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Abstract Null models in ecology have been developed that, by maintaining some aspects 11 

of observed communities and repeatedly randomizing others, allow researchers to test for 12 

the action of community assembly processes like habitat filtering and competitive 13 

exclusion. Such processes are often detected using phylogenetic community structure 14 

metrics. When biologically significant elements, such as the number of species per 15 

assemblage, break down during randomizations, it can lead to high error rates. Realistic 16 

dispersal probabilities are often neglected during randomization, and existing models 17 

make the oftentimes empirically unreasonable assumption that all species are equally 18 

probable of dispersing to a given site. When this assumption is unwarranted, null models 19 

need to incorporate dispersal probabilities. I do so here, and present a dispersal null 20 

model (DNM) that strictly maintains species richness, and approximately maintains 21 

species occurrence frequencies and total abundance. I tested its statistical performance 22 

when used with a wide breadth of phylogenetic community structure metrics across 3,000 23 

simulated communities assembled according to neutral, habitat filtering, and competitive 24 

exclusion processes. The DNM performed well, exhibiting low error rates (both type I 25 

and II). I also implemented it in a re-analysis of a large empirical dataset, an abundance 26 

matrix of 696 sites and 75 species of Australian Meliphagidae. Although the overall 27 

signal from that study remained unchanged, it showed that statistically significant 28 

phylogenetic clustering could have been an artifact of dispersal limitations. 29 

 30 
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INTRODUCTION 34 

 Null models in ecology are often used to test whether an assemblage of co-35 

occurring species differs from what would be expected of a random assortment of co-36 

occurring species (Gotelli and McGill 2006). Of particular interest here has been 37 

determining whether a community shows evidence that competition structures its 38 

constituent member species. How to define random in the null model context has been a 39 

matter of great contention since the debates of the 1970s and 1980s (Connor and 40 

Simberloff 1979; Diamond and Gilpin 1982; Connor and Simberloff 1983). Ideally, null 41 

models shuffle elements of the observed data related to the null hypothesis and preserve 42 

unrelated aspects of the observed data (e.g., which vs. how many species co-occur). Null 43 

models often take the form of repeated randomizations of an observed community data 44 

matrix (CDM), which are then compared to the observed CDM to detect non-random 45 

patterns of community assembly. Matters of contention include what elements of the 46 

CDM should be maintained (e.g., row and/or column sums, Diamond and Gilpin 1982), 47 

the most efficient algorithms for shuffling matrices (Miklós and Podani 2004), what 48 

metrics should be used to calculate patterns in the matrices (Stone and Roberts 1990), and 49 

which null models provide the best statistical performance (Gotelli 2000). How to 50 

incorporate abundance instead of simply presence-absence into these null models is 51 

another important research focus that has to date only received some attention (Hardy 52 

2008; Ulrich and Gotelli 2010; Miller et al. 2016).  53 

 Furthering complicating the field has been the rise of neutral models (Bell 2000; 54 

Hubbell 2001). Here, I follow Gotelli and McGill (2006), in considering neutral models 55 

as best used for testing whether per capita demographic rates differ between species. As 56 
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the focus of this paper is on testing whether species interactions are important, and 57 

assumes that species differ in their per capita demographic rates, this paper is about a new 58 

null model. That said, neutral models derive from the theory of island biogeography, 59 

which is governed by the countervailing forces of dispersal and extinction. Because this 60 

paper introduces a null model that incorporates dispersal, it falls closer to what Gotelli 61 

and McGill consider a process-based model that “crosses the line”. This is similar to a 62 

recent method incorporating speciation into null expectations (Pigot and Etienne 2015). 63 

 In this paper I define a CDM as a matrix with sites (e.g., quadrats, samples, plots) 64 

as rows and species as columns. The CDM as defined here can and, because of the 65 

additional detail afforded, ideally does incorporate relative or absolute abundance. During 66 

the null model debates, the focus was on demonstrating matrix-wide departures from 67 

expectations. In other words, the question was whether the entire CDM showed evidence 68 

of non-randomness. Accordingly, the metrics used to document the significance, or lack 69 

thereof, in community structural patterns were calculated per matrix, and generally dealt 70 

with presence-absence matrices (Schluter 1984; Stone and Roberts 1990). With the more 71 

recent focus on phylogenetic community structure (Webb 2000), the focus has shifted 72 

away from CDM-level patterns to assemblage-level (i.e. row-level) structural patterns. 73 

With this has come the introduction of a host of new phylogenetic community structure 74 

metrics, many of which incorporate abundance (Faith 1992; Webb 2000; Helmus et al. 75 

2007; Cadotte et al. 2010; Kembel et al. 2010; Miller et al. 2013). These metrics quantify 76 

the relatedness of co-occurring species, with the assumption being that closely related co-77 

occurring species provide evidence of habitat filtering, while distantly related co-78 

occurring species provide evidence of competitive exclusion (Webb 2000). The null 79 
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model introduced in this paper is intended for use in assessing assemblage-level patterns, 80 

and its statistical performance was tested here in that context. Its relevance to matrix-81 

level patterns of co-occurrence is not tested here. 82 

 Many null models shuffle species’ presences or abundances within rows, allowing 83 

species to occur with equal probability in the randomized matrices. Various 84 

improvements have been developed, including models that maintain species’ occurrence 85 

frequencies (Gotelli 2000), both species richness and occurrence frequency (Miklós and 86 

Podani 2004), and elements of species’ abundance distributions (Hardy 2008). Such 87 

models have been shown to reduce type I errors (Gotelli 2000; Miller et al. 2016). Miller 88 

et al. (2016) showed that a further reduction in error rates can be achieved by creating a 89 

CDM de novo that mimics regional dispersal pressures on a “local” community (the 90 

CDM). However, in all of these null models quadrats are disassociated from their 91 

geographic realities. Current null models randomize sites but do not take into account 92 

dispersal probabilities between sites in the randomization process. Thus, a species from a 93 

distant site is just as likely to be placed in a simulated site as a species from a nearby site. 94 

The 3t null model introduced by Hardy (2008) made strides towards addressing this issue, 95 

but it does not maintain quadrat species richness and requires transect-like sampling. 96 

 Dispersal, even over short distances like those across a forest plot, can greatly 97 

influence which species occur where (MacArthur and Wilson 1967; Laurance et al. 98 

2002). Over large distances, such as those between grid cells in the desert of inland 99 

Australia and the rainforests of the coast, it can be difficult to parse the influence of 100 

community assembly processes such as habitat filtering versus that of physical dispersal 101 

limitation. For example, if a certain clade within the study system has diversified within a 102 
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small region of the continent, significant phylogenetic clustering in that region is not 103 

necessarily attributable to habitat filtering, and might be due entirely to a failure of these 104 

species to disperse to other regions. A more flexible, dispersal-informed null model is a 105 

clear research priority that should prove useful to empirical researchers. Having a null 106 

model that respects quadrat-specific dispersal probabilities, while also maintaining 107 

quadrat-specific species richness and species’ matrix-wide occurrence probabilities 108 

would assist with teasing apart such community assembly subtleties. In this paper, I 109 

develop such a null model and test its statistical behavior and performance.  110 

 111 

METHODS 112 

Description of the dispersal null model 113 

 The dispersal null model (DNM) takes as input the original CDM, CO, and a 114 

symmetrical matrix, D, that describes the distances among quadrats. It provides as output 115 

a randomized CDM, CR, with the same dimensions as CO. Distances in D can be 116 

geographic, climatic, or otherwise of the researcher’s choice. I then define the 117 

randomization procedure as follows. Let iO be a row (quadrat) from CO, and iR be the 118 

corresponding row from CR. Let j be any other row from CO where iO ≠ j. Let SR(n) be 119 

the species richness of some row n from a CDM. Then, for each iO, some j is sampled 120 

with a probability determined by the reciprocal of its distance from iO. A species is then 121 

sampled from j with a probability proportional to its abundance in j, placed into iR, and 122 

assigned the same abundance as in j. Then this process is repeated until SR(iO) = SR(iR). If 123 

for any j, the species sampled has already been settled into iR, then it is discarded and 124 

another j and corresponding species sampled. The model goes on to repeat the process for 125 
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all quadrats i, which results in a filled CR. The need to propose and then potentially reject 126 

species necessitates the use of a serial loop, which causes the DNM to run more slowly 127 

than simpler randomization procedures. I refer to this form of model as DNM1.  128 

 A slight variation of the model, DNM2, generates a normal distribution (with a 129 

standard deviation of 1, rounded to whole numbers and values < 1 rounded up to 1) 130 

centered on the abundance of the sampled species in j. Rather than directly assigning a 131 

species the same abundance it had in j, a value is sampled from this distribution. This 132 

causes a slight slowdown (~5% longer) in null model performance, but theoretically 133 

results in additional exploration of null biological space. 134 

 A considerable variant of the model (DNM3) does not incorporate species’ 135 

abundances in j into the probability that they will be sampled. Instead, all species present 136 

in j have an equal probability of being sampled and placed into iR. Thus a species’ 137 

proximity to but not its abundance in j influences its probability of settling in iR. The 138 

biological meaning here is changed from DNM1. With DNM3, any factors influencing 139 

individual species’ abundances within a quadrat, such as competition, are less influential 140 

in the randomized matrices. While DNM1 can help researchers test for non-random 141 

patterns of community assembly given realistic dispersal pressures, where both 142 

abundance and distance to a focal quadrat matters, DNM3 would be more pertinent if the 143 

focus was on the influence of competition given distance dispersal limitations only. That 144 

is, if a researcher thought it possible that species might be rare in observed quadrats as a 145 

consequence of competition, then DNM3 would randomize those structures in the 146 

observed data and allow that hypothesis to be tested. With DNM3, I recommend that 147 
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researchers assign species abundances by sampling from the vector of observed non-zero 148 

abundances in the original CDM.  149 

 The three forms of DNM are available in the R package metricTester (Miller et al. 150 

2016). Though the DNM runs more slowly than traditional matrix randomization, 151 

metricTester utilizes multicore processing and thus can manage a reasonable number of 152 

randomizations of an observed CDM.  153 

 154 

Statistical behavior and performance of the dispersal null model 155 

 As explained above, the DNMs strictly maintain species richness. I was interested 156 

in how well they maintain species’ occurrence frequencies and total abundances in the 157 

randomized matrices. To test this, I created a CDM with the simulateComm function in 158 

metricTester. The CDM contained 100 quadrats and species. Species richness varied 159 

from 10 to 34, with each value represented four times. Species were assigned abundances 160 

by drawing from a log-normal distribution with mean=2 and SD=1 (on a log scale). I then 161 

randomized the CDM 20 times with DNM1, calculating species’ occurrence frequencies 162 

and total abundances after each randomization. I took the mean of these observations and 163 

compared it to observed values from the observed CDM. I performed the same procedure 164 

but randomized the CDM 20 times with DNM3, in this case setting 165 

abundance.assigned to “overall”.  166 

 I used identical methodology as Miller et al. (2016) to test the performance of the 167 

DNMs. Appendix S3 of that paper provides schematic illustration of the methodology. 168 

Thus, I used the multiLinker function with the following parameters. I set no.taxa to 169 

100, arena.length to √(105), mean.log.individuals to 3.5, length.parameter 170 
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to 1000, sd.parameter to 40, max.distance to 20, proportion.killed to 0.2, 171 

competition.iterations to 60, no.quadrats to 20, quadrat.length to 172 

√(1000), concat.by to “both”, and randomizations to 1000. The simulation and 173 

performance testing process is as follows. (1) Generate a phylogeny describing the 174 

relationships among the species that will be involved in the simulation. (2) Generate 175 

realistic spatial arenas of 2,000-4,000 individuals according to either random, habitat 176 

filtering or competitive exclusion community assembly rules. In the habitat filtering 177 

simulations, individuals are placed in the arena according to spatial preferences that 178 

exhibit Brownian motion evolution along the simulated phylogeny. The competitive 179 

exclusion simulations begin with the random simulation. Individuals in genetically 180 

clustered areas of the arena then compete, resulting in the removal of some of these most 181 

closely related individuals. Removed individuals are then replaced according to their 182 

initial arena-wide abundances (i.e. simulating regional dispersal pressures), and the entire 183 

process is repeated for 60 generations. (3) Create CDMs (one per spatial simulation) by 184 

placing 20 quadrats in each arena and determining which individuals fall within each 185 

quadrat. (4) Calculate a wide breadth of phylogenetic community structure metrics on the 186 

observed quadrats. These metrics were PAE (phylogenetic abundance evenness), HAED 187 

(community abundance-weighted evolutionary distinctiveness), IAC (imbalance of 188 

abundance), EAED (equitability abundance-weighted evolutionary distinctiveness), HED 189 

(community evolutionary distinctiveness), EED (equitability evolutionary distinctiveness), 190 

MNTD (mean nearest taxon distance), AW MNTD (abundance-weighted MNTD), PD 191 

(phylogenetic diversity), PDc (PD not including the root), MPD (mean pairwise 192 

phylogenetic distance), interspecific MPD (interspecific abundance-weighted MPD), 193 
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intraspecific MPD (intraspecific abundance-weighted MPD), complete MPD (complete 194 

abundance-weighted MPD), and PSE (phylogenetic species evenness) (Faith 1992; Webb 195 

2000; Helmus et al. 2007; Cadotte et al. 2010; Kembel et al. 2010; Miller et al. 2013). (5) 196 

Use the Euclidean distances between quadrat centroids to randomize each CDM 1,000 197 

times with DNM1, and 1,000 times with DNM3. Note that this happens across all spatial 198 

simulations, such that after the three spatial simulations, then 1,000 randomizations of 199 

each observed CDM with each of DNM1 and DNM3, the result is a collection of 6,000 200 

randomly assembled CDMs and three observed CDMs. (6) After each randomization, 201 

calculate all phylogenetic community structure metrics across the assembled CDM and 202 

retain. (7) Concatenate the randomized metrics by the quadrat from which they come, and 203 

derive a standardized effect score (SES) per observed quadrat as the difference between 204 

the observed and the mean of the randomized scores (at that quadrat) divided by the SD 205 

of the randomized scores (at that quadrat). (8) Per CDM, use a Wilcoxon signed-rank test 206 

to compare the distribution of SES scores to zero. Record a type I error if the distribution 207 

differs significantly from zero for the random community assembly, and a type II error if 208 

the distribution was not significantly less or greater than zero in the habitat filtering or 209 

competitive exclusion simulation, respectively. (9) Repeat the entire process 1,000 times 210 

(i.e. run 1,000 each of the neutral, habitat filtering, and competitive exclusion spatial 211 

simulations, with the resulting CDMs randomized 1,000 times each). In this way, per 212 

metric per null model, I calculated an average type I error rate as the proportion of 1,000 213 

random communities whose SES distribution differed significantly from zero, and an 214 

average type II error rate as the mean of the proportion of communities from either the 215 
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1,000 habitat filtering or the 1,000 competitive exclusion simulations whose SES 216 

distributions did not differ as expected from zero. 217 

 218 

Testing the dispersal null model on an empirical dataset 219 

 I was also interested in whether DNM1 could be readily applied to an empirical 220 

dataset, and what influence it would have on the interpretation of results. Miller et al. 221 

(2013) found strong evidence that phylogenetic niche conservatism shapes which 222 

lineages of Australian honeyeaters (Meliphagidae) occur where. Meliphagidae 223 

assemblages showed increasing phylogenetic clustering along a gradient of decreasing 224 

precipitation away from the ancestral state, with statistically significant clustering 225 

observed in the driest sites. Miller et al. (2013) controlled for spatial auto-correlation and 226 

found that the significance of the overall relationship was unaffected by such auto-227 

correlation, but the null models they used allowed any species to occur in any quadrat.  228 

 To better account for the influence of dispersal limitations, I re-calculated the 229 

significance of the observed phylogenetic community structure metrics in Meliphagidae 230 

assemblages as compared with expectations from DNM1 (both MPD and interspecific 231 

MPD). For the matrix describing distances between quadrats, I used: 1) great circle 232 

distances calculated with the Haversine formula; 2) the Euclidean distances after a 233 

principal components analysis of the 19 bioclim ecological variables (Hijmans et al. 234 

2005), scaled and centered; 3) the product of these two distance matrices. I calculated the 235 

significance of the observed metrics against 1,500 randomly assembled matrices with 236 

each of the distance matrices. Because results were qualitatively identical with any of the 237 
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distance matrices, I chose to use the product of the geographic and climate distance 238 

matrices and re-ran the analysis with 30,000 matrix randomizations. 239 

 240 

RESULTS 241 

Statistical behavior and performance of the dispersal null model 242 

 With DNM1, species’ mean occurrence frequencies across 20 randomized 243 

matrices were correlated with their occurrence frequency in the observed CDM (r2 = 244 

0.45, p < 0.001). The same was true for their total abundance in the randomized CDMs 245 

(r2 = 0.79, p < 0.001). With DNM3, species’ randomized occurrence frequencies were 246 

correlated with observed frequencies (r2 = 0.84, p < 0.001), but species’ total randomized 247 

abundances were only weakly correlated with observed values (r2 = 0.18, p < 0.001). 248 

 Averaging across its performance with all tested metrics, DNM1 exhibited a 249 

22.8% error rate (15.1% type I, 30.5% type II). However, the bulk of these errors can be 250 

attributed to a few metrics (Table 1), namely IAC, HAED and, to a lesser extent, PAE and 251 

EAED. With the best performing metric, MPD, the type I and II error rates were 0.1 and 252 

13.8%, respectively. In terms of other metrics that performed reasonably well with 253 

DNM1, MPD, PD, interspecific MPD, MNTD and AW MNTD all exhibited strong power 254 

to detect habitat filtering, but much less power to detect competitive exclusion. The 255 

opposite was true of intraspecific MPD and EAED.  256 

 DNM3 also performed favorably (Table 2). As compared with DNM1, it showed 257 

increased power to detect simulated community assembly processes, particularly 258 

competitive exclusion, with only a slight increase in type I error rates (across all metrics 259 

16.7% type I, 23.2% type II). MPD, again the best performing metric, exhibited an 260 
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overall error rate of only 2.2%. Both forms of PD also performed well, though they 261 

showed less power to detect the effects of competitive exclusion. HED and EED, which did 262 

not perform well in Miller et al. (2016), performed better than all other tested metrics 263 

except MPD and PD. 264 

 265 

Testing the dispersal null model on an empirical dataset 266 

 As in Miller et al. (2013), there was strong signal of increasing phylogenetic 267 

clustering along a gradient of decreasing precipitation. For instance, using the product of 268 

the climatic and geographic distance matrices, SES MPD and SES interspecific MPD 269 

were positively correlated with log10 mean annual precipitation (r2 = 0.14 and p < 0.001, 270 

and r2 = 0.41 and p < 0.001, respectively). However, the significance of individual 271 

quadrat deviations beyond expectations can and did change with DNM1. Only one and 272 

two of the quadrats were considered significantly phylogenetically clustered with MPD 273 

and interspecific MPD, respectively. Similarly, two and zero quadrats were considered 274 

significantly phylogenetically overdispersed with MPD and interspecific MPD, 275 

respectively. Results were qualitatively identical with any of the distance matrices (i.e., 276 

few individual quadrats deviated beyond statistical expectations). Thus, when compared 277 

against a null model that simulates realistic dispersal probabilities, the overall pattern of 278 

increasing phylogenetic clustering along a gradient of decreasing precipitation did not 279 

change, but few if any individual sites deviated beyond null expectations.  280 

 281 

DISCUSSION 282 
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 Null models in ecology have been contentious for well over 40 years. Many 283 

technical improvements have been developed over this time, including models that 284 

account for species-specific patterns of spatial distributions (Roxburgh and Chesson 285 

1998; Roxburgh and Matsuki 1999). A great deal of sound reasoning and guidance has 286 

also been offered (Gotelli and Graves 1996; Gotelli 2000; Gotelli and Entsminger 2001; 287 

Ulrich and Gotelli 2010). But to my knowledge, no null model that maintains realistic, 288 

quadrat-specific dispersal pressures has yet been developed. In this paper I introduced 289 

and tested such a dispersal null model (DNM). This is similar to recent efforts to include 290 

other biologically important processes in the null model. For instance, Pigot and Etienne 291 

(2015) showed that incorporating allopatric speciation into null models erases signatures 292 

in phylogenetic community structure that were previously considered to represent 293 

competitive exclusion. Indeed, those authors and other recent reviews (Gotelli and Ulrich 294 

2012) highlighted the need for a DNM. 295 

 To date, the conceptual link remains weak between neutral models for community 296 

assembly and null models for phylogenetic community structure. The DNM and other 297 

recent null models provide the foundation for a bridge to link the ideas, but that bridge 298 

remains to be built. Future researchers will need to merge ideas of ecological sorting with 299 

those of evolutionary processes, e.g. competitive exclusion versus character displacement 300 

(or allopatric speciation). Ultimately, a model linking dispersal, speciation and extinction 301 

may allow researchers to untangle the influences of these processes in community 302 

assembly. 303 

 In this paper, the overall error rates of DNM1 and DNM3 were 22.8% and 19.95%, 304 

respectively. In a previous test of null model performance (Miller et al. 2016), across all 305 
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metrics, the regional model showed the lowest overall error rates (8%), followed by the 306 

3x, 2x, trial swap, independent swap, and frequency concatenated by richness models, 307 

which all had overall error rates of approximately 19%. The 1s, richness and frequency 308 

concatenated by quadrat models showed error rates of 25-27%. This would suggest the 309 

DNM was outperformed by a number of other null models. However, error rates 310 

calculated across all metrics are misleading in this case, in that some metrics performed 311 

quite well with the DNM, while others performed very poorly. For instance, as compared 312 

with the regional null model in Miller et al. (2016), where MPD showed 6.2 and 3.2% 313 

type I and II error rates, respectively, with DNM1 these rates were 0.1 and 13.8% (Table 314 

1), while with DNM3 they were 3.2 and 1.2% (Table 2).  315 

 As compared to other null models, the decrease in type I error rates for the DNM 316 

is attributable to the fact that simulated quadrats closely resemble observed quadrats in 317 

species richness and composition. To deviate beyond expectations, observed quadrats 318 

need to show strong signals in terms of co-occurrence and/or, for abundance-weighted 319 

metrics, the relative abundances of co-occurring species. As compared with DNM1, the 320 

increased power of DNM3 to detect competitive exclusion seems to be because the latter 321 

does not incorporate a species’ relative abundance into its probability of being settled in 322 

simulated quadrats. So, if a species is rare in a given quadrat as a function of competition 323 

with co-occurring species, this element is randomized in the simulated CDMs, allowing 324 

appropriate rejection of the null hypothesis. Conversely, there was a slight overall 325 

decrease in power with DNM3 to detect habitat filtering. On the surface it would seem 326 

this is because if a species’ abundance attenuates away from the center of its distribution, 327 

the DNM3 may occasionally settle the species at high abundances towards the periphery 328 
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of its range. In practice, however, most abundance-weighted metrics actually showed 329 

increased power to detect habitat filtering with DNM3, and the overall decrease in power 330 

in this respect as compared with DNM1 can be ascribed to EAED and HAED showing 331 

striking decreases in power to detect habitat filtering. 332 

 Notably, the non-abundance-weighted metrics HED and EED performed reasonably 333 

well with both null models tested here, particularly DNM3. These metrics had previously 334 

shown poor statistical performance (Miller et al. 2016). Overall, other non-abundance-335 

weighted metrics (MNTD, PD, MPD) also outperformed abundance-weighted forms with 336 

DNM3. As noted above, abundance-weighted metrics were better than non-abundance-337 

weighted metrics at detecting habitat filtering with DNM3, so this overall decrease in 338 

abundance-weighted metric performance with DNM3 is attributed entirely to a stark 339 

increase in their type I error rates (Table 2). Since DNM3 maintains species’ occurrence 340 

frequencies but not abundances, this increase in type I error rates is to be expected. 341 

Abundance-weighted metrics are particularly driven by changes in the abundance of 342 

distantly related species. So, for instance, a monotypic genus that occurred regularly but 343 

at low abundance in an observed CDM might occur regularly but at high abundance in 344 

simulated CDMs, thereby triggering false positives.  345 

 The choice of which null model to use cannot be informed by statistical 346 

performance alone (Gotelli 2000). The null hypothesis to be tested must inform the 347 

choice as well. When used on an empirical dataset where dispersal limitations almost 348 

certainly influence probability of arrival at a site (Miller et al. 2013), DNM1 did not 349 

change previous results that co-occurring Meliphagidae species are more closely related 350 

in arid areas. However, the number of quadrats considered significantly phylogenetically 351 
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clustered was much reduced. Thus, while the overall relationship remains unchanged, the 352 

strong signal of Meliphagidae phylogenetic clustering in arid regions would not have 353 

been detected had that study focused on single sites and their statistical significance, 354 

rather than the slope of unstandardized MPD across climate gradients.  355 

 As programmed here, the DNM runs more slowly than previously defined null 356 

models, since it requires the use of an indeterminate loop to create each cell in the 357 

random matrix, rather than using simple matrix shuffling. Fortunately, the model is 358 

available in a multithreaded version, which permits parallel matrix randomizations and a 359 

corresponding decrease in total computing time. For instance, constructing 30,000, 696 360 

quadrat by 75 species matrices against which to compare the observed Meliphagidae 361 

CDM took ~6 hrs on a MacBook Pro with a 2.5 GHz processor and 16 GB RAM. 362 

 The DNM should be applicable to a wide breadth of research questions. There is 363 

one situation, however, under which the DNM will fail to run. If any quadrats within an 364 

observed community data matrix (CDM) contain more species than are available in the 365 

sum of other quadrats, then the model cannot run to completion. For example, if SR(iO) = 366 

15, and the remaining quadrats contain only 12 unique species in total, then the model 367 

would loop indefinitely trying to find 15 species to fill iR. The DNM function has an 368 

internal check for this problem, and returns an error message if it is manifest in a CDM. 369 

Aside from this hopefully unusual empirical situation, if users are able to generate a 370 

distance matrix summarizing dispersal probabilities between quadrats (e.g., geographic or 371 

climatic distances between sampling sites), DNM will almost certainly be easy to 372 

implement. It strictly maintains species richness, approximately maintains species 373 
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occurrence frequencies, overall abundances, and realistic dispersal probabilities, and 374 

showed suitable performance when compared against simulated community processes.  375 
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Table 1. Error rates of the dispersal null model (DNM1) with the tested phylogenetic 447 

community structure metrics. Type I errors were defined as a randomly assembled 448 

community deviating beyond statistical expectations. For example, 0.1% of 1,000 total 449 

randomly assembled communities deviated beyond expectations. Type II error rates were 450 

defined as communities assembled according to either habitat filtering or competitive 451 

exclusion not being considered significantly phylogenetically structured. Metrics are 452 

ordered from best- to worst-performing according to the average of the type II and type I 453 

error rates.  454 

Metric Type I 

error rate 

Type II error 

rate – habitat 

filtering 

Type II error rate 

– competitive 

exclusion 

Overall 

error rate 

MPD 0.10 5.65 21.90 6.94 

Complete MPD 0.59 13.18 19.03 8.35 

PSE 0.59 13.18 19.03 8.35 

PD 0.20 0.00 37.26 9.42 

PDc 0.20 0.00 37.26 9.42 

Intraspecific 

MPD 6.24 21.21 5.65 9.84 

EED 0.99 11.99 39.84 13.45 

HED 0.99 11.99 39.84 13.45 

Interspecific 

MPD 0.89 8.23 47.67 14.42 

MNTD 1.09 0.00 58.08 15.06 
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AW MNTD 1.98 0.30 73.74 19.50 

EAED 8.72 65.71 14.87 24.50 

PAE 3.17 51.04 98.12 38.88 

HAED 100.00 0.00 100.00 75.00 

IAC 100.00 100.00 0.89 75.22 

 455 

  456 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 31, 2016. ; https://doi.org/10.1101/046524doi: bioRxiv preprint 

https://doi.org/10.1101/046524
http://creativecommons.org/licenses/by/4.0/


	

Table 2. Error rates of the dispersal null model (DNM3) with the tested phylogenetic 457 

community structure metrics. Type I errors were defined as a randomly assembled 458 

community deviating beyond statistical expectations. For example, 0.1% of 1,000 total 459 

randomly assembled communities deviated beyond expectations. Type II error rates were 460 

defined as communities assembled according to either habitat filtering or competitive 461 

exclusion not being considered significantly phylogenetically structured. Metrics are 462 

ordered from best- to worst-performing according to the average of the type II and type I 463 

error rates.  464 

Metric Type I 

error rate 

Type II error 

rate – habitat 

filtering 

Type II error rate 

– competitive 

exclusion 

Overall 

error rate 

MPD 3.15 2.34 0.00 2.16 

PD 1.32 0.00 15.26 4.48 

PDc 1.32 0.00 15.46 4.53 

MNTD 2.03 0.00 40.39 11.11 

HED 2.14 9.77 33.47 11.88 

EED 2.14 9.87 33.47 11.90 

AW MNTD 24.62 1.32 26.45 19.25 

Intraspecific 

MPD 34.08 10.99 0.00 19.79 

Complete MPD 35.61 10.27 0.00 20.37 

PSE 35.61 10.27 0.00 20.37 

Interspecific 37.64 6.82 0.00 20.52 
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MPD 

IAC 11.19 96.64 6.41 31.36 

EAED 20.45 81.59 17.90 35.10 

PAE 36.93 56.66 34.18 41.17 

HAED 2.75 94.40 78.54 44.61 
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