed and obtained the variant read counts for the SNVs and SNPs using
Binomial sampling based on the expected variant allele frequency. We used 30 replicates to ensure
robustness of our results to stochastic effects.

We applied OncoPhase with and without the phased germline variant information to the simulated
data set to compute the mutational prevalence for each of the 5 SNVs which are shown in Figure 3.
For SNVs a, b and d, the use of phased germline information in OncoPhase was not advantageous,
and it was possible to obtain good prevalence estimates using the SNV information alone. However,
for SNVs c and e, the use of phasing information was vital. Without the phased germline information,
the prevalence estimates were incorrect and did not improve with increased coverage, but OncoPhase
was able to attain the correct values.

We next sought to further explore the properties of OncoPhase by examining simulations based
on 12 specific scenarios shown in Figure 4. Table 1 gives illustrative noise-free input values based on
these 12 cases that leads to the correct prevalence being estimated using the closed-form expression
given previously. In the presence of noise, our simulations showed that OncoPhase was able to better
estimate the mutational prevalences than an equivalent method based only on the SNV measurements
(Figure 5). In cases 3, 4, 8, 9, 10, 11 and 12, it was not possible to obtain the correct prevalence levels
using the SNV measurements only no matter the coverage level.

4 Discussion

The accurate inference of mutational prevalence levels is critical for tracking subclonal dynamics in
cancer. Full clonal architecture models allow for the simultaneous inference of subclonal cell types,
mutational profiles and their phylogenetic relationships. These methods leverage information across
multiple (potentially thousands) SNVs and copy number alterations across the whole genome but this
results in less specificity for certain mutations as the objective is to obtain a good global model fit to
the data.

Our method OncoPhase has been designed to focus on target mutations only. It leverages informa-
tion from adjacent SNPs that can be phased with the somatic variant and combines the two sources
of data to improve mutational prevalence estimates. The use of local phased SNPs also helps to re-
solve potential ambiguities that would confound estimation using the somatic variant data alone. Our
methodology is timely with the emergence of sequencing methods that are capable of producing either
actual physical long-reads [14, 15] or synthetic long-reads [16–18] that gives phasing information.

Acknowledgements

CY is supported by a Wellcome Trust Core Award Grant Number 090532/Z/09/Z and a UK Medical
Research Council New Investigator Research Grant (Ref. No. MR/L001411/1). DCF, CY and AAA
are supported by a Research Grant from the Ovarian Cancer Action Charity. AAA is supported by
the Medical Research Council and the Oxford Biomedical Research Centre, the National Institute of
Health Research.

Contributions

AAA and CY conceived the study. DCF and CY developed the methods and wrote the software. All
authors contributed to the manuscript.

References

1. Burrell, R. A., McGranahan, N., Bartek, J. & Swanton, C. The causes and consequences of
genetic heterogeneity in cancer evolution. Nature 501, 338–345 (2013).

4

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 31, 2016. ; https://doi.org/10.1101/046631doi: bioRxiv preprint 

https://doi.org/10.1101/046631
http://creativecommons.org/licenses/by-nc/4.0/


2. Fisher, R, Pusztai, L & Swanton, C. Cancer heterogeneity: implications for targeted therapeutics.
British journal of cancer 108, 479–485 (2013).

3. Burrell, R. A. & Swanton, C. Tumour heterogeneity and the evolution of polyclonal drug resis-
tance. Molecular oncology 8, 1095–1111 (2014).

4. Crockford, A., Jamal-Hanjani, M., Hicks, J. & Swanton, C. Implications of intratumour hetero-
geneity for treatment stratification. The Journal of pathology 232, 264–273 (2014).

5. Lee, J., Müller, P., Sengupta, S., Gulukota, K. & Ji, Y. Bayesian inference for intratumour
heterogeneity in mutations and copy number variation. Journal of the Royal Statistical Society:
Series C (Applied Statistics) (2016).

6. Deshwar, A. G. et al. PhyloWGS: reconstructing subclonal composition and evolution from whole-
genome sequencing of tumors. Genome Biol 16, 35 (2015).

7. Lee, J., Müller, P., Gulukota, K., Ji, Y., et al. A Bayesian feature allocation model for tumor
heterogeneity. The Annals of Applied Statistics 9, 621–639 (2015).

8. Sengupta, S. et al. BayClone: Bayesian nonparametric inference of tumor subclones using NGS
data in Proceedings of The Pacific Symposium on Biocomputing (PSB) (2015), 20.

9. Yuan, K., Sakoparnig, T., Markowetz, F. & Beerenwinkel, N. BitPhylogeny: a probabilistic frame-
work for reconstructing intra-tumor phylogenies. Genome biology 16, 36 (2015).

10. Roth, A. et al. PyClone: statistical inference of clonal population structure in cancer. Nature
methods 11, 396–398 (2014).

11. Van Loo, P. et al. Allele-specific copy number analysis of tumors. Proceedings of the National
Academy of Sciences 107, 16910–16915 (2010).

12. Yau, C. OncoSNP-SEQ: a statistical approach for the identification of somatic copy number
alterations from next-generation sequencing of cancer genomes. Bioinformatics 29, 2482–2484
(2013).

13. Ha, G. et al. TITAN: inference of copy number architectures in clonal cell populations from
tumor whole-genome sequence data. Genome research 24, 1881–1893 (2014).

14. Rusk, N. Cheap third-generation sequencing. Nature Methods 6, 244–244 (2009).
15. Mikheyev, A. S. & Tin, M. M. A first look at the Oxford Nanopore MinION sequencer. Molecular

ecology resources 14, 1097–1102 (2014).
16. Peters, B. A. et al. Accurate whole-genome sequencing and haplotyping from 10 to 20 human

cells. Nature 487, 190–195 (2012).
17. Eisenstein, M. Startups use short-read data to expand long-read sequencing market. Nature

biotechnology 33, 433–435 (2015).
18. Zheng, G. X. et al. Haplotyping germline and cancer genomes with high-throughput linked-read

sequencing. Nature biotechnology (2016).

5

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 31, 2016. ; https://doi.org/10.1101/046631doi: bioRxiv preprint 

https://doi.org/10.1101/046631
http://creativecommons.org/licenses/by-nc/4.0/


List of Figures

1 Workflow. OncoPhase takes as input phased read counts for SNP-SNV pairs (variant
allele frequencies) and allele-specific copy number information and identifies (upto)
three cell subpopulations (G, A, B). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Simulation setup. The simulated data consists of six subclonal cell types containing
a total of (a-e) 5 SNVs (◦) and their respective local phased SNP (�). SNVs (c, e) are
also affected by a duplication and copy-neutral LOH respectively. . . . . . . . . . . . 8

3 Simulation results. Estimated mutation prevalences using (i) somatic variants only
and (ii) combining somatic variants with nearby phased germline variant information
(OncoPhase). The rows (a-e) correspond to each of the five SNVs used in the simulation.
The dashed line indicates the true mutational prevalence. . . . . . . . . . . . . . . . . 9

4 Further simulated examples. Twelve simulation scenarios. The colours blue denote
a SNP and red denotes an SNV. The fractions above each chromosome denotes the
proportions (θG, θA, θB). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5 Comparison of OncoPhase prevalence estimates for the twelve further sim-
ulated examples with and without phased germline information. . . . . . . . 11

6

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 31, 2016. ; https://doi.org/10.1101/046631doi: bioRxiv preprint 

https://doi.org/10.1101/046631
http://creativecommons.org/licenses/by-nc/4.0/


Figure 1: Workflow. OncoPhase takes as input phased read counts for SNP-SNV pairs (variant allele
frequencies) and allele-specific copy number information and identifies (upto) three cell subpopulations
(G, A, B).
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Figure 2: Simulation setup. The simulated data consists of six subclonal cell types containing a
total of (a-e) 5 SNVs (◦) and their respective local phased SNP (�). SNVs (c, e) are also affected by
a duplication and copy-neutral LOH respectively.
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Figure 3: Simulation results. Estimated mutation prevalences using (i) somatic variants only and
(ii) combining somatic variants with nearby phased germline variant information (OncoPhase). The
rows (a-e) correspond to each of the five SNVs used in the simulation. The dashed line indicates the
true mutational prevalence.
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Case Population

G A B

1

2/5 3/5

2

2/8 3/8 3/8

3

2/5 1/5 2/5

4

2/6 1/6 3/6

5

2/4 2/4

6

2/8 2/8 4/8

7

0 3/4 1/4

8

2/8 1/6 3/6

9

2/6 1/6 3/6

10

2/6 2/6 3/6

11

4/6 2/6

12

2/8 2/8 4/8

Figure 4: Further simulated examples. Twelve simulation scenarios. The colours blue denote
a SNP and red denotes an SNV. The fractions above each chromosome denotes the proportions
(θG, θA, θB).
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Figure 5: Comparison of OncoPhase prevalence estimates for the twelve further simulated
examples with and without phased germline information.
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Case (λM , λG) (µM , µG) (σG, ρG) φG C Prev(M)

1 (14, 16) (10, 8) (3, 1) 1/2 1 3/4
2 (3, 20) (25, 8) (3, 1) 3/4 0 3/8
3 (3, 5) (5, 3) (1, 0) 2/5 1 3/5
4 (7, 9) (8, 6) (2, 1) 1/2 1 2/3
5 (2, 4) (6, 4) (1, 1) 0 1 1/2
6 (14, 16) (10, 8) (3, 1) 1/2 1 3/4
7 (1, 8) (7, 0) (2, 0) 1 0 1/4
8 (3, 6) (5, 2) (1, 0) 2/3 0 1/2
9 (6, 7) (2, 1) (2, 0) 3/4 1 3/4
10 (6, 8) (8, 6) (2, 1) 1/3 1 2/3
11 (4, 8) (8, 4) (2, 0) 1/3 1 1/3
12 (6, 8) (14, 12) (1, 2) 1/2 1 3/4

Table 1: Simulation parameters
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