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Lay Abstract: Individuals with Autism Spectrum Disorder (ASD) are reported to speak 

in distinctive ways. Distinctive vocal production should be better understood as it can 

affect social interactions and social development and could represent a non-invasive 

marker for ASD. We systematically review the existing scientific literature reporting 

quantitative acoustic analysis of vocal production in ASD and identify repeated and 

consistent findings of higher pitch mean and variability but not of other differences in 

acoustic features. We also identify a recent approach relying on multiple aspects of vocal 

production and machine learning algorithms to automatically identify ASD from voice 

only. This latter approach is very promising, but requires more systematic replication and 

comparison across languages and contexts. We outline three recommendations to further 

develop the field: open data, open methods, and theory-driven research. 
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Scientific Abstract Individuals with Autism Spectrum Disorder (ASD) tend to show 

distinctive, atypical acoustic patterns of speech. These behaviours affect social 

interactions and social development and could represent a non-invasive marker for ASD. 

We systematically reviewed the literature quantifying acoustic patterns in ASD. Search 

terms were: (prosody OR intonation OR inflection OR intensity OR pitch OR 

fundamental frequency OR speech rate OR voice quality OR acoustic) AND (autis* OR 

Asperger). Results were filtered to include only: empirical studies quantifying acoustic 

features of vocal production in ASD, with a sample size > 2, and the inclusion of a 

neurotypical comparison group and/or correlations between acoustic measures and 

severity of clinical features. We identified 32 articles, including 27 univariate studies and 

15 multivariate machine-learning studies. We performed meta-analyses of the univariate 

studies, identifying significant differences in mean pitch and pitch range between 

individuals with ASD and comparison participants (Cohen’s d of about 0.4 and 

discriminatory accuracy of about 61%). The multivariate studies reported higher 

accuracies than the univariate studies (63-96%). However, the methods used and the 

acoustic features investigated were too diverse for performing meta-analysis. We 

conclude that multivariate studies of acoustic patterns are a promising but yet 

unsystematic avenue for establishing ASD markers. We outline three recommendations 

for future studies: open data, open methods, and theory-driven research. 

 

Key Words: Voice, Speech, Acoustic properties, Machine Learning, Biomarker 
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1. Introduction 

From its earliest characterizations, ASD has been associated with peculiar tones of voice 

and disturbances of prosody (Asperger, 1944; Goldfarb, Braunstein, & Lorge, 1956; 

Kanner, 1943; Pronovost, Wakstein, & Wakstein, 1966; Simmons & Baltaxe, 1975). 

Although 70-80% of individuals with ASD develop functional spoken language, at least 

half of the ASD population displays early atypical acoustic patterns (Paul et al., 2005a; 

Rogers et al., 2006; Shriberg et al., 2001), which persist while other aspects of language 

improve (Baltaxe & Simmons, 1985; Depape, Chen, Hall, & Trainor, 2012). These 

atypical acoustic patterns have been qualitatively described as flat, monotonous, variable, 

sing-songy, pedantic, robot- or machine-like, hollow, stilted or exaggerated and 

inappropriate (Amorosa, 1992; Baltaxe, 1981; Depape, et al., 2012; Järvinen-Pasley, 

Peppé, King-Smith, & Heaton, 2008; Lord, Rutter, & Le Couteur, 1994). Such distinctive 

vocal characteristics are one of the earliest-appearing markers of a possible ASD 

diagnosis (Oller et al., 2010; Paul, Fuerst, Ramsay, Chawarska, & Klin, 2011; 

Warlaumont, Richards, Gilkerson, & Oller, 2014). 

 An understanding of vocal production in ASD is important because acoustic 

abnormalities may play a role in the social-communicative impairments associated with 

the disorder (Depape, et al., 2012; Klopfenstein, 2009). For example, individuals with 

ASD have difficulties with the communication of affect (Travis & Sigman, 1998) – 

which relies on the production of prosodic cues – leading to negative social judgments on 

the part of others (Fay & Schuler, 1980; Paul et al., 2005b; Shriberg, et al., 2001; Van 

Bourgondien & Woods, 1992) and in turn social withdrawal and social anxiety (Alden & 

Taylor, 2004). Such disruption of communication and interaction may have long-term 
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effects, compromising the development of social-communicative abilities (Warlaumont, 

et al., 2014).  

Atypical prosody is already considered a marker for ASD in gold-standard 

diagnostic assessments such as the Autism Diagnostic Observation Schedule (Lord, et al., 

1994), and recent evidence indicates that speech in ASD may be characterized by 

relatively unique acoustic features that can be quantified objectively (Bone et al., 2013; 

Fusaroli, Lambrechts, Yarrow, Maras, & Gaigg, 2015; Oller, et al., 2010). Prosody 

production has also been argued to be a “bellwether” behavior that can serve as a marker 

of the specific cognitive and social functioning profile of an individual (Bone et al., 2014; 

Diehl, Berkovits, & Harrison, 2010; Paul, et al., 2005a). Such diagnostic profiling is 

especially needed now that the diagnosis of ASD (since the publication of the DSM-5) 

pools together previously distinct disorders (e.g., Asperger syndrome and childhood 

disintegrative disorder). 

 Studies of prosody in ASD can be grouped according to four key aspects of 

speech production: pitch, volume, duration and voice quality (Cummins et al., 2015; 

Titze, 1994). The speech of individuals with ASD has been described as monotone, as 

having inappropriate pitch and pitch variation (Baltaxe, 1984; Fay & Schuler, 1980; 

Goldfarb, Goldfarb, Braunstein, & Scholl, 1972; Paccia & Curcio, 1982; Pronovost, et 

al., 1966) and as being too loud or too quiet, sometimes inappropriately shifting between 

the two (Goldfarb, et al., 1972; Pronovost, et al., 1966; Shriberg, Paul, Black, & van 

Santen, 2011; Shriberg, et al., 2001). Further, individuals with ASD have been reported 

to speak too quickly or too slowly (Baltaxe, 1981; Goldfarb, et al., 1972; Simmons & 

Baltaxe, 1975) and many descriptions of their speech have highlighted a distinctive voice 
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quality characterized as “hoarse”, “harsh” and “hyper-nasal” (Baltaxe, 1981; Pronovost, 

et al., 1966), with a higher recurrence of squeals, growls, and yells (Sheinkopf, Mundy, 

Oller, & Steffens, 2000). 

The research evidence is diverse, in terms of both methods and interpretations. An 

early review of 16 qualitative studies of speech in ASD found it difficult to draw any firm 

conclusions (McCann & Peppé, 2003). Shortcomings of the reviewed studies were: (1) 

small sample size; (2) underspecified criteria for the (qualitative) descriptions of speech 

production; (3) lack of quantitative measures of speech production; (4) use of 

heterogeneous and non-standardized tasks; and (5) little theory-driven research. Since 

that review, the literature on prosody in ASD has grown substantially, particularly with 

respect to the use of signal-processing techniques that overcome some of the limitations 

involved in qualitative studies (Banse & Scherer, 1996; Grossman, Bemis, Skwerer, & 

Tager-Flusberg, 2010). The purpose of the present paper is to provide a systematic and 

critical review of recent research on the acoustic quantitative characteristics of speech 

production in ASD. This focus ensures minimal overlap with the literature reviewed by 

McCann & Peppé (2003) and is motivated by the more general question of whether 

automated speech-processing procedures can be used in the diagnosis of ASD.  

We identified two different groups of studies: univariate studies and multivariate 

machine-learning studies. Univariate studies seek to identify differences between ASD 

and comparison groups by investigating one acoustic feature at a time. In contrast, 

multivariate machine-learning studies use multiple features (multivariate) to build 

statistical models that can classify previously unheard voice samples into ASD and 

comparison groups (machine-learning).  
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A particular focus of this review will be whether acoustic characteristics of speech 

production can be used as markers of ASD, that is, an index measurable directly using 

sensitive and reliable quantitative procedures and associated with the condition and/or its 

clinical features (e.g. Ruggeri et al, 2014). Since ASD involves high degree of 

heterogeneity of clinical features and their severity, it is crucial to assess how widely 

acoustic markers can apply to a wide range of individuals with ASD, and whether the 

markers reflect severity and progression of clinical features over time (e.g. in presence of 

intervention program or aging). It should also be emphasized that, in light of the 

heterogeneity of individuals with ASD and the need of reliability in a marker of ASD, the 

review will not speculate on the significance of the findings of isolated studies. Instead, 

the focus will be on finding patterns across studies, which are more likely to generalize to 

new samples (Yarkoni & Westfall, 2016).  

The review will be structured as follows. Section 2 will define the search and 

selection criteria for the literature review. Sections 3 and 4 will present the results of the 

review. Section 3 focuses on univariate studies and, where more than five studies focused 

on the same feature, provides meta-analyses of the effect sizes. Section 4 focuses on 

multivariate studies and in particular the attempt to use machine-learning techniques to 

develop acoustic markers of ASD. We end by critically assessing the findings and 

advancing recommendations for future research. 

 

2. Methods: The criteria for the literature search 

A literature search was conducted using Google Scholar, PubMed and Web of Science on 

April 15 2015 and updated on March 4 2016. The search terms used were (prosody OR 
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intonation OR inflection OR intensity OR pitch OR fundamental frequency OR speech 

rate OR voice quality OR acoustic) AND (autis* OR Asperger). Additional search for 

unpublished studies was performed through additional web searches (on Google and 

Bing), and by directly contacting i) authors of the published studies and ii) interested 

participants of the IMFAR 2014, 2015 and 2016 conferences. Furthermore it should be 

noted that Google Scholar covers most (if not all) dissertation repositories. The papers 

thus found were searched for additional references and the resulting set was screened by 

two of the authors (RF and AL) according to the following criteria: empirical study, 

quantification of acoustic features in the vocal production of participants with ASD, 

sample including at least two individuals with ASD, inclusion of a typically developing 

comparison group (TD) or an assessment of variation in acoustic features in relation to 

severity of clinical features. Non-TD comparison groups (e.g. with language impairment, 

or ADHD) were not included as not enough studies were present to assess patterns 

beyond the single study. 

For all resulting papers we report sample sizes for ASD and TD groups, matching 

criteria, age, verbal and non-verbal level of function, speech production task, results and 

estimates of the acoustic measures (mean and standard deviation) if available, in 

dedicated tables (see Tables 1 to 5). To facilitate comparison between studies, the vocal 

production tasks were grouped into three categories. The first category, constrained 

production, includes tasks such as reading aloud and repeating linguistic stimuli. In this 

category, the focus is on the form of speech production, more than on its contents (e.g. 

the actual words and meaning expressed). The second category, spontaneous production, 

includes tasks such as free description of pictures and videos or telling stories. This 
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category of tasks involves a more specific focus on the contents of speech production. 

The third category, social interaction, includes spontaneous and semi-structured 

conversations such as ADOS interviews. This category adds a stronger emphasis on 

social factors and interpersonal dynamics. 

We extracted statistical estimates (mean and standard deviation for the ASD and 

TD groups) of the features when available and contacted the corresponding authors of the 

articles that did not provide these statistics1. When this process yielded statistical 

estimates of one feature from at least five independent studies, we ran a meta-analysis to 

estimate an overall effect size – that is, a weighted standardized mean difference 

(Cohen’s d) between the ASD and the TD groups for univariate studies and 

sensitivity/specificity of classification for the multivariate machine-learning studies. We 

note that only the univariate studies provided enough data to perform meta-analyses. 

Meta-analyses were performed following well-established procedures detailed in 

(Doebler & Holling, 2015; Field & Gillett, 2010; Quintana, 2015; Viechtbauer, 2010). 

We first calculated the size (Cohen’s d), statistical significance (p-value) and overall 

variance (or τ2) of effects observed across studies. We then assessed whether the overall 

variance could be explained by within-study variance (e.g., due to measurement noise or 

heterogeneity in the ASD samples included in the studies) using Cochran’s Q (Cochran, 

1954) and I2 statistics (Higgins, Thompson, Deeks, & Altman, 2003). Third, we assessed 

whether systematic factors – speech production task (constrained production, 

spontaneous production, social interaction) and language employed in the task (e.g. 

																																																								
1	Additional data were provided by the authors of (Bonneh, Levanon, Dean-Pardo, Lossos, & Adini, 2011; 
Grossman, et al., 2010), whom we gratefully acknowledge. As this data is fully reported in the publicly 
accessible dataset, we will not further distinguish it from the data reported in the articles reviewed.  
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American English, or Japanese) – could further explain the overall variance. Age would 

be a third crucial factor to add to the analysis. However, the studies analyzed spanned 

wide age ranges, which did not allow making any clear division in age groups (such as 

childhood, adolescence and adulthood). Finally, we investigated the effect of influential 

studies (single studies strongly driving the overall results) and publication bias (tendency 

to write up and publish only significant findings, ignoring null findings and making the 

literature unrepresentative of the actual population studied) on the robustness of our 

analysis. This was estimated using rank correlation tests assessing whether lower sample 

sizes (and relatedly higher standard error) were related to bigger effect sizes. A 

significant rank correlation indicates a likely publication bias and inflated effect sizes due 

to small samples. All analyses were performed using the metafor v.1.9.8 and mada 

v.0.5.7 packages in R 3.2.2. All data and R-code employed are available at 

https://github.com/fusaroli/AcousticPatternsInASD. 

 

3. Results 

3.1. Literature search results 

The initial literature screening yielded 106 papers discussing prosody and voice in ASD. 

The second stricter screening yielded 32 papers, with each paper sometimes reporting 

more than one study. In total, our primary literature included 27 univariate studies and 15 

multivariate machine-learning studies. The remaining 74 papers (qualitative studies, 

theory or reviews) were used as background literature only and cited when relevant. 
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3.2. Differences in acoustic patterns between ASD and comparison populations 

(univariate studies) 

 

3.2.1. Pitch 

 

Pitch reflects the frequency of vibrations of the vocal cords during vocal production. 

During vocal production, individuals often modulate their pitch to convey pragmatic or 

contextual meaning: for example, marking an utterance as having an imperative, 

declarative or ironic intent, or even to express emotions (Banse & Scherer, 1996; Bryant, 

2010; Fusaroli & Tylén, 2016; Michael et al., 2015; Mushin, Stirling, Fletcher, & Wales, 

2003). 

Our literature screening yielded 21 studies employing acoustic measures of pitch 

(see Tables 1-2). Four summary statistics were used: mean, standard deviation (SD), 

range (defined between highest and lowest pitch) and coefficient of variation (standard 

deviation divided by mean). Some researchers also quantified the temporal trajectory or 

profile of pitch, estimating the slope (ascending, descending or flat) of pitch over time 

(Bone, et al., 2014; Green & Tobin, 2009). We report the latter measures when the signal-

processing is automated and does not rely on manual coding. 

 

Table 1 – Summary statistics of the pitch properties of ASD and TD groups in each study. 

When present, or provided by the authors, mean and standard deviation (in parenthesis) 

of the summary statistics are reported. NS: Non-significant difference between groups. 
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Authors Sample 

Size 

and 

matchi

ng 

criteria 

Age Level of 

function of 

the ASD 

group2 

Task Findings 

(Brisson, 

Martel, 

Serres, 

Sirois, & 

Adrien, 

2014) 

13 ASD 

13 TD 

Group-

level 

age 

match 

0-6 m Not 

Available 

Social 

Interaction 

Pitch mean: NS 

ASD: 393.61 Hz (107.19); TD: 357.64 

Hz (37.17) 

(Sharda et 

al., 2010) 

15 ASD 

10 TD 

Group-

level 

age 

match 

4-10 y Minimum 

vocabulary 

of 20 words 

by age 4 

Social 

Interaction  

Pitch Mean: Higher  

ASD: 355.8 Hz (61.7); TD: 275.4Hz 

(22.5) 

Pitch Range: Wider 

ASD: 550.6 Hz (84.9); TD: 464.7 Hz 

(41.2) 

 

(Filipe, 

Frota, 

Castro, & 

Vicente, 

2014) 

12 ASD 

17 TD  

Group 

level 

age and 

4-6 y Range of 

Raven: 17-

29: 

Spontaneou

s 

Production 

(lexical 

elicitation)  

Pitch mean: Higher  

ASD: 264.72 Hz (23.19); TD: 242.74 Hz 

(28.59) 

Pitch range: Wider 

ASD: 142. 3 Hz (47.4); TD: 97.5 Hz 

																																																								
2	HFA	indicates	High	Functioning	Individuals	with	ASD,	AS	Asperger’s	Syndrome,	
PDD-NOS	pervasive	developmental	disorder	not	otherwise	specified.	Raven	
indicates	Raven’s	Coloured	Progressive	Matrices.	PPVT; Clinical Evaluation of Language 
Fundamentals	
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non-

verbal 

intellect

ual 

level 

match 

(36.38) 

(Diehl, 

Watson, 

Bennetto, 

McDonoug

h, & 

Gunlogson, 

2009) 

17 ASD 

17 TD 

Group 

level 

gender, 

age, IQ 

and 

verbal 

ability 

match 

6-14 y 

 

HFA 

PPVT-III: 

Mean 115.3 

(SD 12.52) 

Wechsler 

IQ: Mean 

118.52 (SD 

14.73) 

Spontaneou

s 

Production 

(narrative 

elicitation)  

Pitch Mean: NS 

ASD: 212.25 Hz (36.48); TD: 207.84 Hz 

(34.93) 

Pitch Range: Wider 

ASD: 49.57 Hz (9.81); TD: 41.69 Hz 

(12.49) 

(Diehl, et 

al., 2009) 

21 ASD 

21 TD 

Group 

level 

gender, 

age, 

and 

verbal 

ability 

match 

10-18 y HFA 

CELF 3: 

101.53 

(13.61) 

Stanford 

Binet 

Intelligence 

Scale  

 -IV: 

104.00 

(14.34) 

Spontaneou

s 

Production 

(Narrative 

elicitation)  

Pitch Mean: NS 

ASD: 189.95 Hz (35.11); TD: 173.57 Hz 

(42.25) 

Pitch Range: Wider 

ASD: 58.77 Hz (16.46); TD: 45.20 Hz 

(13.15) 

(Scharfstei 30 ASD  7-13 y AS Social Pitch Mean: NS 
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n, Beidel, 

Sims, & 

Finnell, 

2011) 

30 TD 

Group 

level 

age and 

gender 

match 

Kaufman 

Brief 

Intelligent 

Test: 114 

(14.08) 

Interaction ASD: 282.94 Hz (28.8); TD: 293.19 Hz 

(27.1) 

Pitch Range: NS 

ASD: 57.20 Hz (17.7); TD: 62.12 Hz 

(24.4) 

(Bonneh, et 

al., 2011) 

41 ASD 

42 TD 

Group 

level 

age and 

gender 

match 

4-6.5 y All verbal Spontaneou

s 

Production 

(lexical 

elicitation)  

Pitch Mean: NS 

ASD:  190.89 Hz (57.87); TD: 155.82 

Hz (47.51) 

Pitch Range: Wider 

ASD: 264 Hz (23); TD: 249 Hz (25) 

Pitch SD: Higher 

(Fosnot & 

Jun, 1999) 

4 ASD 

4 TD 

No 

matchin

g 

criterio

n 

reporte

d 

7-14 y Sight-word 

readers 

Constraine

d 

production 

(reading 

and 

imitation) 

Pitch range: Wider 

Pitch SD: Higher 

(Nadig & 

Shaw, 

2012) 

15 ASD 

13 TD 

Group 

level 

age, 

gender, 

8-14 y HFA, 

CELF-IV: 

Mean 109 

(13)  

PIQ: 105 

Social 

Interaction  

Pitch Mean: NS 

ASD 225 Hz; TD: 214 Hz 

Pitch Range: Wider 

ASD Median: 200 Hz; TD Median: 124 

Hz 
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languag

e and 

intellect

ual 

ability 

match  

(15)  

SCQ: 26 

(6)  

 

(Nadig & 

Shaw, 

2012) 

15 ASD 

11 TD 

Group 

level 

age, 

gender, 

languag

e and 

intellect

ual 

ability 

match 

8-14 y HFA, 

CELF-IV: 

Mean 108 

(16)  

PIQ: 111 

(17)  

SCQ: 26 

(6)  

Spontaneou

s 

Production 

(sentence 

elicitation)  

Pitch Mean: NS 

ASD: 156 Hz; TD: 122 Hz 

Pitch Range: Wider 

ASD: 156 Hz; TD: 122 Hz 

 

(Diehl & 

Paul, 2012) 

24 ASD  

22 TD 

Group 

level 

age 

match 

8-16 y CELF-IV: 

97.21 

(18.61)  

Non verbal 

IQ: 103.61 

(17.14) 

Constraine

d 

production 

(Imitation)  

Pitch Mean: NS 

Pitch Range: NS  

Pitch SD: NS 

 

(Diehl & 

Paul, 2013) 

24 ASD  

22 TD 

Group 

8-16 y CELF-IV: 

97.21 

(18.61)  

Spontaneou

s 

Production 

Pitch Mean: NS 

Pitch Range: Wider 

Pitch SD: Higher 
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level 

age 

match 

Non verbal 

IQ: 103.61 

(17.14) 

(sentence 

elicitation)  

(Grossman

, et al., 

2010) 

11 ASD 

9 TD 

Group 

level 

age, 

verbal 

and 

intellect

ual 

ability 

match 

7-17 y HFA, Total 

IQ: 106.7 

(10.6) 

PPVT-R: 

107 (15.4) 

Spontaneou

s 

Production 

(lexical 

elicitation)  

 

Pitch Mean: NS 

ASD: 190.89 Hz (57.87); TD: 155.82 Hz 

(47.51) 

Pitch Range: NS 

ASD: 170 Hz (86.64); TD: 108.64 Hz 

(53.94) 

(Hubbard 

& 

Trauner, 

2007) 

18 ASD 

10 TD 

No 

matchin

g 

criterio

n 

reporte

d 

6-21 y No 

characteriz

ation 

Constraine

d 

production 

(Imitation)  

Pitch range: NS 

 

(Nakai, 

Takashima

, 

Takiguchi, 

& Takada, 

6 ASD  

16 TD 

Group 

level 

age 

4-6 y 69.8 ± 16.9  

 

Spontaneou

s 

Production 

(lexical 

elicitation)  

Pitch Range NS 

ASD: 183.21 Hz (33.90); TD: 198.18 Hz 

(36.23) 

Pitch SD NS 

ASD: 45.14 Hz (12.20); TD: 48.19 Hz 
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2014) match  (13.25) 

Pitch CV: Higher  

ASD: 0.15 Hz (0.03); TD: 0.15 Hz (0.02) 

(Nakai, et 

al., 2014) 

20 ASD  

21 TD 

Group 

level 

age 

match 

6-10 y IQ: 67.7 ± 

17.6  

 

Spontaneou

s 

Production 

(lexical 

elicitation)  

Pitch Range NS 

ASD: 202.13 Hz (34.27); TD: 224.39 Hz 

(48.13) 

Pitch SD NS 

ASD: 50.26 Hz (12.32); TD: 61.73 Hz 

(17.09) 

Pitch CV: Higher 

ASD: 0.15 Hz (0.02); TD: 0.21 Hz (0.06) 

(Green & 

Tobin, 

2009)  

10 ASD 

10 TD 

Group 

level 

age 

academ

ic and 

languag

e ability 

match 

9-13 y HFA, 

within the 

norm for 

verbal IQ 

Spontaneou

s 

production 

& 

Constraine

d 

production 

Pitch Range: NS 

ASD: 10.7–37.6 semitones; TD: 30.4–

32.4 semitones 

(Depape, et 

al., 2012)  

12 ASD 

6 TD 

Group 

level 

age 

match 

17-34y 6 HFA, 6 

Medium 

Functionin

g Autism 

(MFA) 

PPVT: 

Social 

Interaction 

Pitch Mean: NS 

Pitch Range: 

Wider for High Functioning Autism, 

Narrower for Medium Functioning 

Autism 
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HFA: 105.3 

(5.3)  

MFA: 89.2 

(7.8)  

(Kaland, 

Krahmer, 

& Swerts, 

2012)  

20 ASD 

20 TD 

No 

match 

18-51 y HFA. 7 

with AS, 13 

with PDD-

NOS  

Spontaneou

s 

Production 

(sentence 

elicitation)  

Pitch Range: Lower 

 

(Chan & 

To, 2016) 

19 ASD 

19 TD 

Group 

level 

age, 

gender 

and 

educati

on 

match 

18-34y HFA Spontaneou

s 

Production 

(narrative 

elicitation) 

Pitch Mean: NS 

ASD: 137.67 Hz (18.69); TD: 123.24 

(15.19) 

Pitch SD: NS 

ASD: 27.35 Hz (7.86); TD: 22.16 (4.69) 

	
 

Pitch mean was investigated in 14 studies (323 participants with ASD and 311 

comparison participants). Only two of these studies reported a significant group 

difference with higher pitch mean in the ASD groups (Filipe, et al., 2014; Sharda, et al., 

2010). The remaining 12 studies report null findings. The meta-analysis included 9 

studies for a total of 179 participants with ASD and 178 comparison participants (see 
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Figure 1). The overall estimated difference (Cohen’s d) in mean pitch between the ASD 

and TD groups was 0.44 (95% CIs: 0.09 0.79, p=0.01) with an overall variance (τ2) of 

0.16 (95% CIs: 0.01 0.98). Much of the variance (I2: 60.30%, 95% CIs: 11.39 90.10) 

could not be reduced to random sample variability between studies (Q-stats = 19.82, p = 

0.01). However, neither task (estimate: 0.05, 95% CIs -0.75 0.84, p=0.91) nor language 

(estimate: 0.09, 95% CIs -0.02 0.21, p=0.12) could significantly explain it. 

 

 

Figure 1 – Forest plot of effect sizes (Cohen’s d) in pitch mean between the ASD and 

comparison populations. The x-axis reports the effect size (positive values indicate higher 

mean pitch in ASD, while negative lower) and the y-axis the studies for which statistical 

estimates of pitch mean were provided. The dotted vertical line indicates the null 

hypothesis (no difference between the populations). 

 

One study (Sharda, et al., 2010) with a large effect size and large standard error 

significantly drives the overall effect (see the lowest right point in Figure 2). Removing 

this study yielded a smaller but still significant overall effect size (0.31, 95% CIs 0.02 
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0.61, p=0.04). The data also revealed a likely publication bias (Kendall's τ = 0.56, p = 

0.04; Figure 2), which resonates with the fact that the 5 studies for which estimates were 

not available all reported non-significant differences. This supports the hypothesis of a 

bias and a likely overestimation of the overall effect size in the meta-analysis.  

 

 

Figure 2 – Funnel plot of publication bias for studies investigating pitch mean. 

The x-axis reports the effect size (Cohen’s d) of the difference in pitch mean between ASD 

and comparison populations: positive values indicate higher mean pitch in ASD, while 

negative lower. The y-axis reports the standard error in each study. The white triangle 

represents an estimation of the real effect size distribution. The publication bias can be 

observed in the studies being organized on a diagonal line: higher standard error 

corresponding to bigger effect size. 
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Pitch variability indicates the magnitude of changes in pitch across the linguistic 

unit analysed (be it a phoneme, a word or a longer utterance). Pitch variability was 

investigated in 19 studies involving 310 participants with ASD and 298 comparison 

participants. 11 studies reported significant results, 10 indicating wider, one narrower and 

seven no significant differences in pitch variability.3 As all studies but one used pitch 

range, rarely adding measures of standard deviation and coefficient of variation, we 

performed the meta-analysis on pitch range only. 

The meta-analysis involved 11 studies, 211 participants with ASD and 217 

comparison participants (see Figure 3). The overall estimated difference (Cohen’s d) in 

pitch variability between the ASD and the comparison groups was 0.4 (95% CIs: 0.03 

0.77, p=0.03) with an overall variance (τ2) of 0.26 (95% CIs: 0.07 1.13). Much of the 

variance (I2: 69.69%, 95% CIs: 36.32 90.87) could not be reduced to random sample 

variability between studies (Q-stats = 31.90, p = 0.0004). However, neither task 

(estimate: 0.3, 95% CIs -0.28 0.88, p=0.31) nor language (estimate: -0.001, 95% CIs -

0.17 0.17, p=0.99) could significantly explain the variance.  

 

																																																								
3	It should be noted that a few studies attempted to separate different groups within the autism spectrum. 
One study did not find any significant difference between Asperger Syndrome (AS), high-functioning and 
pervasive developmental disorder not otherwise specified (PDD-NOS) (Paul, Bianchi, Augustyn, Klin, & 
Volkmar, 2008). However, another found that individuals with AS produced larger pitch ranges than 
speakers with PDD-NOS (Kaland, et al., 2012), a pattern repeated when comparing high- with lower-
functioning people with autism (Depape, et al., 2012). 
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Figure 3 – Forest plot of effect sizes (Cohen’s d) in pitch range between the ASD 

and comparison populations. The x-axis reports the effect size (positive values indicate 

higher pitch variability in ASD, while negative lower) and the y-axis the studies for which 

statistical estimates of pitch mean were provided. The dotted vertical line indicates the 

null hypothesis (no difference between the populations). 

 

There were no obvious outliers, nor any obvious publication bias (Kendall's τ = 

0.09, p = 0.76; Figure 4). Indeed, of the 7 studies where statistical estimates were not 

available, 3 reported null findings and 4 included cases in which participants with ASD 

presented a wider pitch range, slightly reinforcing the hypothesis of a positive effect size. 
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Figure 4 – Funnel plot of publication bias for studies investigating pitch range. The x-

axis reports the effect size (Cohen’s d) of the difference in pitch mean between ASD and 

comparison populations: positive values indicate higher pitch variability in ASD, while 

negative lower. The y-axis reports the standard error in each study. The white triangle 

represents an estimation of the real effect size distribution. 

 

Pitch and severity of clinical features were investigated in 5 studies (Table 2), 

which sought to relate quantitative measures of pitch measures to severity of clinical 

features as measured by the Autism Diagnostic Observation Schedule (ADOS, Lord, 

2008) and the Autism Screening Questionnaire (ASQ, Dairoku, Senju, Hayashi, Tojo, & 

Ichikawa, 2004). Total ADOS scores were negatively related to the temporal trajectory of 

pitch. In particular, the steeper the slope of pitch change at the end of participants’ speech 

turns, the lower the ADOS score (Bone, et al., 2014). However, null findings were 

reported in relation to pitch mean and range (Nadig & Shaw, 2012), and other temporal 
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properties of pitch (Bone, et al., 2014). The communication sub-scale of the ADOS was 

found to correlate with pitch standard deviation in adolescents but not in children during 

narrative productions (Diehl, et al., 2009). Finally, pitch coefficient of variation was 

found to correlate negatively with ASQ Social Reciprocal Interaction, but not with total 

ASQ, Repetitive Behavior and Communication in children (Nakai, et al., 2014). As the 

direction of relation between pitch variability and clinical features seems to vary by study 

and no replication of any result is available, the current evidence is deemed inconclusive.  

 

Table 2 – Relations between acoustic measures and severity of clinical features 

Authors Sampl

e Size 

and 

match

ing 

criteri

a 

Age IQ and level of function 

of the ASD groip 

Clinical Features Findings 

(Diehl, et 

al., 2009) 

 

21AS

D 

21 TD 

Group 

level 

gender

, age, 

IQ and 

verbal 

ability 

10-

18y 

HFA 

PPVT-III: Mean 115.3 

(SD 12.52) 

Wechsler IQ: Mean 

118.52 (SD 14.73) 

ADOS Communication Pitch SD: Positive correlation  

r = 0.43, p < 0.05  
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match 

(Diehl, et 

al., 2009) 

17 

ASD 

17 TD 

Group 

level 

gender

, age, 

IQ and 

verbal 

ability 

match 

6-

14y 

HFA 

Clinical Evaluation of 

Language 

Fundamentals.3: 101.53 

(13.61) 

ADOS Communication Pitch SD: NS  

r  = 0.06, p = 0.83 

(Nadig 

& Shaw, 

2012) 

15 

ASD 

13 TD 

Group 

level 

age, 

gender

, 

langua

ge and 

intelle

ctual 

ability 

match 

8-

14y 

HFA, CELF-IV: Mean 
109 (13)  

PIQ: 105 (15)  

SCQ: 26 (6) � 

ADOS total Pitch Range: NS 

r = -0.40, p = 0.14  

(Nakai, 

et al., 

26 

ASD 

4-

10y 

69.8 ± 16.9  ASQ total 

 

Pitch CV (words): NS 

r=0.12, p>0.05 
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2014) 37 TD 

Group 

level 

age 

match 

IQ: 67.7 ± 17.6  

 

ASQ Social Reciprocal 

Interaction 

 

ASQ Repetitive Behavior 

 

ASQ Communication  

Pitch CV (words): Negative 

correlation 

r=-0.62, p<0.05 

Pitch CV (words): NS 

r=0.28, p>0.05 

Pitch CV (words): NS 

r=0.29, p>0.05 

(Bone, et 

al., 2014) 

24 

ASD 

No TD 

group 

5-

14y 

Fluent verbal ability ADOS total Median pitch slope: Negative 

r = –0.68, p <0.001  

Curvature Pitch Median: 

Negative 

r= -0.53, p<0.05 

 

	
 

While anecdotal and qualitative reports clearly indicate a difference in the use of 

pitch in ASD, the acoustic evidence is more uncertain, with little replication, and a high 

number of non-significant or contradictory findings. Even taking at face value the two 

meta-analytic effect sizes, it should be noted that an estimated difference of Cohen’s d 

0.4 is a small difference. Indeed, if we were to use these statistical estimates to guess 

whether any given voice belongs to a participant with ASD or to a comparison one, we 

would only be right about 61% of the time, an insufficient level of accuracy to justify its 

use as potential marker (Ellis, 2010). 

 

3.2 Intensity 
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Intensity or loudness is a measure of the energy carried by a sound wave and is important 

for making speech intelligible and for expressing emotions. 6 studies have investigated 

intensity through quantitative measures (Table 3).   

 

Table 3 – Studies involving acoustic measures of intensity in ASD 

Authors Samp

le Size 

Age IQ and level of 

function of the 

ASD group 

Task Findings 

(Scharfste

in, et al., 

2011) 

30 

AS, 

30 TD 

Group 

level 

age 

and 

gende

r 

match 

7-13 y Asperger’s 

Disorder (AD) 

Kaufman Brief 

Intelligent Test: 

114 (SD=14.08) 

Social Interaction Intensity Mean: Lower 

ASD: 47.41 db (3.8); TD: 59.03 

db (5.9) 

Intensity SD: Lower 

ASD: 2.97 db (1.9); TD: 5.15 db 

(2.0) 

(Filipe, et 

al., 2014) 

12 

ASD 

17 TD 

Group 

level 

age 

and 

non-

verbal 

4-6 y Range of Raven’s 

Coloured 

Progressive 

Matrices:: 17-29: 

Spontaneous 

production 

(lexical 

elicitation) 

Intensity Mean: NS 

ASD: 75 db (2.88); TD: 72.82 

db (4.33)  
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intelle

ctual 

level 

mathc  

(Grossma

n, et al., 

2010) 

11 

ASD 

9 TD 

Group 

level 

age, 

verbal 

and 

intelle

ctual 

ability 

match 

7-17 y HFA, Total IQ: 

106.7 (10.6) 

PPVT-R: 107 

(15.4) 

Spontaneous 

production 

(lexical 

elicitation) 

Intensity Mean: NS 

ASD: 68.78 db (4.5); TD: 69.27 

db (3.52) 

Intensity Range: NS 

ASD: 27.22 db (4.2), TD: 23.82 

db (4.39) 

(Diehl & 

Paul, 

2012) 

24 

ASD  

22 TD 

Group 

level 

age 

match 

8-16 y CELF-IV: 97.21 
(18.61)  

Non verbal IQ: 

103.61 (17.14) 

Constrained 

production 

(Imitation) 

Intensity Mean: NS 

(Diehl & 

Paul, 

2013) 

24 

ASD  

22 TD 

Group 

level 

8-16 y CELF-IV: 97.21 
(18.61)  

Non verbal IQ: 

103.61 (17.14) 

Spontaneous 

production 

(sentence 

elicitation) 

Intensity Mean: NS 
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age 

match 

(Hubbard 

& 

Trauner, 

2007) 

18 

ASD 

10 TD 

No 

match

ing 

criteri

on 

report

ed 

6-21 y No 

characterization 

Constrained 

production  

(imitation) 

Intensity Mean: NS 

	
 

 

Intensity Mean was available for 3 studies (63 ASD and 56 comparison 

participants), one with significantly lower intensity for ASD and the others with null 

findings (Filipe, et al., 2014; Grossman, et al., 2010; Scharfstein, et al., 2011).  

Intensity variability was available for 2 studies involving 41 ASD and 39 

comparison participants. One study reported lower variability, and the other null findings.  

Finally, one study attempted to relate intensity measures and severity of clinical 

features (ADOS total score): No significant correlation was found for ADOS and the 

temporal profiles of intensity, such as slope and curvature (Bone, et al., 2014). 

In summary, there is not enough acoustic evidence to support the impression of 

atypical voice intensity in ASD. It should be noted that acoustic measures of intensity are 

highly dependent on the relative positions of microphone and speakers, as well as to 
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changes in angle and distance through the vocal production and therefore highly prone to 

external artifacts. Intensity measures should therefore be assessed with caution. 

 

3.3. Duration, speech rate and pauses 

 

Duration is measured as length in seconds, and has been applied to full utterances, lexical 

items (words) and syllables (often distinguishing between stressed and unstressed 

syllables), speech rate, measured as estimated syllables per second, number of pauses, 

length of pauses and voiced duration. 16 studies employed acoustic descriptors of 

duration (see Table 4). 

 

Table 4 – Studies involving quantitative acoustic measures of duration in ASD 

Authors Sample 

Size 

and 

matchi

ng 

criteria 

Age IQ and level of 

function in the 

ASD group 

Task Findings 

(Brisson, et 

al., 2014) 

13 ASD 

13 TD 

Group-

level 

age 

match 

0-6 m Not Available Social 

Interaction 

Vocalization duration: 

NS 

ASD: 651 ms (185); 

TD: 652 ms (262) 

(Oller, et al., 77 ASD 16-48 No Social Vocalization duration: 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 1, 2016. ; https://doi.org/10.1101/046565doi: bioRxiv preprint 

https://doi.org/10.1101/046565


	

	 31	

2010) 106 TD 

Group-

level 

gender, 

mother 

educatio

n and 

develop

mental 

age 

m characterization Interaction shorter 

(Nadig & 

Shaw, 2012) 

15 ASD 

13 TD 

Group 

level 

age, 

gender, 

languag

e and 

intellect

ual 

ability 

match 

8-14 y HFA, CELF-
IV: Mean 109 
(13)  

PIQ: 105 (15)  

SCQ: 26 (6) � 

 

Social 

Interaction 

Speech rate: NS 

ASD: 172 syll/m; TD: 

148 syll/m 

(Nadig & 

Shaw, 2012) 

15 ASD 

11 TD 

Group 

level 

age, 

gender, 

8-14 y HFA, CELF-
IV: Mean 108 
(16) � 

PIQ: 111 (17)  

SCQ: 26 (6) � 

Spontaneous 

Production 

(sentence 

elicitation) 

Speech rate: NS 

ASD: 207 syll/m; TD: 

204 syll/m 
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languag

e and 

intellect

ual 

ability 

match 

(Diehl & 

Paul, 2012) 

24 ASD  

22 TD 

Group 

level 

age 

match 

8-16 

years 

CELF-IV: 
97.21 (18.61)  

Non verbal IQ: 

103.61 (17.14) 

Constrained 

Production 

(Imitation) 

Utterance Duration: 

Lexical Imitation: 

Longer 

Prosodic Imitation: NS 

(Diehl & 

Paul, 2013) 

24 ASD  

22 TD 

Group 

level 

age 

match 

8-16 

years 

CELF-IV: 
97.21 (18.61)  

Non verbal IQ: 

103.61 (17.14) 

Spontaneous 

Production 

(sentence 

elicitation) 

Utterance duration: 

Longer 

(Depape, et 

al., 2012) 

12 ASD 

6 TD 

Group 

level 

age 

match 

17-34 

y 

6 HFA, 6 
Medium 
Functioning 
Autism (MFA) 

PPVT: HFA: 
105.3 (5.3)  

MFA: 89.2 (7.8)  

 

Social 

Interaction 

Utterance duration: NS 

(Bonneh, et 

al., 2011) 

41 ASD  

42 TD 

Group 

level 

4-6 y All verbal Spontaneous 

production 

(lexical 

elicitation) 

Utterance duration: 

longer 

ASD: 70 s; TD 66 s  

Word Duration: longer 
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age and 

gender 

match 

ASD: 0.74 s; TD: 0.62 

s 

Speech Rate: slower 

ASD: 27.9 wpm; TD: 

31.7 wpm 

(Filipe, et al., 

2014) 

12 ASD 

17 TD 

Group 

level 

age and 

non-

verbal 

intellect

ual 

level 

match  

4-6 y Range of 

Raven’s 

Coloured 

Progressive 

Matrices:: 17-

29: 

Spontaneous 

production 

(lexical 

elicitation) 

Utterance duration: 

longer 

ASD: 1.08 (0.15); TD: 

0.89 (0.5)  

(Fosnot & 

Jun, 1999) 

4 ASD 

4 TD 

No 

matchin

g 

criterion 

reported 

7-14 y Sight-word 

readers 

Constrained 

production 

(reading and 

imitation) 

Utterance duration: 

longer 

(Grossman, 

et al., 2010) 

16 ASD 

15 TD 

Group 

level 

age, 

7-17 y HFA, Total IQ: 

106.7 (10.6) 

PPVT-R: 107 

(15.4) 

Spontaneous 

production 

(lexical 

elicitation) 

Syllable Duration: 

longer 

First syllable stress: 

ASD 0.82 (0.15), TD: 

0.68 (0.19) 
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verbal 

and 

intellect

ual 

ability 

match 

Last syllable stress: 

ASD 0.98 (0.19), TD: 

0.83 (0.21) 

Speech rate: NS 

ASD: 5.31 (1.31); TD: 

5.44 (1.54) 

(Paul, et al., 

2008)  

46 

ASD, 

20 TD 

Group 

level 

age and 

gender 

match 

7-28 y 9 with autism, 

15 with AS and 

5 with PDD-

NOS 

verbal IQ >70 

Constrained 

production 

(imitation) 

(stressed) syllable 

duration: shorter 

ASD: 321 (45) ms; 

TD: 346 (44) 

(unstressed) syllable 

duration: NS 

ASD: 196 (35) ms; 

TD: 186 (23) 

(Hubbard & 

Trauner, 

2007) 

18 ASD 

10 TD 

No 

matchin

g 

criterion 

reported 

6-21 y  Constrained 

production 

(Imitation) 

Utterance Duration: 

NS  

(Thurber & 

Tager-

Flusberg, 

1993) 

10 ASD 

10 TD 

Group-

level 

verbal 

ability 

match  

7-15 y PPVT: 58.3 

(18.5) 

Spontaneous 

production 

(narrative 

production) 

Grammatical pauses: 

NS 

ASD: 13.1 (7.4); TD: 

9.1 (3.7) 

Agrammatical pauses: 

Fewer 

ASD: 2.7 (2); TD: 4.3 
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(2.2) 

(Feldstein, 

Konstantarea

s, Oxman, & 

Webster, 

1982) 

12 

ASD, 

24 TD 

No 

match 

14-20 

y 

Articulate and 

high.functionin

g 

Social 

Interaction 

Pauses: Longer  

Stronger effect when 

speaking with 

unfamiliar interlocutor 

Vocalization duration: 

NS 

(Morett, 

O’Hearn, 

Luna, & 

Ghuman, 

2015) 

18 

ASD, 

21 TD 

Group 

level 

age, 

gender 

and 

verbal 

ability 

match 

10-

20y 

IQ: 104.83 
(14.33)  

Spontaneous 

production 

(narrative 

production) 

Utterance duration: NS 

ASD: 17.52 s (9.22); 

TD: 26.92 (13.33) 

Pause Number: Higher 

ASD: 2.81 s (1.86); 

TD: 1.11 (1.18) 

  

	
 

 

Out of 12 studies involving duration measures 6 reported longer duration, 4 

reported no differences between groups and 1 shorter duration in ASD. Out of 4 studies 

investigating speech rate, 3 reported null findings and 1 found slower speech rate in ASD. 

Out of 2 studies focusing on syllable duration with, one reports longer duration for 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 1, 2016. ; https://doi.org/10.1101/046565doi: bioRxiv preprint 

https://doi.org/10.1101/046565


	

	 36	

stressed syllables in ASD, whereas the other reports shorter duration for stressed syllables 

and no differences for unstressed syllables. Out of 3 studies measuring speech pauses, 1 

finds longer pauses, 1 no difference in grammatically motivated pauses, but fewer 

pragmatically motivated ones and the third a higher number of pauses. Two studies 

investigated the relation between speech rate and severity of clinical features in terms of 

ADOS total scores), but found no significant correlations (Bone, et al., 2014; Nadig & 

Shaw, 2012). In sum, not enough statistical estimates were reported to allow for meta-

analyses and the findings do not seem conclusive.  

 

3.4. Voice Quality 

 

Voice quality covers a large variety of features, which do not overlap between 

studies. Hoarseness, breathiness and creaky voice are often attributed to imperfect control 

of the vocal fold vibrations that produce speech and have been quantified as irregularities 

in pitch (jitter) and intensity (shimmer), or as low harmonic to noise ratio (relation 

between periodic and aperiodic sound waves) (Tsanas, Little, McSharry, & Ramig, 

2011). More generic definitions of dysphonia, or voice perturbation, rely on cepstral 

analyses, which involve a further frequency decomposition of the pitch signal, that is, the 

frequency of changes in frequency (Maryn, Roy, De Bodt, Van Cauwenberge, & 

Corthals, 2009). Analyses of voice quality are particularly challenging and difficult to 

compare across studies because of a lack of established standards: they rely on the choice 

of several parameters, and the results change greatly if applied to prolonged phonations 
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(held vowels), or continuous speech (Laver, Hiller, & Beck, 1992; Orlikoff & Kahane, 

1991). 

So far only one published study has investigated acoustic measures of voice 

quality in ASD: children with ASD were shown to have more jitter and jitter variability, 

as well as less harmonic to noise ratio, and no differences in shimmer or cepstral peak 

prominence (Bone, et al., 2014). However, a series of unpublished conference papers 

point to breathiness (Boucher, Andrianopoulos, & Velleman, 2010; Wallace et al., 2008), 

tremors (Wallace, et al., 2008), and task- and vowel-dependent low jitter and low 

shimmer (Boucher, Andrianopoulos, Velleman, & Pecora, 2009). 

One study investigated the relation between ADOS total scores and voice quality, 

highlighting positive correlations with jitter and harmonics to noise ratio variability, and 

negative ones with levels of Harmonic to Noise Ratio (Bone, et al., 2014). Notice that 

since the only published study mentioned here is already fully reported in previous tables, 

we have not produced a dedicated table for studies on voice quality. 

In summary, while a distinctive voice quality has been reported in ASD since the 

very early days of the diagnosis, quantitative evidence is extremely sparse. While 

potentially promising, the existing studies use non-overlapping measures, making it 

difficult to assess the generality of the patterns observed. 

 

4. Results: From Acoustic Patterns to Diagnosis (multivariate machine 

learning studies) 
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The previous section reviewed studies identifying differences in acoustic patterns 

produced by ASD and comparison samples, one feature at a time. In this section we 

review a second set of 15 studies (see Table 5), which present an alternative approach: 

multivariate machine-learning (Bishop, 2006; Hastie, Tibshirani, & Friedman, 2009). 

Briefly, multivariate machine learning differs from traditional univariate approaches in 

three respects. First, the research question is reversed. Univariate approaches ask whether 

there is a statistically significant difference between two distinct populations 

(independent variable) with respect to some measure (dependent variable). Machine 

learning approaches seek to determine whether the data contains enough information to 

accurately separate the two populations. Second, a multivariate approach enters multiple 

data features simultaneously into the analysis, including a wider variety of features than 

normally treated in their simple univariate form (such as more detailed spectral and 

cepstral features, see par. 3.4). Third, the goal is not to identify the statistical model that 

best separates the populations from which the data has been obtained, but to identify the 

model that best generalizes to new data (e.g., generalize from a training to a test set of 

data, see Yarkoni & Westfall, 2016). 

Multivariate machine learning studies typically involve processes of 1) feature 

extraction, 2) feature selection and 3) classification (e.g., presence of diagnosis) or score 

prediction (e.g., severity of clinical features), the latter two often undergoing a process of 

4) validation.  

The first process involves extraction of acoustic features from vocal recordings. 

Most studies use summary statistics discussed in the earlier section (mean and standard 

deviation of acoustic features), but they often include additional measures, such as non-
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linear descriptive statistics. Traditional summary statistics cannot adequately capture the 

non-stationary nature of the speech signal; for example, the mean and the standard 

deviation of pitch often change over a speech event (Jiang, Zhang, & McGilligan, 2006). 

In contrast, time-aware measures – such as slope analysis, recurrence quantification 

analysis, Teager-Kaiser energy operator and fractal analyses - quantify the degree to 

which acoustic patterns change or are repeated in time (cf. Table 5. For detailed and 

technical descriptions of these methods, cf. Bone, et al., 2014; Kiss, van Santen, 

Prud'hommeaux, & Black, 2012; Marwan, Carmen Romano, Thiel, & Kurths, 2007; 

Riley, Bonnette, Kuznetsov, Wallot, & Gao, 2012; Tsanas, et al., 2011; Weed & Fusaroli, 

submitted). Finally, most studies expand the range of measures, by further quantifying 

formants, spectral and cepstral properties of the speech signal (cf. Table 5, for a more 

detailed treatment of these measures cf. the referred papers and Eadie & Doyle, 2005). 

Feature extraction is a largely automated process, but it often relies on basic manual pre-

processing of the data: evaluation of background noise, isolation of the utterances, 

sometimes time-coding of the single words (e.g. Nakai et al 2014). However, it is still 

unclear how much hand-coding is theoretically necessary and promising automated 

techniques are being developed to replace it (e.g. Miro et al 2012; Xanguera et al. 2014). 

As the first process very often generates a large number of acoustic features, the 

second process deals with identifying amongst them a minimal set of maximally 

informative features. A popular rule of thumb suggests that the feature selection process 

should select a number of features inferior to a tenth of the number of independent data 

points in the dataset, but different algorithms can deal with different ratios of features to 

data points. The third process involves the use of the selected features to construct a 
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statistical model maximally distinguishing the target groups of interest (for detailed 

introductions to these topics, cf. Bishop, 2006; Hastie, et al., 2009) or most accurately 

predicting a score (e.g. severity of a given clinical feature).  

Since the goal of machine learning procedures is not to simply explain the current 

data but to create models that generalize to new data, feature selection and classification 

are often validated (or cross-validated, (for details, cf. Rodriguez, Perez, & Lozano, 

2010), for details). Validation involves the division of the dataset into training and test 

sets. The statistical models are fit to the training set and their explanatory power assessed 

on the test set.  

The characteristics and findings of the multi-variate machine-learning studies are 

reported in Table 5. For a more detailed overview of how the different studies reviewed 

implement feature selection, classification and validation, see Supplementary Material 

S1. 

 

Table 5 – Reconstructing Diagnosis from Voice Patterns. An overview 

Authors Sample 

Size and 

matching 

criteria 

Age IQ and 

level of 

function 

of the 

ASD 

Features Feature Selection 

(FS), 

Validation (V),  

Classifier (C) & 

Performance4 

																																																								
4 NN: neural networks; SVM: support vector machines; k-NN: nearest neighbors; DA: discriminant 
analysis. Accuracy indicates the percentage of correctly identified data points in the testing set. Specificity 
indicates the ability to correctly identify controls as controls, Sensitivity or recall indicates the ability to 
correctly identify targets as targets. Precision indicates the probability that a positive diagnosis does indeed 
entail the presence of a disorder. For regressions, performance is measured in terms of variance explained, 
R2, which in turn tends to be penalized according to the number of features included, Adjusted R2 (Hastie, 
et al., 2009) . 
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group 

(Santos 

et al., 

2013) 

Social 

Interactio

n  

23 ASD 

20 TD 

Group level 

age match 

18 m No 

characteri

zation 

Mean, SD and range of:  

pitch; first four formant 

frequencies and bandwidths; 

harmonic spectra locations 

and magnitudes and the 

differences between spectral 

harmonic magnitudes and 

spectrum magnitude at the 

formant frequencies; 

subharmonic-to-harmonic 

ratio (SHR); intensity; 

cepstral peak prominence 

(CPP); harmonic-to-noise 

ratio (HNR); jitter and 

shimmer; voiced ratio. 

FS: None 

V: 10-fold cross-

validation on classifier 

C: probabilistic NN. 

Accuracy: 83%-97% 

C: SVM. 

Accuracy: 79%-63%  

(Oller, et 

al., 2010) 

Social 

Interactio

n 

77 ASD 

106 TD 

(46 SLI) 

Group level 

gender, 

mother 

education 

and 

developme

ntal age 

match 

16-

48 m 

No 

characteri

zation 

Voicing events, canonical 

syllables, spectral entropy; 

spectral tilt, pitch control; 

wide formant bandwidth; 

duration  

FS: None 

V: Leave-one-out 

cross-validation 

C: linear DA. 

Accuracy: 86% 

(Bonneh, 41 ASD 4- All verbal Pitch range and variability FS: None (2 features 
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et al., 

2011) 

Spontane

ous 

productio

n 

42 TD 

Group level 

age and 

gender 

match 

6.5 y only) 

V: None 

C: linear DA 

Accuracy: 86% 

Sensitivity: 80% 

Specificity: 90% 

(Kiss, et 

al., 2012) 

Social 

Interactio

n 

14 ASD 

25 ASD 

(+SLI) 

28 TD 

(24 SLI) 

Group level 

age, verbal 

and non 

verbal IQ 

4-9 

y 

No 

characteri

zation 

Pitch mean, median, standard 

deviation, median absolute 

deviation, mean absolute 

deviation, interquartile range 

(IQR), skewness and kurtosis 

FS: None 

V: Leave-one-out 

cross-validation 

C: Naive Bayes. 

Accuracy: 74% 

Precision: 57% 

Sensitivity: 86%  

(Kakiha

ra, 

Takiguc

hi, Ariki, 

Nakai, 

& 

Takada, 

2015) 

Spontane

ous 

productio

n 

30 ASD 

54 TD 

Group level 

age match 

4-9 

y  

No 

characteri

zation 

Pitch and first derivative of 

pitch percentiles, mean, 

standard deviation, kurtosis, 

skewness, maximum, 

minimum, and range 

FS: None 

V: 10-fold cross-

validation 

C: SVM. 

Accuracy: 74.9% 

(against a baseline 

accuracy of 73.2%) 

(Asgari, 12 ASD 9-18 No Pitch, shimmer, jitter, HNR; FS: None 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 1, 2016. ; https://doi.org/10.1101/046565doi: bioRxiv preprint 

https://doi.org/10.1101/046565


	

	 43	

Bayesteh

tashk, & 

Shafran, 

2013) 

Constrai

ned 

productio

n 

64 TD 

13 SLI 

10 PDD-

NOS 

Group level 

age match 

y 

 

characteri

zation 

energy, cepstral and spectral 

features  

V: Test/Train 

C: SVM  

Sensitivity: 93.80% 

(Bone, et 

al., 2013) 

Constrai

ned 

productio

n 

12 ASD 

64 TD 

13 SLI 

10 PDD-

NOS 

Group level 

age match 

9-

18y 

 

No 

characteri

zation 

Mel cepstral coefficients; 

pitch, intensity, duration; 

pronunciation quality; total 

signal; energy, mean and 

relative energy changes over 

multiple time scales and 

frequency bands, and the 

frequencies with the majority 

of energy content  

FS: stepwise forward 

V: Test/Train 

C: a combination of 

linear SVMs, deep 

neural networks, and 

k-NN 

Sensitivity: 60.2% 

(Fusarol

i, Bang, 

& Weed, 

2013) 

Spontane

ous 

productio

n 

10 ASD 

13 TD 

Group level 

age and 

gender 

match 

20-

40y 

 

HFA Parametric (mean, sd) and 

dynamic (recurrence 

measures) measures of pitch, 

and duration. 

FS: ElasticNet 

V: 5-fold cross-

validation 

C: DA 

Accuracy: 86% 

Sensitivity: 88.4% 

Specificity: 85.4% 

 

C: linear regression 

predicts Autism 

Spectrum Quotient: 
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Adj R2 0.8, p=0.006. 

(Fusarol

i, 

Grossma

n, 

Cantio, 

Bilenber

g, & 

Weed, 

2015) 

Spontane

ous 

productio

n 

78 ASD (52 

US; 26 DK) 

68 TD (34 

US; 34 DK)  

Group level 

age and 

verbal and 

non-verbal 

IQ match 

8-

16y 

HFA 

VIQ 

DK: 

103.14 

(17.05) 

USA: 

105.86. 

(18.59) 

PIQ: 

DK: 

106.75 

(14.15) 

USA: 

106.88 

(15.68)  

Parametric (mean, sd) and 

dynamic (recurrence 

measures, teager-keisar 

energy operator) measures of 

pitch, intensity, duration and 

voice quality. 

FS: ElasticNet 

V: 5-fold cross-

validation 

C: DA 

Accuracy: 71.65 % 

(American English 

data, US); 82.01 % 

(Danish data, DK); 

71.9% (combined) 

Sensitivity: 59.32% 

(US); 84.80% (DK); 

63.22% (combined) 

Specificity: 84.42% 

(US); 81.39% (DK); 

80.01% (combined) 

 

C: linear regression: 

ADOS RSI: Adj R2 

0.28 (US); NS (DK); 

0.13 (combined)  

ADOS SB: Adj R2 

0.46 (US); 0.32 

(combined)  

(Fusarol

i, 

Lambre

17 ASD 

17 TD 

Group level 

25-

62y 

HFA 

VIQ: 110 

(11) 

Parametric (mean, sd) and 

dynamic (recurrence 

measures, Teager-Keisar 

FS: ElasticNet 

V: 5-fold cross-

validation 
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chts, et 

al., 2015) 

Spontane

ous 

productio

n 

age and 

verbal and 

non-verbal 

IQ match 

PIQ: 107 

(14) 

Energy Operator) measures 

of pitch, intensity, duration 

and voice quality. 

C: DA 

Accuracy: 81.09%  

Sensitivity: 84.83% 

Specificity: 82.20% 

 

C: linear regression: 

ADOS total: Adj R2: 

0.54  

ADOS RSI: Adj R2  

0.52 

(Bone, et 

al., 2014) 

Social 

Interactio

n 

24 ASD 

No TD 

group 

5-

14y 

Fluent 

verbal 

ability 

Non parametric descriptive 

statistics (IQR and median) 

of: curvature, slope and 

center of pitch and intensity 

over time; 

Boundary and non boundary 

changes of speech rate of 

time. 

Voice Quality: Jitter, 

Shimmer, CPP, HNR median 

and IQR 

FS: Stepwise  forward 

V: None 

C: Spearman rank 

order regression with 

ADOS total 

r: 0.64 

(Marchi 

et al., 

2015) 

Spontane

ous 

Producti

on 

8 ASD 

9 TD 

Group level 

age match 

5-

11y 

No 

characteri

zation 

Energy, spectral, cepstral 

(MFCC) and voicing related 

low-level descriptors (LLD) 

as well as logarithmic 

harmonic-to-noise ratio 

(HNR), spectral harmonicity, 

and psychoacoustic spectral 

FS: None 

V: Leave-One-Out 

cross-validation 

C: SVM 

Sensitivity 78.3% 
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sharpness 

(Marchi, 

et al., 

2015) 

Spontane

ous 

Producti

on 

9 ASD 

11 TD 

No match 

5-

11y 

No 

characteri

zation 

Energy, spectral, cepstral 

(MFCC) and voicing related 

low-level descriptors (LLD) 

as well as logarithmic 

harmonic-to-noise ratio 

(HNR), spectral harmonicity, 

and psychoacoustic spectral 

sharpness 

FS: None 

V: Leave-One-Out 

cross-validation 

C: SVM 

Sensitivity 86.4% 

(Marchi, 

et al., 

2015) 

Spontane

ous 

Producti

on 

7 ASD 

11 TD 

Group level 

age match 

5-

10y 

No 

characteri

zation 

Energy, spectral, cepstral 

(MFCC) and voicing related 

low-level descriptors (LLD) 

as well as logarithmic 

harmonic-to-noise ratio 

(HNR), spectral harmonicity, 

and psychoacoustic spectral 

sharpness 

FS: None 

V: Leave-One-Out 

cross-validation 

C: SVM 

Sensitivity 82.7% 

	
 

While simple measures of pitch were the most commonly employed, no single 

feature was used in all, or even in the majority of the studies. Analogously no single 

feature selection, classification algorithm or validation process was employed in a 

majority of studies. In terms of results, all but one multivariate machine-learning study 

reported accuracies well above 70% and up to 96%5. A more precise overview of the 

																																																								
5	Given	 the	 heterogeneity	 of	 the	 studies	 in	 terms	 of	 acoustic	 measures	 and	 algorithms	 a	 meta-
analysis	 would	 not	 be	 reliable	 and	 is	 not	 reported.	 The	 curious	 reader	 can	 find	 the	 code	 for	
performing	one	at	https://github.com/fusaroli/AcousticPatternsInASD		
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sensitivities and specificities of the algorithms, when it was possible to reconstruct them 

and their uncertainty, is presented in Figures 5 and 6. The average sensitivity was 80% 

(with one study indistinguishable from chance) and the average specificity was 85.1% 

(with all studies above chance). 

 

 

Figure 5 - Forest plot of the algorithms’ sensitivities in automatically discriminating 

between the ASD and comparison populations. The x-axis reports the sensitivity and the 

y-axis the studies for which it was possible to reconstruct the confidence intervals of 

sensitivity. The dotted line indicates sensitivity at chance level, that is, 50%. 
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Figure 6 - Forest plot of the algorithms’ specificities in automatically discriminating 

between the ASD and comparison populations. The x-axis reports the specificity and the 

y-axis the studies for which the relevant statistics were available. The dotted line 

indicates specificity at chance level, that is, 50%. 

 

Besides the classification of voice into ASD and comparison groups, 4 studies 

demonstrate the possibility of predicting severity of clinical features (ADOS total scores, 

ADOS Stereotyped Behavior and ADOS Reciprocal Social Interaction) from acoustic 

measures, in particular pitch, shimmer and jitter (Bone, et al., 2014; Fusaroli, et al., 2013; 

Fusaroli, Grossman, et al., 2015; Fusaroli, Lambrechts, et al., 2015). However, 

differences in terms of methods and measures make comparison between studies difficult.  

 

6. Discussion 

6.1 Overview 
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Clinical practitioners have long attributed distinctive voice and prosodic patterns to 

individuals with ASD (Asperger, 1944; Kanner, 1943). We set out to systematically 

review the evidence for such patterns and their potential as marker of ASD. We identified 

32 articles involving 27 univariate and 15 multivariate machine-learning studies. Sample 

sizes were limited, with a mean of 20.3 (SD: 14.63) and a median of 17.5 (IQR: 8.25) 

ASD participants across the univariate studies and a mean of 24.1 (SD: 18.24) and a 

median of 17 (IQR: 15.5) across the multivariate ones.  

The univariate studies reported as many null results as significant differences 

between ASD and comparison groups. Meta-analyses identified reliable, but small effects 

for pitch mean and range, corresponding to a discriminative accuracy of approximately 

61%.  

The multivariate machine-learning studies by contrast painted a more promising 

picture and largely outperform the univariate ones, with accuracy ranging from 70% to 

96% for separating individuals with ASD from comparison participants. The multivariate 

attempts at predicting severity of clinical features do not systematically outperform the 

univariate studies (univariate R2 between 0.18 and 0.46; multivariate Adjusted R2 

between 0.13 and 0.8). Whilst the multivariate findings are stronger and involve more 

robust statistical procedures (such as validation procedures), there has been no general 

attempt to replicate findings across multiple studies using similar methods. Because of 

the complexity and heterogeneity of feature extraction, selection and of the statistical 

models involved in the multivariate studies, it is not possible to assess which (if any) of 

the acoustic features are most informative for diagnosis and clinical features across 

studies. 
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6.2. Obstacles in identifying an acoustic marker for ASD 

 

We raised the possibility that acoustic features of vocal production could be used 

as a marker of ASD. We defined a marker of ASD as an index measurable directly using 

sensitive and reliable quantitative procedures associated with the disorder and/or its 

clinical features. We identified as additional challenges the need to assess the 

heterogeneity of individuals with ASD (e.g. in severity of clinical features) and the 

progression of clinical features over time (e.g. in presence of intervention program or 

aging). 

We could not identify any single feature that could yet serve the role of marker. 

While many aspects of vocal production in ASD have long been described as different, 

there have been few consistent findings among studies, except for pitch mean and range. 

The multivariate machine-learning approach to vocal production in ASD seems 

promising, albeit yet unsystematic; it can capture the complex and often non-linear nature 

of the acoustic patterns that may gave rise to the clinical impression of atypical voice and 

prosody in ASD. Indeed, such impressions are often based on multiple types of 

information (Forbes-Riley & Litman, 2004; Liscombe, Venditti, & Hirschberg, 2003). 

 Many advances have thus been made since McCann & Peppe’s (2003) review: a 

larger number of acoustic features have been quantitatively defined and more complex 

statistical techniques have been developed. However, the search for a vocal marker of 

ASD has to overcome four obstacles: small sample sizes; few replications of effects 

across studies; too heterogeneous methods for the extraction of acoustic features and their 
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analysis; and limited theoretical background for the research. First, people with ASD 

present diverse clinical features with different levels of severity. Five of the reviewed 

studies sought to investigate the relation between severity of clinical features and acoustic 

patterns. However, because the sample size of each study was too low (median of 

participants with ASD < 30), it is difficult – if not impossible – to control for the large 

natural heterogeneity among individuals in terms of clinical features and their severity. 

Second, most of the studies reviewed focused on different acoustic features, which entails 

that effects rarely are replicated and that it is difficult to perform reliable meta-analyses 

of effect sizes. Third, the reviewed studies differed considerably with respect to methods 

and statistical analysis. For example, we identified three types of speech-production task 

(constrained production, spontaneous production and social interaction), each of which is 

likely to involve distinct social and cognitive demands and therefore different vocal 

production patterns, but more fine-grained typologies could be used. This would also 

enable the assessment of whether acoustic markers of ASD could represent biomarkers, 

that is, be directly related to underlying biological processes as those involved in 

respiration and fine-motor control of the vocal folds. Further, different studies not only 

use different acoustic features but also use different methods for feature extraction – if 

described at all – making comparisons between studies difficult6. This lack of clarity is 

especially problematic for machine-learning techniques7. 

																																																								
6	For instance, the parameters to define the accepted ceiling of the fundamental frequency might vary from 
400 Hz to 700 Hz. Higher ceilings have been shown to better capture acoustic differences features in ASD 
(Kiss, et al., 2012),  however the definition of the  ceiling employed is very rarely reported.	
7	It has been shown, for example, that recording participants with ASD and comparison participants at 
different locations (which was unreported) induced artificially high discrimination accuracy due to the 
properties of each location’s background noise (Bone, et al., 2013). 
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 A final issue to be mentioned is the relation between acoustic markers, clinical 

assessment and condition (or clinical features). Would acoustic markers of ASD 

contribute new information to the clinical assessment? Technically, the machine learning 

procedures analyzed rely on existing clinical assessment to learn the relation between 

acoustic features and ASD. In other words, they cannot get better than the clinical 

assessment they are trained on. Nevertheless, there are several advantages in employing 

acoustic markers of ASD and its clinical features. First, the identification of acoustic 

markers would represent a fast, cheap, non-invasive procedure, which could speed up the 

diagnostic process. Second, the procedure could support the diagnostic process in in 

objective ways, increasing the reliability of the clinical features assessment especially for 

less experienced practitioners. Third, acoustic markers of ASD and clinical features could 

point to mechanisms underlying the disorders and its various impairments allowing for a 

simultaneous assessment of several clinical features and their progression over time. 

Whether these potentialities can be lived out is still an empirical question, which requires 

more collaborative and open research processes. 

 

6.3. Towards a more collaborative and open research process 

 The combination of promising results and a lack of a systematic approach is far 

from rare in the study of acoustic patterns in neuropsychiatric conditions (Cohen, 

Mitchell, & Elvevåg, 2014; Cummins, et al., 2015; Weed & Fusaroli, submitted). We 

need to develop a systematic approach to vocal production in ASD, accounting for the 

heterogeneity of the disorder, the individual differences of the participants and their 

progression through aging and intervention, for it to be of clinical relevance. To achieve 
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this goal we advocate more open and cumulative research practices. We therefore outline 

three recommendations for future research: open data, open methods, and theory-driven 

research. 

Open Data. Many of the reviewed studies did not report the necessary 

information for performing meta-analysis. For example, we could not account for the role 

of age in the patterns observed, as we could not access participant-level data matching 

acoustic and demographic measures. The field as a whole would benefit from sharing 

datasets, which would allow for across-study comparisons and for larger scale analyses. 

While voice recordings are often sensitive data in clinical population, and therefore not 

easily shareable, the extracted acoustic measures do not always share this restriction. In 

line with this recommendation, the data used here are available at 

https://github.com/fusaroli/AcousticPatternsInASD. 

Open Methods. The quantitative assessment of acoustic measures presents the 

researcher with several important choices: for example, how should the audio signal be 

preprocessed, which parameters should be used to extract fundamental frequency, and 

should the extracted data be transformed. As more complex signal-processing techniques 

are developed, it becomes even more critical to fully describe the methods involved in a 

given study. Otherwise replication and cross-talk between research groups are 

impossible. Ideally, the full data-processing pipeline should be automated and the script 

used to do so should be published as supplementary material (or on public code 

repositories such as GitHub). The literature on vocal production in Parkinson’s and 

affective disorders might serve as example for researchers investigating vocal production 

in ASD (Degottex, Kane, Drugman, Raitio, & Scherer, 2014; Tsanas, et al., 2011). In line 
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with this recommendation, the R code employed in this paper is available at 

https://github.com/fusaroli/AcousticPatternsInASD, and can be easily improved and/or 

used to update the meta-analysis as new studies are published. 

 Theory-driven research. A common feature of the studies reviewed is the lack of 

theoretical background. For example, limited attention is paid to clinical features and 

their severity and the choice of the speech-production task and acoustic measures used is 

often under-motivated. On the contrary, by putting hypothesized mechanisms to the test, 

more theory-driven research on vocal production in ASD would improve our 

understanding of the disorder itself. For examples, recent models of impaired perceptual 

and motor anticipation in ASD (Palmer, Paton, Kirkovski, Enticott, & Hohwy, 2015; Van 

de Cruys et al., 2014) would predict the presence of overcorrection in vocal production in 

ASD (e.g. bursts of jitter and shimmer). Further, models of social impairment in ASD 

could be tested by analyzing the acoustic dynamics involved in conversations, such as 

reciprocal prosodic adaptation and compensation (Dale, Fusaroli, Duran, & Richardson, 

2013; Fusaroli, Raczaszek-Leonardi, & Tylén, 2014; Fusaroli & Tylén, 2012; Hopkins, 

Yuill, & Keller, 2015; Lambrechts, Yarrow, Maras, & Gaigg, 2014; Pickering & Garrod, 

2004; Slocombe et al., 2013). 

In general, different speech-production tasks involve different social and 

cognitive demands and such differences might account for much of the unexplained 

variance between the reviewed studies. We therefore recommend data collection using 

several motivated speech-production tasks, especially combining existing clinical and 

ecological speech recordings with tasks chosen based on hypothesized mechanisms 

underlying clinical features. On one hand, structured tasks might allow the researcher to 
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control for confounds and test for the role of specific experimental factors. Further, 

several standardized tests – including ADOS interviews – involve vocal production and 

their systematic collection and use could enable the construction of large datasets 

comparable across labs and languages. On the other hand, structured tasks might not offer 

representative samples of vocal productions in ASD, as individuals with ASD differ in 

terms of what they can do if tested and what they actually do in their everyday life (Fine, 

Bartolucci, Ginsberg, & Szatmari, 1991; Klin, Jones, Schultz, & Volkmar, 2003). Recent 

technological developments enable unobtrusive longitudinal recordings, opening up for 

the study of prosody and other social behaviors during everyday life (Vosoughi, 

Goodwin, Washabaugh, & Roy, 2012; Warlaumont, et al., 2014). This might in turn help 

us better understand the everyday dynamics of social impairment in ASD. 

 

7. Conclusion 

We have systematically reviewed the literature on distinctive acoustic patterns in 

ASD. We did not find conclusive evidence for a single acoustic marker for ASD and 

predictor for severity of clinical features. Multivariate machine-learning research 

provides promising results, but more systematic cross-study validations are required. To 

advance the study of vocal production in ASD, we outlined three recommendations: more 

open, more cumulative and more theory-driven research. 
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