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Lay Abstract: Individuals with Autism Spectrum Disorder (ASD) are reported to speak 

in distinctive ways. Distinctive vocal production should be better understood as it can 

affect social interactions and social development and could represent a non-invasive 

biomarker for ASD. We systematically review the existing scientific literature reporting 

quantitative acoustic analysis of vocal production in ASD. We identify repeated and 

consistent findings of higher pitch mean and variability but not of other differences in 

acoustic features. We identify a recent approach relying on multiple aspects of vocal 

production and machine learning algorithms to automatically identify ASD from voice 

only. This latter approach is very promising, but requires more systematic replication and 

comparison across languages and contexts. We outline three recommendations to further 

develop the field: open data, open methods, and theory-driven research. 
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Scientific Abstract Individuals with Autism Spectrum Disorder (ASD) tend to show 

distinctive, atypical acoustic patterns of speech. These behaviours affect social 

interactions and social development and could represent a non-invasive biomarker for 

ASD. We systematically reviewed the literature quantifying acoustic patterns in ASD. 

Search terms were: (prosody OR intonation OR inflection OR intensity OR pitch OR 

fundamental frequency OR speech rate OR voice quality OR acoustic) AND (autis* OR 

Asperger). Results were filtered to include only: empirical studies quantifying acoustic 

features of vocal production in ASD, with a sample size > 2, and the inclusion of a 

neurotypical comparison group and/or correlations between acoustic measures and 

severity of clinical features. We identified 32 articles, including 27 univariate studies and 

15 multivariate machine-learning studies. We performed meta-analyses of the univariate 

studies, identifying significant differences in mean pitch and pitch range between 

individuals with ASD and controls (Cohen’s d of about 0.4 and discriminatory accuracy 

of about 61%). The multivariate studies reported higher accuracies than the univariate 

studies (63-96%). However, the methods used and the acoustic features investigated were 

too diverse for performing meta-analysis. We conclude that multivariate studies of 

acoustic patterns are a promising but yet unsystematic avenue for establishing ASD 

biomarkers. We outline three recommendations for future studies: open data, open 

methods, and theory-driven research. 
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1. Introduction 

From its earliest characterizations, ASD has been associated with peculiar tones of voice 

and disturbances of prosody (Asperger, 1944; Goldfarb, Braunstein, & Lorge, 1956; 

Kanner, 1943; Pronovost, Wakstein, & Wakstein, 1966; Simmons & Baltaxe, 1975). 

Although 70-80% of individuals with ASD develop functional spoken language, at least 

half of the ASD population displays early atypical acoustic patterns (Paul et al., 2005a; 

Rogers et al., 2006; Shriberg et al., 2001), which persist while other aspects of language 

improve (Baltaxe & Simmons, 1985; Depape, Chen, Hall, & Trainor, 2012). These 

atypical acoustic patterns have been qualitatively described as flat, monotonous, variable, 

sing-songy, pedantic, robot- or machine-like, hollow, stilted or exaggerated and 

inappropriate (Amorosa, 1992; Baltaxe, 1981; Depape, et al., 2012; Järvinen-Pasley, 

Peppé, King-Smith, & Heaton, 2008; Lord, Rutter, & Le Couteur, 1994). Such distinctive 

vocal characteristics are one of the earliest-appearing markers of a possible ASD 

diagnosis (Oller et al., 2010; Paul, Fuerst, Ramsay, Chawarska, & Klin, 2011; 

Warlaumont, Richards, Gilkerson, & Oller, 2014). 

 An understanding of vocal production in ASD is important because acoustic 

abnormalities may play a role in the social-communicative impairments associated with 

the disorder (Depape, et al., 2012; Klopfenstein, 2009). For example, individuals with 

ASD have difficulties with the communication of affect (Travis & Sigman, 1998) – 

which relies on the production of prosodic cues – leading to negative social judgments 

from others (Fay & Schuler, 1980; Paul et al., 2005b; Shriberg, et al., 2001; Van 

Bourgondien & Woods, 1992) and in turn social withdrawal and social anxiety (Alden & 

Taylor, 2004). Such disruption of communication and interaction may have long-term 
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effects, compromising the development of social-communicative abilities (Warlaumont, 

et al., 2014).  

Atypical prosody is already considered a marker for ASD in gold-standard 

diagnostic assessments such as the Autism Diagnostic Observation Schedule (Lord, et al., 

1994), and recent evidence indicates that speech in ASD may be characterized by 

relatively unique acoustic features that can be quantified objectively (Bone et al., 2013; 

Fusaroli, Lambrechts, Yarrow, Maras, & Gaigg, 2015; Oller, et al., 2010). Prosody 

production has also been argued to be a “bellwether” behavior that can serve as a marker 

of the specific cognitive and social functioning profile of an individual (Bone et al., 2014; 

Diehl, Berkovits, & Harrison, 2010; Paul, et al., 2005a). Such diagnostic profiling is 

especially needed now that the diagnosis of ASD (since the publication of the DSM-5) 

pools together previously distinct disorders (e.g., Asperger syndrome and childhood 

disintegrative disorder). 

 Studies of prosody in ASD can be grouped according to four key aspects of 

speech production: pitch, volume, duration and voice quality (Cummins et al., 2015; 

Titze, 1994). The speech of individuals with ASD has been described as monotone, as 

having inappropriate pitch and pitch variation (Baltaxe, 1984; Fay & Schuler, 1980; 

Goldfarb, Goldfarb, Braunstein, & Scholl, 1972; Paccia & Curcio, 1982; Pronovost, et 

al., 1966) and as being too loud or too quiet, sometimes inappropriately shifting between 

the two (Goldfarb, et al., 1972; Pronovost, et al., 1966; Shriberg, Paul, Black, & van 

Santen, 2011; Shriberg, et al., 2001). Further, individuals with ASD have been reported 

to speak too quickly or too slowly (Baltaxe, 1981; Goldfarb, et al., 1972; Simmons & 

Baltaxe, 1975) and many descriptions of their speech have highlighted a distinctive voice 
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quality characterized as “hoarse”, “harsh” and “hyper-nasal” (Baltaxe, 1981; Pronovost, 

et al., 1966), with a higher recurrence of squeals, growls, and yells (Sheinkopf, Mundy, 

Oller, & Steffens, 2000). 

The research evidence is diverse, in terms of both methods and interpretations. An 

early review of 16 qualitative studies of speech in ASD found it difficult to draw any firm 

conclusions (McCann & Peppé, 2003). Shortcomings of the reviewed studies were: (1) 

small sample size; (2) underspecified criteria for the (qualitative) descriptions of speech 

production; (3) lack of quantitative measures of speech production; (4) use of 

heterogeneous and non-standardized tasks; and (5) little theory-driven research. Since 

that review, the literature on prosody in ASD has grown substantially, particularly with 

respect to the use of signal-processing techniques that overcome some of the limitations 

involved in qualitative studies (Banse & Scherer, 1996; Grossman, Bemis, Skwerer, & 

Tager-Flusberg, 2010). The purpose of the present paper is to provide a systematic and 

critical review of recent research on the acoustic quantitative characteristics of speech 

production in ASD. This focus ensures minimal overlap with the literature reviewed by 

McCann & Peppé (2003) and is motivated by the more general question of whether 

automated speech-processing procedures can be used in the diagnosis of ASD.  

We identified two different groups of studies: univariate studies and multivariate 

machine-learning studies. Univariate studies seek to identify differences between ASD 

and control groups by investigating one acoustic feature at a time. In contrast, 

multivariate machine-learning studies use multiple features (multivariate) to build 

statistical models that can classify previously unheard voice samples into ASD and 

control groups (machine-learning). A particular focus of this review will be whether 
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acoustic characteristics of speech production can be used as biomarkers of ASD – that is, 

as objective measures that are a reliable indicator of the disorder and/or of more specific 

clinical features of ASD. 

The review will be structured as follows. Section 2 will define the search and 

selection criteria for the literature review. Section 3 and 4 will present the results of the 

review. Section 3 focuses on univariate studies and, where more than five studies focused 

on the same feature, provides meta-analyses of the effect sizes. Section 4 focuses on 

multivariate studies and in particular the attempt to use machine-learning techniques to 

develop biomarkers of ASD. We end by critically assessing the findings and advancing 

recommendations for future research. 

 

2. Methods: The criteria for the literature search 

A literature search was conducted using Google Scholar, PubMed and Web of Science on 

April 15 2015 and updated on March 4 2016. The search terms used were (prosody OR 

intonation OR inflection OR intensity OR pitch OR fundamental frequency OR speech 

rate OR voice quality OR acoustic) AND (autis* OR Asperger). The papers thus found 

were searched for additional references and the resulting set was screened by two of the 

authors (RF and AL) according to the following criteria: empirical study, quantification 

of acoustic features in the vocal production of participants with ASD, sample including at 

least two individuals with ASD, inclusion of a typically developing comparison group 

(TD) or an assessment of variation in acoustic features in relation to severity of clinical 

features.  
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For all resulting papers we report sample sizes for ASD and TD groups, age, 

speech production task, results and estimates of the acoustic measures (mean and 

standard deviation) if available, in dedicated tables (see Tables 1 to 5). To facilitate 

comparison between studies, the vocal production tasks were grouped into three 

categories. The first category, constrained production, includes tasks such as reading 

aloud and repeating linguistic stimuli. In this category, the focus is on the form of speech 

production, more than on its contents (e.g. the actual words and meaning expressed). The 

second category, spontaneous production, includes tasks such as free description of 

pictures and videos or telling stories. This category of tasks involves a more specific 

focus on the contents of speech production. The third category, social interaction, 

includes spontaneous and semi-structured conversations such as ADOS interviews. This 

category adds a stronger emphasis on social factors and interpersonal dynamics. 

We extracted statistical estimates (mean and standard deviation for the ASD and 

TD groups) of the features when available and contacted the corresponding authors of the 

articles that did not provide these statistics 1 . When this process yielded statistical 

estimates of one feature from at least five independent studies, we ran a meta-analysis to 

estimate an overall effect size – that is, a weighted standardized mean difference 

(Cohen’s d) between the ASD and the TD groups for univariate studies and 

sensitivity/specificity of classification for the multivariate machine-learning studies. We 

note that only the univariate studies provided enough data to perform meta-analyses. 

                                                       
1 Additional data were provided by the authors of (Bonneh, Levanon, Dean-Pardo, Lossos, & Adini, 2011; 
Grossman, et al., 2010), whom we gratefully acknowledge. As these data are fully reported in the publicly 
accessible dataset we will not further distinguish it from the data reported in the articles reviewed.  
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Meta-analyses were performed following well-established procedures detailed in 

(Doebler & Holling, 2015; Field & Gillett, 2010; Quintana, 2015; Viechtbauer, 2010). 

We first calculated the size (Cohen’s d), statistical significance (p-value) and overall 

variance (or τ2) of effects observed across studies. We then assessed whether the overall 

variance could be explained by within-study variance (e.g., due to measurement noise or 

heterogeneity in the ASD samples included in the studies) using Cochran’s Q (Cochran, 

1954) and I2 statistics (Higgins, Thompson, Deeks, & Altman, 2003). Third, we assessed 

whether systematic factors – speech production task (constrained production, 

spontaneous production, social interaction) and language employed in the task (e.g. 

American English, or Japanese)2 – could further explain the overall variance. Finally, we 

investigated the effect of influential studies (single studies strongly driving the overall 

results) and publication bias (tendency to write up and publish only significant findings, 

ignoring null findings and making the literature unrepresentative of the actual population 

studied) on the robustness of our analysis. This was estimated using rank correlation tests 

assessing whether lower sample sizes (and relatedly higher standard error) were related to 

bigger effect sizes. A significant rank correlation indicates a likely publication bias and 

inflated effect sizes due to small samples. All analyses were performed using the metafor 

v.1.9.8 and mada v.0.5.7 packages in R 3.2.2. All data and R-code employed are 

available at https://github.com/fusaroli/AcousticPatternsInASD. 

 

3. Results 

                                                       
2 We did not include age as a factor for two reasons. First, several studies spanned age ranges that would 
make them eligible for inclusion as either studies of adults or children. Second, we could not make a clear 
cut-off around puberty, which is known to strongly affect acoustic production 
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3.1. Literature search results 

The initial literature screening yielded 106 papers discussing prosody and voice in ASD. 

The second stricter screening yielded 32 papers, with each paper sometimes reporting 

more than one study. In total, our primary literature included 27 univariate studies and 15 

multivariate machine-learning studies. The remaining 74 papers (qualitative studies, 

theory or reviews) were used as background literature only and cited when relevant. 

 

 

3.2. Differences in acoustic patterns between ASD and control populations 

(univariate studies) 

 

3.2.1. Pitch 

 

Pitch reflects the frequency of vibrations of the vocal cords during vocal production. 

During vocal production, individuals often modulate their pitch to convey pragmatic or 

contextual meaning: for example, marking an utterance as having an imperative, 

declarative or ironic intent, or even to express emotions (Banse & Scherer, 1996; Bryant, 

2010; Fusaroli & Tylén, 2016; Michael et al., 2015; Mushin, Stirling, Fletcher, & Wales, 

2003). 

Our literature screening yielded 21 studies employing acoustic measures of pitch 

(cf. Tables 1-2). Four summary statistics were used: mean, standard deviation (SD), range 

(defined between highest and lowest pitch) and coefficient of variation (standard 

deviation divided by mean). Some researchers also quantified the temporal trajectory or 
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profile of pitch, estimating the slope (ascending, descending or flat) of pitch over time 

(Bone, et al., 2014; Green & Tobin, 2009). We report the latter measures when the signal-

processing is automated and does not rely on manual coding. 

 

Table 1 – Summary statistics of the pitch properties of ASD and TD groups in each study. 

When present, or provided by the authors, mean and standard deviation (in parenthesis) 

of the summary statistics are reported. NS: Non-significant difference between groups. 

 

Authors Sample 

Size 

Age Task Findings 

(Brisson, 

Martel, 

Serres, 

Sirois, & 

Adrien, 

2014) 

13 ASD 

13 TD 

0-6 m Social 

Interaction 

Pitch mean: NS 

ASD: 393.61 Hz (107.19); TD: 357.64 Hz 

(37.17) 

(Sharda et 

al., 2010) 

15 ASD 

10 TD 

4-10 y Social 

Interaction  

Pitch Mean: Higher  

ASD: 355.8 Hz (61.7); TD: 275.4Hz (22.5) 

Pitch Range: Wider 

ASD: 550.6 Hz (84.9); TD: 464.7 Hz (41.2) 

 

(Filipe, 

Frota, 

Castro, & 

Vicente, 

2014) 

12 ASD 

17 TD  

4-6 y Spontaneous 

Production 

(lexical 

elicitation)  

Pitch mean: Higher  

ASD: 264.72 Hz (23.19); TD: 242.74 Hz (28.59) 

Pitch range: Wider 

ASD: 142. 3 Hz (47.4); TD: 97.5 Hz (36.38) 
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(Diehl, 

Watson, 

Bennetto, 

McDonough, 

& 

Gunlogson, 

2009) 

17 ASD 

17 TD  

6-14 y 

 

Spontaneous 

Production 

(narrative 

elicitation)  

Pitch Mean: NS 

ASD: 212.25 Hz (36.48); TD: 207.84 Hz (34.93) 

Pitch Range: Wider 

ASD: 49.57 Hz (9.81); TD: 41.69 Hz (12.49) 

(Diehl, et al., 

2009) 

21 ASD 

21 TD 

10-18 y Spontaneous 

Production 

(Narrative 

elicitation)  

Pitch Mean: NS 

ASD: 189.95 Hz (35.11); TD: 173.57 Hz (42.25) 

Pitch Range: Wider 

ASD: 58.77 Hz (16.46); TD: 45.20 Hz (13.15) 

(Scharfstein, 

Beidel, Sims, 

& Finnell, 

2011) 

30 ASD  

30 TD 

7-13 y Social 

Interaction 

Pitch Mean: NS 

ASD: 282.94 Hz (28.8); TD: 293.19 Hz (27.1) 

Pitch Range: NS 

ASD: 57.20 Hz (17.7); TD: 62.12 Hz (24.4) 

(Bonneh, et 

al., 2011) 

41 ASD 

42 TD 

4-6.5 y Spontaneous 

Production 

(lexical 

elicitation)  

Pitch Mean: NS 

ASD:  190.89 Hz (57.87); TD: 155.82 Hz 

(47.51) 

Pitch Range: Wider 

ASD: 264 Hz (23); TD: 249 Hz (25) 

Pitch SD: Higher 

(Fosnot & 

Jun, 1999) 

4 ASD 

4 TD 

7-14 y Constrained 

production 

(reading and 

imitation) 

Pitch range: Wider 

Pitch SD: Higher 

(Nadig & 

Shaw, 2012) 

15 ASD 

13 TD 

 

8-14 y Social 

Interaction  

Pitch Mean: NS 

ASD 225 Hz; TD: 214 Hz 

Pitch Range: Wider 
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ASD Median: 200 Hz; TD Median: 124 Hz 

 

(Nadig & 

Shaw, 2012) 

15 ASD 

11 TD 

8-14 y Spontaneous 

Production 

(sentence 

elicitation)  

Pitch Mean: NS 

ASD: 156 Hz; TD: 122 Hz 

Pitch Range: Wider 

ASD: 156 Hz; TD: 122 Hz 

 

(Diehl & 

Paul, 2012) 

24 ASD  

22 TD 

8-16 y Constrained 

production 

(Imitation)  

Pitch Mean: NS 

Pitch Range: NS  

Pitch SD: NS 

 

(Diehl & 

Paul, 2013) 

24 ASD  

22 TD 

8-16 y Spontaneous 

Production 

(sentence 

elicitation)  

Pitch Mean: NS 

Pitch Range: Wider 

Pitch SD: Higher 

(Grossman, 

et al., 2010) 

11 ASD 

9 TD 

7-17 y Spontaneous 

Production 

(lexical 

elicitation)  

 

Pitch Mean: NS 

ASD: 190.89 Hz (57.87); TD: 155.82 Hz (47.51) 

Pitch Range: NS 

ASD: 170 Hz (86.64); TD: 108.64 Hz (53.94) 

(Hubbard & 

Trauner, 

2007) 

18 ASD 

10 TD 

6-21 y Constrained 

production 

(Imitation)  

Pitch range: NS 

 

(Nakai, 

Takashima, 

Takiguchi, & 

Takada, 

2014) 

6 ASD  

16 TD  

4-6 y Spontaneous 

Production 

(lexical 

elicitation)  

Pitch Range NS 

ASD: 183.21 Hz (33.90); TD: 198.18 Hz (36.23) 

Pitch SD NS 

ASD: 45.14 Hz (12.20); TD: 48.19 Hz (13.25) 

Pitch CV: Higher  
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ASD: 0.15 Hz (0.03); TD: 0.15 Hz (0.02) 

(Nakai, et al., 

2014) 

20 ASD  

21 TD 

6-10 y Spontaneous 

Production 

(lexical 

elicitation)  

Pitch Range NS 

ASD: 202.13 Hz (34.27); TD: 224.39 Hz (48.13) 

Pitch SD NS 

ASD: 50.26 Hz (12.32); TD: 61.73 Hz (17.09) 

Pitch CV: Higher 

ASD: 0.15 Hz (0.02); TD: 0.21 Hz (0.06) 

(Green & 

Tobin, 2009)  

10 ASD 

10 TD 

9-13 y Spontaneous 

production & 

Constrained 

production 

Pitch Range: NS 

ASD: 10.7–37.6 semitones; TD: 30.4–32.4 

semitones 

(Depape, et 

al., 2012)  

12 ASD 

6 TD 

17-34y Social 

Interaction 

Pitch Mean: NS 

Pitch Range: 

Wider for High Functioning Autism, Narrower 

for Medium Functioning Autism 

(Kaland, 

Krahmer, & 

Swerts, 2012)  

20 ASD 

20 TD 

18-51 y Spontaneous 

Production 

(sentence 

elicitation)  

Pitch Range: Lower 

 

(Chan & To, 

2016) 

19 ASD 

19 TD 

18-34y Spontaneous 

Production 

(narrative 

elicitation) 

Pitch Mean: NS 

ASD: 137.67 Hz (18.69); TD: 123.24 (15.19) 

Pitch SD: NS 

ASD: 27.35 Hz (7.86); TD: 22.16 (4.69) 

 

 

Pitch mean was investigated in 14 studies (323 participants with ASD and 311 

controls). Only two of these studies reported a significant group difference with higher 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 3, 2016. ; https://doi.org/10.1101/046565doi: bioRxiv preprint 

https://doi.org/10.1101/046565


 

 15

pitch mean in the ASD groups (Filipe, et al., 2014; Sharda, et al., 2010). The remaining 

12 studies report null findings. The meta-analysis included 9 studies for a total of 179 

participants with ASD and 178 controls (cf. Figure 1). The overall estimated difference 

(Cohen’s d) in mean pitch between the ASD and TD groups was 0.44 (95% CIs: 0.09 

0.79, p=0.01) with an overall variance (τ2) of 0.16 (95% CIs: 0.01 0.98). Much of the 

variance (I2: 60.30%, 95% CIs: 11.39 90.10) could not be reduced to random sample 

variability between studies (Q-stats = 19.82, p = 0.01). However, neither task (estimate: 

0.05, 95% CIs -0.75 0.84, p=0.91) nor language (estimate: 0.09, 95% CIs -0.02 0.21, 

p=0.12) could significantly explain it. 

 

Figure 1 – Forest plot of effect sizes (Cohen’s d) in pitch mean between the ASD and 

control populations. The x-axis reports the effect size and the y-axis the studies for which 

statistical estimates of pitch mean were provided. The dotted vertical line indicates the 

null hypothesis (no difference between the populations). 
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One study (Sharda, et al., 2010) with a large effect size and large standard error 

significantly drives the overall effect (see the lowest right point in Figure 2). Removing 

this study yielded a smaller but still significant overall effect size (0.31, 95% CIs 0.02 

0.61, p=0.04). The data also revealed a likely publication bias (Kendall's τ = 0.56, p = 

0.04; Figure 2), which resonates with the fact that the 5 studies for which estimates were 

not available all reported non-significant differences. This supports the hypothesis of a 

bias and a likely overestimation of the overall effect size in the meta-analysis.  

 

Figure 2 – Funnel plot of publication bias for studies investigating pitch mean. 

The x-axis reports the effect size (Cohen’s d) of the difference in pitch mean between 

ASD and control populations. The y-axis reports the standard error in each study. The 

white triangle represents an estimation of the real effect size distribution. The publication 
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bias can be observed in the studies being organized on a diagonal line: higher standard 

error corresponding to bigger effect size. 

 

Pitch variability was investigated in 19 studies involving 310 participants with 

ASD and 298 controls. 11 studies reported significant results, 10 indicating wider, one 

narrower and seven no significant differences in pitch variability.3 As all studies but one 

used pitch range, rarely adding measures of standard deviation and coefficient of 

variation, we performed the meta-analysis on pitch range only. 

The meta-analysis involved 11 studies, 211 participants with ASD and 217 

controls (cf. Figure 3). The overall estimated difference (Cohen’s d) in pitch variability 

between the ASD and the control groups was 0.4 (95% CIs: 0.03 0.77, p=0.03) with an 

overall variance (τ2) of 0.26 (95% CIs: 0.07 1.13). Much of the variance (I2: 69.69%, 95% 

CIs: 36.32 90.87) could not be reduced to random sample variability between studies (Q-

stats = 31.90, p = 0.0004). However, neither task (estimate: 0.3, 95% CIs -0.28 0.88, 

p=0.31) nor language (estimate: -0.001, 95% CIs -0.17 0.17, p=0.99) could significantly 

explain the variance.  

                                                       
3 It should be noted that a few studies attempted to separate different groups within the autism spectrum. 
One study did not find any significant difference between Asperger Syndrome (AS), high-functioning and 
pervasive developmental disorder not otherwise specified (PDD-NOS) (Paul, Bianchi, Augustyn, Klin, & 
Volkmar, 2008). However, another found that individuals with AS produced larger pitch ranges than 
speakers with PDD-NOS (Kaland, et al., 2012), a pattern repeated when comparing high- with lower-
functioning people with autism (Depape, et al., 2012). 
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Figure 3 – Forest plot of effect sizes (Cohen’s d) in pitch range between the ASD and 

control populations. The x-axis reports the effect size and the y-axis the studies for which 

statistical estimates of pitch mean were provided. The dotted vertical line indicates the 

null hypothesis (no difference between the populations). 

 

There were no obvious outliers, nor any obvious publication bias (Kendall's τ = 

0.09, p = 0.76; Figure 4). Indeed, of the 7 studies where statistical estimates were not 

available, 3 reported null findings and 4 included cases in which participants with ASD 

presented a wider pitch range, slightly reinforcing the hypothesis of a positive effect size. 
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Figure 4 – Funnel plot of publication bias for studies investigating pitch range. 

The x-axis reports the effect size (Cohen’s d) of the difference in pitch mean between 

ASD and control populations. The y-axis reports the standard error in each study. The 

white triangle represents an estimation of the real effect size distribution. 

 

Pitch and severity of clinical features were investigated in 5 studies (Table 2), 

which sought to relate quantitative measures of pitch measures to severity of clinical 

features as measured by the Autism Diagnostic Observation Schedule (ADOS, Lord, 

2008) and the Autism Screening Questionnaire (ASQ, Dairoku, Senju, Hayashi, Tojo, & 

Ichikawa, 2004). Total ADOS scores were negatively related to the temporal trajectory of 

pitch. In particular, the steeper the slope of pitch change at the end of participants’ speech 
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turns, the lower the ADOS score (Bone, et al., 2014). However, null findings were 

reported in relation to pitch mean and range (Nadig & Shaw, 2012), and other temporal 

properties of pitch (Bone, et al., 2014). The communication sub-scale of the ADOS was 

found to correlate with pitch standard deviation in adolescents but not in children during 

narrative productions (Diehl, et al., 2009). Finally, pitch coefficient of variation was 

found to correlate negatively with ASQ Social Reciprocal Interaction, but not with total 

ASQ, Repetitive Behavior and Communication (Nakai, et al., 2014). As the direction of 

relation between pitch variability and clinical features seems to vary by study and no 

replication is available, the current evidence is deemed inconclusive.  

 

Table 2 – Relations between acoustic measures and severity of clinical features 

Authors Sample 

Size 

Age Clinical Features Findings 

(Diehl, et 

al., 2009) 

 

21ASD 

21 TD 

10-18y ADOS Communication Pitch SD: Positive correlation  

r = 0.43, p < 0.05  

(Diehl, et 

al., 2009) 

17 ASD 

17 TD 

6-14y ADOS Communication Pitch SD: NS  

r  = 0.06, p = 0.83 

(Nadig & 

Shaw, 2012) 

15 ASD 

13 TD 

8-14y ADOS total Pitch Range: NS 

r = -0.40, p = 0.14  

(Nakai, et 

al., 2014) 

26 ASD 

37 TD 

4-10y ASQ total 

 

ASQ Social Reciprocal Interaction 

 

Pitch CV (words): NS 

r=0.12, p>0.05 

Pitch CV (words): Negative correlation 

r=-0.62, p<0.05 
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ASQ Repetitive Behavior 

 

ASQ Communication  

Pitch CV (words): NS 

r=0.28, p>0.05 

Pitch CV (words): NS 

r=0.29, p>0.05 

(Bone, et al., 

2014) 

24 ASD 5-14y ADOS total Median pitch slope: Negative 

r = –0.68, p <0.001  

Curvature Pitch Median: Negative 

r= -0.53, p<0.05 

 

While anecdotal and qualitative reports clearly indicate a difference in the use of 

pitch in ASD, the acoustic evidence is more uncertain, with little replication, and a high 

number of non-significant or contradictory findings. Even taking at face value the two 

meta-analytic effect sizes, it should be noted that an estimated difference of Cohen’s d 

0.4 is a small difference. Indeed, if we were to use these statistical estimates to guess 

whether any given voice belongs to a participant with ASD or to a control, we would 

only be right about 61% of the time, an inadequate performance for a potential biomarker 

(Ellis, 2010). 

 

3.2 Intensity 

 

Intensity or loudness is a measure of the energy carried by a sound wave and is important 

for making speech intelligible and for expressing emotions. 6 studies have investigated 

intensity through quantitative measures (Table 3).   

 

Table 3 – Studies involving acoustic measures of intensity in ASD 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 3, 2016. ; https://doi.org/10.1101/046565doi: bioRxiv preprint 

https://doi.org/10.1101/046565


 

 22

Authors Sample 

Size 

Age Task Findings 

(Scharfstein, 

et al., 2011) 

30 AS, 

30 TD  

7-13 y Social Interaction Intensity Mean: Lower 

ASD: 47.41 db (3.8); TD: 59.03 db (5.9) 

Intensity SD: Lower 

ASD: 2.97 db (1.9); TD: 5.15 db (2.0) 

(Filipe, et al., 

2014) 

12 ASD 

17 TD  

4-6 y Spontaneous 

production (lexical 

elicitation) 

Intensity Mean: NS 

ASD: 75 db (2.88); TD: 72.82 db (4.33)  

(Grossman, 

et al., 2010) 

11 ASD 

9 TD 

7-17 y Spontaneous 

production (lexical 

elicitation) 

Intensity Mean: NS 

ASD: 68.78 db (4.5); TD: 69.27 db (3.52) 

Intensity Range: NS 

ASD: 27.22 db (4.2), TD: 23.82 db (4.39) 

(Diehl & 

Paul, 2012) 

24 ASD  

22 TD 

8-16 y Constrained 

production (Imitation) 

Intensity Mean: NS 

(Diehl & 

Paul, 2013) 

24 ASD  

22 TD 

8-16 y Spontaneous 

production (sentence 

elicitation) 

Intensity Mean: NS 

(Hubbard & 

Trauner, 

2007) 

18 ASD 

10 TD 

6-21 y Constrained 

production  (imitation) 

Intensity Mean: NS 

 

Intensity Mean was available for 3 studies (63 ASD and 56 control participants), 

one with significantly lower intensity for ASD and the others with null findings (Filipe, et 

al., 2014; Grossman, et al., 2010; Scharfstein, et al., 2011).  

Intensity variability was available for 2 studies involving 41 ASD and 39 control 

participants. One study reported lower variability, and the other null findings.  
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Finally, one study attempted to relate intensity measures and severity of clinical 

features (ADOS total score): No significant correlation was found for ADOS and the 

temporal profiles of intensity, such as slope and curvature (Bone, et al., 2014). 

In summary, there is not enough acoustic evidence to support the impression of 

atypical voice intensity in ASD.  

 

3.3. Duration, speech rate and pauses 

 

Duration is measured as length in seconds, and has been applied to full utterances, lexical 

items (words) and syllables (often distinguishing between stressed and unstressed 

syllables), speech rate, measured as estimated syllables per second, number of pauses, 

length of pauses and voiced duration. 16 studies employed acoustic descriptors of 

duration (Table 4). 

 

Table 4 – Studies involving quantitative acoustic measures of duration in ASD 

Authors Sample 

Size 

Age Task Findings 

(Brisson, et al., 

2014) 

13 ASD 

13 TD 

0-6 m Social Interaction Vocalization duration: NS 

ASD: 651 ms (185); TD: 652 

ms (262) 

(Oller, et al., 

2010) 

77 ASD 

106 TD 

16-48 m Social Interaction Vocalization duration: 

shorter 

(Nadig & Shaw, 

2012) 

15 ASD 

13 TD; 

8-14 y Social Interaction Speech rate: NS 

ASD: 172 syll/m; TD: 148 
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syll/m 

(Nadig & Shaw, 

2012) 

15 ASD 

11 TD 

8-14 y Spontaneous 

Production 

(sentence elicitation) 

Speech rate: NS 

ASD: 207 syll/m; TD: 204 

syll/m 

(Diehl & Paul, 

2012) 

24 ASD  

22 TD 

8-16 

years 

Constrained 

Production 

(Imitation) 

Utterance Duration: 

Lexical Imitation: Longer 

Prosodic Imitation: NS 

(Diehl & Paul, 

2013) 

24 ASD  

22 TD 

8-16 

years 

Spontaneous 

Production 

(sentence elicitation) 

Utterance duration: Longer 

(Depape, et al., 

2012) 

12 ASD 

6 TD 

17-34 y Social Interaction Utterance duration: NS 

(Bonneh, et al., 

2011) 

41 ASD  

42 TD 

4-6 y Spontaneous 

production (lexical 

elicitation) 

Utterance duration: longer 

ASD: 70 s; TD 66 s  

Word Duration: longer 

ASD: 0.74 s; TD: 0.62 s 

Speech Rate: slower 

ASD: 27.9 wpm; TD: 31.7 

wpm 

(Filipe, et al., 

2014) 

12 ASD 

17 TD  

4-6 y Spontaneous 

production (lexical 

elicitation) 

Utterance duration: longer 

ASD: 1.08 (0.15); TD: 0.89 

(0.5)  

(Fosnot & Jun, 

1999) 

4 ASD 

4 TD 

7-14 y Constrained 

production (reading 

and imitation) 

Utterance duration: longer 

(Grossman, et al., 

2010) 

16 ASD 

15 TD 

7-17 y Spontaneous 

production (lexical 

elicitation) 

Syllable Duration: longer 

First syllable stress: ASD 

0.82 (0.15), TD: 0.68 (0.19) 
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Last syllable stress: ASD 

0.98 (0.19), TD: 0.83 (0.21) 

Speech rate: NS 

ASD: 5.31 (1.31); TD: 5.44 

(1.54) 

(Paul, et al., 

2008)  

46 ASD, 

20 TD 

7-28 y Constrained 

production 

(imitation) 

(stressed) syllable duration: 

shorter 

ASD: 321 (45) ms; TD: 346 

(44) 

(unstressed) syllable 

duration: NS 

ASD: 196 (35) ms; TD: 186 

(23) 

(Hubbard & 

Trauner, 2007) 

18 ASD 

10 TD 

6-21 y Constrained 

production 

(Imitation) 

Utterance Duration: NS  

(Thurber & 

Tager-Flusberg, 

1993) 

10 ASD 

10 TD  

7-15 y Spontaneous 

production 

(narrative 

production) 

Grammatical pauses: NS 

ASD: 13.1 (7.4); TD: 9.1 

(3.7) 

Agrammatical pauses: Fewer 

ASD: 2.7 (2); TD: 4.3 (2.2) 

(Feldstein, 

Konstantareas, 

Oxman, & 

Webster, 1982) 

12 ASD, 

24 TD 

14-20 y Social Interaction Pauses: Longer  

Stronger effect when 

speaking with unfamiliar 

interlocutor 

Vocalization duration: NS 

(Morett, 

O’Hearn, Luna, 

18 ASD, 

21 TD 

10-20y Spontaneous 

production 

Utterance duration: NS 

ASD: 17.52 s (9.22); TD: 
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& Ghuman, 

2015) 

(narrative 

production) 

26.92 (13.33) 

Pause Number: Higher 

ASD: 2.81 s (1.86); TD: 1.11 

(1.18) 

  

Out of 12 studies involving duration measures 6 reported longer duration, 4 

reported no differences between groups and 1 shorter duration in ASD. Out of 4 studies 

investigating speech rate, 3 reported null findings and 1 found slower speech rate in ASD. 

Out of 2 studies focusing on syllable duration with, one reports longer duration for 

stressed syllables in ASD, whereas the other reports shorter duration for stressed syllables 

and no differences for unstressed syllables. Out of 3 studies measuring speech pauses, 

one finds longer pauses, one no difference in grammatically motivated pauses, but fewer 

pragmatically motivated ones and the third a higher number of pauses. 2 studies 

investigated the relation between speech rate and severity of clinical features in terms of 

ADOS total scores), but found no significant correlations (Bone, et al., 2014; Nadig & 

Shaw, 2012). In sum, not enough statistical estimates were reported to allow for meta-

analyses and the findings do not seem conclusive.  

 

3.4. Voice Quality 

Voice quality covers a large variety of features, which do not overlap between studies. 

Hoarseness, breathiness and creaky voice are often attributed to imperfect control of the 

vocal fold vibrations that produce speech and have been quantified as irregularities in 

pitch (jitter) and intensity (shimmer), or as low harmonic to noise ratio (relation between 

periodic and aperiodic sound waves) (Tsanas, Little, McSharry, & Ramig, 2011). More 
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generic definitions of dysphonia, or voice perturbation, rely on cepstral analyses, which 

involve a further frequency decomposition of the pitch signal, that is, the frequency of 

changes in frequency (Maryn, Roy, De Bodt, Van Cauwenberge, & Corthals, 2009). 

Analyses of voice quality are particularly challenging and difficult to compare across 

studies because of a lack of established standards: they rely on the choice of several 

parameters, and the results change greatly if applied to prolonged phonations (held 

vowels), or continuous speech (Laver, Hiller, & Beck, 1992; Orlikoff & Kahane, 1991). 

So far only one published study has investigated acoustic measures of voice 

quality in ASD: children with ASD were shown to have more jitter and jitter variability, 

as well as less harmonic to noise ratio, and no differences in shimmer or cepstral peak 

prominence (Bone, et al., 2014). However, a series of unpublished conference papers 

(reported in Shriberg, et al., 2001) point to breathiness (Boucher, Andrianopoulos, & 

Velleman, 2010; Wallace et al., 2008), tremors (Wallace, et al., 2008), and task- and 

vowel-dependent low jitter and low shimmer (Boucher, Andrianopoulos, Velleman, & 

Pecora, 2009). 

One study investigated the relation between ADOS total scores and voice quality, 

highlighting positive correlations with jitter and harmonics to noise ratio variability, and 

negative ones with levels of Harmonic to Noise Ratio (Bone, et al., 2014). Notice that 

since the only published study mentioned here is already fully reported in previous tables, 

we have not produced a dedicated table for studies on voice quality. 

In summary, while a distinctive voice quality has been reported in ASD since the 

very early days of the diagnosis, quantitative evidence is extremely sparse. While 
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potentially promising, the existing studies use non-overlapping measures, making it 

difficult to assess the generality of the patterns observed. 

 

4. Results: From Acoustic Patterns to Diagnosis (multivariate machine 

learning studies) 

The previous section reviewed studies identifying differences in acoustic patterns 

produced by ASD and control samples, one feature at a time. In this section we review a 

second set of 15 studies (cf. Table 5), which present an alternative approach: multivariate 

machine learning (Bishop, 2006; Hastie, Tibshirani, & Friedman, 2009). Briefly, 

multivariate machine learning differs from traditional univariate approaches in three 

respects. First, the research question is reversed. Univariate approaches ask whether there 

is a statistically significant difference between two distinct populations (independent 

variable) with respect to some measure (dependent variable). Machine learning 

approaches seek to determine whether the data contains enough information to accurately 

separate the two populations. Second, a multivariate approach enters multiple data 

features simultaneously into the analysis, including a wider variety of features than 

normally treated in their simple univariate form (such as more detailed spectral and 

cepstral features). Third, the goal is not to identify the statistical model that best separates 

the populations from which the data has been obtained, but to identify the model that best 

generalizes to new data (e.g., generalize from a training to a test set of data). 

Multivariate machine learning studies typically involve processes of (1) feature 

extraction and (2) classification (e.g., presence of diagnosis) or score prediction (e.g., 

severity of clinical features). The first process involves extraction of acoustic features 
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from vocal recordings. While most studies use summary statistics discussed earlier 

section (mean and standard deviation of acoustic features), they often include additional 

measures, such as non-linear descriptive statistics. Traditional summary statistics cannot 

adequately capture the non-stationary nature of the speech signal; for example, the mean 

and the standard deviation of pitch often change over a speech event (Jiang, Zhang, & 

McGilligan, 2006). In contrast, time-aware measures – such as slope analysis, recurrence 

quantification analysis, Teager-Kaiser energy operator and fractal analyses - quantify the 

degree to which acoustic patterns change or are repeated in time (cf. Table 5. For detailed 

and technical descriptions of these methods, cf. Bone, et al., 2014; Kiss, van Santen, 

Prud'hommeaux, & Black, 2012; Marwan, Carmen Romano, Thiel, & Kurths, 2007; 

Riley, Bonnette, Kuznetsov, Wallot, & Gao, 2012; Tsanas, et al., 2011; Weed & Fusaroli, 

submitted). Finally, most studies expand the range of measures, by further quantifying 

formants, spectral and cepstral properties of the speech signal (cf. Table 5, for a more 

detailed treatment of these measures cf. the referred papers and Eadie & Doyle, 2005) 

The second process comprises the construction of a statistical model that 

maximally distinguishes the target groups of interest (for detailed introductions to these 

topics, cf. Bishop, 2006; Hastie, et al., 2009). The division of the data into training and 

test sets and cross-validation procedures help ensure that the model is not specific to a 

given sample but can generalize to the whole population (for details, cf. Rodriguez, 

Perez, & Lozano, 2010).  

Table 5 – Reconstructing Diagnosis from Voice Patterns. An overview 
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Authors Sample 

Size 

Age Features Classifier & Performance4 

(Santos et 

al., 2013) 

Social 

Interaction  

23 ASD 

20 TD 

18 m Mean, SD and range of:  

pitch; first four formant 

frequencies and 

bandwidths; harmonic 

spectra locations and 

magnitudes and the 

differences between 

spectral harmonic 

magnitudes and 

spectrum magnitude at 

the formant frequencies; 

subharmonic-to-

harmonic ratio (SHR); 

intensity; cepstral peak 

prominence (CPP); 

harmonic-to-noise ratio 

(HNR); jitter and 

shimmer; voiced ratio. 

10-fold cross-validated 

probabilistic NN. 

Accuracy: 83%-97% 

 

10-fold cross-validated 

SVM. 

Accuracy: 79%-63%  

(Oller, et 

al., 2010) 

Social 

77 ASD 

106 TD 

(46 SLI) 

16-48 

m 

Voicing events, 

canonical syllables, and 

moderately high spectral 

Leave-one-out cross-

validated linear DA. 

Accuracy: 86% 

                                                       
4  NN: neural networks; SVM: support vector machines; k-NN: nearest neighbors; DA: discriminant 
analysis. Accuracy indicates the percentage of correctly identified data points in the testing set. Specificity 
indicates the ability to correctly identify controls as controls, Sensitivity or recall indicates the ability to 
correctly identify targets as targets. Precision indicates the probability that a positive diagnosis does indeed 
entail the presence of a disorder. For regressions, performance is measured in terms of variance explained, 
R2, which in turn tends to be penalized according to the number of features included, Adjusted R2 (Hastie, 
et al., 2009) . 
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Interaction entropy; low spectral tilt 

and high pitch control 

group; wide formant 

bandwidth and low 

pitch control; duration  

(Bonneh, et 

al., 2011) 

Spontaneous 

production 

41 ASD 

42 TD 

4-6.5 y Pitch range and 

variability 

DA. 

Accuracy: 86% 

Sensitivity: 80% 

Specificity: 90% 

(Kiss, et al., 

2012) 

Social 

Interaction 

14 ASD 

25 ASD 

(+SLI) 

28 TD 

(24 SLI) 

4-9 y Pitch mean, median, 

standard deviation, 

median absolute 

deviation, mean 

absolute deviation, 

interquartile range 

(IQR), skewness and 

kurtosis 

Leave-one-out cross-

validated Naive Bayes. 

Accuracy: 74% 

Precision: 57% 

Recall: 86%  

(Kakihara, 

Takiguchi, 

Ariki, 

Nakai, & 

Takada, 

2015) 

Spontaneous 

production 

30 ASD 

54 TD 

4-9 y  Pitch and first derivative 

of pitch percentiles, 

mean, standard 

deviation, kurtosis, 

skewness, maximum, 

minimum, and range 

10-fold cross-validated 

SVM. 

Accuracy: 74.9% (against a 

baseline accuracy of 73.2%) 

(Asgari, 

Bayestehtas

hk, & 

12 ASD 

64 TD 

13 SLI 

9-18 y Pitch, shimmer, jitter, 

HNR; energy, cepstral 

and spectral features  

Test/Train SVM 93.80% 
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Shafran, 

2013) 

Constrained 

production 

10 PDD-

NOS 

(Bone, et 

al., 2013) 

Constrained 

production 

12 ASD 

64 TD 

13 SLI 

10 PDD-

NOS 

9-18y Mel cepstral 

coefficients; pitch, 

intensity, duration; 

pronunciation quality; 

total signal; energy, 

mean and relative 

energy changes over 

multiple time scales and 

frequency bands, and 

the frequencies with the 

majority of energy 

content  

(i) linear-kernel SVMs;  

(ii) deep neural networks; 

and (iii) k-NN classification 

60.2% Unweighted Average 

Recall 

(Fusaroli, 

Bang, & 

Weed, 

2013) 

Spontaneous 

production 

10 ASD 

13 TD 

20-40y Parametric (mean, sd) 

and dynamic 

(recurrence measures) 

measures of pitch, and 

duration. 

ElasticNet + 

5-fold cross-validated 

discriminant function: 86% 

accuracy, 88.4% sensitivity 

and 85.4% specificity. 

 

ElasticNet + 

5-fold cross-validated linear 

regression predicts Autism 

Spectrum Quotient: Adj R2 

0.8, p=0.006. 

(Fusaroli, 78 ASD 8-16y Parametric (mean, sd) ElasticNet + 
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Grossman, 

Cantio, 

Bilenberg, 

& Weed, 

2015) 

Spontaneous 

production 

(52 US; 

26 DK) 

68 TD (34 

US; 34 

DK)  

and dynamic 

(recurrence measures, 

teager-keisar energy 

operator) measures of 

pitch, intensity, duration 

and voice quality. 

5-fold cross-validated 

discriminant function: 

Accuracy: 71.65 % 

(American English data, 

US); 82.01 % (Danish data, 

DK); 71.9% (combined) 

Sensitivity: 59.32% (US); 

84.80% (DK); 63.22% 

(combined) 

Specificity: 84.42% (US); 

81.39% (DK); 80.01% 

(combined) 

 

ElasticNet + 

5-fold cross-validated linear 

regression: 

ADOS RSI: Adj R2 0.28 

(US); NS (DK); 0.13 

(combined)  

ADOS SB: Adj R2 0.46 

(US); 0.32 (combined)  

(Fusaroli, 

Lambrecht

s, et al., 

2015) 

Spontaneous 

production 

17 ASD 

17 TD 

25-62y Parametric (mean, sd) 

and dynamic 

(recurrence measures, 

teager-keisar energy 

operator) measures of 

pitch, intensity, duration 

and voice quality. 

ElasticNet + 

5-fold cross-validated 

discriminant function: 

Accuracy: 81.09%  

Sensitivity: 84.83% 

Specificity: 82.20% 
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ElasticNet + 

5-fold cross-validated linear 

regression: 

ADOS total: Adj R2: 0.54  

ADOS RSI: Adj R2  0.52 

(Bone, et 

al., 2014) 

Social 

Interaction 

24 ASD 5-14y Non parametric 

descriptive statistics 

(IQR and median) of: 

curvature, slope and 

center of pitch and 

intensity over time; 

Boundary and non 

boundary changes of 

speech rate of time. 

Voice Quality: Jitter, 

Shimmer, CPP, HNR 

median and IQR 

Stepwise regression: 

Spearman rank order 

correlation with ADOS 

total: 0.64 

(Marchi et 

al., 2015) 

Spontaneous 

Production 

8 ASD 

9 TD 

5-11y Energy, spectral, 

cepstral (MFCC) and 

voicing related low-

level descriptors (LLD) 

as well as logarithmic 

harmonic-to-noise ratio 

(HNR), spectral 

harmonicity, and psy- 

choacoustic spectral 

sharpness 

Leave-One-Out cross-

validated SVM 

Sensitivity 78.3% 

(Marchi, et 9 ASD 5-11y Energy, spectral, Leave-One-Out cross-
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al., 2015) 

Spontaneous 

Production 

11 TD cepstral (MFCC) and 

voicing related low-

level descriptors (LLD) 

as well as logarithmic 

harmonic-to-noise ratio 

(HNR), spectral 

harmonicity, and psy- 

choacoustic spectral 

sharpness 

validated SVM 

Sensitivity 86.4% 

(Marchi, et 

al., 2015) 

Spontaneous 

Production 

7 ASD 

11 TD 

5-10y Energy, spectral, 

cepstral (MFCC) and 

voicing related low-

level descriptors (LLD) 

as well as logarithmic 

harmonic-to-noise ratio 

(HNR), spectral 

harmonicity, and psy- 

choacoustic spectral 

sharpness 

Leave-One-Out cross-

validated SVM 

Sensitivity 82.7% 

 

An overview of the sensitivities and specificities of the algorithms, when it was 

possible to reconstruct them and their uncertainty, is presented in Figures 5 and 6. 
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Figure 5 - Forest plot of the algorithms’ sensitivities in automatically 

discriminating between the ASD and control populations. The x-axis reports the 

sensitivity and the y-axis the studies for which it was possible to reconstruct the 

confidence intervals of sensitivity. The dotted line indicates sensitivity at chance level, 

that is, 50%. 

 

Figure 6 - Forest plot of the algorithms’ specificities in automatically 

discriminating between the ASD and control populations. The x-axis reports the 
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sensitivity and the y-axis the studies for which the relevant statistics were available. The 

dotted line indicates specificity at chance level, that is, 50%. 

 

All but one multivariate machine-learning study reported accuracies well above 

70% and up to 96%5. Besides the classification of voice into ASD and control groups, 4 

studies demonstrate the possibility to predict severity of clinical features (ADOS total 

scores, ADOS Stereotyped Behavior and ADOS Reciprocal Social Interaction) from 

acoustic measures, in particular pitch, shimmer and jitter (Bone, et al., 2014; Fusaroli, et 

al., 2013; Fusaroli, Grossman, et al., 2015; Fusaroli, Lambrechts, et al., 2015). However, 

differences in terms of methods and measures again make comparison between studies 

difficult.  

 

6. Discussion 

6.1 Overview 

Clinical practitioners have long attributed distinctive voice and prosodic patterns to 

individuals with ASD (Asperger, 1944; Kanner, 1943). We set out to systematically 

review the evidence for such patterns. We identified 32 articles involving 27 univariate 

and 15 multivariate machine-learning studies. Sample sizes were limited, with a mean of 

20.3 (SD: 14.63) and a median of 17.5 (IQR: 8.25) ASD participants across the univariate 

studies and a mean of 24.1 (SD: 18.24) and a median of 17 (IQR: 15.5) across the 

multivariate ones. We found as many null results as significant differences between ASD 

                                                       
5 Given the heterogeneity of the studies in terms of acoustic measures and algorithms a meta-

analysis would not be reliable and is not reported. The curious reader can find the code for 

performing one at https://github.com/fusaroli/AcousticPatternsInASD  
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and control groups. Meta-analyses identified significant, but small effects for pitch mean 

and range.  

The multivariate machine-learning studies by contrast painted a more promising 

picture and largely outperform the univariate ones, with accuracy ranging from 70% to 

96% (against 61% in the univariate studies) for separating individuals with ASD from 

controls. The multivariate attempts at predicting severity of clinical features do not 

systematically outperform the univariate studies (univariate R2 between 0.18 and 0.46; 

multivariate Adjusted R2 between 0.13 and 0.8). Whilst the multivariate findings are 

stronger and involve more robust statistical procedures, there has been no general attempt 

to replicate findings across multiple studies using similar methods. Because of the 

complexity of the statistical models involved in the multivariate studies, it is not clear 

which acoustic features are the most informative for diagnosis across studies. 

 

6.2. Obstacles in identifying an acoustic biomarker for ASD 

 

We raised the possibility that acoustic features of vocal production could be used 

as a biomarker of ASD. However, we could not identify any single feature that yet can 

serve the role. While many aspects of vocal production in ASD have long been described 

as different, there have been few consistent findings among studies, except for pitch 

mean and range. The multivariate machine-learning approach to vocal production in ASD 

seems promising; it can capture the complex and often non-linear nature of the acoustic 

patterns that may gave rise to the clinical impression of atypical voice and prosody in 
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ASD. Indeed, such impressions are often based on multiple types of information (Forbes-

Riley & Litman, 2004; Liscombe, Venditti, & Hirschberg, 2003). 

 Many advances have thus been made since McCann & Peppe’s (2003) review: a 

larger number of acoustic features have been quantitatively defined and more complex 

statistical techniques have been developed. However, the search for a vocal biomarker of 

ASD has to overcome four obstacles: small sample sizes; few replications of effects 

across studies; too heterogeneous methods for the extraction of acoustic features and their 

analysis; and limited theoretical background for the research. First, people with ASD 

present diverse clinical features with different levels of severity. Five of the reviewed 

studies sought to investigate the relation between severity of clinical features and acoustic 

patterns. However, because the sample size of each study was too low (median of 

participants with ASD < 30), it is difficult – if not impossible – to control for the large 

natural heterogeneity among individuals in terms of clinical features and their severity. 

Second, most of the studies reviewed focused on different acoustic features, which entails 

that effects rarely are replicated and that it is difficult to perform reliable meta-analyses 

of effect sizes. Third, the reviewed studies differed considerably with respect to methods 

and statistical analysis. For example, we identified three types of speech-production task 

(constrained production, spontaneous production and social interaction), each of which is 

likely to involve distinct social and cognitive demands and therefore different vocal 

production patterns, but more fine-grained typologies could be used. Further, different 

studies do not only use different acoustic features but also use different methods for 
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feature extraction – if described at all – making comparisons between studies difficult6. 

This lack of clarity is especially problematic for machine-learning techniques7. 

 

6.3. Towards a more collaborative and open research process 

 The combination of promising results and a lack of a systematic approach is far 

from rare in the study of acoustic patterns in neuropsychiatric conditions (Cohen, 

Mitchell, & Elvevåg, 2014; Cummins, et al., 2015; Weed & Fusaroli, submitted). To 

develop a systematic approach to vocal production in ASD, which would hold across 

datasets and be of clinical relevance, we need more open and cumulative research 

practices. We therefore outline three recommendations for future research: open data, 

open methods, and theory-driven research. 

Open Data. Many of the reviewed studies did not report the necessary 

information for performing meta-analysis. For example, we could not control for age, as 

we could not access acoustic measures for the individual participants. The field as a 

whole would benefit from sharing of datasets, which would allow for across-study 

comparisons and for larger scale analyses. While voice recordings are often sensitive data 

in clinical population, and therefore not easily shareable, the extracted acoustic measures 

do not always share this restriction. In line with this recommendation, the data used here 

are available at https://github.com/fusaroli/AcousticPatternsInASD. 

                                                       
6 For instance, the parameters to define the accepted ceiling of the fundamental frequency might vary from 
400 Hz to 700 Hz. Higher ceilings have been shown to better capture acoustic differences features in ASD 
(Kiss, et al., 2012),  however the definition of the  ceiling employed is very rarely reported. 
7 It has been shown, for example, that recording participants with ASD and controls at different locations 
(which was unreported) induced artificially high discrimination accuracy due to the properties of each 
locations’ background noise (Bone, et al., 2013). 
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Open Methods. The quantitative assessment of acoustic measures presents the 

researcher with several important choices: for example, how should the audio signal be 

preprocessed, which parameters should be used to extract fundamental frequency, and 

should the extracted data be transformed. As more complex signal-processing techniques 

are developed, it becomes even more critical to fully describe the methods involved in a 

given study. Otherwise replication and cross-talk between research groups are 

impossible. Ideally, the full data-processing pipeline should be automated and the script 

used to do so should be published as supplementary material (or on public code 

repositories such as GitHub). The literature on vocal production in Parkinson’s and 

affective disorders might serve as example for researchers investigating vocal production 

in ASD (Degottex, Kane, Drugman, Raitio, & Scherer, 2014; Tsanas, et al., 2011). In line 

with this recommendation, the R code employed in this paper is available at 

https://github.com/fusaroli/AcousticPatternsInASD, and can be easily improved and/or 

used to update the meta-analysis as new studies are published. 

 Theory-driven research. A common feature of the studies reviewed is the lack of 

theoretical background. For example, limited attention is paid to clinical features and 

their severity and the choice of the speech-production task and acoustic measures used is 

often under-motivated. On the contrary, by putting hypothesized mechanisms to the test, 

more theory-driven research on vocal production in ASD would improve our 

understanding of the disorder itself. For examples, recent models of impaired perceptual 

and motor anticipation in ASD (Palmer, Paton, Kirkovski, Enticott, & Hohwy, 2015; Van 

de Cruys et al., 2014) would predict the presence of jitter and shimmer in vocal 

production in ASD. Further, models of social impairment in ASD could be tested by 
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analyzing the acoustic dynamics involved in conversations, such as reciprocal prosodic 

adaptation and compensation (Dale, Fusaroli, Duran, & Richardson, 2013; Fusaroli, 

Raczaszek-Leonardi, & Tylén, 2014; Fusaroli & Tylén, 2012; Hopkins, Yuill, & Keller, 

2015; Lambrechts, Yarrow, Maras, & Gaigg, 2014; Pickering & Garrod, 2004; Slocombe 

et al., 2013). 

In general, different speech-production tasks involve different social and 

cognitive demands and such differences might account for much of the unexplained 

variance between the reviewed studies. We therefore recommend data collection using 

several motivated speech-production tasks, especially combining existing clinical and 

ecological speech recordings with tasks chosen based on hypothesized mechanisms 

underlying clinical features. On one hand, structured tasks might allow the researcher to 

control for confounds and test for the role of specific experimental factors. Further, 

several standardized tests – including ADOS interviews – involve vocal production and 

their systematic collection and use could enable the construction of large datasets 

comparable across labs and languages. On the other hand, structured tasks might not offer 

representative samples of vocal productions in ASD, as individuals with ASD differ in 

terms of what they can do if tested and what they actually do in their everyday life (Fine, 

Bartolucci, Ginsberg, & Szatmari, 1991; Klin, Jones, Schultz, & Volkmar, 2003). Recent 

technological developments enable unobtrusive longitudinal recordings, opening up for 

the study of prosody and other social behaviors during everyday life (Vosoughi, 

Goodwin, Washabaugh, & Roy, 2012; Warlaumont, et al., 2014). This might in turn help 

us better understand the everyday dynamics of social impairment in ASD. 
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7. Conclusion 

We have systematically reviewed the literature on distinctive acoustic patterns in 

ASD. We did not find conclusive evidence for a single acoustic biomarker for ASD and 

predictor for severity of clinical features. Multivariate machine-learning research 

provides promising results, but more systematic cross-study validations are required. To 

advance the study of vocal production in ASD, we outlined three recommendations: more 

open, more cumulative and more theory-driven research. 
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