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Abstract 33	
 34	
The lack of multivariate methods for decoding the representational content of 35	

interregional neural communication has left it difficult to know what information is 36	

represented in distributed brain circuit interactions. Here we present Multi-Connection 37	

Pattern Analysis (MCPA), which works by learning mappings between the activity 38	

patterns of the populations as a factor of the information being processed. These maps are 39	

used to predict the activity from one neural population based on the activity from the 40	

other population. Successful MCPA-based decoding indicates the involvement of 41	

distributed computational processing and provides a framework for probing the 42	

representational structure of the interaction. Simulations demonstrate the efficacy of 43	

MCPA in realistic circumstances. Applying MCPA to fMRI data shows that interactions 44	

between visual cortex regions are sensitive to information that distinguishes individual 45	

natural images, suggesting that image individuation occurs through interactive 46	

computation across the visual processing network. MCPA-based representational 47	

similarity analyses (RSA) results support models of error coding in interactions among 48	

regions of the network. Further RSA analyses relate the non-linear information 49	

transformation operations between layers of a computational model (HMAX) of visual 50	

processing to the information transformation between regions of the visual processing 51	

network. Additionally, applying MCPA to human intracranial electrophysiological data 52	

demonstrates that the interaction between occipital face area and fusiform face area 53	

contains information about individual faces. Thus, MCPA can be used to assess the 54	

information represented in the coupled activity of interacting neural circuits and probe the 55	

underlying principles of information transformation between regions. 56	
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Introduction 61	

Since at least the seminal studies of Hubel and Wiesel (Hubel and Wiesel, 1959) 62	

the computational role that neurons and neural populations play in processing has 63	

defined, and has been defined by, how they are tuned to represent information. The 64	

classical approach to address this question has been to determine how the activity 65	

recorded from different neurons or neural populations varies in response to parametric 66	

changes of the information being processed. Single unit studies have revealed tuning 67	

curves for neurons from different areas in the visual system responsive to features 68	

ranging from the orientation of a line, shapes, and even high level properties such as 69	

properties of the face (Desimone et al., 1984; Hubel and Wiesel, 1959; Tsao et al., 2006). 70	

Multivariate methods, especially pattern classification methods from modern statistics 71	

and machine learning, such as multivariate pattern analysis (MVPA), have gained 72	

popularity in recent years and have been used to study neural population tuning and the 73	

information represented via population coding in neuroimaging and multiunit activity 74	

(Cox and Savoy, 2003; Ghuman et al., 2014; Haxby et al., 2001; Haynes and Rees, 2006; 75	

Hirshorn et al., 2016; Kamitani and Tong, 2005; Poldrack, 2011; Polyn et al., 2005). 76	

These methods allow one to go beyond examining involvement in a particular neural 77	

process by probing the nature of the representational space contained in the pattern of 78	

population activity (Edelman et al., 1998; Haxby et al., 2014; Kriegeskorte and Kievit, 79	

2013). 80	

Neural populations do not act in isolation, rather the brain is highly 81	

interconnected and cognitive processes occur through the interaction of multiple 82	

populations. Indeed, many models of neural processing suggest that information is not 83	
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represented solely in the activity of local neural populations, but rather at the level of 84	

recurrent interactions between regions (Grossberg, 1980; Kveraga et al., 2007; Lee and 85	

Mumford, 2003). However previous studies only focused on the information 86	

representation within a specific population (Freiwald et al., 2009; Ghuman et al., 2014; 87	

Haxby et al., 2001; Hirshorn et al., 2016; Nestor et al., 2011; Tsao et al., 2006), as no 88	

current multivariate methods allow one to directly assess what information is represented 89	

in the pattern of functional connections between distinct and interacting neural 90	

populations with practical amounts of data. Such a method would allow one to assess the 91	

content and organization of the information represented in the neural interaction. Thus, it 92	

remains unknown whether functional connections passively transfer information between 93	

encapsulated modules (Fodor, 1983) or whether these interactions play an adaptive 94	

computational role in processing. Note that in this context non-adaptive information 95	

transfer is equivalent to a static linear projection where no computational “work” is done 96	

in the interaction between the regions and therefore no information is added. Adaptive 97	

information transfer is one in which computational work related to the behavioral state or 98	

condition is performed and therefore state or condition specific information is added 99	

through the interaction between regions; this is equivalent to a non-linear function. 100	

Univariate methods that go beyond assessing the degree of coupling between 101	

populations to assess changes in the relationship between the activity as a factor of 102	

condition also examine adaptive communication between regions. For example the 103	

psychophysiological interactions (PPI; (Friston et al., 1997)) and dynamic causal 104	

modeling methods (Friston et al., 2003) are sensitive to adaptive interregional 105	

communication. However, when compared with univariate methods, it has been noted 106	
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that multivariate methods allow for “more sensitive detection of cognitive states,” 107	

“relating brain activity to behavior on a trial-by-trial basis,” and “characterizing the 108	

structure of the neural code” (Norman et al., 2006). Thus, a multivariate pattern analysis 109	

method for functional connectivity analysis is critical for decoding the representational 110	

structure of interregional interactions.  111	

In this paper, we introduce a multivariate analysis algorithm combining functional 112	

connectivity and pattern recognition analyses that we term Multi-Connection Pattern 113	

Analysis (MCPA). MCPA works by learning the discriminant information represented in 114	

the shared activity between distinct neural populations by combining multivariate 115	

correlational methods with pattern classification techniques from machine learning in a 116	

novel way. Much the way that MVPA goes beyond a t-test or ANOVA by building a 117	

multivariate model of local activity that is then used for single-trial prediction and 118	

classification, MCPA goes beyond PPI by building a multivariate connectivity model that 119	

is then used for single-trial prediction and classification. This single-trial prediction and 120	

classification makes MCPA distinct from previous connectivity approaches that only 121	

statistically test the absolute or relative functional connectivity between two populations 122	

(Cribben et al., 2012; Finn et al., 2015; Richiardi et al., 2011; Shirer et al., 2012; Wang et 123	

al., 2015) and allows for a detailed probe of the representational structure of the 124	

interaction. 125	

The MCPA method consists of an integrated process of learning connectivity 126	

maps based on the pattern of coupled activity between two populations A and B 127	

conditioned on the stimulus information and using these maps to classify the information 128	

representation in shared activity between A and B in test data. The rationale for MCPA is 129	
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that if the activity in one area can be predicted based on the activity in the other area and 130	

the mapping that allows for this prediction is sensitive to the information being processed, 131	

then this suggests that the areas are communicating with one another and the 132	

communication pattern is sensitive to the information being processed. Thus, MCPA 133	

simultaneously asks two questions: 1) Are the multivariate patterns of activity from two 134	

neural populations correlated? (i.e. is there functional connectivity?) and 2) Does the 135	

connectivity pattern change based on the information being processed? This is 136	

operationalized by learning a connectivity map that maximizes the multivariate 137	

correlation between the activities of the two populations in each condition. This map can 138	

be thought of like the regression weights that transform the activity pattern in area A to 139	

the activity pattern in area B (properly termed “canonical coefficients” because a 140	

canonical correlation analysis [CCA] is used to learn the map). These maps are then used 141	

to generate the predictions as part of the classification algorithm. Specifically, a 142	

prediction of the activity pattern in one region is generated for each condition based on 143	

the activity pattern in the other region projected through each mapping. Single trial 144	

classification is achieved by comparing these predicted activity patterns with the true 145	

activity pattern (see Figure 1 for illustration). With MCPA single trial classification based 146	

on multivariate functional connectivity patterns is achieved allowing the nature of the 147	

representational space of the interaction to be probed.  148	

We present a number of simulations to validate MCPA for a realistic range of 149	

signal-to-noise ratios (SNR) and to show that MCPA is insensitive to local information 150	

processing. We apply MCPA to examine the inter-regional representation for natural 151	

visual stimuli in visual cortex using functional magnetic resonance imaging (fMRI) data. 152	
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Specifically, we show that the interactions between regions of the visual stream (V1, V2, 153	

V3, V4, and lateral occipital cortex [LO]) are sensitive to information about individual 154	

natural images. We combine MCPA with representational similarity analysis to 155	

demonstrate that MCPA can be used to evaluate computational models and make 156	

inferences regarding the underlying neural mechanism of information transferring. To 157	

demonstrate MCPA’s applicability to electrophysiological signals and multivariate 158	

oscillatory synchrony, we use MCPA to examine the circuit-level representation for faces 159	

using intracranial electroencephalography (iEEG) data. Specifically, we show that the 160	

interaction between the occipital face area (OFA) and the fusiform face area (FFA) 161	

represents information about individual faces. These results demonstrate that MCPA can 162	

be used to probe the nature of representational space resulting from processing distributed 163	

across neural regions.  164	

 165	
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	166	

Figure 1 Illustration of the connectivity map and classifier of MCPA. The MCPA framework 167	
is demonstrated as a two-phase process: learning and testing. Top left: An illustration of the 168	
learned functional information mapping between two populations under condition 1. The 169	
representational state spaces of the two populations are shown as two planes and each pair of blue 170	
and red dots correspond to an observed data point from the populations. The functional 171	
information mapping is demonstrated as the colored pipes that project points from one space onto 172	
another (in this case, a 90 degree clockwise rotation). Bottom left: An illustration of the learned 173	
functional information mapping between two populations under condition 2 (in this case, a 90 174	
degree counterclockwise rotation). Top right: An illustration of the predicted signal by mapping 175	
the observed neural activity from one population onto another using the mapping patterns learned 176	
from condition 1. The real signal in the second population is shown by the red dot. Bottom right: 177	
An illustration of the predicted signal by mapping the observed neural activity from one 178	
population onto another using the mapping patterns learned from condition 2. In this case, MCPA 179	
would classify the activity as arising from condition 1 because of the better match between the 180	
predicted and real signal. 181	
 182	

 183	

 184	

 185	

 186	

 187	
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Materials and methods 188	

Overview 189	

The MCPA method consists of a learning phase and a test phase (as in machine 190	

learning, where a model is first learned, then tested). In the learning phase, the 191	

connectivity maps for each condition that characterize the pattern of shared activity 192	

between two populations is learned. In the test phase, these maps are used to generate 193	

predictions of the activity in one population based on the activity in the other population 194	

as a factor of condition and these predictions are tested against the true activity in the two 195	

populations. Similar to linear regression where one can generate a prediction for the 196	

single variable A given the single variable B based on the line that correlates A and B, 197	

MCPA employs a canonical correlation model (a generalization of multivariate linear 198	

regression) and produces a mapping model for each condition as a hyperplane that 199	

correlates multidimensional spaces A and B. Thus one can generate a prediction of the 200	

observation in multivariate space A given the observation in multivariate space B on a 201	

single trials basis. In this sense, MCPA is more analogous to a machine learning classifier 202	

combined with a multivariate extension of PPI (Friston et al., 1997) rather than being 203	

analogous to correlation-based functional connectivity measures. 204	

The general framework of MCPA is to learn the connectivity map between the 205	

populations for each task or stimulus condition separately based on training data. 206	

Specifically, given two neural populations (referred to as A and B), the neural activity of 207	

the two populations can be represented by feature vectors in multi-dimensional spaces 208	

(Haxby et al., 2014). The actual physical meaning of the vectors would vary depending 209	

on modality, for example spike counts for a population of single unit recordings; time 210	
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point features for event-related potentials (ERP) or event-related fields; time-frequency 211	

features for electroencephalography, electrocorticography (ECoG) or 212	

magnetoencephalography; or single voxel blood-oxygen-level dependent (BOLD) 213	

responses for functional magnetic resonance imaging.  A mapping between A and B is 214	

calculated based on any shared information between them for each condition on the 215	

training subset of the data. This mapping can be any kind of linear transformation, such 216	

as any combination of projections, scalings, rotations, reflections, shears, or squeezes. 217	

These mappings are then tested as to their sensitivity to the differential 218	

information being processed between cognitive conditions by determining if the neural 219	

activity can be classified based on the mappings. Specifically, for each new test data trial, 220	

the maps are used to predict the neural activity in one area based on the activity in the 221	

other area and these predictions are compared to the true condition of the data. The 222	

trained information-mapping model that fits the data better is selected and the trial is 223	

classified into the corresponding condition. This allows one to test whether the mappings 224	

were sensitive to the differential information being represented in the neural interaction in 225	

the two conditions.  226	

The flow of the MCPA framework is demonstrated in Figure 1 and Algorithm 1. 227	

 228	
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 229	

 230	

Connectivity Map 231	

The first phase of MCPA is to build the connectivity map between populations. 232	

The neural signal in each population can be decomposed into two parts: the part that 233	

encodes shared information, and the part that encodes non-shared local information 234	

(including any measurement noise). We assume that the parts of the neural activities that 235	

represent the shared information in the two populations are linearly correlated (though, 236	

this can easily be extended by the introduction of a non-linear kernel). The model can be 237	

described as follows 238	

Algorithm	1:	Multi-Connection	Pattern	Analysis	(MCPA)	
Input:		
training	data:	matrices	𝑿"

($)	for	ROI-A	under	condition	1,	𝑿"
(&)	for	ROI-A	under	

condition	2,	𝑿'
($)	for	ROI-B	under	condition	1,	𝑿'

(&)	for	ROI-B	under	condition	2	
testing	data:	𝑥"	for	observation	in	ROI-A,	and	𝑥'	for	observation	in	ROI-B	
Output:	
Prediction	of	condition	for	observation	(𝑥", 𝑥').		
	
Learning	phase:	

1 Apply	CCA	on	𝑿"
($)	and	𝑿'

($)	to	get	linear	mapping	function	𝑹($).	
2 Apply	CCA	on	𝑿"

(&) 	and	𝑿'
(&) 	to	get	linear	mapping	function	𝑹(&) .	

Testing	phase:	
3 Use	𝑥"	and	𝑹($) 	to	reconstruct	activity	in	ROI-B	under	condition	1,	which	

yields	reconstructed	data	matrix	𝑦'
($).	

4 Use	𝑥"	and	𝑹(&) 	to	reconstruct	activity	in	ROI-B	under	condition	2,	which	
yields	reconstructed	data	matrix	𝑦'

(&).	
5 Compare	the	correlations	between	the	reconstructions	(𝑦'

($), 𝑦'
(&))	under	

different	conditions	and	the	real	observation	(𝑥').	
6 Reverse	the	direction	(project	B	to	A),	repeat	steps	3	and	4,	and	compare	

the	correlations	between	the	reconstructions	under	different	conditions	
and	the	real	observation.	

7 Assign the condition that gives maximum average correlation coefficient to the 
test case (𝑥", 𝑥').	
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𝑪	~	𝒩 0, 𝑰2 ,min 𝑚",𝑚' ≥ 𝑑 ≥ 1 239	

𝑨|𝑪 = 𝑾"𝑪 + 𝑫,𝑫~𝒩 𝝁",𝜳" ,𝑾" ∈ ℝDE×2,𝜳" ≽ 0 240	

𝑩|𝑪 = 𝑾'𝑪 + 𝑬, 𝑬~𝒩 𝝁',𝜳' ,𝑾' ∈ ℝDJ×2,𝜳' ≽ 0 241	

where C is the common activity, D and E are local activities, 𝑚",𝑚' are the 242	

dimensionalities of activity vector in population A and B respectively. Without loss of 243	

generality, 𝝁" = 𝝁' = 0 can be assumed. The activity in population A can be 244	

decomposed into shared activity 𝑾"𝑪 and local activity	𝑫, while activity in B can be 245	

decomposed into shared activity 𝑾'𝑪 and local activity	𝑬. The shared discriminant 246	

information only lies in the mapping matrix 𝑾" and 𝑾' since C always follows the 247	

standard multivariate normal distribution (though correlation measures that do not 248	

assume normally distributed data can also be applied with minor modifications to the 249	

calculation).  250	

In statistics, canonical correlation analysis (CCA) is optimally designed for such a 251	

model and estimate the linear mappings (Bach and Jordan, 2005; Hardoon et al., 2004). 252	

In brief, let S be the covariance matrix  253	

𝑺 = 𝑺"" 𝑺"'
𝑺'" 𝑺''

= 𝔼 𝑨
𝑩

𝑨
𝑩

M
 254	

Therefore 𝑾" and 𝑾' can be estimated by solving the following eigen problem 255	

𝑺""N$𝑺"'𝑺''N$𝑺'"𝑼" = 𝜌&𝑼"
𝑺''N$𝑺'"𝑺""N$𝑺"'𝑼' = 𝜌&𝑼'

 256	

and we have 257	

𝑾" = 𝑺""𝑼"2𝑀$
𝑾' = 𝑺''𝑼'2𝑀&

 258	

where 𝑼"2 and 𝑼'2 are the first d columns of canonical directions 𝑼" and 𝑼', and 𝑴$, 259	

𝑴& ∈ ℝ2×2 are arbitrary matrices such that 𝑴$𝑴&
M = 𝑷2, 𝑷2 is the diagonal matrix with 260	
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the first d elements of  𝑷 = 𝑼'M𝑺'"𝑼". Therefore, 𝑴$ and 𝑴& are just matrices used to 261	

normalize the projection of A and B onto the latent space. So  𝑴$ and 𝑴& can take 262	

arbitrary value as long as 𝑴$𝑴&
M = 𝑷2, where 𝑷2 is the diagonal matrix representing the 263	

variance along each of the d latent dimensions. Therefore, we can just take 𝑴$ = 𝑴& = 264	

𝑷2
$/&. 265	

With 𝑾" and 𝑾', the shared information C can be estimated using its posterior 266	

mean 𝔼(𝑪|𝑨) and 𝔼(𝑪|𝑩), where 𝔼 𝑪 𝑨 = 𝑴$
M𝑼"M𝑨 and 𝔼 𝑪 𝑩 = 𝑴&

M𝑼'M𝑩. Let 𝑴$ =267	

𝑴& and equate	𝔼(𝑪|𝑨) and 𝔼(𝑪|𝑩), this shared information can be used as a relay to 268	

build the bidirectional mapping between A and B. Specifically, 𝑩 = 𝑴&
M𝑼'M U𝑴$

M𝑼"M𝑨 =269	

𝑼'M
U𝑼"M𝑨 = 𝑹𝑨 and 𝑨 = 𝑴$

M𝑼"M U𝑴&
M𝑼'M𝑩 = 𝑼"M

U𝑼'M𝑩 = 𝑹U𝑩, where 𝑹 = 𝑼'M
U𝑼"M𝑨.  270	

In the first step, the connectivity map is estimated for each condition separately. If 271	

we have 𝑛$ trials in condition 1 and 𝑛& trials in condition 2 in the training set, the training 272	

data for the two conditions are represented in matrices as 𝑿"
($), 𝑿'

($) M
 and 𝑿"

(&), 𝑿'
(&) M

 273	

respectively, where 𝑿"
($) ∈ ℝDE×WX, 𝑿'

($) ∈ ℝDJ×WX are the population activity for A and 274	

B under condition 1 respectively, and 𝑿"
(&) ∈ ℝDE×WY, 𝑿'

(&) ∈ ℝDJ×WY are the population 275	

activity for A and B under condition 2 respectively. The testing data vector is then 276	

represented as 𝒙", 𝒙' M, where 𝒙" ∈ ℝDE and	𝒙' ∈ ℝDJ are population activities in A 277	

and B respectively. Using CCA, the estimations of the mapping matrices with respect to 278	

different conditions are 𝑹($) and 𝑹(&).  279	

To sum up, by building the connectivity map, a linear mapping function R is 280	

estimated from the data for each condition so that the activity of the two populations can 281	
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be directly linked through bidirectional functional connectivity that captures only the 282	

shared information. 283	

 284	

Classification 285	

The second phase of MCPA is a pattern classifier that takes in the activity from 286	

one population and predicts the activity in a second population based on the learned 287	

connectivity maps conditioned upon the stimulus condition or cognitive state. The testing 288	

data is classified into the condition to which the corresponding model most accurately 289	

predicts the true activity in the second population. 290	

The activity from one population is projected to another using the learned CCA 291	

model, i.e. 𝒙'
([) = 𝑼'

[ U𝑼"
([)𝒙𝑨. The predicted projections 𝒙'

([) are compared to the real 292	

observation 𝒙𝑩, and then the testing trial is labeled to the condition where the predicted 293	

and real data match most closely. Cosine similarity (correlation) is used as the 294	

measurement of the goodness of prediction. The mapping is bidirectional, so A can be 295	

projected to B and vice versa. In practice, the similarities from the two directions are 296	

averaged in order to find the condition that gives maximum average correlation 297	

coefficient.  298	

 299	

Simulated experiment 300	

To test the performance of MCPA, we used BOLD signal recorded from areas V1 301	

and V2 to simulate shared and local activity in two populations and tested the 302	

performance of MCPA on synthetic data as a factor of the number of dimensions in each 303	

population and signal-to-noise ratio (SNR; Figure 2a). We further evaluated three control 304	
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experiments to demonstrate that MCPA is insensitive to the presence or change in the 305	

local information.  306	

For the first simulation (Figure 2a), we sampled from the empirical distribution of 307	

BOLD signal recorded from area V1 in the visual cortex and used it as the shared activity, 308	

and independently sampled signal from the empirical distributions of activity in V1 and 309	

V2 as the local unshared activity. (see fMRI method described below for experiment 310	

details). The shared activity for both conditions in population A was drawn from the 311	

empirical distribution of the first d principal components of V1 activity to mimic a d-312	

dimensional normal distribution 𝑌"
([)~𝒩 0, 𝚺2 , for	𝑖 = 1,2, where 𝚺2 is a diagonal 313	

matrix with the jth element in the diagonal as 𝜎d&. The shared activity in population B 314	

under two different conditions were generated by rotating 𝒀" with different rotation 315	

matrices separately, 𝑌'
([) = 𝐑([)𝑌"

([), where 𝐑($) and 𝐑(&) were two d-by-d random 316	

rotation matrices corresponding to the information mapping functions under condition 1 317	

and 2 respectively, and for simplicity, 𝐑([) is orthogonal with  𝐑 [ 𝑻𝐑([) = 𝐈i. In addition 318	

to the shared activity, local activity in A and B was randomly drawn from the empirical 319	

distributions of the first d principal components of V1 and V2 activity respectively and 320	

multiplied by a factor of 𝜎 to simulate white noise 𝑬([)~𝒩 0, 𝜎&𝜮2 . 321	

The two important parameters here are the dimensionality d and the variance 𝜎&. 322	

SNR was used to characterize the ratio between the variance of shared activity and 323	

variance of local activity, and the logarithmic decibel scale SNR2' = −10 log$q(𝜎&) was 324	

used. To cover the wide range of possible data recorded from different brain regions and 325	

different measurement modalities, we tested the performance of MCPA with d ranging 326	

from 2 to 25 and SNR ranging from -20 dB to 20 dB (𝜎& ranged from 0.01 to 100). Note 327	
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that each of the d dimensions contain independent information about the conditions and 328	

have the same SNR. Thus the overall SNR does not change, but the amount of pooled 329	

information does change with d. For each particular setup of parameters, the rotation 330	

matrices 𝐑([) were randomly generated first, then 200 trials were randomly sampled for 331	

each condition and evenly split into training set and testing set. MCPA was trained using 332	

the training set and tested on the testing set to estimate the corresponding true positive 333	

rate (TPR) and false positive rate (FPR) for the binary classification. The sensitivity 334	

index d’ was then calculated as 𝑑r = 𝑍 𝑇𝑃𝑅 − 𝑍(𝐹𝑃𝑅), where Z(x) is the inverse 335	

function of the cdf of standard normal distribution. This process was repeated 100 times 336	

and the mean and standard errors across these 100 simulations were calculated. Note that 337	

the only discriminant information about the two conditions is the pattern of interactions 338	

between the two populations, and neither of the two populations contains local 339	

discriminant information about the two conditions in its own activity. We further tested 340	

and confirmed this by trying to classify the local activity in populations A and B (see 341	

below). To avoid an infinity d’ value, with 100 testing trials, the maximum and minimum 342	

for TPR or FRP were set to be 0.99 and 0.01, which made the maximum possible d’ to be 343	

4.65.  344	

The MCPA method captures the pattern of correlation between neural activities 345	

from populations and is invariant to the discriminant information encoded in local 346	

covariance. To see this, we first take the simulation data described above and apply 347	

MVPA (naïve Bayes) to each of the two populations separately. Note that in each of the 348	

two populations, we set the two conditions to have the same mean and covariance. As a 349	
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result, there should be no local discriminant information within any of the two 350	

populations alone.  351	

 352	

Robustness of MCPA to non-informative dimensions 353	

In addition to the existing simulations that evaluate the influence of SNR and 354	

informative dimensionality on the performance of MCPA, we evaluated the influence of 355	

having non-informative dimensionality on the performance of MCPA. Specifically, we 356	

simulate 10 informative dimensions and simulate P additional dimensions that are not 357	

informative for discrimination and apply MCPA to this simulated data without PCA. 358	

With a fixed number of 100 training samples per condition, we evaluate the performance 359	

of MCPA as a factor of the ratio between number of dimensions and the number of 360	

training samples per condition. The intuition is that, with a fixed amount of informative 361	

dimensions and fixed number of training samples, when the number of dimensions 362	

grows, the model would suffer from overfitting and the performance would decay. 363	

 364	

Control simulations 365	

For the first control simulation (Figure 2c), we fixed the dimensionality at d = 10 366	

and SNR at 0 dB (𝜎& = 1). For condition 1, 𝑋"
($), 𝑋'

($) were drawn independently from 367	

the empirical distributions of the first d principal components of area V1 and area V2 368	

using the corresponding empirical distributions; for condition 2, 𝑋"
(&), 𝑋'

(&) were drawn 369	

independently from the same distribution in the empirical distributions of the first d 370	

principal components of area V1 and area V2. Then we changed the local variance in one 371	

of the conditions. For the features in population A and B under condition 1, we used 372	
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𝑋"
$ y
= 𝑘𝑋"

($) and 𝑋'
$ y
= 𝑘𝑋'

($), where k ranged from 1 to 9. Thus, in both populations, 373	

the variance of condition 1 was different from the variance of condition 2, and such 374	

difference would increase as k became larger. Therefore, there was no information shared 375	

between the two populations under either condition, but each of the population had 376	

discriminant information about the conditions encoded in the variance for any 𝑘 ≠ 1.  377	

For the second control simulation (Figure 2d), we fixed the dimensionality at 10 378	

and SNR at 0 dB (𝜎& = 1) and kept the rotation matrices of different conditions different 379	

from each other. As a result, the amount of shared discriminant information represented 380	

in the patterns of interactions stayed constant. Then we changed the local variance in one 381	

of the conditions. For the features in population A under condition 1, we used 𝑋"
$ y
=382	

𝑘𝑋"
($), where k ranged from 1 to 9. Thus, population A, the variance of condition 1 was 383	

different from the variance of condition 2, and such difference would increase as k 384	

became larger. According to our construction of MCPA, it should only pick up the 385	

discriminant information contained in the interactions and should be insensitive to the 386	

changes in local discriminant information from any of the two populations. 387	

For the third control simulation (Figure 2e), we introduced local discriminant 388	

information into the two populations to demonstrate that MCPA is insensitive to the 389	

presence of constantly correlated local information (Figure 2e). We fixed the 390	

dimensionality at 10 and SNR at 0 dB (𝜎& = 1) and kept the rotation matrices constant 391	

for different conditions. As a result, the amount of shared discriminant information 392	

represented in the patterns of interactions was 0. Then we changed the local variance in 393	

one of the conditions. For the features in population A and B under condition 1, we used 394	

𝑋"
$ y
= 𝑘𝑋"

($) and 𝑋'
$ y
= 𝑘𝑋'

($), where k ranged from 1 to 9. Thus, in both populations, 395	
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the variance of condition 1 was different from the variance of condition 2, and such 396	

difference would increase as k became larger. Notably, such local information was 397	

actually correlated through interactions between the populations. However, since the 398	

pattern of interaction did not vary as the condition changed, there was no discriminant 399	

information about the conditions represented in the interactions. According to our 400	

construction of MCPA, it should not pick up any discriminant information in this control 401	

case. 402	

 403	

Examining visual cortex coding for natural images using MCPA  404	

fMRI methods 405	

The fMRI dataset was taken from CRCNS.org (Kay et al., 2011). See (Kay et al., 406	

2008; Naselaris et al., 2009) for details regarding subjects, stimuli, MRI parameters, data 407	

collection, and data preprocessing. In the experiment, two subjects performed passive 408	

natural image viewing tasks while BOLD signals were recorded from the brain. The 409	

experiment contains two stages: a training stage and a validation stage. In the training 410	

stage, two separate trials were recorded in each subject. In each trial, a total of 1750 411	

images were presented to the subject, which yields a total of 3500 presentations of 412	

images (3500 = 1750 images * 2 repeats). In the validation stage, another 120 images 413	

were presented to the subject in 13 repeated trials, which yields a total of 1560 414	

presentations (1560 = 120 images * 13 repeats). The single-trial response for each voxel 415	

was estimated using deconvolution method and used for the following analysis. The 416	

voxels were assigned to 5 visual areas (V1, V2, V3, V4, and lateral occipital [LO]) based 417	

on retinotopic mapping data from separate scans (Kay et al., 2008; Naselaris et al., 2009).  418	
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 419	

Categorical image classification 420	

To control for repetition of each individual image and increase the image number 421	

being used, we used the data from the training stage for the categorical image 422	

classification. The 1750 images were manually sorted into 8 categories (animals, 423	

buildings, humans, natural scenes, textures, food, indoor scenes, and manmade objects). 424	

In order to maintain enough statistical power, only categories with more than 100 images 425	

were used in the analysis. As a result, 3 categories (food, indoor scenes, and manmade 426	

objects) were excluded.  427	

For each pair of ROIs, namely V1-V2, V2-V3, V3-V4, and V4-LO, MCPA was 428	

applied to classify the functional connectivity patterns for each possible pair of image 429	

categories (total of 10 pairs). For each specific pair of categories, BOLD signal from all 430	

the voxels in the ROIs were used as features in MCPA. Principal Component Analysis 431	

(PCA) was used to reduce the dimensionality to P, where P corresponds to the number of 432	

PCs that capture 90% of variation in the data, which yielded between 100-200 PCs. 433	

Leave-one-trial-out cross-validation was used in order to estimate the classification 434	

accuracy. This procedure was repeated for all 10 pairs. Classification accuracy and the 435	

corresponding sensitivity index d’ were used to quantify the performance of MCPA. 436	

 437	

Single image classification using MCPA 438	

 For single image classification the 13 repetitions of each individual image from 439	

the validation stage data was used.  440	
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For each pair of ROIs, namely V1-V2, V2-V3, V3-V4, and V4-LO, MCPA was 441	

applied to classify the functional connectivity patterns for each possible pair of images 442	

(total of 7140 pairs). For each specific pair of categories, BOLD signal from all the 443	

voxels in the ROIs were used as features in MCPA. Considering the limited number of 444	

trials in each condition, PCA was first used with the data from the training stage to 445	

reduce the representation dimensionality to 10. Because the top PCs that explain most 446	

variations may contain variance not related to the stimuli, the 10 PCs were selected from 447	

the top 50 PCs, based on maximizing the between-trial correlations for single images. As 448	

a result, we reduced the dimensionality of the validation data from more than 1000 to 10 449	

based on the training dataset, which was completely independent from all the validation 450	

data that was used in the learning and testing stages of MCPA. Leave-one-trial-out cross-451	

validation was then used in order to estimate the classification accuracy. This procedure 452	

was repeated for all 7140 pairs. Classification accuracy and the corresponding sensitivity 453	

index d’ were used to quantify the performance of MCPA. 454	

 455	

MVPA analysis 456	

MVPA was applied to classify the neural activity within each ROI (V1, V2, V3, 457	

V4, and LO) for each possible pair of categories (total of 10 pairs). The same features 458	

extracted from all the voxels within the ROI, as described above, were used in MVPA 459	

analysis. Naïve Bayes classifier was used as the linear classifier and leave-one-trial-out 460	

cross-validation was used in order to estimate the classification accuracy. This procedure 461	

was repeated for all 10 pairs. Classification accuracy and the corresponding sensitivity 462	

index d’ were used to quantify the performance of MVPA.  463	
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 464	

Permutation test 465	

 Permutation testing was used to determine the significance of the classification 466	

accuracy d’. For each permutation, the condition labels of all the trials were randomly 467	

permuted and the same procedure as described above was used to calculate the 468	

classification accuracy (d’) for each permutation. The permutation was repeated for a 469	

total of 1000 times. The classification accuracy (d’) of each permutation was used as the 470	

test statistic and the null distribution of the test statistic was estimated using the 471	

histogram of the permutation test. 472	

 473	

Representational similarity analysis 474	

 Based on the classification results, for each classification analysis, the 475	

representational dissimilarity matrix (RDM) 𝐌 was constructed such that the jth element 476	

in the ith row, 𝑚[d , equals the dissimilarity (classification accuracy) between the 477	

condition i and condition j in the corresponding representational space defined by the 478	

analysis. Spearman’s rank correlation was used to compare representational dissimilarity 479	

matrices in order to account for outliers and non-normality in the data. 480	

 481	

Psychophysiological interactions 482	

 PPI (Friston et al., 1997) was used to analyze the pattern of interactions between 483	

V1 and V4 for each pair of image categories (total of 10). The response in each ROI was 484	

extracted by taking the first principal component across all voxels. The PPI model can be 485	

written as 𝑦 = 𝛽$𝑥$ + 𝛽&𝑥& + 𝛽~𝑥~ + 𝜖, where y is the response in V4, 𝑥$ is the response 486	
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in V1, 𝑥& is the categorical condition (1 or -1), and 𝑥~ is the psychophysiological 487	

interaction (𝑥~ = 𝑥$ ∙ 𝑥&). 488	

 489	

HMAX model and connectivity patterns 490	

 The implementation of HMAX model by Serre et al. (Serre et al., 2007) was used. 491	

Each image was fed into the network and the activations in the four layers (S1, C1, S2, 492	

and C2) were recorded. At each patch size level, for image k (k = 1, 2, …, 120), the 493	

activation pattern in simple layer i (i = 1, 2) is recorded as 𝐒[�, which is a square matrix 494	

with retinotopic mapping to the image space. On the other hand, the activation pattern in 495	

complex layer i (i = 1, 2) is represented as vector 𝐶[� with each element representing the 496	

activation of one single unit (for C1, this is achieved by concatenating all the units in the 497	

layer into one vector). The activation of each unit in the complex layer was calculated by 498	

taking a maximum over its corresponding pool of units in the previous simple layer. For 499	

each complex unit, we recorded the location of the corresponding maximum activation 500	

simple unit. As a result, we got a Ni-by-2 connectivity matrix 𝐕[� for complex layer Ci for 501	

image k, where Ni is the total number of units in Ci and each row is the 2-D coordinate of 502	

the corresponding maximum activation simple unit. Thus, the connectivity pattern 503	

between simple layer Si and complex layer Ci for image k was described by such 504	

connectivity matrix 𝐕[�. Considering all pairs of images, the RDM of the connectivity 505	

pattern Mi is calculated by taking the Frobenius norm of the difference between each pair 506	

of connectivity matrix, i.e. 𝐌[ 𝑗, 𝑘 = 𝐕[
d − 𝐕[� &

. 507	

The representation space for each single layer was then extracted by 508	

concatenating all units in the layer into one vector. The RDM of each single layer was 509	
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calculated using the Euclidian distance between the corresponding activation vectors of 510	

the images. 511	

 512	

Representational similarity analysis and permutation test 513	

Permutation test was used to determine the statistical significance of the 514	

correlation between the RDM from MCPA and the RDM from HMAX. Specifically, for 515	

each pair of ROIs (i.e. V1-V2, V2-V3, V3-V4, and V4-LO), we calculated the 516	

corresponding 120-by-120 RDM for all the images from MCPA and averaged across the 517	

two subjects, noted as 𝐌𝑹𝑶𝑰𝟏N𝑹𝑶𝑰𝟐, where ROI1-ROI2 = V1-V2, V2-V3, V3-V4, or V4-518	

LO. Then we used the RDMs of HMAX (Mi, i = 1, 2) described in the previous part and 519	

calculate the Spearman’s rank correlation between 𝐌𝑹𝑶𝑰𝟏N𝑹𝑶𝑰𝟐 and Mi. As a result, we 520	

have 𝜌[���$N���& = 𝑐𝑜𝑟𝑟 𝐌𝑹𝑶𝑰𝟏N𝑹𝑶𝑰𝟐,𝐌[ . Then to compare the correlation from 521	

different layers in HMAX to MCPA, we use 𝛥𝜌���$N���& = 𝜌$���$N���& − 𝜌&���$N���& as 522	

the test statistic. For each permutation, the labels of the 120 images were randomly 523	

permuted and the above procedure was repeated. With a total of 1000 permutations, we 524	

got the empirical distribution of the test statistic for the null hypothesis that there is no 525	

difference between the two correlations. A p-value for the real test statistic can then be 526	

estimated. 527	

 528	

Examining OFA-FFA coding for individual faces using MCPA 529	

Subject 530	

A human subject underwent surgical placement of iEEG depth electrodes 531	

(stereotactic electroencephalography) as standard of care for surgical epilepsy 532	
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localization. The subject was male, age 56. There was no evidence of epileptic activity 533	

shown on the electrodes used in this study. 534	

The experimental protocols were approved by the Institutional Review Board of 535	

the University of Pittsburgh. Written informed consent was obtained from the participant. 536	

See supplemental methods for analysis details. 537	

 538	

  539	
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Results 540	

Simulations 541	

We used simulations to test and verify the performance and properties of MCPA 542	

on synthetic data. Specifically, synthetic data generated based on real fMRI data 543	

representing neural activity of two distinct populations and the information represented in 544	

the interaction between those populations was manipulated to construct different testing 545	

conditions.  546	

In the first simulation, we evaluated the ability of MCPA to detect information 547	

represented in the functional connectivity pattern when it was present as a factor of the 548	

SNR and the number of dimensions of the data. The mean and standard error of the 549	

sensitivity index (d’) from 100 simulation runs for each particular setup (dimensionality 550	

and SNR) are shown in Figure 2a. The performance of the MCPA classifier increased 551	

when SNR or effective dimensionality increased. Classification accuracy saturated to the 552	

maximum when SNR and number of dimensions were high enough (SNR > 5 dB, 553	

dimensionality > 10). The performance of MCPA was significantly higher than chance (p 554	

< 0.01, permutation test) for SNRs above -5 dB for all cases where the dimensionality 555	

was higher than 2, when the pattern of the multivariate mapping between the activity was 556	

changed between conditions.  557	

In addition, we examined how robust MCPA is to adding uninformative 558	

dimensions, which also changes the global SNR though non-uniformly. This simulation 559	

assesses performance of MCPA as the dimensionality of the data approaches the number 560	

of trials. In the evaluation with a fixed number of 10 informative dimension and 100 trials 561	

per condition, MCPA was shown to be highly robust to uninformative dimensions and 562	
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gave significant classification accuracy until the number of dimensions approached ~70% 563	

of the number of trials (Figure 2b), at which point more than 85% of the total features are 564	

completely uninformative noise.  565	

The first control simulation was designed to confirm that when two unconnected 566	

populations both carry local discriminant information, MCPA would not be sensitive to 567	

that piece of information. As shown in Figure 2c, MCPA did not show any significant 568	

classification accuracy above chance (d’ = 0) as 𝑘 changed. On the other hand, the 569	

MVPA classifier that only took the data from local activity showed significant 570	

classification accuracy above chance level and the performance increased as local 571	

discriminant information increased.  572	

The second control simulation was designed to test if MCPA would be insensitive 573	

to changes in local discriminant information when there was constant information coded 574	

in neural communication. Local discriminant information was injected into the 575	

populations by varying the ratio of the standard deviation (k) between the two conditions. 576	

When MVPA was applied to the local activity, increasing classification accuracy was 577	

seen as k became larger (Figure 2d). This result confirmed that discriminant information 578	

was indeed encoded in the local activity in the simulation. On the other hand, the 579	

performance of MCPA did not change with the level of local discriminant information (d’ 580	

stayed around 1.65 for all cases, corresponding to accuracy = 79%), demonstrating that 581	

MCPA is only sensitive to changes in information contained in neural interactions.  582	

 The final control simulation tested whether MCPA is simply sensitive to the 583	

presence of functional connectivity between two populations per se or is only sensitive to 584	

whether the functional connectivity contains discriminant information. Specifically, are 585	
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local discriminant information in two populations, and a correlation between their activity, 586	

sufficient for MCPA decoding? It should not be, considering that MCPA requires that the 587	

pattern of the mapping between the populations to change as a factor of the information 588	

being processed (see Figure 1). The final control simulation was designed to assess 589	

whether MCPA is sensitive to the case where two populations communicate, but in a way 590	

that would not imply distributed computational processing. Specifically, neural activity in 591	

areas A and B were simulated such that local discrimination was possible in each 592	

population and the activity of the two populations was correlated, but the interaction 593	

between them was invariant to the information being processed. Figure 2e shows that in 594	

this case MCPA did not classify the activity above chance, despite significant correlation 595	

between the regions and significant local classification (MVPA). Thus, functional 596	

connectivity between the populations is a necessary, but not sufficient, condition for 597	

MCPA decoding. Therefore, MCPA is only sensitive to the case where the mapping itself 598	

changes with respect to the information being processed, which is a test of the presence 599	

of distributed neural computation. 600	
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	601	

	602	

Figure 2  Synthetic data and control simulation experiments. The mean and standard error for 603	
100 simulation runs are plotted. The horizontal gray line corresponds to chance level (d’ = 0). 604	
The dashed line (d’ = 0.42, corresponding accuracy 58.5%) corresponds to the chance threshold, 605	
p = 0.01, based on a permutation test. The maximum possible d’ = 4.65 (equivalent to 99% 606	
accuracy because the d’ for 100% accuracy is infinity). (a) The sensitivity of MCPA for 607	
connectivity between two populations as a factor of SNR and the number of effective dimensions 608	
in each population. MCPA was applied to synthetic data, where two conditions had different 609	
patterns of functional connectivity (measured by SNR and dimensionality). Performance of 610	
MCPA was significantly higher than chance level when SNR > -5 dB and the number of 611	
dimensions > 2. Performance of MCPA saturated to maximum when SNR > 5 dB and the number 612	
of dimensions > 10. (b) The robustness of MCPA to non-informative dimensions. The signal was 613	
generated in a lower dimensional manifold (# dim = 10), and P non-informative dimensions were 614	
added to the space. # of (training) samples per condition is fixed at 100. (c) The insensitivity of 615	
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MCPA when there is variable local discriminant information, but no circuit-level information 616	
(control case 1). MCPA and MVPA were applied to control case 1. The SNR was fixed at 0 dB 617	
and the number of dimensions is fixed at 10 for panels b, c, and d. k corresponds to the ratio of 618	
the standard deviations of the two conditions in panels b, c, and d. (d) The insensitivity of MCPA 619	
to changes in local discriminant information with fixed circuit-level information when there is 620	
both local and circuit-level information (control case 2). (e) The insensitivity of MCPA to 621	
variable local discriminant information when the circuit-level activity is correlated, but does not 622	
contain circuit-level information about what is being processed (control case 3).  623	
 624	
 625	

Single image classification of visual cortex interactions using MCPA 626	

 To assess its performance on real neural data, MCPA was applied to Blood-627	

oxygen-level-dependent (BOLD) fMRI measurements of human occipital visual areas, in 628	

two subjects (Subject 1 and Subject 2) during passive viewing of 13 repetitions of 120 629	

natural images (Kay et al., 2011; Kay et al., 2008; Naselaris et al., 2009). MCPA was 630	

used for single-trial classification of these images for the interactions between V1-V2, 631	

V2-V3, V3-V4, and V4-lateral occipital (LO) cortex (e.g. 4 total region pairs * 2 subjects; 632	

see Figure 5 of  Naselaris et al. (Naselaris et al., 2009) for depictions of these regions in 633	

these subjects). Across the 8 pairs of regions the mean sensitivity index (d’) of the single 634	

trial classification was 0.405 (SD = 0.094), with all of the pairs showing significant 635	

classification at p < 0.01 corrected for multiple comparisons (permutation test). In both 636	

subjects, MCPA classification accuracy declined going up the classic visual hierarchy. 637	

For Subject 1 and 2, the classification accuracies are shown in Table 1.  638	

 639	

 640	

 641	

 642	
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Table	1	Mean	d’	and	classification	accuracy	of	MCPA	for	Subject	1	and	Subject	2	(chance	level:	d’	=	0,	accuracy	=	643	
50%)	644	

Subject	1	
ROI1-ROI2	 V1-V2	 V2-V3	 V3-V4	 V4-LO	
d’	 0.477	 0.443	 0.408	 0.319	
accuracy	 58.5%	 57.9%	 57.3%	 55.7%	
Subject	2	
ROI1-ROI2	 V1-V2	 V2-V3	 V3-V4	 V4-LO	
d’	 0.589	 0.470	 0.330	 0.271	
accuracy	 60.3%	 58.5%	 55.9%	 54.9%	
 645	

 646	

Using MCPA-based RSA to test models of between-area information transformation 647	

One important application of MCPA is to evaluate models and test theoretical 648	

hypotheses regarding the computational operation underlying how representations are 649	

transformed from one region to another.  MCPA-based representational similarity 650	

analysis (RSA) can be used to compare the representational space derived from the 651	

interaction between brain regions to representational spaces derived from the 652	

transformation of representations in computational models. To illustrate this we compare 653	

the representational space for natural images in the same fMRI dataset described above to 654	

the representational space derived from the transformation between layers of the HMAX 655	

model of the visual processing stream (Riesenhuber and Poggio, 1999; Serre et al., 2007). 656	

HMAX has four layers going from S1 to C1 to S2 to C2 along the hierarchy. The 657	

transformation of the representation between S1 and C1 (S1-C1 transformation) occurs 658	

through a local, non-linear max-pooling operation and the transformation between S2 and 659	

C2 (S2-C2 transformation) occurs through a more global non-linear max-pooling 660	

operation. We compared the representational dissimilarity matrices (RDMs) derived from 661	

these HMAX transformations to the RDMs derived from MCPA between V1-V2, V2-V3, 662	
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V3-V4, and V4-LO. The transformation between C1 and S2 occurs through a passive 663	

filtering that does not give rise to an RDM because the transformation is effectively the 664	

same across all C1 representations.  665	

As shown in Figure 3, we found that the RDM derived from the S1-C1 666	

transformation in HMAX correlates with the V2-V3 RDM based upon MCPA of the 667	

fMRI data (mean Spearman’s rho = 0.053, p < 0.05, permutation test). Furthermore, the 668	

S1-C1 correlation to V2-V3 was significantly greater (p < 0.05, permutation test) than the 669	

S2-C2 correlation to V2-V3. The RDM derived from the S2-C2 transformation in HMAX 670	

correlates with the V4-LO RDM based upon MCPA of the fMRI data (mean Spearman’s 671	

rho = 0.112, p = 0.002, permutation test). Furthermore, the S2-C2 correlation to V4-LO 672	

was significantly greater (p < 0.01, permutation test) than the S1-C1 correlation to V4-673	

LO. Additionally, none of the individual layers in HMAX showed a consistent significant 674	

correlation with the connectivity-based RDM from MCPA. Taken together, these results 675	

suggest that the interaction between the lower layers of the neural visual hierarchy 676	

reflects an operation more like the operation between the lower layers of the model of the 677	

visual hierarchy than between higher layers of the model. Furthermore, the interaction 678	

between higher layers of the neural visual hierarchy reflects an operation more like the 679	

operation between higher layers of the model than between lower layers of the model. 680	

 681	
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	682	
Figure 3  Correlating MCPA and HMAX. Correlation coefficients between the between-layer 683	
connectivity patterns in HMAX (S1-C1, and S2-C2) and the between-area connectivity patterns 684	
in fMRI data extracted by MCPA (V1-V2, V2-V3, V3-V4, and V4-LO) were plotted. The 685	
correlation was evaluated by Spearman’s rank correlation coefficients. For S1-C1, correlation 686	
peaked at V2-V3, mean Spearman’s rho = 0.053 (* p = 0.036, permutation test within each 687	
subject, and p-values were combined using Fisher’s method). For S2-C2, correlation peaked at 688	
V4-LO, mean Spearman’s rho = 0.112 (** p = 0.001, permutation test within each subject, and p-689	
values were combined using Fisher’s method). 690	

 691	

Comparing the between region representation to the local representation 692	

To assess whether the information represented in the between region interactions 693	

reflected a distinct computational process or merely reflected the representation in either 694	

of the individual areas, RSA was performed. To increase our power, we performed this 695	

RSA at the category level (animals, buildings, humans, natural scenes, and textures) 696	

based on classification accuracy rather than the single image level because the dataset 697	

contained many more repetitions per category than per image (Figure 4). This yielded a 698	

total of 16 correlations (8 MCPA-based matrices correlated with each of the two regions 699	
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that contribute to each MCPA). 13 out of the 16 correlations were negative, many 700	

showing large negative correlation coefficients (see Table 2 for details, mean Spearman’s 701	

rho = -0.415, SD = 0.364). In other words, categories that were relatively easy to decode 702	

based on the activity within regions using MVPA were relatively more difficult to decode 703	

based on the shared activity between that region and the other regions in the visual stream 704	

using MCPA and vice versa (Figure 4). This negative correlation suggests that the 705	

communication between regions represents information that has not been explained 706	

aspects by local computational processes.  707	

 708	

Table 2 Spearman’s rank correlation coefficients between MCPA of ROI1-ROI2 and MVPA of 709	
ROI1 or ROI2 in Subjects 1 and 2. 710	

Subject	1	
ROI1-ROI2	 V1-V2	 V2-V3	 V3-V4	 V4-LO	
ROI1	 0.333	 -0.055	 -0.721	 -0.442	
ROI2	 0.176	 -0.370	 -0.491	 -0.442	
Subject	2	
ROI1-ROI2	 V1-V2	 V2-V3	 V3-V4	 V4-LO	
ROI1	 -0.539	 -0.758	 -0.782	 -0.539	
ROI2	 -0.855	 -0.794	 -0.418	 0.055	
 711	
 712	
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	713	

Figure 4  MCPA and MVPA results for fMRI categorical data. RSA results based on MCPA 714	
and MVPA for V1, V2, V3, V4, and LO from Subjects 1 and 2. Categories: A-animals, B-715	
buildings, H-humans, S-natural scenes, T-textures. Row 1: RSA based on MCPA for V1-V2, V2-716	
V3, V3-V4, and V4-LO of Subject 1, each entry represents the classification accuracy between 717	
the corresponding categories; Row 2: RSA based on MVPA for V1, V2, V3, V4, and LO of 718	
Subject 1, each entry represents the classification accuracy between the corresponding categories; 719	
Row 3: RSA based on MCPA for V1-V2, V2-V3, V3-V4, and V4-LO of Subject 2, each entry 720	
represents the classification accuracy between the corresponding categories. Row 4: RSA based 721	
on MVPA for V1, V2, V3, V4, and LO of Subject 2, each entry represents the classification 722	
accuracy between the corresponding categories. (chance level: accuracy = 50%).  723	
 724	

 725	

 726	

 727	

 728	

 729	
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Comparing MCPA to PPI 730	

To demonstrate the dominance of MCPA over classical univariate methods, we 731	

applied PPI to the same data to analyze categorical effective analysis between 732	

neighboring areas. As a comparison, 80 different pairs of categories (10 pairs of 733	

categories * 4 pairs of regions * 2 subjects) were analyzed using both PPI and MCPA. 734	

4/80 PPI results were significant with p < 0.05 (uncorrected), while 13/80 MCPA results 735	

were significant with p < 0.05 (uncorrected). As a result, the number of significant 736	

MCPA results is significantly larger than the number of significant PPI results (p < 0.01, 737	

permutation test).  Note that it is not clear how many of these 80 different pairs of 738	

categories are expected to be classifiable given that the regions examined are not 739	

category sensitive, other than LO. Thus, it is not clear if 13/80 is close to the number of 740	

category pairs that would be classifiable with perfect data or if this is a low percentage of 741	

that number, but the key point in the context of validating MCPA is that MCPA is more 742	

sensitive than univariate (PPI) methods. 743	

 744	

Single face identity classification of OFA-FFA interactions using MCPA 745	

To further assess its performance on electrophysiological data, MCPA was 746	

applied on intracranial electroencephalography (iEEG) data recorded from OFA and FFA 747	

in one human epileptic patient during a visual perception task (see Figure 5a for the 748	

electrode locations). MCPA was applied in the classification between each possible pair 749	

of faces. Previous studies on the timecourse of face individuation (Ghuman et al., 2014) 750	

have demonstrated that the 250-450 ms time window is critical for the processing of face 751	

individuation information. For MCPA, as shown in Figure 5b, with a chance level of d’ = 752	
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0 and corresponding accuracy = 50%, the classification accuracy was significantly above 753	

chance level across that time window (averaged d’ = 0.14, mean classification accuracy 754	

52.7%, p < 0.01, permutation test). The CCA weights for the FFA and OFA are plotted in 755	

Figure 5c, showing that 15-30 Hz in FFA and 25-40 Hz in OFA contributed most 756	

strongly to their interaction in response to individual faces, suggesting that there may be a 757	

degree of cross-frequency coupling involved in the OFA-FFA coding for faces. Using 758	

MVPA, classification accuracy was significantly above chance level across that time 759	

window in FFA (averaged d’ = 0.42, mean accuracy 58%, p < 0.01, permutation test), 760	

replicating previous reports (Ghuman et al., 2014), classification accuracy was also above 761	

chance level across that time window in OFA (averaged d’ = 0.13, mean accuracy 52.6%, 762	

p < 0.05, permutation test). In the early time window (50 – 250 ms), MCPA did not show 763	

significant classification accuracy (averaged d’ = 0.116, mean accuracy 51.6%, p > 0.1, 764	

permutation test). 765	

As a control analysis, we took a contact outside of the fusiform gyrus that did not 766	

show face sensitivity and performed the same analysis between the control contact and 767	

the OFA and FFA contacts. As shown in Figure 5b, the averaged d’ of MCPA between 768	

the control contact and both the OFA and FFA contacts was not significant above chance 769	

level (d’ = 0.074 for control & FFA, accuracy = 51.2%, d’ = 0.012 for control & OFA, 770	

accuracy = 50.3%, both p > 0.1, permutation test). 771	

With the caveat that the effect size is small, the results support the hypothesis 772	

individual level face information is represented in the OFA-FFA interaction pattern. 773	

 774	
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	775	

Figure 4 iEEG experiments and MCPA results.  (a) Location of the electrodes of interest. The 776	
blue dot corresponds to the location of the FFA contact while the red dot corresponds to the 777	
location of the OFA contacts. (b) MCPA applied between (1) the OFA and FFA channels, (2) the 778	
FFA channel and the control channel, (3) the OFA channel and the control channel. The mean d’ 779	
of pairwise face classification over all 2415 pair of faces across the 200-500 ms timewindow after 780	
stimulus onset is plotted. * p < 0.01, permutation test. (c) Averaged absolute loading weights in 781	
the functional connectivity model of MCPA for OFA and FFA across the frequency spectrum 782	
during the time window of 250-450 ms after stimulus onset. (chance level: d’ = 0, accuracy = 783	
50%) 784	
 785	

  786	
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Discussion 787	

This paper presents a novel method to assess the information represented in the 788	

patterns of interactions between two neural populations. MCPA works by learning the 789	

mapping between the activity patterns from the populations from a training data set, and 790	

then classifying the neural communication pattern using these maps in a test data set. 791	

Simulated data demonstrated that MCPA was sensitive to information represented in 792	

neural interaction for realistic SNR ranges. Furthermore, MCPA is only sensitive to the 793	

discriminant information represented through different patterns of interactions 794	

irrespective of the information encoded in the local populations. Applying this method to 795	

fMRI data demonstrated that the multivariate connectivity patterns between areas along 796	

the visual stream represent information about individual natural images. MCPA-based 797	

RSA showed that, at the category level, the representational structure of the interaction 798	

between regions is negatively correlated to the structure within each region. Furthermore, 799	

MCPA was used to test hypotheses from the HMAX model regarding the computational 800	

operation that transforms the representation between regions along the visual processing 801	

pathway. Finally, as an example with electrophysiological data, applying MCPA to iEEG 802	

data showed that the multivariate connectivity pattern between OFA and FFA represents 803	

information at the level of individual faces. 804	

 805	

MCPA as assessing adaptive processing 806	

 Significant discrimination within each population and significant functional 807	

connectivity between them is not sufficient to produce MCPA and indeed local 808	

classification within each population is not even necessary (Figures 2a and 2e 809	
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respectively). MCPA requires the pattern of connectivity (linear correlations) between the 810	

two populations to vary across the different conditions. In other words, MCPA is 811	

sensitive to both the degree of functional connectivity in the conditions and how distinct 812	

the mappings are across conditions. As an example, if the two populations interact, but 813	

the interaction behaves like a passive linear filter, mapping the activity between the 814	

populations in a similar way in all conditions, MCPA would not be sensitive to the 815	

interaction because the mapping does not change (Figure 2e). Instead, MCPA is more 816	

akin to testing for non-constant filtering or distributed, interactive computation that 817	

behaves as a non-linear process where the nature of the interaction adapts as a factor of 818	

the information that is being processed. Recent studies demonstrate that neural 819	

populations in perceptual areas alter their response properties based on context, task 820	

demands, etc. (Gilbert and Li, 2013). These modulations of response properties suggest 821	

that lateral and long-distance interactions are adaptive and dynamic processes responsive 822	

to the type of information being processed. MCPA provides a platform for examining the 823	

role of interregional connectivity patterns in this adaptive process. Indeed, MCPA can be 824	

interpreted as testing whether distributed computational “work” is being done in the 825	

interaction between the two populations (Friston et al., 1997) and the interaction does not 826	

just reflect a passive relay of information between two encapsulated modules (Fodor, 827	

1983).  828	

Passive linear filters do not allow for information to be added to the 829	

representation through computational work being done in the interaction between 830	

regions. Sensitivity to this type of computation is a central appeal of fully non-linear 831	

models of neural representation and neural interactions, such as deep neural network 832	
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approaches. However, these approaches often require tens of thousands or even millions 833	

of trials before they achieve good performance (Goodfellow et al., 2017), which is 834	

impractical for most neuroscientific applications. MCPA is not sensitive to multivariate 835	

non-linear interactions within conditions, but is sensitive to multivariate non-linear 836	

relationships between the interregional interaction pattern and the conditions. This is 837	

effectively a piecewise linear approximation of the underlying nonlinear function relating 838	

the condition space to the interaction pattern between regions. This restriction relative to 839	

deep neural network and other non-linear function approximation approaches allows 840	

MCPA to perform well with reasonable numbers of trials (10s of trials in our examples), 841	

which is critical for being practically useful in neuroscience. Thus, one strength of 842	

MCPA is the ability to capture some key aspects of non-linear neural computations 843	

without requiring an impractical amount of data. 844	

 845	

MCPA and representation space 846	

In addition to allowing one to infer whether distributed computational work is 847	

being done in service of information processing, MCPA provides a platform for assessing 848	

its representational structure (Haxby et al., 2014). Much as MVPA has been used in 849	

representational similarity analyses to measure the structure of the representational space 850	

at the level of local neural populations (Edelman et al., 1998; Kriegeskorte, 2011; 851	

Kriegeskorte and Kievit, 2013), MCPA can be used to measure the structure of the 852	

representational space at the level of network interactions. Specifically, the 853	

representational geometry of the interaction can be mapped in terms of the similarity 854	

among the multivariate functional connectivity patterns corresponding to the brain states 855	
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associated with varying input information. The representational structure can be 856	

compared to behavioral measures of the structure to make brain-behavior inferences and 857	

assess what aspects of behavior a neural interaction contributes to. It can also be 858	

compared to models of the structure to test theoretical hypotheses regarding the 859	

computational role of the neural interaction (Kriegeskorte, 2011; Kriegeskorte et al., 860	

2008).  By comparing the representational space in models to the neural representation, 861	

one can assess how well these models approximate the neural representation in both 862	

absolute and relative terms. Much the way MVPA-based RSA analyses have been used to 863	

examine these models at the level of individual brain regions (Kriegeskorte et al., 2008), 864	

RSA analyses can be used to assess how well the representation inferred by these models’ 865	

transfer functions fit the representation measured in the brain using MCPA.  866	

The MCPA-based RSA analysis presented here relating the representational space 867	

derived from the interaction between regions of the visual processing stream to the 868	

transformation operations in HMAX is a concrete example of how MCPA can be used to 869	

test models of how representations are transformed between regions. This example also 870	

helps illustrate the underlying hypothesis being tested by MCPA: that there is a non-871	

constant linear function that relates how the transformation of the activity between 872	

regions changes with respect to the experimental condition. A non-constant linear 873	

function is analogous to a local linear approximation of a non-linear function, as we have 874	

seen in the example of HMAX. The existence of this non-constant linear function is what 875	

allows for information to be added to the representation through distributed 876	

computational work. By comparing the MCPA-based representational space to models of 877	

this function, we can gain insight into what this transformation function might be. For 878	
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example, in the case of the S1-C1 transformation HMAX, this function is a local, non-879	

linear max-pooling operation and in the case of the S2-C2 operation it is a more global, 880	

non-linear max-pooling operation (Riesenhuber and Poggio, 1999). Furthermore, this is 881	

why MCPA could not be compared to the transformation between the C1 and S2 layers 882	

of the HMAX model because the transformation between those layers is a passive filter 883	

operation, e.g. a trivial, constant linear function relating the between layer transformation 884	

to the stimulus condition. This example suggests one mechanism by which a network 885	

with fixed structural connectivity can give rise to adaptive communication, namely 886	

through a non-linear transformation operation that are adaptive in a linear sense. In 887	

addition to testing specific hypothesis-driven transformation operations, such as the ones 888	

in HMAX, more data-driven models of the transformation operations, such as ones in 889	

deep neural network models (Yamins et al., 2014), could also be tested using the MCPA-890	

based RSA approach. 891	

 892	

Relationship between MCPA and other functional connectivity/multivariate methods 893	

These two properties of MCPA, 1) being able to assess distributed computational 894	

processing rather than just whether or not areas are communicating and 2) being able to 895	

determine the representational structure of the information being processed, set MCPA 896	

apart from previously proposed functional connectivity methods. In these previous 897	

methods the functional connectivity calculation is performed separately from the 898	

classification calculation. Specifically, either functional connectivity is first calculated 899	

using standard methods, then a model is built on the population of connectivity values 900	

and this model is tested using classification approaches (Finn et al., 2015; Richiardi et al., 901	
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2011; Rosenberg et al., 2016; Shirer et al., 2012; Wang et al., 2015) or the model is first 902	

built on the activity in each region and tested using classification approaches and the 903	

classification performance is correlated (Coutanche and Thompson-Schill, 2013; 904	

Kriegeskorte and Kievit, 2013). These methods are very useful for assessing how 905	

differences in large-scale patterns of connectivity relate to individual subject 906	

characteristics (e.g. connectome fingerprinting) in the first case and comparing the 907	

representational structure between regions in the second case. In contrast, in MCPA the 908	

model is the connectivity map and classification is done to directly test the information 909	

contained in these maps. The separation of the connectivity and classification calculations 910	

in other approaches precludes being able to assess distributed computational processes 911	

because these methods are sensitive to passive information exchange between 912	

encapsulated modules, as described above, and thus conflate passive and adaptive 913	

communication. Critically, they do not specifically probe how connectivity patterns 914	

change as a factor of condition or state, as is required to efficiently perform the 915	

representational similarity analysis in a practical manner and decode how the information 916	

processed in the interaction is encoded and organized. As a concrete example, these 917	

previous methods would not be able to compare the representational structure of the 918	

neural interaction between regions to the structure from a computational model, as was 919	

done here with fMRI.  920	

MCPA can be roughly considered a multivariate extension of PPI with the 921	

addition of a prediction and classification framework. Compared to PPI, which is 922	

univariate, MCPA allows one to exploit the multivariate space of interaction patterns. As 923	

a result, MCPA is sensitive to aspects of information coded in interregional interactions 924	
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that PPI may not be able to detect (Norman et al., 2006), for example in event-related 925	

fMRI designs where PPI is known to lack statistical power (O'Reilly et al., 2012). Indeed, 926	

in the fMRI data presented here, PPI was no better than chance in detecting interregional 927	

interactions at the visual category level, whereas MCPA was significantly better than 928	

chance. Much the way MVPA allows one to go beyond ANOVAs/t-tests in a single 929	

area/population (e.g. single trial classification, RSA, complex model testing), MCPA 930	

allows one to go beyond PPI and do these types of analyses at the level of the shared 931	

activity between regions. 932	

The specific instantiation of MCPA presented here treats connectivity as a bi-933	

directional linear mapping between two populations. However, the MCPA framework 934	

could be easily generalized into more complicated cases. For example, instead of using 935	

correlation-based methods like CCA, other directed functional connectivity algorithms, 936	

such as Granger causality based on an autoregressive framework, potentially using partial 937	

CCA for the time-lagged autoregressive step, could be used to examine directional 938	

interactions. This would allow one to examine time-lagged multivariate connectivity 939	

patterns to infer directionality. Additionally, kernel methods, such as kernel 940	

CCA(Hardoon et al., 2004), or deep learning methods, such as deep CCA(Andrew et al., 941	

2013), could be applied to account for non-linear interactions. Another possible and more 942	

general framework would be to use non-parametric functional regression method to build 943	

a functional mapping between the two multidimensional spaces in the two populations. 944	

MCPA can also be expanded to look at network-level representation by implementing the 945	

multiset canonical correlation analysis, wherein the cross-correlation among multiple sets 946	

of activity patterns from different brain areas is calculated (Kettenri.Jr, 1971). MCPA 947	
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could be used with a dual searchlight approach to examine whole brain communication 948	

(Kriegeskorte et al., 2006). Also, MCPA could be adapted by optimizing the CCA to find 949	

the connectivity maps that uniquely describe, or at least best separate, the conditions of 950	

interest. Furthermore, both with and without these modification, the framework of MCPA 951	

may have a number of applications outside of assessing the representational content of 952	

functional interactions in the brain, such as detecting the presence of distributed 953	

processing on a computer network, or examining genetic or proteomic interactions. 954	

MCPA is used here with fMRI BOLD signals and iEEG signal, but it can be applied to 955	

nearly any neural recording modality, including scalp electroencephalography, 956	

magnetoencephalography, multiunit firing patterns, single unit firing patterns, spike-field 957	

coherence patterns, to assess the information processed by cross-frequency coupling, etc. 958	

 959	

Implication from MCPA results 960	

One caveat with the MCPA results with real data presented here is that many of 961	

the effect sizes are small. One likely reason for this is that for the decoding of individual 962	

images in fMRI and faces in iEEG the number of trials per image was very small (13 for 963	

individual images in fMRI and 15 for individual faces in iEEG). Despite the small 964	

number of trial, the classification accuracy is roughly on a par with previous exemplar-965	

level individuation classification results using fMRI and iEEG (Ghuman et al., 2014; 966	

Nestor et al., 2011; Said et al., 2010; Skerry and Saxe, 2014). Furthermore, the HMAX-967	

MCPA correlation is roughly on par with previously reported correlations between 968	

HMAX and single unit activity from non-human primates (Khaligh-Razavi and 969	

Kriegeskorte, 2014; Yamins et al., 2013). Given a larger number of trials, MCPA 970	
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classification performance should improve. The classification performance seen here can 971	

be considered a “worst case scenario” to some extent given the low number of trials and 972	

yet performance still was not far below what has been previously reported using 973	

multivariate classification on these types of data. Nonetheless, the low effect size and 974	

small number of subjects reported here is a strong caveat to the potential neuroscientific 975	

interpretation of the fMRI and iEEG data. 976	

The MCPA results from visual cortex show that the representational space 977	

derived from MCPA was negatively correlated to the representational space derived from 978	

MVPA from either of the local populations. This inverse relationship is consistent with 979	

the idea that the communication between regions represents information that has not been 980	

explained by local computational processes. This is supportive of models that propose 981	

coding for error propagation across the visual processing network (Rumelhart et al., 1986) 982	

or Bayesian models that suggest that visual processing occurs through iterative 983	

prediction-verification processing (Lee and Mumford, 2003). Indeed, some 984	

implementations of this class of models, interactions between regions are thought to code 985	

for prediction errors (Friston, 2010), which would predict the negative correlation seen 986	

here. More generally, these results suggest another mechanism through which a network 987	

with fixed structural connectivity can give rise to adaptive communication, namely 988	

through local or interregional recurrent interactions. With the strong caveat that these 989	

results require replication in more subjects and assessment with paradigms designed to 990	

directly test these hypotheses, this negative correlation is consistent with the hypothesis 991	

that neural interactions code for information not resolved in local computational 992	

processes.  993	
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Additional RSA analysis suggests that the transformation between lower layers of 994	

HMAX correlates with the transformation between lower layers of the ventral visual 995	

stream and the transformation between higher layers of HMAX correlates with the actual 996	

transformation between higher layers of the ventral visual stream. One question is how 997	

the representation between regions of the visual processing stream can correspond to both 998	

prediction error and the HMAX max pooling operation, as found in the two RSA 999	

analyses. One possibility is that these two operations occur at different times during 1000	

visual processing, which are mixed together due to the low temporal resolution of fMRI. 1001	

Indeed, HMAX is designed to model the initial feedforward sweep of visual information 1002	

and the error coding is thought to occur through later recurrent and feedback processing.  1003	

The current prevalent view is that face perception is mediated by a distributed 1004	

network with multiple brain areas including the OFA and FFA. Structural and functional 1005	

connectivity analysis for the core network has shown that FFA is strongly connected to 1006	

OFA (Gschwind et al., 2012; Ishai, 2008; Pyles et al., 2013). While these results suggest 1007	

the hypothesis that face individuation may involve the interaction between these 1008	

populations (and likely other face processing regions), direct evidence for this hypothesis 1009	

has been lacking. Our results here support the hypothesis that individual-level facial 1010	

information is not only encoded by the activity within certain brain populations, but also 1011	

represented through recurrent interactions between multiple populations at a network 1012	

level. This interaction was biased towards frequencies in the Beta and low Gamma bands 1013	

and exhibited a degree of cross-frequency coupling. This analysis indicates that assessing 1014	

cross-frequency interactions between regions is another potential application of MCPA. 1015	

In addition, MCPA showed significant face individuation in approximately the 200 – 500 1016	
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ms time window after stimulus onset, but did not show any significant face individuation 1017	

in the early time window (50 – 200 ms after stimulus onset), which is consistent with a 1018	

previous MVPA study based on iEEG recording from FFA only (Ghuman et al., 2014). 1019	

This suggests that the face individuation process involves temporally synchronized, 1020	

recurrent interactions between OFA and FFA and likely other nodes in the face-1021	

processing network. More broadly, the fMRI and intracranial EEG MCPA results suggest 1022	

that the computational work done in service of visual processing occurs not only on the 1023	

local level, but also at the level of distributed brain circuits.  1024	

 1025	

Conclusion 1026	

Previously, multivariate pattern analysis methods have been used to analyze the 1027	

sensitivity to information within a certain area and functional connectivity methods have 1028	

been used to assess whether or not brain networks participate in a particular process. 1029	

With MCPA, the two perspectives are merged into one algorithm, which extends 1030	

multivariate pattern analysis to enable the detailed examination of information sensitivity 1031	

at the network level. Thus, the introduction of MCPA provides a platform for examining 1032	

how computation is carried out through the interactions between different brain areas, 1033	

allowing us to directly test hypotheses regarding circuit-level information processing. 1034	
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Supplemental Materials 1190	

IEEG data 1191	

Stimuli 1192	

In the localizer experiment, 180 images of faces (50% male), bodies (50% male), 1193	

words, hammers, houses, and phase scrambled faces were used as a functional localizer. 1194	

Each category contained 30 images. Phase scrambled faces were created in Matlab by 1195	

taking the 2-dimensional spatial Fourier spectrum of each of the face images, extracting 1196	

the phase, adding random phases, recombining the phase and amplitude, and taking the 1197	

inverse 2-dimensional spatial Fourier spectrum. Each image was presented in 1198	

pseudorandom order and repeated once in each session. 1199	

Faces in the individuation experiment were taken from the Karolinska Directed 1200	

Emotional Faces stimulus set (Lundqvist, 1998). Frontal views and 5 different facial 1201	

expressions (happy, sad, angry, fearful, and neutral) from all 70 faces (50% male) in the 1202	

database were used, which yielded a total of 350 face images, each presented once in 1203	

random order during a session. The patient participated in a total of 3 sessions. 1204	

All stimuli were presented on an LCD computer screen placed approximately 2 1205	

meters from participants’ heads.  1206	

 1207	

Experimental paradigms 1208	

 In the localizer experiment, each image was presented for 900 ms with 900 ms 1209	

inter-trial interval during which a fixation cross was presented at the center of the screen 1210	

(~ 10˚ x 10˚of visual angle). At random, 25% of the time an image would be repeated. 1211	

Participants were instructed to press a button on a button box when an image was 1212	
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repeated (1-back). Only the first presentations of repeated images were used in the 1213	

analysis. 1214	

In the individuation experiment, each face was presented for 1500 ms with 500 1215	

ms inter-trial interval during which a fixation cross was presented at the center of the 1216	

screen. Faces subtended approximately 5 degrees of visual angle in width. Subjects were 1217	

instructed to report whether the face was male or female via button press on a button box. 1218	

 Paradigms were programmed in MatlabTM using Psychtoolbox and custom written 1219	

code. 1220	

 1221	

Data preprocessing 1222	

The electrophysiological activity in OFA and FFA were recorded simultaneously 1223	

using iEEG electrodes at 1000 Hz. They were subsequently bandpass filtered offline from 1224	

1-170 Hz using a fifth order Butterworth filter to remove slow and linear drift, the 180 Hz 1225	

harmonic of the line noise, and high frequency noise. The 60 Hz line noise and the 120 1226	

Hz harmonic noise were removed using DFT filter. To reduce potential artifacts in the 1227	

data, trials with maximum amplitude 5 standard deviations above the mean across the rest 1228	

of the trials were eliminated. In addition, trials with a change of more than 25 µV 1229	

between consecutive sampling points were eliminated. These criteria resulted in the 1230	

elimination of less than 1% of trials. 1231	

As the last step of the data preprocessing, we extracted wavelet features using 1232	

Morlet wavelets. The number of cycles of the wavelet was set to be 7. The entire epoch 1233	

length of the data was 1500ms (-500 ~ 1000 ms relative to stimulus onset). To avoid 1234	

numerical issues in MATLAB, the lowest frequency was set at 7 Hz. The wavelet 1235	
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features were estimated using FieldTripTM toolbox. Finally, we took all the wavelet 1236	

features at 7 - 100 Hz, with 1 Hz steps, at every 10 ms as features, which yielded a 94-1237	

dimensional feature vector at every time point. All the wavelets were normalized to the 1238	

baseline by subtracting the mean value and divided by the standard deviation of the data 1239	

from 350ms to 50ms before stimulus onset. 1240	

 1241	

Electrode selection 1242	

Face sensitive electrodes were selected based on anatomical and functional 1243	

considerations. Electrodes of interest were restricted to those that were located in or near 1244	

the fusiform gyrus or inferior occipital cortex. In addition, MVPA was used to 1245	

functionally select the electrodes that showed sensitivity to faces, comparing to other 1246	

conditions in the localizer experiment. Specifically, electrodes were selected such that 1247	

their peak 6-way classification d’ score (see below for how this was calculated) exceeded 1248	

1 (p < 0.001 based on a permutation test, as described below) and the event related 1249	

potential (ERP) for faces was larger than the ERP for the other non-face object 1250	

categories.  1251	

 There were 12 contacts on a depth electrode on the ventral temporal lobe 1252	

extending along the anterior-posterior axis. Among all the contacts, only three (the 1st, 6th 1253	

and 7th contacts, see figure 3a for the location of these contacts) satisfied the criterion 1254	

described above (see Figure S1 for d’ timecourses from all contacts on the depth 1255	

electrode). The first contact was near the mid-fusiform gyrus while the other two were 1256	

near posterior end of the fusiform gyrus/anterior end of the inferior occipital cortex. 1257	

Hence we used the data from the first electrode as FFA signal and the averaged data 1258	
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across the 6th and 7th electrodes as the OFA signal (see Figure S2 for averaged ERP data 1259	

in the two areas). The post-operative structural MRI scan did not allow us to carefully 1260	

distinguish the precise localization of the “OFA” electrodes and it may be that these 1261	

electrodes are in fact in the posterior fusiform and properly labeled “FFA-1” according to 1262	

the recent nomenclature introduced by Weiner et al. (Weiner et al., 2010). However, 1263	

considering OFA and FFA-1 are contiguous with one another and it has not been 1264	

determined what, if any, functional distinction there is between the two, we use “OFA” 1265	

for the label of the electrodes out of convenience. 1266	

 1267	

Examining OFA-FFA coding for individual faces using MCPA 1268	

MCPA Analysis 1269	

MCPA was applied to classify the OFA-FFA connectivity for each possible pair 1270	

of faces (total of 2415 pairs). For each specific pair of faces, averaged wavelet features 1271	

within a 50 ms time window were used as features in MCPA. Principal Component 1272	

Analysis (PCA) was used to reduce the dimensionality from 94 to P, where P 1273	

corresponds to the number of PCs that capture 95% of variation in the data, the typical 1274	

value of P is around 7~8. Leave-one-trial-out cross-validation was used in order to 1275	

estimate the classification accuracy. This procedure was repeated for all 2415 pairs and 1276	

all time windows slid with 10 ms step between 0 and 600ms after stimulus onset. Similar 1277	

to previous simulations, d’ was used to quantify the performance of MCPA. 1278	

 Permutation test was used to determine the significance of the d’ timecourse of 1279	

MCPA (Maris and Oostenveld, 2007). During each permutation, the condition labels of 1280	

all the trials were randomly permuted and the same procedure as described above was 1281	
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used to calculate the timecourse of d’ for each permutation. The permutation was 1282	

repeated for a total of 1000 times. The mean d’ during 200-500 ms of each permutation 1283	

was used as the test statistic and the null distribution of the test statistic was estimated 1284	

using the histogram of the permutation test. The time window 200-500 ms was chosen 1285	

based on the fact that the sensitivity of facial identity was only presented in OFA and 1286	

FFA roughly 200 -500 ms after stimulus onset. (Ghuman et al., 2014) 1287	

 1288	

Testing significance of CCA models 1289	

The significance of MCPA relies on two factors: the presence of functional 1290	

connectivity and the discriminant information in the connectivity patterns. Both are 1291	

necessary conditions for the significance of MCPA. Here we would like to evaluate the 1292	

significance of the CCA models in order to further support the MCPA results.  1293	

For categorical fMRI data, we have enough repetitions to perform parametric test. 1294	

We directly performe significance test with Wilk’s lambda, and the interactions between 1295	

all 4 pairs of regions for all 5 categories are significant in both subjects (p < 1e-5 for all 1296	

cases). 1297	

For the single image case in fMRI, since for each condition we have only 13 1298	

repetitions, it is not reliable to directly use Wilk’s lambda and the Chi-square 1299	

approximation. Therefore, we use permutation test and compute the averaged canonical 1300	

correlation across all conditions as the test statistic. In all pair of ROIs in both subjects, 1301	

we have p < 0.01 with 1000 permutations.  1302	

Similarly, for face individuation in iEEG data, we also use permutation test and 1303	

compute the averaged canonical correlation across all conditions as the test statistic. As a 1304	
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result, the canonical correlation between FFA and OFA electrodes are significant with p 1305	

< 0.01 based on 1000 permutations. 1306	

	1307	
	1308	
Reference:	1309	
	1310	
Ghuman AS, Brunet NM, Li Y, Konecky RO, Pyles JA, Walls SA, Destefino V, Wang 1311	

W, Richardson RM (2014) Dynamic encoding of face information in the human 1312	

fusiform gyrus. Nat Commun 5:5672. 1313	

Lundqvist DF, Anders; Öhman, A (1998) The Karolinska directed emotional faces 1314	

(KDEF). CD ROM from Department of Clinical Neuroscience, Psychology 1315	

section, Karolinska Institutet:91-630. 1316	

Maris E, Oostenveld R (2007) Nonparametric statistical testing of EEG- and MEG-data. J 1317	

Neurosci Methods 164:177-190. 1318	

Weiner KS, Sayres R, Vinberg J, Grill-Spector K (2010) fMRI-Adaptation and Category 1319	

Selectivity in Human Ventral Temporal Cortex: Regional Differences Across 1320	

Time Scales. J Neurophysiol 103:3349-3365. 1321	
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 1329	
Figure S1: Single electrode face sensitivity. Time course of face categorical sensitivity 1330	

in each single electrode measured by sensitivity index d’ (mean d’ plotted against the 1331	

beginning of the 100 ms sliding window). The classifier uses time-windowed ERP signal 1332	

from a single electrode (window length = 100 ms) as input features (See Methods for 1333	

details). Horizontal grey line indicates chance level (d’ = 0). The channels are labeled 1-1334	

12 from anterior to posterior. Electrodes were chosen based on the criteria that peak d’ be 1335	

above 1 (p<0.001, channels 1, 6, and 7). Channel number 1 was used as the FFA 1336	

electrode and channels 6 and 7 were used for the OFA electrodes based on their 1337	

anatomical locations. 1338	
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 1340	
Figure S2: Face selectivity in FFA and OFA. Averaged ERP response recorded from 1341	
FFA and OFA contacts for each category during the localizer task. The colored area 1342	
corresponds to the standard error. 1343	
	1344	
 1345	
 1346	
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