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Abstract 
 
What information is represented in distributed brain circuit interactions is unknown due 

to the lack of multivariate methods for decoding the representational content of 

interregional neural communication. Here we present Multi-Connection Pattern Analysis 

(MCPA), which probes the nature of the representational space contained in the 

multivariate functional connectivity pattern between neural populations. MCPA works by 

learning mappings between the activity patterns of the populations as a factor of the 

information being processed. These maps are used to predict the activity from one neural 

population based on the activity from the other population. Successful MCPA-based 

decoding indicates the involvement of distributed computational processing and provides 

a framework for probing the representational structure of the interaction. Simulations 

demonstrate the efficacy of MCPA in realistic circumstances. Applying MCPA to fMRI 

data shows that interactions between visual cortex regions are sensitive to information 

that distinguishes individual natural images, suggesting that image individuation occurs 

through interactive computation across the visual processing network. MCPA-based 

representational similarity analyses (RSA) are used to test hypotheses regarding 

information transformation between regions of the visual processing network. These 

results support models of error coding in interactions among regions of the network. 

Further RSA analyses relate the non-linear information transformation operations 

between layers of a computational model (HMAX) of visual processing to the 

information transformation between regions of the visual processing network. Thus, 

MCPA can be used to assess the information represented in the coupled activity of 
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interacting neural circuits and probe the underlying principles of information 

transformation between regions. 
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Significance Statement 

Information is represented in the brain by the coordinated activity of neurons at both the 

regional level and the level of large-scale, distributed networks. Multivariate methods 

from machine learning have advanced our understanding of the representational structure 

of local information coding, but the nature of distributed information representation 

remains unknown. Here we present a novel method that integrates multivariate 

connectivity analysis with machine learning classification techniques that can be used to 

decode the representational structure of neural interactions. This method is used to probe 

the representational structure of the interaction between regions of visual cortex and 

relate this structure to a computational model of visual processing. Thus, this work 

provides a framework to assess the representational content of circuit-level processing. 
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\body 

Introduction 

Since at least the seminal studies of Hubel and Wiesel (1) the computational role 

that neurons and neural populations play in processing has defined, and has been defined 

by, how they are tuned to represent information. The classical approach to address this 

question has been to determine how the activity recorded from different neurons or neural 

populations varies in response to parametric changes of the information being processed. 

Single unit studies have revealed tuning curves for neurons from different areas in the 

visual system responsive to features ranging from the orientation of a line, shapes, and 

even high level properties such as properties of the face (1-3). Multivariate methods, 

especially pattern classification methods from modern statistics and machine learning, 

such as multivariate pattern analysis (MVPA), have gained popularity in recent years and 

have been used to study neural population tuning and the information represented via 

population coding in neuroimaging and multiunit activity (4-11). These methods allow 

one to go beyond examining involvement in a particular neural process by probing the 

nature of the representational space contained in the pattern of population activity (12-

14). 

Neural populations do not act in isolation, rather the brain is highly 

interconnected and cognitive processes occur through the interaction of multiple 

populations. Indeed, many models of neural processing suggest that information is not 

represented solely in the activity of local neural populations, but rather at the level of 

recurrent interactions between regions (15-17). However previous studies only focused 

on the information representation within a specific population (3, 4, 10, 11, 18, 19), as no 
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current multivariate methods allow one to directly assess what information is represented 

in the pattern of functional connections between distinct and interacting neural 

populations. Such a method would allow one to assess the content and organization of the 

information represented in the neural interaction. Thus, it remains unknown whether 

functional connections passively transfer information between encapsulated modules (20) 

or whether these interactions play an active computational role in processing.  

Univariate methods that go beyond assessing the degree of coupling between to 

populations to assess changes in the relationship between the activity as a factor of 

condition also examine active communication between regions. For example the 

psychophysiological interactions (PPI; (21)) and dynamic causal modeling methods (22) 

are sensitive to active interregional communication. However, when compared with 

univariate methods, it has been noted that multivariate methods allow for “more sensitive 

detection of cognitive states,” “relating brain activity to behavior on a trial-by-trial basis,” 

and “characterizing the structure of the neural code” (23). Thus, a multivariate pattern 

analysis method for functional connectivity analysis is critical for decoding the 

representational structure of interregional interactions.  

In this paper, we introduce a multivariate analysis algorithm combining functional 

connectivity and pattern recognition analyses that we term Multi-Connection Pattern 

Analysis (MCPA). MCPA works by learning the discriminant information represented in 

the shared activity between distinct neural populations by combining multivariate 

correlational methods with pattern classification techniques from machine learning in a 

novel way. Much the way that MVPA goes beyond a t-test or ANOVA by building a 

multivariate model of local activity that is then used for single-trial prediction and 
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classification, MCPA goes beyond PPI by building a multivariate connectivity model that 

is then used for single-trial prediction and classification. This single-trial prediction and 

classification makes MCPA distinct from previous connectivity approaches that only 

statistically test the absolute or relative functional connectivity between two populations 

(24-28) and allows for a detailed probe of the representational structure of the interaction. 

The MCPA method consists of an integrated process of learning connectivity 

maps based on the pattern of coupled activity between two populations A and B 

conditioned on the stimulus information and using these maps to classify the information 

representation in shared activity between A and B in test data. The rationale for MCPA is 

that if the activity in one area can be predicted based on the activity in the other area and 

the mapping that allows for this prediction is sensitive to the information being processed, 

then this suggests that the areas are communicating with one another and the 

communication pattern encodes the information being processed. Thus, MCPA 

simultaneously asks two questions: 1) Are the multivariate patterns of activity from two 

neural populations correlated? (i.e. is there functional connectivity?) and 2) Does the 

connectivity pattern adaptively change based on the information being processed? This is 

operationalized by learning a connectivity map that maximizes the multivariate 

correlation between the activities of the two populations in each condition. This map can 

be thought of like the regression weights that transform the activity pattern in area A to 

the activity pattern in area B (properly termed “canonical coefficients” because a 

canonical correlation analysis [CCA] is used to learn the map). These maps are then used 

to generate the predictions as part of the classification algorithm. Specifically, a 

prediction of the activity pattern in one region is generated for each condition based on 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 16, 2016. ; https://doi.org/10.1101/046441doi: bioRxiv preprint 

https://doi.org/10.1101/046441
http://creativecommons.org/licenses/by-nc-nd/4.0/


Li	&	Ghuman	 										Multi-Connection	Pattern	Analysis	 8	

the activity pattern in the other region projected through each mapping. Single trial 

classification is achieved by comparing these predicted activity patterns with the true 

activity pattern (see Figure 1 for illustration). With MCPA single trial classification based 

on multivariate functional connectivity patterns is achieved allowing the nature of the 

representational space of the interaction to be probed.  

We present a number of simulations to validate MCPA for a realistic range of 

signal-to-noise ratios (SNR) and to show that MCPA is insensitive to local information 

processing. We apply MCPA to examine the inter-regional representation for natural 

visual stimuli in visual cortex using functional magnetic resonance imaging (fMRI) data. 

Specifically, we show that the interactions between regions of the visual stream (V1, V2, 

V3, V4, and LO) are sensitive to information about individual natural images. We 

combine MCPA with representational similarity analysis to demonstrate that MCPA can 

be used to evaluate computational models and make inferences regarding the underlying 

neural mechanism of information transferring. These results demonstrate that MCPA can 

be used to probe the nature of representational space resulting from processing distributed 

across neural regions.   
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Results 

Simulations 

We used simulations to test and verify the performance and properties of MCPA 

on synthetic data. Specifically, synthetic data generated based on real fMRI data 

representing neural activity of two distinct populations and the information represented in 

the interaction between those populations was manipulated to construct different testing 

conditions.  

In the first simulation, we evaluated the ability of MCPA to detect information 

represented in the functional connectivity pattern when it was present as a factor of the 

SNR and the number of dimensions of the data. The mean and standard error of the 

sensitivity index (d’) from 100 simulation runs for each particular setup (dimensionality 

and SNR) are shown in Figure 2a. The performance of the MCPA classifier increased 

when SNR or effective dimensionality increased. Classification accuracy saturated to the 

maximum when SNR and number of dimensions were high enough (SNR > 5 dB, 

dimensionality > 10). The performance of MCPA was significantly higher than chance (p 

< 0.01, permutation test) for SNRs above -5 dB for all cases where the dimensionality 

was higher than 2, when the pattern of the multivariate mapping between the activity was 

changed between conditions. It is notable that significant MCPA classification was seen 

despite there being no local information present in either of the two simulated 

populations (p > 0.1 for all cases using MVPA). 

The first control simulation was designed to confirm that when two unconnected 

populations both carry local discriminant information, MCPA would not be sensitive to 

that piece of information. As shown in Figure 2b, MCPA did not show any significant 
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classification accuracy above chance (d’ = 0) as 𝑘 changed. On the other hand, the 

MVPA classifier that only took the data from local activity showed significant 

classification accuracy above chance level and the performance increased as local 

discriminant information increased.  

The second control simulation was designed to test if MCPA would be insensitive 

to changes in local discriminant information when there was constant information coded 

in neural communication. Local discriminant information was injected into the 

populations by varying the ratio of the standard deviation (k) between the two conditions. 

When MVPA was applied to the local activity, increasing classification accuracy was 

seen as k became larger (Figure 2c). This result confirmed that discriminant information 

was indeed encoded in the local activity in the simulation. On the other hand, the 

performance of MCPA did not change with the level of local discriminant information (d’ 

stayed around 1.65 for all cases), demonstrating that MCPA is only sensitive to changes 

in information contained in neural interactions.  

 The final control simulation tested whether MCPA is simply sensitive to the 

presence of functional connectivity between two populations per se or is only sensitive to 

the whether the functional connectivity contains discriminant information. Specifically, 

are local discriminant information in two populations, and a correlation between their 

activity, sufficient for MCPA decoding? It should not be considering that MCPA requires 

that the pattern of the mapping between the populations to change as a factor of the 

information being processed (see Figure 1). For example, the local activity in either or 

both populations could code for the information being processed, but the mapping 

between the activity in each region could be constant and insensitive to the changes in 
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conditions, e.g. the CCA coefficients could be the same. This would be the case if each 

population was an informationally encapsulated module where information transfer 

occurs in the same way regardless of the stimulus being processed or cognitive state. In 

this case, one would not want to infer that distributed processing was taking place 

because the nature of the interregional communication is not sensitive to the computation 

being performed (e.g. the information transfer is passive, rather than reflecting distributed 

computational processing) and all of the information processing is done locally in each 

population. The final control simulation was designed to assess whether MCPA is 

sensitive to the case where two populations communicate, but in a way that would not 

imply distributed computational processing. Specifically, neural activity in areas A and B 

were simulated such that local discrimination was possible in each population and the 

activity of the two populations was correlated, but the interaction between them was 

invariant to the information being processed. Figure 2d shows that in this case MCPA did 

not classify the activity above chance, despite significant correlation between the regions 

and significant local classification (MVPA). Thus, functional connectivity between the 

populations is a necessary, but not sufficient, condition for MCPA decoding. Therefore, 

MCPA is only sensitive to the case where the mapping itself changes with respect to the 

information being processed, which is a test of the presence of distributed neural 

computation. 

Single image classification of visual cortex interactions using MCPA 

 To assess its performance on real neural data, MCPA was applied to Blood-

oxygen-level-dependent (BOLD) fMRI measurements of human occipital visual areas, in 

two subjects (Subject 1 and Subject 2) during passive viewing of 13 repetitions of 120 
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natural images (29-31). MCPA was used for single-trial classification of these images for 

the interactions between V1-V2, V2-V3, V3-V4, and V4-lateral occipital (LO) cortex 

(e.g. 4 total region pairs * 2 subjects; see Figure 5 of  Naselaris et al. (31) for depictions 

of these regions in these subjects). Across the 8 pairs of regions the mean sensitivity 

index (d’) of the single trial classification was 0.405 (SD = 0.094), with all of the pairs 

showing significant classification at p < 0.05 corrected for multiple comparisons. In both 

subjects, MCPA classification accuracy declined going up the classic visual hierarchy. 

For Subject 1, the classification accuracies (d’) were 0.451 (V1-V2), 0.432 (V2-V3), 

0.403 (V3-V4), and 0.333 (V4-LO); for Subject 2, the classification accuracies (d’) were 

0.563 (V1-V2), 0.469 (V2-V3), 0.317 (V3-V4), and 0.274 (V4-LO).    

To assess whether the information represented in the between region interactions 

reflected a distinct computational process or merely reflected the representation in either 

of the individual areas, a representational similarity analysis (RSA) was performed. To 

increase our power, we performed this RSA at the category level (animals, buildings, 

humans, natural scenes, and textures) based on classification accuracy rather than the 

single image level because the dataset contained many more repetitions per category than 

per image (Figure 3). This yielded a total of 16 correlations (8 MCPA-based matrices 

correlated with each of the two regions that contribute to each MCPA). 13 out of the 16 

correlations were negative, many showing large negative correlation coefficients (see 

Table 1 for details, mean Spearman’s rho = -0.415, SD = 0.364). In other words, 

categories that were relatively easy to decode based on the activity within regions using 

MVPA were relatively more difficult to decode based on the shared activity between that 

region and the other regions in the visual stream using MCPA and vice versa (Figure 3). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 16, 2016. ; https://doi.org/10.1101/046441doi: bioRxiv preprint 

https://doi.org/10.1101/046441
http://creativecommons.org/licenses/by-nc-nd/4.0/


Li	&	Ghuman	 										Multi-Connection	Pattern	Analysis	 13	

This negative correlation suggests that the communication between regions represents 

information that has not been explained aspects by local computational processes.  

Comparing MCPA to PPI 

To demonstrate the dominance of MCPA over classical univariate methods, we 

applied PPI to the same data to analyze categorical effective analysis between 

neighboring areas. As a comparison, 80 different pairs of categories (10 pairs of 

categories * 4 pairs of regions * 2 subjects) were analyzed using both PPI and MCPA. 

4/80 PPI results were significant with p < 0.05 (uncorrected), while 13/80 MCPA results 

were significant with p < 0.05 (uncorrected). As a result, with a binomial test, PPI did not 

show significant result on 80 samples (4/80, p = 0.5), while MCPA was significantly 

above chance level (13/80, p < 0.001). 

Using MCPA-based RSA to test models of between-area information transformation 

One important application of MCPA is to evaluate models and test theoretical 

hypotheses regarding the computational operation underlying how representations are 

transformed from one region to another.  MCPA-based RSA can be used to compare the 

representational space derived from the interaction between brain regions to 

representational spaces derived from the transformation of representations in 

computational models. To illustrate this we compare the representational space for 

natural images in the same fMRI dataset described above to the representational space 

derived from the transformation between layers of the HMAX model of the visual 

processing stream (32, 33). HMAX has four layers going from S1 to C1 to S2 to C2 

along the hierarchy. The transformation of the representation between S1 and C1 (S1-C1 

transformation) occurs through a local, non-linear max-pooling operation and the 
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transformation between S2 and C2 (S2-C2 transformation) occurs through a more global 

non-linear max-pooling operation. We compared the representational dissimilarity 

matrices (RDMs) derived from these HMAX transformations to the RDMs derived from 

MCPA between V1-V2, V2-V3, V3-V4, and V4-LO. The transformation between C1 and 

S2 occurs through a passive filtering that does not give rise to an RDM because the 

transformation is effectively the same across all C1 representations.  

As shown in Figure 4, we found that the RDM derived from the S1-C1 

transformation in HMAX correlates with the V2-V3 RDM based upon MCPA of the 

fMRI data (mean Spearman’s rho = 0.053, p < 0.05, permutation test). Furthermore, the 

S1-C1 correlation to V2-V3 was significantly greater (p < 0.05, permutation test) than the 

S2-C2 correlation to V2-V3. The RDM derived from the S2-C2 transformation in HMAX 

correlates with the V4-LO RDM based upon MCPA of the fMRI data (mean Spearman’s 

rho = 0.112, p < 0.001, permutation test). Furthermore, the S2-C2 correlation to V4-LO 

was significantly greater (p < 0.01, permutation test) than the S1-C1 correlation to V4-

LO. Additionally, none of the individual layers in HMAX showed a consistent significant 

correlation with the connectivity-based RDM from MCPA. Taken together, these results 

suggest that the interaction between the lower layers of the neural visual hierarchy 

reflects an operation more like the operation between the lower layers of the model of the 

visual hierarchy than between higher layers of the model. Furthermore, the interaction 

between higher layers of the neural visual hierarchy reflects an operation more like the 

operation between higher layers of the model than between lower layers of the model. 
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Discussion 

This paper presents a novel method to assess the information represented in the 

patterns of interactions between two neural populations. MCPA works by learning the 

mapping between the activity patterns from the populations from a training data set, and 

then classifying the neural communication pattern using these maps in a test data set. 

Simulated data demonstrated that MCPA was sensitive to information represented in 

neural interaction for realistic SNR ranges. Furthermore, MCPA is only sensitive to the 

discriminant information represented through different patterns of interactions 

irrespective of the information encoded in the local populations. Applying this method to 

fMRI data demonstrated that the multivariate connectivity patterns between areas along 

the visual stream represent information about individual natural images. MCPA-based 

RSA showed that, at the category level, the representational structure of the interaction 

between regions is negatively correlated to the structure within each region. Finally, 

MCPA was used to test hypotheses from the HMAX model regarding the computational 

operation that transforms the representation between regions along the visual processing 

pathway. 

 It is worth noting that significant discrimination within each population and 

significant functional connectivity between them is not sufficient to produce MCPA and 

indeed local classification within each population is not even necessary (Figures 2d and 

2a respectively). MCPA requires the pattern of connectivity between the two populations 

to vary across the different conditions. As an example, if the two populations interact, but 

the interaction behaves like a passive filter, mapping the activity between the populations 

in a similar way in all conditions, MCPA would not be sensitive to the interaction 
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because the mapping does not change (Figure 2d). Instead, MCPA is more akin to testing 

for adaptive filtering or distributed, interactive computation where the nature of the 

interaction changes depending on the information that is being processed. Recent studies 

demonstrate that neural populations in perceptual areas alter their response properties 

based on context, task demands, etc. (34). These modulations of response properties 

suggest that lateral and long-distance interactions are adaptive and dynamic processes 

responsive to the type of information being processed. MCPA provides a platform for 

examining the role of interregional connectivity patterns in this adaptive process. Indeed, 

MCPA can be interpreted as testing whether distributed computational “work” is being 

done in the interaction between the two populations (21) and the interaction does not just 

reflect a passive relay of information between two encapsulated modules (20).  

In addition to allowing one to infer whether distributed computational work is 

being done in service of information processing, MCPA provides a platform for assessing 

its representational structure. Much as MVPA has been used in representational similarity 

analyses to measure the structure of the representational space at the level local neural 

populations (12, 13, 35), MCPA can be used to measure the structure of the 

representational space at the level of network interactions. Specifically, the 

representational geometry of the interaction can be mapped in terms of the similarity 

among the multivariate functional connectivity patterns corresponding to the brain states 

associated with varying input information. The representational structure can be 

compared to behavioral measures of the structure to make brain-behavior inferences and 

assess what aspects of behavior a neural interaction contributes to. It can also be 
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compared to models of the structure to test theoretical hypotheses regarding the 

computational role of the neural interaction (35, 36).  

These two properties of MCPA, 1) being able to assess distributed computational 

processing rather than just whether or not areas are communicating and 2) being able to 

determine the representational structure of the information being processed, set MCPA 

apart from previously proposed functional connectivity methods. In these previous 

methods the functional connectivity calculation is performed separately from the 

classification calculation. Specifically, either functional connectivity is first calculated 

using standard methods, then a model is built on the population of connectivity values 

and this model is tested using classification approaches (24, 26-28, 37) or the model is 

first built on the activity in each region and tested using classification approaches and the 

classification performance is correlated (13, 38). These methods are very useful for 

assessing how differences large-scale patterns of connectivity relate to individual subject 

characteristics (e.g. connectome fingerprinting) in the first case and comparing the 

representational structure between regions in the second case. In contrast, in MCPA the 

model is the connectivity map and classification is done to directly test the information 

contained in these maps. The separation of the connectivity and classification calculations 

in other approaches precludes being able to assess distributed computational processes 

because these methods are sensitive to passive information exchange between 

encapsulated modules, as described above, and thus conflate passive and active 

communication. Critically, they do not specifically probe how connectivity patterns 

change as a factor of condition or state, as is required to efficiently perform the 

representational similarity analysis in a practical manner and decode how the information 
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processed in the interaction is encoded and organized. As a concrete example, these 

previous methods would not be able to compare the representational structure of the 

neural interaction between regions to the structure from a computational model, as was 

done here with fMRI.  

MCPA can be roughly considered a multivariate extension of PPI with the 

addition of a prediction and classification framework. Compared to PPI, which is 

univariate, MCPA allows one to exploit the multivariate space of interaction patterns. As 

a result, MCPA is sensitive to aspects of information coded in interregional interactions 

that PPI cannot detect (23), for example in event-related fMRI designs where PPI is 

known to lack statistical power (39). Indeed, in the fMRI data presented here, PPI was no 

better than chance in detecting interregional interactions at the visual category level, 

whereas MCPA was significantly better than chance. Much the way MVPA allows one to 

go beyond ANOVAs/t-tests in a single area/population (e.g. single trial classification, 

RSA, complex model testing), MCPA allows one to go beyond PPI and do these types of 

analyses at the level of the shared activity between regions. 

An important potential use for MCPA is that a MCPA-based RSA can help 

inform models of how representations are transformed between neural populations along 

a processing pathway (14). An increasingly successful approach for evaluating and 

developing computational models of neural processing is by assessing the similarity 

between the representations implied by the models to the one measured in the brain (36), 

e.g. MVPA-based RSA. By comparing the representational space in models to the neural 

representation, one can assess how well these models approximate the neural 

representation in both absolute and relative terms. Much the way MVPA-based RSA 
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analyses have been used to examine these models at the level of individual brain regions 

(36), RSA analyses can be used to assess how well the representation inferred by these 

models’ transfer functions fit the representation measured in the brain using MCPA. The 

MCPA-based RSA analysis presented here relating the representational space derived 

from the interaction between regions of the visual processing stream to the transformation 

operations in HMAX is a concrete example of how MCPA can be used to test models of 

how representations are transformed between regions. This example also helps illustrate 

the underlying hypothesis being tested by MCPA: that there is a non-constant function 

that relates how the transformation of the activity between regions changes with respect 

to the experimental condition. The existence of this non-constant function is what is 

meant by active processing and distributed computational work. By comparing the 

MCPA-based representational space to models of this function, we can gain insight into 

what this transformation function might be. For example, in the case of the S1-C1 

transformation HMAX, this function is a local, non-linear max-pooling operation and in 

the case of the S2-C2 operation it is a more global, non-linear max-pooling operation (32). 

Furthermore, this is why MCPA could not be compared to the transformation between the 

C1 and S2 layers of the HMAX model because the transformation between those layers is 

a passive filter operation, e.g. a trivial, constant function relating the between layer 

transformation to the stimulus condition. This example suggests one mechanism by 

which a network with fixed structural connectivity can give rise to active communication, 

namely through a non-linear transformation operation. In addition to testing specific 

hypothesis-driven transformation operations, such as the ones in HMAX, more data-
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driven models of the transformation operations, such as ones in deep neural network 

models (40), could also be tested using the MCPA-based RSA approach. 

The specific instantiation of MCPA presented here treats connectivity as a bi-

directional linear mapping between two populations. However, the MCPA framework 

could be easily generalized into more complicated cases. For example, instead of using 

correlation-based methods like CCA, other directed functional connectivity algorithms, 

such as Granger causality based on an autoregressive framework, potentially using partial 

CCA for the time-lagged autoregressive step, could be used to examine directional 

interactions. This would allow one to examine time-lagged multivariate connectivity 

patterns to infer directionality. Additionally, kernel methods, such as kernel CCA(41), or 

deep learning methods, such as deep CCA(42), could be applied to account for non-linear 

interactions. Another possible and more general framework would be to use non-

parametric functional regression method to build a functional mapping between the two 

multidimensional spaces in the two populations. MCPA can also be expanded to look at 

network-level representation by implementing the multiset canonical correlation analysis, 

wherein the cross-correlation among multiple sets of activity patterns from different brain 

areas is calculated (43). MCPA could be used with a dual searchlight approach to 

examine whole brain communication (44). Also, MCPA could be adapted by optimizing 

the CCA to find the connectivity maps that uniquely describe, or at least best separate, 

the conditions of interest. Furthermore, both with and without these modification, the 

framework of MCPA may have a number of applications outside of assessing the 

representational content of functional interactions in the brain, such as detecting the 

presence of distributed processing on a computer network, or examining genetic or 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 16, 2016. ; https://doi.org/10.1101/046441doi: bioRxiv preprint 

https://doi.org/10.1101/046441
http://creativecommons.org/licenses/by-nc-nd/4.0/


Li	&	Ghuman	 										Multi-Connection	Pattern	Analysis	 21	

proteomic interactions. MCPA is used here with fMRI BOLD signals, but it can be 

applied to nearly any neural recording modality, including scalp or intracranial 

electroencephalography, magnetoencephalography, multiunit firing patterns, single unit 

firing patterns, spike-field coherence patterns, to assess the information processed by 

cross-frequency coupling, etc. 

The MCPA results from visual cortex show that the representational space 

derived from MCPA was negatively correlated to the representational space derived from 

MVPA from either of the local populations. This inverse relationship is consistent with 

the idea that the communication between regions represents information that has not been 

explained by local computational processes. This is supportive of models that propose 

coding for error propagation across the visual processing network (45) or Bayesian 

models that suggest that visual processing occurs through iterative prediction-verification 

processing (16). Indeed, some implementations of this class of models, interactions 

between regions are thought to code for prediction errors (46), which would predict the 

negative correlation seen here. More generally, these results suggest another mechanism 

through which a network with fixed structural connectivity can give rise to active 

communication, namely through local or interregional recurrent interactions. With the 

strong caveat that these results require replication in more subjects and assessment with 

paradigms designed to directly test these hypotheses, this negative correlation is 

consistent with the hypothesis that neural interactions code for information not resolved 

in local computational processes.  

Additional RSA analysis suggests that the transformation between lower layers of 

HMAX correlates with the transformation between lower layers of the ventral visual 
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stream and the transformation between higher layers of HMAX correlates with the actual 

transformation between higher layers of the ventral visual stream. One question is how 

the representation between regions of the visual processing stream can correspond to both 

prediction error and the HMAX max pooling operation, as found in the two RSA 

analyses. One possibility is that these two operations occur at different times during 

visual processing, which are mixed together due to the low temporal resolution of fMRI. 

Indeed, HMAX is designed to model the initial feedforward sweep of visual information 

and the error coding is thought to occur through later recurrent and feedback processing. 

More broadly, the MCPA results suggest that the computational work done in service of 

visual processing occurs not only on the local level, but also at the level of distributed 

brain circuits.  

 

Conclusion 

Previously, multivariate pattern analysis methods have been used to analyze the 

sensitivity to information within a certain area and functional connectivity methods have 

been used to assess whether or not brain networks participate in a particular process. 

With MCPA, the two perspectives are merged into one algorithm, which extends 

multivariate pattern analysis to enable the detailed examination of information sensitivity 

at the network level. Thus, the introduction of MCPA provides a platform for examining 

how computation is carried out through the interactions between different brain areas, 

allowing us to directly test hypotheses regarding circuit-level information processing. 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 16, 2016. ; https://doi.org/10.1101/046441doi: bioRxiv preprint 

https://doi.org/10.1101/046441
http://creativecommons.org/licenses/by-nc-nd/4.0/


Li	&	Ghuman	 										Multi-Connection	Pattern	Analysis	 23	

Materials and methods 

Overview 

The MCPA method consists of a learning phase and a test phase (as in machine 

learning, where a model is first learned, then tested). In the learning phase, the 

connectivity maps for each condition that characterize the pattern of shared activity 

between two populations is learned. In the test phase, these maps are used to generate 

predictions of the activity in one population based on the activity in the other population 

as a factor of condition and these predictions are tested against the true activity in the two 

populations. Similar to linear regression where one can generate a prediction for the 

single variable A given the single variable B based on the line that correlates A and B, 

MCPA employs a canonical correlation model (a generalization of multivariate linear 

regression) and produces a mapping model for each condition as a hyperplane that 

correlates multidimensional spaces A and B. Thus one can generate a prediction of the 

observation in multivariate space A given the observation in multivariate space B on a 

single trials basis. In this sense, MCPA is more analogous to a machine learning classifier 

combined with a multivariate extension of PPI (21) rather than being analogous to 

correlation-based functional connectivity measures. 

The general framework of MCPA is to learn the connectivity map between the 

populations for each task or stimulus condition separately based on training data. 

Specifically, given two neural populations (referred to as A and B), the neural activity of 

the two populations can be represented by feature vectors in multi-dimensional spaces 

(14). The actual physical meaning of the vectors would vary depending on modality, for 

example spike counts for a population of single unit recordings; time point features for 
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event-related potentials (ERP) or event-related fields; time-frequency features for 

electroencephalography, electrocorticography (ECoG) or magnetoencephalography; or 

single voxel blood-oxygen-level dependent (BOLD) responses for functional magnetic 

resonance imaging.  A mapping between A and B is calculated based on any shared 

information between them for each condition on the training subset of the data. This 

mapping can be any kind of linear transformation, such as any combination of projections, 

scalings, rotations, reflections, shears, or squeezes. 

These mappings are then tested as to their sensitivity to the differential 

information being processed between cognitive conditions by determining if the neural 

activity can be classified based on the mappings. Specifically, for each new test data trial, 

the maps are used to predict the neural activity in one area based on the activity in the 

other area and these predictions are compared to the true condition of the data. The 

trained information-mapping model that fits the data better is selected and the trial is 

classified into the corresponding condition. This allows one to test whether the mappings 

were sensitive to the differential information being represented in the neural interaction in 

the two conditions. 

 

Connectivity Map 

The first phase of MCPA is to build the connectivity map between populations. 

The neural signal in each population can be decomposed into two parts: the part that 

encodes shared information, and the part that encodes non-shared local information 

(including any measurement noise). We assume that the parts of the neural activities that 

represent the shared information in the two populations are linearly correlated (though, 
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this can easily be extended by the introduction of a non-linear kernel). The model can be 

described as follows 

𝑪	~	𝒩 0, 𝑰) ,min 𝑚.,𝑚/ ≥ 𝑑 ≥ 1 

𝑨|𝑪 = 𝑾.𝑪 + 𝑫,𝑫~𝒩 𝝁.,𝜳. ,𝑾. ∈ ℝ=>×),𝜳. ≽ 0 

𝑩|𝑪 = 𝑾/𝑪 + 𝑬, 𝑬~𝒩 𝝁/,𝜳/ ,𝑾/ ∈ ℝ=C×),𝜳/ ≽ 0 

where C is the common activity, D and E are local activities, 𝑚.,𝑚/ are the 

dimensionalities of activity vector in population A and B respectively. Without loss of 

generality, 𝝁. = 𝝁/ = 0 can be assumed. The activity in population A can be 

decomposed into shared activity 𝑾.𝑪 and local activity	𝑫, while activity in B can be 

decomposed into shared activity 𝑾/𝑪 and local activity	𝑬. The shared discriminant 

information only lies in the mapping matrix 𝑾. and 𝑾/ since C always follows the 

standard multivariate normal distribution (though correlation measures that do not 

assume normally distributed data can also be applied with minor modifications to the 

calculation).  

In statistics, canonical correlation analysis (CCA) is optimally designed for such a 

model and estimate the linear mappings (41, 47). In brief, let S be the covariance matrix  

𝑺 = 𝑺.. 𝑺./
𝑺/. 𝑺//

= 𝔼 𝑨
𝑩

𝑨
𝑩

F
 

Therefore 𝑾. and 𝑾/ can be estimated by solving the following eigen problem 

𝑺..GH𝑺./𝑺//GH𝑺/.𝑼. = 𝜌K𝑼.
𝑺//GH𝑺/.𝑺..GH𝑺./𝑼/ = 𝜌K𝑼/

 

and we have 

𝑾. = 𝑺..𝑼.)𝑀H

𝑾/ = 𝑺//𝑼/)𝑀K
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where 𝑼.) and 𝑼/) are the first d columns of canonical directions 𝑼. and 𝑼/, and 𝑀H, 

𝑀K ∈ ℝ)×) are arbitrary matrices such that 𝑴H𝑴K
F = 𝑷), 𝑷) is the diagonal matrix with 

the first d elements of  𝑷 = 𝑼/F𝑺/.𝑼..  

With 𝑾. and 𝑾/, the shared information C can be estimated using its posterior 

mean 𝔼(𝑪|𝑨) and 𝔼(𝑪|𝑩), where 𝔼 𝑪 𝑨 = 𝑴H
F𝑼.F𝑨 and 𝔼 𝑪 𝑩 = 𝑴K

F𝑼/F𝑩. Let 𝑴H =

𝑴K and equate	𝔼(𝑪|𝑨) and 𝔼(𝑪|𝑩), this shared information can be used as a relay to 

build the bidirectional mapping between A and B. Specifically, 𝑩 = 𝑴K
F𝑼/F Q𝑴H

F𝑼.F𝑨 =

𝑼/F
Q𝑼.F𝑨 = 𝑹𝑨 and 𝑨 = 𝑴H

F𝑼.F Q𝑴K
F𝑼/F𝑩 = 𝑼.F

Q𝑼/F𝑩 = 𝑹Q𝑩, where 𝑹 = 𝑼/F
Q𝑼.F𝑨.  

In the first step, the connectivity map is estimated for each condition separately. If 

we have 𝑛H trials in condition 1 and 𝑛K trials in condition 2 in the training set, the training 

data for the two conditions are represented in matrices as 𝑿.
(H), 𝑿/

(H) F
 and 𝑿.

(K), 𝑿/
(K) F

 

respectively, where 𝑿.
(H) ∈ ℝ=>×UV, 𝑿/

(H) ∈ ℝ=C×UV are the population activity for A and 

B under condition 1 respectively, and 𝑿.
(K) ∈ ℝ=>×UW, 𝑿/

(K) ∈ ℝ=C×UW are the population 

activity for A and B under condition 2 respectively. The testing data vector is then 

represented as 𝒙., 𝒙/ F, where 𝒙. ∈ ℝ=> and	𝒙/ ∈ ℝ=C are population activities in A 

and B respectively. Using CCA, the estimations of the mapping matrices with respect to 

different conditions are 𝑹(H) and 𝑹(K).  

To sum up, by building the connectivity map, a linear mapping function R is 

estimated from the data for each condition so that the activity of the two populations can 

be directly linked through bidirectional functional connectivity that captures only the 

shared information. 
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Classification 

The second phase of MCPA is a pattern classifier that takes in the activity from 

one population and predicts the activity in a second population based on the learned 

connectivity maps conditioned upon the stimulus condition or cognitive state. The testing 

data is classified into the condition to which the corresponding model most accurately 

predicts the true activity in the second population. 

The activity from one population is projected to another using the learned CCA 

model, i.e. 𝒙/
(Y) = 𝑼/

Y Q𝑼.
(Y)𝒙𝑨. The predicted projections 𝒙/

(Y) are compared to the real 

observation 𝒙𝑩, and then the testing trial is labeled to the condition where the predicted 

and real data match most closely. Cosine similarity (correlation) is used as the 

measurement of the goodness of prediction. The mapping is bidirectional, so A can be 

projected to B and vice versa. In practice, the similarities from the two directions are 

averaged in order to find the condition that gives maximum average correlation 

coefficient.  

 

Simulated experiment 

To test the performance of MCPA, we used BOLD signal recorded from areas V1 

and V2 to simulate shared and local activity in two populations and tested the 

performance of MCPA on synthetic data as a factor of the number of dimensions in each 

population and signal-to-noise ratio (SNR; Figure 2a). In addition to the MVPA control 

described above, we further evaluated the following three control experiments to 

demonstrate that MCPA is insensitive to the presence or change in the local information. 

In the first control experiment (no functional connectivity, no shared information, varying 
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local information), we used independently sampled random data from area V1 and V2 to 

simulated the case where two populations are totally independent under both conditions, 

but there is local discriminant information in each (Figure 2b). In the second control 

experiment (functional connectivity, constant shared information, varying local 

information), we introduced local discriminant information into population A without 

changing the amount of shared information between populations A and B (Figure 2c). In 

the third control experiment (functional connectivity, no shared information, varying 

local information), we eliminated the information represented in the pattern of interaction, 

but maintained the functional connectivity by keeping the correlation between 

populations invariant with regard to conditions.  

For the first simulation (Figure 2a), we sampled from the BOLD signal recorded 

from area V1 in the visual cortex and used it as the shared activity, and independently 

sampled signal from activity in V1 and V2 as the local unshared activity. (see fMRI 

method described below for experiment details). The shared activity for both conditions 

in population A was drawn from the first d principal components of V1 activity to mimic 

a d-dimensional normal distribution 𝑌.
(Y)~𝒩 0, 𝚺) , for	𝑖 = 1,2, where 𝚺) is a diagonal 

matrix with the jth element in the diagonal as 𝜎bK. The shared activity in population B 

under two different conditions were generated by rotating 𝒀. with different rotation 

matrices separately, 𝑌/
(Y) = 𝐑(Y)𝑌.

(Y), where 𝐑(H) and 𝐑(K) were two d-by-d random 

rotation matrices corresponding to the information mapping under condition 1 and 2 

respectively, and for simplicity, 𝐑(Y) is orthogonal with  𝐑 Y 𝑻𝐑(Y) = 𝐈g. In addition to the 

shared activity, local activity in A and B was randomly drawn from the first d principal 
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components of V1 and V2 activity respectively and multiplied by a factor of 𝜎 to 

simulate white noise 𝑬(Y)~𝒩 0, 𝜎K𝜮) . 

The two important parameters here are the dimensionality d and the variance 𝜎K. 

SNR was used to characterize the ratio between the variance of shared activity and 

variance of local activity, and the logarithmic decibel scale SNR)/ = −10 logHo(𝜎K) was 

used. To cover the wide range of possible data recorded from different brain regions and 

different measurement modalities, we tested the performance of MCPA with d ranging 

from 2 to 25 and SNR ranging from -20 dB to 20 dB (𝜎K ranged from 0.01 to 100). Note 

that each of the d dimensions contain independent information about the conditions 

though have the same SNR. Thus the overall SNR does not change, but the amount of 

pooled information does change with d. For each particular setup of parameters, the 

rotation matrices 𝐑(Y) were randomly generated first, then 200 trials were randomly 

sampled for each condition and evenly split into training set and testing set. MCPA was 

trained using the training set and tested on the testing set to estimate the corresponding 

true positive rate (TPR) and false positive rate (FPR) for the binary classification. The 

sensitivity index d’ was then calculated as 𝑑p = 𝑍 𝑇𝑃𝑅 − 𝑍(𝐹𝑃𝑅), where Z(x) is the 

inverse function of the cdf of standard normal distribution. This process was repeated 100 

times and the mean and standard errors across these 100 simulations were calculated. 

Note that the only discriminant information about the two conditions is the pattern of 

interactions between the two populations, and neither of the two populations contains 

local discriminant information about the two conditions in its own activity. We further 

tested and confirmed this by trying to classify the local activity in populations A and B 

(see below). To avoid an infinity d’ value, with 100 testing trials, the maximum and 
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minimum for TPR or FRP were set to be 0.99 and 0.01, which made the maximum 

possible d’ to be 4.65.  

The MCPA method captures the pattern of correlation between neural activities 

from populations and is invariant to the discriminant information encoded in local 

covariance. To see this, we first take the simulation data described above and apply 

MVPA (naïve Bayes) to each of the two populations separately. Note that in each of the 

two populations, we set the two conditions to have the same mean and covariance. As a 

result, there should be no local discriminant information within any of the two 

populations alone.  

 

Control simulations 

For the first control simulation (Figure 2b), for condition 1, 𝑋.
(H), 𝑋/

(H) were drawn 

independently from the first d principal components of area V1 and area V2; for 

condition 2, 𝑋.
(K), 𝑋/

(K) were drawn independently from the same distribution in the first d 

principal components of area V1 and area V2. Then we changed the local variance in one 

of the conditions. For the features in population A and B under condition 1, we used 

𝑋.
H w
= 𝑘𝑋.

(H) and 𝑋/
H w
= 𝑘𝑋/

(H), where k ranged from 1 to 9. Thus, in both populations, 

the variance of condition 1 was different from the variance of condition 2, and such 

difference would increase as k became larger. Therefore, there was no information shared 

between the two populations under either condition, but each of the population had 

discriminant information about the conditions encoded in the variance for any 𝑘 ≠ 1.  

For the second control simulation (Figure 2c), we fixed the dimensionality at 10 

and SNR at 0 dB (𝜎K = 1) and kept the rotation matrices of different conditions different 
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from each other. As a result, the amount of shared discriminant information represented 

in the patterns of interactions stayed constant. Then we changed the local variance in one 

of the conditions. For the features in population A under condition 1, we used 𝑋.
H w
=

𝑘𝑋.
(H), where k ranged from 1 to 9. Thus, population A, the variance of condition 1 was 

different from the variance of condition 2, and such difference would increase as k 

became larger. According to our construction of MCPA, it should only pick up the 

discriminant information contained in the interactions and should be insensitive to the 

changes in local discriminant information from any of the two populations. 

For the third control simulation (Figure 2d), we introduced local discriminant 

information into the two populations to demonstrate that MCPA is insensitive to the 

presence of constantly correlated local information (figure 2d). We fixed the 

dimensionality at 10 and SNR at 0 dB (𝜎K = 1) and kept the rotation matrices constant 

for different conditions. As a result, the amount of shared discriminant information 

represented in the patterns of interactions was 0. Then we changed the local variance in 

one of the conditions. Then we changed the local variance in one of the conditions. For 

the features in population A and B under condition 1, we used 𝑋.
H w
= 𝑘𝑋.

(H) and 𝑋/
H w
=

𝑘𝑋/
(H), where k ranged from 1 to 9. Thus, in both populations, the variance of condition 1 

was different from the variance of condition 2, and such difference would increase as k 

became larger. Notably, such local information was actually correlated through 

interactions between the populations. However, since the pattern of interaction did not 

vary as the condition changed, there was no discriminant information about the 

conditions represented in the interactions. According to our construction of MCPA, it 

should not pick up any discriminant information in this control case. 
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Examining visual cortex coding for natural images using MCPA  

fMRI methods 

The fMRI dataset was taken from CRCNS.org (30). See (29, 31) for details 

regarding subjects, stimuli, MRI parameters, data collection, and data preprocessing. In 

the experiment, two subjects performed passive natural image viewing tasks while BOLD 

signals were recorded from the brain. The experiment contains two stages: a training 

stage and a validation stage. In the training stage, two separate trials were recorded in 

each subject. In each trial, a total of 1750 images were presented to the subject, which 

yields a total of 3500 presentations of images (3500 = 1750 images * 2 repeats). In the 

validation stage, another 120 images were presented to the subject in 13 repeated trials, 

which yields a total of 1560 presentations (1560 = 120 images * 13 repeats). The single-

trial response for each voxel was estimated using deconvolution method and used for the 

following analysis. The voxels were assigned to 5 visual areas (V1, V2, V3, V4, and LO) 

based on retinotopic mapping data from separate scans (29, 31).  

 

Categorical image classification 

To control for repetition of each individual image and increase the image number 

being used, we used the data from the training stage for the categorical image 

classification. The 1750 images were manually sorted into 8 categories (animals, 

buildings, humans, natural scenes, textures, food, indoor scenes, and manmade objects). 

In order to maintain enough statistical power, only categories with more than 100 images 
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were used in the analysis. As a result, 3 categories (food, indoor scenes, and manmade 

objects) were excluded.  

For each pair of ROIs, namely V1-V2, V2-V3, V3-V4, and V4-LO, MCPA was 

applied to classify the functional connectivity patterns for each possible pair of image 

categories (total of 10 pairs). For each specific pair of categories, BOLD signal from all 

the voxels in the ROIs were used as features in MCPA. Principal Component Analysis 

(PCA) was used to reduce the dimensionality to P, where P corresponds to the number of 

PCs that capture 90% of variation in the data, which yielded between 100-200 PCs. 

Leave-one-trial-out cross-validation was used in order to estimate the classification 

accuracy. This procedure was repeated for all 10 pairs. d’ was used to quantify the 

performance of MCPA. 

 

Single image classification using MCPA 

 For single image classification the 13 repetitions of each individual image from 

the validation stage data was used.  

For each pair of ROIs, namely V1-V2, V2-V3, V3-V4, and V4-LO, MCPA was 

applied to classify the functional connectivity patterns for each possible pair of images 

(total of 7140 pairs). For each specific pair of categories, BOLD signal from all the 

voxels in the ROIs were used as features in MCPA. Considering the limited number of 

trials in each condition, PCA was first used with the data from the training stage to 

reduce the representation dimensionality to 10. Because the top PCs that explain most 

variations may contain variance not related to the stimuli, the 10 PCs were selected from 

the top 50 PCs, based on maximizing the between-trial correlations for single images. As 
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a result, we reduced the dimensionality of the validation data from more than 1000 to 10 

based on the training dataset, which was completely independent from all the validation 

data that was used in the learning and testing stages of MCPA. Leave-one-trial-out cross-

validation was then used in order to estimate the classification accuracy. This procedure 

was repeated for all 7140 pairs. d’ was used to quantify the performance of MCPA. 

 

MVPA analysis 

MVPA was applied to classify the neural activity within each ROI (V1, V2, V3, 

V4, and LO) for each possible pair of categories (total of 10 pairs). The same features 

extracted from all the voxels within the ROI, as described above, were used in MVPA 

analysis. Naïve Bayes classifier was used as the linear classifier and leave-one-trial-out 

cross-validation was used in order to estimate the classification accuracy. This procedure 

was repeated for all 10 pairs. d’ was used to quantify the performance of MVPA.  

 

Permutation test 

 Permutation testing was used to determine the significance of the classification 

accuracy d’. For each permutation, the condition labels of all the trials were randomly 

permuted and the same procedure as described above was used to calculate the d’ for 

each permutation. The permutation was repeated for a total of 200 times. The d’ of each 

permutation was used as the test statistic and the null distribution of the test statistic was 

estimated using the histogram of the permutation test. 

 

Representational similarity analysis 
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 Based on the classification results, for each classification analysis, the 

representational dissimilarity matrix (RDM) 𝐌 was constructed such that the jth element 

in the ith row, 𝑚Yb , equals the dissimilarity (classification accuracy) between the 

condition i and condition j in the corresponding representational space defined by the 

analysis. Spearman’s rank correlation was used to compare representational dissimilarity 

matrices in order to account for outliers and non-normality in the data. 

 

Psychophysiological interactions 

 PPI (21) was used to analyze the pattern of interactions between V1 and V4 for 

each pair of image categories (total of 10). The response in each ROI was extracted by 

taking the first principal component across all voxels. The PPI model can be written as 

𝑦 = 𝛽H𝑥H + 𝛽K𝑥K + 𝛽}𝑥} + 𝜖, where y is the response in V4, 𝑥H is the response in V1, 𝑥K 

is the categorical condition (1 or -1), and 𝑥} is the psychophysiological interaction (𝑥} =

𝑥H ∙ 𝑥K). 

 

HMAX model and connectivity patterns 

 The implementation of HMAX model by Serre et al. (33) was used. Each image 

was fed into the network and the activations in the four layers (S1, C1, S2, and C2) were 

recorded. At each patch size level, for image k (k = 1, 2, …, 120), the activation pattern in 

simple layer i (i = 1, 2) is recorded as 𝐒Y�, which is a square matrix with retinotopic 

mapping to the image space. On the other hand, the activation pattern in complex layer i 

(i = 1, 2) is represented as vector 𝐶Y� with each element representing the activation of one 

single unit (for C1, this is achieved by concatenating all the units in the layer into one 
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vector). The activation of each unit in the complex layer was calculated by taking a 

maximum over its corresponding pool of units in the previous simple layer. For each 

complex unit, we recorded the location of the corresponding maximum activation simple 

unit. As a result, we got a Ni-by-2 connectivity matrix 𝐕Y� for complex layer Ci for image 

k, where Ni is the total number of units in Ci and each row is the 2-D coordinate of the 

corresponding maximum activation simple unit. Thus, the connectivity pattern between 

simple layer Si and complex layer Ci for image k was described by such connectivity 

matrix 𝐕Y�. Considering all pairs of images, the RDM of the connectivity pattern Mi is 

calculated by taking the Frobenius norm of the difference between each pair of 

connectivity matrix, i.e. 𝐌Y 𝑗, 𝑘 = 𝐕Y
b − 𝐕Y� K

. 

The representation space for each single layer was then extracted by 

concatenating all units in the layer into one vector. The RDM of each single layer was 

calculated using the Euclidian distance between the corresponding activation vectors of 

the images. 

 

Representational similarity analysis and permutation test 

Permutation test was used to determine the statistical significance of the 

correlation between the RDM from MCPA and the RDM from HMAX. Specifically, for 

each pair of ROIs (i.e. V1-V2, V2-V3, V3-V4, and V4-LO), we calculated the 

corresponding 120-by-120 RDM for all the images from MCPA and averaged across the 

two subjects, noted as 𝐌𝑹𝑶𝑰𝟏G𝑹𝑶𝑰𝟐, where ROI1-ROI2 = V1-V2, V2-V3, V3-V4, or V4-

LO. Then we used the RDMs of HMAX (Mi, i = 1, 2) described in the previous part and 

calculate the Spearman’s rank correlation between 𝐌𝑹𝑶𝑰𝟏G𝑹𝑶𝑰𝟐 and Mi. As a result, we 
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have 𝜌Y���HG���K = 𝑐𝑜𝑟𝑟 𝐌𝑹𝑶𝑰𝟏G𝑹𝑶𝑰𝟐,𝐌Y . Then to compare the correlation from 

different layers in HMAX to MCPA, we use 𝛥𝜌���HG���K = 𝜌H���HG���K − 𝜌K���HG���K as 

the test statistic. For each permutation, the labels of the 120 images were randomly 

permuted and the above procedure was repeated. With a total of 500 permutations, we got 

the empirical distribution of the test statistic for the null hypothesis that there is no 

difference between the two correlations. A p-value for the real test statistic can then be 

estimated. 
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Figure 1. Illustration of the connectivity map and classifier of MCPA. 

The MCPA framework is demonstrated as a two-phase process: learning and testing. 

Top left: An illustration of the learned functional information mapping between two 

populations under condition 1. The representational state spaces of the two populations 

are shown as two planes and each pair of blue and red dots correspond to an observed 

data point from the populations. The functional information mapping is demonstrated as 

the colored pipes that project points from one space onto another (in this case, a 90 

degree clockwise rotation).  

Bottom left: An illustration of the learned functional information mapping between two 

populations under condition 2 (in this case, a 90 degree counterclockwise rotation).   
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Top right: An illustration of the predicted signal by mapping the observed neural activity 

from one population onto another using the mapping patterns learned from condition 1. 

The real signal in the second population is shown by the red dot.  

Bottom right: An illustration of the predicted signal by mapping the observed neural 

activity from one population onto another using the mapping patterns learned from 

condition 2.  

In this case, MCPA would classify the activity as arising from condition 1 because of the 

better match between the predicted and real signal. 
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Figure 2. Synthetic data and control simulation experiments. The mean and standard 

error for 100 simulation runs are plotted. The horizontal gray line corresponds to chance 

level (d’ = 0). The dashed line (d’ = 0.42) corresponds to the chance threshold, p = 0.01, 

based on a permutation test. The maximum possible d’ = 4.65 (equivalent to 99% 

accuracy because the d’ for 100% accuracy is infinity). 

a) The sensitivity of MCPA for connectivity between two populations as a factor of SNR 

and the number of effective dimensions in each population. MCPA was applied to 

synthetic data, where two conditions had different patterns of functional connectivity 

(measured by SNR and dimensionality). Performance of MCPA was significantly higher 

than chance level when SNR ≥ -5 dB and the number of dimensions ≥ 2. Performance of 

MCPA saturated to maximum when SNR > 5 dB and the number of dimensions > 10.   
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b) The insensitivity of MCPA when there is variable local discriminant information, but 

no circuit-level information (control case 1). MCPA and MVPA were applied to control 

case 1. The SNR was fixed at 0 dB and the number of dimensions is fixed at 10 for panels 

b, c, and d. k corresponds to the ratio of the standard deviations of the two conditions in 

panels b, c, and d. 

c) The insensitivity of MCPA to changes in local discriminant information with fixed 

circuit-level information when there is both local and circuit-level information (control 

case 2).  

d) The insensitivity of MCPA to variable local discriminant information when the circuit-

level activity is correlated, but does not contain circuit-level information about what is 

being processed (control case 3).  
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Figure 3.  MCPA and MVPA results for fMRI categorical data.  
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RSA results based on MCPA and MVPA for V1, V2, V3, V4, and LO from Subjects 1 

and 2. Categories: A-animals, B-buildings, H-humans, S-natural scenes, T-textures. 

Row 1 & 3: RSA based on MVPA for V1, V2, V3, V4, and LO of Subject 1, each entry 

represents the classification accuracy (d’) between the corresponding categories; 

Row 2: RSA based on MCPA for V1-V2, V2-V3, V3-V4, and V4-LO of Subject 1, each 

entry represents the classification accuracy (d’) between the corresponding categories; 

Row 4 & 6: RSA based on MVPA for V1, V2, V3, V4, and LO of Subject 2, each entry 

represents the classification accuracy (d’) between the corresponding categories; 

Row 5: RSA based on MCPA for V1-V2, V2-V3, V3-V4, and V4-LO of Subject 2, each 

entry represents the classification accuracy (d’) between the corresponding categories. 
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Figure 4. Correlating MCPA and HMAX. Correlation coefficients between the 

between-layer connectivity patterns in HMAX (S1-C1, and S2-C2) and the between-area 

connectivity patterns in fMRI data extracted by MCPA (V1-V2, V2-V3, V3-V4, and V4-

LO) were plotted. The correlation was evaluated by Spearman’s rank correlation 

coefficients. For S1-C1, correlation peaked at V2-V3, mean Spearman’s rho = 0.053 (* p 

= 0.036, permutation test within each subject, and p-values were combined using Fisher’s 

method). For S2-C2, correlation peaked at V4-LO, mean Spearman’s rho = 0.112 (** p < 

0.001, permutation test within each subject, and p-values were combined using Fisher’s 

method). 
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Table 1 Spearman’s rank correlation coefficients between MCPA of ROI1-ROI2 and 
MVPA of ROI1 or ROI2 in Subjects 1 and 2. 

Subject	1	
ROI1-ROI2	 V1-V2	 V2-V3	 V3-V4	 V4-LO	
ROI1	 0.333	 -0.055	 -0.721	 -0.442	
ROI2	 0.176	 -0.370	 -0.491	 -0.442	
Subject	2	
ROI1-ROI2	 V1-V2	 V2-V3	 V3-V4	 V4-LO	
ROI1	 -0.539	 -0.758	 -0.782	 -0.539	
ROI2	 -0.855	 -0.794	 -0.418	 0.055	
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