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Abstract 
 
It is unknown what information is represented in distributed brain circuit interactions 

because we lack methods for decoding the representational content of interregional neural 

communication. Here we present Multi-Connection Pattern Analysis (MCPA), which is 

designed to probe the nature of the representational space contained in the multivariate 

functional connectivity pattern between neural populations. MCPA works by learning 

mappings between the activity patterns of the populations separately for each condition, 

stimulus, or brain state in training data. These maps are used to predict the activity from 

one neural population based on the activity from the other population as a factor of the 

information being processed in test data. Successful MCPA-based decoding indicates the 

involvement of distributed computational processing and provides a framework for 

probing the representational structure of the interaction. Simulations demonstrate the 

efficacy of MCPA for decoding distributed information processing across a set of 

realistic circumstances and show that MCPA is insensitive to local information 

processing. Furthermore, applying MCPA to human intracranial electrophysiological data 

demonstrates that the interaction between occipital face area and fusiform face area 

contains information about individual faces. Representational analysis indicates that the 

OFA-FFA interaction codes face information differently than either the OFA or FFA 

individually. These results support the hypothesis that face individuation occurs not in a 

single region, but through interactive computation and distributed information 

representation across the face processing network. Thus, MCPA, can be used to assess 

the information processed the coupled activity of distributed, interacting neural circuits.  
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Significance Statement 

Information is represented in the brain by the coordinated activity of neurons both at the 

regional level and the level of large-scale, distributed networks. Multivariate methods 

from machine learning have advanced our understanding of the representational structure 

of local information coding, but the nature of distributed information representation 

remains unknown. Here we present a novel method that integrates multivariate 

connectivity analysis with machine learning classification techniques that can be used to 

decode the representational structure of neural interactions. This method is then used to 

provide a novel neuroscientific insight, that information about individual faces is 

distributed across at least two critical nodes of the face-processing network. Thus, this 

work provides a framework to assess the representational content of circuit-level 

processing. 
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Introduction 

Since at least the seminal studies of Hubel and Wiesel (1), the computational role 

that neurons and neural populations play in processing has defined, and has been defined 

by, how they are tuned to represent information. The classical approach to address this 

question has been to determine how the activity recorded from different neurons or neural 

populations varies in response to parametric changes of the information being processed. 

Single unit studies have revealed tuning curves for neurons from different areas in the 

visual system responsive to features ranging from the orientation of a line, shapes, and 

even high level properties such as eye, nose, and mouth properties of the face (1-3) 

Multivariate methods, especially pattern classification methods from modern statistics 

and machine learning, such as multivariate pattern analysis (MVPA), have gained 

popularity in recent years and have been used to study neural population tuning and the 

information represented via population coding in neuroimaging and multiunit activity (4-

11). These methods allow one to go beyond examining involvement in a particular neural 

process by probing the nature of the representational space contained in the pattern of 

population activity(12-14) 

Neural populations do not act in isolation, rather the brain is highly 

interconnected and cognitive processes occur through the interaction of multiple 

populations. Indeed, many models of neural processing suggest that information is not 

represented solely in the activity of local neural populations, but rather at the level of 

recurrent interactions between regions (15-20). However previous studies only focused 

on the information representation within a specific population (3, 5, 11, 21-24), as no 

current multivariate methods allow one to directly assess what information is represented 
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in the pattern of functional connections between distinct and interacting neural 

populations. Such a method would allow one to assess the content and organization of the 

information represented in the neural interaction. Thus, it remains unknown whether 

functional connections passively transfer information between encapsulated modules (25) 

or whether these interactions play an active computational role in processing. For 

example, the interaction could bind the information represented in distinct populations 

together (e.g. visual letter form and phonetic pronunciation) or allow for the 

computational transformations between distinct representations of a particular type of 

information (e.g. transforming a face image between viewpoint-dependent to viewpoint-

independent representations in service of identity recognition). 

Neural interactions are assessed based on functional and effective connectivity 

where the strength of the relationship between the activity from different populations is 

quantified as a factor of a particular neural process or disease state (26-28). Functional 

and effective connectivity can be determined by number of methods, such as ones based 

on correlation, causality, mutual information, etc. However, traditional methods for 

assessing neural connectivity do not allow one to go beyond determining if circuits are 

communicating in a particular cognitive state to probe the information represented in the 

interaction. 

In this paper, we introduce a multivariate analysis method combining functional 

connectivity and pattern recognition analyses that we term Multi-Connection Pattern 

Analysis (MCPA). MCPA works by learning the discriminant information represented in 

the shared activity between distinct neural populations by combining multivariate 

correlational methods with pattern classification techniques from machine learning in a 
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novel way. The MCPA method consists of an integrated process of learning connectivity 

maps based on the pattern of coupled activity between two populations A and B and 

using these maps to classify the information representation in shared activity between A 

and B in test data. The rationale for MCPA is that if the activity in one area can be 

predicted based on the activity in the other area and the mapping that allows for this 

prediction is sensitive to the information being processed, then the areas are 

communicating with one another and the nature of the communication is sensitive to the 

type of information being processed. This is operationalized by learning a connectivity 

map by finding the mapping that maximizes the multivariate correlation between the 

activities of the two populations in each condition. This map can be thought of like the 

regression weights that transform the activity pattern in area A to the activity pattern in 

area B (properly termed “canonical coefficients” because a canonical correlation analysis 

[CCA] is used to learn the map). These maps are then used to generate the predictions as 

part of the classification algorithm. Specifically, a prediction of the activity pattern in one 

region is generated for each condition based on the activity pattern in the other region 

projected through each mapping. Single trial classification is achieved by comparing 

these predicted activity patterns with the true activity pattern (see Figure 1 for 

illustration). With this framework, single trial classification based on multivariate 

functional connectivity patterns is achieved allowing the nature of the representational 

space of the interaction to be probed.  

To validate MCPA we first demonstrate the ability to detect the information 

represented in the functional connectivity patterns for data with realistic signal-to-noise 

ratios (SNR). We then present a number of control cases to show that classification of the 
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information contained in the functional connectivity between areas is independent of the 

local information contained within each area. Finally, we demonstrate the utility of 

MCPA by using it to examine the circuit-level representation for faces using intracranial 

electroencephalography (iEEG) data. Specifically, we show that the interaction between 

the occipital face area (OFA) and the fusiform face area (FFA), areas previously shown 

to be anatomically and functionally connected (29-31), represents information about 

individual faces. These results demonstrate that MCPA can be used to probe the nature of 

representational space resulting from information processing distributed across neural 

regions.   
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Methods 

Overview 

The MCPA method consists of learning phase and a test phase (as in machine 

learning, where a model is first learned, then tested). In the learning phase, the 

connectivity maps for each condition that characterize the pattern of shared activity 

between two populations is learned.  In the test phase, these maps are used to generate 

predictions of the activity in one population based on the activity in the other population 

as a factor of condition and these predictions are tested against the true activity in the two 

populations. Similar to linear regression where one can generate a prediction for the 

single variable A given the single variable B based on the line that correlates A and B, 

MCPA employs a canonical correlation model (a generalization of multivariate linear 

regression) and produces a mapping model for each condition as a hyperplane that 

correlates multidimensional spaces A and B. Thus one can generate a prediction of the 

observation in multivariate space A given the observation in multivariate space B on a 

single trials basis. In this sense, MCPA is more analogous to a machine learning classifier 

combined with a multivariate extension of the psychophysiological index (32) rather than 

being analogous to correlation-based functional connectivity measures. 

The general framework of MCPA is to learn the connectivity map between the 

populations for each task or stimulus condition separately based on training data. 

Specifically, given two neural populations (referred to as A and B), the neural activity of 

the two populations can be represented by feature vectors in multi-dimensional spaces 

(14). The actual physical meaning of the vectors would vary depending on modality, for 

example spike counts for a population of single unit recordings; time point features for 
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event-related potentials (ERP) or event-related fields; time-frequency features for 

electroencephalography, electrocorticography (ECoG) or magnetoencephalography; or 

single voxel blood-oxygen-level dependent responses for functional magnetic resonance 

imaging.  A mapping between A and B is calculated based on any shared information 

between them for each condition on the training subset of the data. This mapping can be 

any kind of linear transformation, such as any combination of projections, scalings, 

rotations, reflections, shears, or squeezes. 

These mappings are then tested as to their sensitivity to the differential 

information being processed between cognitive conditions by determining if the neural 

activity can be classified based on the mappings. Specifically, for each new test data trial, 

the maps are used to predict the neural activity in one area based on the activity in the 

other area and these predictions are compared to the true condition of the data. The 

trained information-mapping model that fits the data better is selected and the trial is 

classified into the corresponding condition. This allows one to test whether the mappings 

were sensitive to the differential information being represented in the neural interaction in 

the two conditions. 

Mathematically, MCPA involves first calculating the cross-correlation matrix for 

each condition and reducing its dimensionality using the canonical correlation algorithm. 

Then multivariate prediction and classification are performed on the data in these reduced, 

cross-correlation spaces. 

Connectivity Map 

The first phase of MCPA is to build the connectivity map between populations. 

Here we followed a similar approach as the method proposed by Brookes et al. (33). The 
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neural signal in each population can be decomposed into two parts: the part that encodes 

shared information, and the part that encodes non-shared local information (including any 

measurement noise). We assume that the parts of the neural activities that represent the 

shared information in the two populations are linearly correlated (though, this can easily 

be extended by the introduction of a non-linear kernel). The model can be described as 

follows 

𝑪 ~ 𝒩 0, 𝑰! ,min 𝑚!,𝑚! ≥ 𝑑 ≥ 1 

𝑨|𝑪 =𝑾!𝑪+𝑫,𝑫~𝒩 𝝁!,𝜳! ,𝑾! ∈ ℝ!!×! ,𝜳! ≽ 0 

𝑩|𝑪 =𝑾!𝑪+ 𝑬,𝑬~𝒩 𝝁! ,𝜳! ,𝑾! ∈ ℝ!!×! ,𝜳! ≽ 0 

where C is the common activity, D and E are local activities, 𝑚!,𝑚! are the 

dimensionalities of activity vector in population A and B respectively. Without loss of 

generality, 𝝁! = 𝝁! = 0 can be assumed. The activity in population A can be 

decomposed into shared activity 𝑾!𝑪 and local activity 𝑫, while activity in B can be 

decomposed into shared activity 𝑾!𝑪 and local activity 𝑬. More importantly, the shared 

discriminant information only lies in the mapping matrix 𝑾! and 𝑾! since C always 

follows the standard multivariate normal distribution (though correlation measures that 

do not assume normally distributed data can also be applied with minor modifications to 

the calculation).  

In statistics, canonical correlation analysis (CCA) can be used to fit such model 

and estimate the linear mappings (34, 35). In brief, let S be the covariance matrix  

𝑺 = 𝑺!! 𝑺!"
𝑺!" 𝑺!!

= 𝔼 𝑨
𝑩

𝑨
𝑩

!
 

Therefore 𝑾! and 𝑾! can be estimated by solving the following eigen problem 
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𝑺!!!!𝑺!"𝑺!!!!𝑺!"𝑼! = 𝜌!𝑼!
𝑺!!!!𝑺!"𝑺!!!!𝑺!"𝑼! = 𝜌!𝑼!

 

and we have 

𝑾! = 𝑺!!𝑼!"𝑀!

𝑾! = 𝑺!!𝑼!"𝑀!
 

where 𝑼!" and 𝑼!" are the first d columns of canonical directions 𝑼! and 𝑼!, and 𝑀!, 

𝑀! ∈ ℝ!×! are arbitrary matrices such that 𝑴!𝑴!
! = 𝑷!, 𝑷! is the diagonal matrix with 

the first d elements of  𝑷 = 𝑼!!𝑺!"𝑼!.  

With 𝑾! and 𝑾!, the shared information C can be estimated using its posterior 

mean 𝔼(𝑪|𝑨) and 𝔼(𝑪|𝑩), where 𝔼 𝑪 𝑨 = 𝑴!
!𝑼!!𝑨 and 𝔼 𝑪 𝑩 = 𝑴!

!𝑼!!𝑩. Let 

𝑴! = 𝑴! and equate 𝔼(𝑪|𝑨) and 𝔼(𝑪|𝑩), this shared information can be used as a relay 

to build the bidirectional mapping between A and B. Specifically, 

𝑩 = 𝑴!
!𝑼!! !𝑴!

!𝑼!!𝑨 = 𝑼!!
!𝑼!!𝑨 = 𝑹𝑨 and 𝑨 = 𝑴!

!𝑼!! !𝑴!
!𝑼!!𝑩 = 𝑼!!

!𝑼!!𝑩 =

𝑹!𝑩, where 𝑹 = 𝑼!!
!𝑼!!𝑨.  

In the first step, the connectivity map is estimated for each condition separately. If 

we have 𝑛! trials in condition 1 and 𝑛! trials in condition 2 in the training set, the training 

data for the two conditions are represented in matrices as 𝑿!
(!),𝑿!

(!) !
 and 𝑿!

(!),𝑿!
(!) !

 

respectively, where 𝑿!
(!) ∈ ℝ!!×!!, 𝑿!

(!) ∈ ℝ!!×!! are the population activity for A and 

B under condition 1 respectively, and 𝑿!
(!) ∈ ℝ!!×!!, 𝑿!

(!) ∈ ℝ!!×!! are the population 

activity for A and B under condition 2 respectively. The testing data vector is then 

represented as 𝒙!,𝒙! !, where 𝒙� ∈ ℝ!! and 𝒙! ∈ ℝ!! are population activities in A 

and B respectively. Using CCA, the estimations of the mapping matrices with respect to 

different conditions are 𝑹(!) and 𝑹(!).  
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To sum up, by building the connectivity map, a linear mapping function R is 

estimated from the data for each condition so that the activity of the two populations can 

be directly linked through bidirectional functional connectivity that captures only the 

shared information. 

 

Classification 

The second phase of MCPA is a pattern classifier that takes in the activity from 

one population and predicts the activity in a second population based on the learned 

connectivity maps conditioned upon the stimulus condition or cognitive state. The testing 

data is classified into the condition to which the corresponding model most accurately 

predicts the true activity in the second population. 

The activity from one population is projected to another using the learned CCA 

model, i.e. 𝒙!
(!) = 𝑼!

! !𝑼!
(!)𝒙𝑨. The predicted projections 𝒙!

(!) are compared to the real 

observation 𝒙𝑩, and then the testing trial is labeled to the condition where the predicted 

and real data match most closely. Any similarity metric could be used for this comparison; 

here cosine similarity (correlation) is used. The mapping is bidirectional, so A can be 

projected to B and vice versa. In practice, the similarities from the two directions are 

averaged in order to find the condition that gives maximum average correlation 

coefficient. Specifically, 𝑐𝑜𝑟𝑟!
(!) = 𝒙!,𝒙!

!"#$%

𝒙! 𝒙!
!"#$% , 𝑐𝑜𝑟𝑟!

(!) = 𝒙!,𝒙!
!"#$%

𝒙! 𝒙!
!"#$%  and 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 𝑙𝑎𝑏𝑒𝑙 =

argmax!
!"#!!

(!)!!"#!!
(!)

!
. 

 

Simulated data 
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To test the performance of MCPA, we simulated shared and local activity in two 

populations and tested the performance of MCPA on synthetic data as a factor of the 

number of dimensions in each population and signal-to-noise ratio (SNR; figure 2a). The 

shared activity for both conditions in population A was drawn independently from a d-

dimensional normal distribution 𝒀!
(!)~𝒩 0,𝜎!𝑰! , for 𝑖 = 1,2. The shared activity in 

population B under two different conditions were generated by rotating 𝒀! with different 

rotation matrices separately, 𝒀!
(!) = 𝑹(!)𝒀!

(!), where 𝑹(!) and 𝑹(!) were two d-by-d 

random rotation matrices corresponding to the information mapping under condition 1 

and 2 respectively, and 𝑹 ! 𝑻𝑹(!) = 𝑰!.  

The two important parameters here are the dimensionality d and the variance 𝜎!. 

SNR was used to characterize the ratio between the variance of shared activity and 

variance of local activity, and the logarithmic decibel scale SNR!" = 10 log!"(𝜎!) was 

used. To cover the wide range of possible data recorded from different brain regions and 

different measurement modalities, we tested the performance of MCPA with d ranging 

from 2 to 25 and SNR ranging from -20 dB to 20 dB (𝜎! ranged from 0.01 to 100). Note 

that each of the d dimensions contain independent information about the conditions 

though have the same SNR. Thus the overall SNR does not change, but the amount of 

pooled information does change with d. For each particular setup of parameters, the 

rotation matrices 𝑹(!) were randomly generated first, then 200 trials were randomly 

sampled for each condition and evenly split into training set and testing set. MCPA was 

trained using the training set and tested on the testing set to estimate the corresponding 

true positive rate (TPR) and false positive rate (FPR) for the binary classification. The 

sensitivity index d’ was then calculated as 𝑑! = 𝑍 𝑇𝑃𝑅 − 𝑍(𝐹𝑃𝑅), where Z(x) is the 
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inverse function of the cdf of standard normal distribution. This process was repeated 100 

times and the mean and standard errors across these 100 simulations were calculated. 

Note that the only discriminant information about the two conditions is the pattern of 

interactions between the two populations, and neither of the two populations contains 

local discriminant information about the two conditions in its own activity. We further 

tested and confirmed this by trying to classify the local activity in populations A and B 

(see below). To avoid an infinity d’ value, with 100 testing trials, the maximum and 

minimum for TPR or FRP were set to be 0.99 and 0.01, which made the maximum 

possible d’ to be 4.65.  

The MCPA method captures the pattern of correlation between neural activities 

from populations and is invariant to the discriminant information encoded in local 

covariance. To see this, we first take the simulation data described above and apply 

MVPA (naïve Bayes) to each of the two populations separately. Note that in each of the 

two populations, we set the two conditions to have the same mean and covariance. As a 

result there should be no local discriminant information within any of the two populations 

alone.  

 

Control simulations 

In addition to the MVPA control described above, we further evaluated the 

following three control experiments to demonstrate that MCPA is insensitive to the 

presence or change in the local information. In the first control experiment (no functional 

connectivity, no shared information, varying local information), we simulated the case 

where two populations are totally independent under both conditions, but there is local 
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discriminant information in each (figure 2b). Specifically, for condition 1, 𝑿!
(!),𝑿!

(!) were 

drawn independently from the same distribution 𝒩 0, 𝑰! ; for condition 2, 𝑿!
(!),𝑿!

(!) 

were drawn independently from the same distribution 𝒩 0, 𝑰! . Then we changed the 

local variance in one of the conditions. For the features in population A and B under 

condition 1, we used 𝑿!
! !
= 𝑘𝑿!

(!) and 𝑿!
! !
= 𝑘𝑿!

(!), where k ranged from 1 to 9. Thus, 

in both populations, the variance of condition 1 was different from the variance of 

condition 2, and such difference would increase as k became larger. Therefore, there was 

no information shared between the two populations under either condition, but each of 

the population had discriminant information about the conditions encoded in the variance 

for any 𝑘 ≠ 1.  

In the second control experiment (functional connectivity, constant shared 

information, varying local information), we introduced local discriminant information 

into population A without changing the amount of shared information between 

populations A and B (figure 2c). We fixed the dimensionality at 10 and SNR at 0 dB 

(𝜎! = 1) and kept the rotation matrices of different conditions different from each other. 

As a result, the amount of shared discriminant information represented in the patterns of 

interactions stayed constant. Then we changed the local variance in one of the conditions. 

For the features in population A under condition 1, we used 𝑿!
! !
= 𝑘𝑿!

(!), where k 

ranged from 1 to 9. Thus, population A, the variance of condition 1 was different from 

the variance of condition 2, and such difference would increase as k became larger. 

According to our construction of MCPA, it should only pick up the discriminant 

information contained in the interactions and should be insensitive to the changes in local 

discriminant information from any of the two populations. 
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In the third control experiment (functional connectivity, no shared information, 

varying local information), we eliminated the information represented in the pattern of 

interaction, but maintained the functional connectivity by keeping the correlation 

between populations invariant with regard to conditions. We introduced local 

discriminant information into the two populations to demonstrate that MCPA is 

insensitive to the presence of constantly correlated local information (figure 2d). We 

fixed the dimensionality at 10 and SNR at 0 dB (𝜎! = 1) and kept the rotation matrices 

constant for different conditions. As a result, the amount of shared discriminant 

information represented in the patterns of interactions was 0. Then we changed the local 

variance in one of the conditions. Then we changed the local variance in one of the 

conditions. For the features in population A and B under condition 1, we used 𝑿!
! !
=

𝑘𝑿!
(!) and 𝑿!

! !
= 𝑘𝑿!

(!), where k ranged from 1 to 9. Thus, in both populations, the 

variance of condition 1 was different from the variance of condition 2, and such 

difference would increase as k became larger. Notably, such local information was 

actually correlated through interactions between the populations. However, since the 

pattern of interaction did not vary as the condition changed, there was no discriminant 

information about the conditions represented in the interactions. According to our 

construction of MCPA, it should not pick up any discriminant information in this control 

case. 

 

Examining OFA-FFA coding for individual faces using MCPA 

Subject 
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A human subject underwent surgical placement of iEEG depth electrodes 

(stereotactic electroencephalography) as standard of care for surgical epilepsy 

localization. The subject was male, age 56. There was no evidence of epileptic activity 

shown on the electrodes used in this study. 

The experimental protocols were approved by the Institutional Review Board of 

the University of Pittsburgh. Written informed consent was obtained from the participant. 

Stimuli 

In Experiment 1, 180 images of faces (50% male), bodies (50% male), words, 

hammers, houses, and phase scrambled faces were used as a functional localizer. Each 

category contained 30 images. Phase scrambled faces were created in Matlab by taking 

the 2-dimensional spatial Fourier spectrum of each of the face images, extracting the 

phase, adding random phases, recombining the phase and amplitude, and taking the 

inverse 2-dimensional spatial Fourier spectrum. Each image was presented in 

pseudorandom order and repeated once in each session. 

Faces in Experiment 2 were taken from the Karolinska Directed Emotional Faces 

stimulus set (18). Frontal views and 5 different facial expressions (happy, sad, angry, 

fearful, and neutral) from all 70 faces (50% male) in the database were used, which 

yielded a total of 350 face images, each presented once in random order during a session.  

All stimuli were presented on an LCD computer screen placed approximately 2 

meters from participants’ heads.  

 

Experimental paradigms 
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 In experiment 1, each image was presented for 900 ms with 900 ms inter-trial 

interval during which a fixation cross was presented at the center of the screen (~ 10˚ x 

10˚of visual angle). At random, 25% of the time an image would be repeated. Participants 

were instructed to press a button on a button box when an image was repeated (1-back). 

Only the first presentations of repeated images were used in the analysis. 

In experiment 2, each face was presented for 1500 ms with 500 ms inter-trial 

interval during which a fixation cross was presented at the center of the screen. Faces 

subtended approximately 5 degrees of visual angle in width. Subjects were instructed to 

report whether the face was male or female via button press on a button box. 

 Paradigms were programmed in MatlabTM using Psychtoolbox and custom written 

code. 

 

Data preprocessing 

The electrophysiological activity in OFA and FFA were recorded simultaneously 

using iEEG electrodes at 1000 Hz. They were subsequently bandpass filtered offline from 

1-170 Hz using a fifth order Butterworth filter to remove slow and linear drift, the 180 Hz 

harmonic of the line noise, and high frequency noise. The 60 Hz line noise and the 120 

Hz harmonic noise were removed using DFT filter. To reduce potential artifacts in the 

data, trials with maximum amplitude 5 standard deviations above the mean across the rest 

of the trials were eliminated. In addition, trials with a change of more than 25 µV 

between consecutive sampling points were eliminated. These criteria resulted in the 

elimination of less than 1% of trials. 
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As the last step of the data preprocessing, we extracted wavelet features using 

Morlet wavelets. The number of cycles of the wavelet was set to be 7. The entire epoch 

length of the data was 1500ms (-500 ~ 1000 ms relative to stimulus onset). To avoid 

numerical issues in MATLAB, the lowest frequency was set at 7 Hz. The wavelet 

features were estimated using FieldTripTM toolbox. Finally, we took all the wavelet 

features at 7, 8, 9, …, 100 Hz at every 10 ms as features, which yielded a 94-dimensional 

feature vector at every time point. All the wavelets were normalized to the baseline by 

subtracting the mean value and divided by the standard deviation of the data from 350ms 

to 50ms before stimulus onset. 

 

Electrode selection 

Face sensitive electrodes were selected based on anatomical and functional 

considerations. Electrodes of interest were restricted to those that were located in or near 

the fusiform gyrus or inferior occipital cortex. In addition, MVPA was used to 

functionally select the electrodes that showed sensitivity to faces, comparing to other 

conditions in experiment 1. Specifically, electrodes were selected such that their peak 6-

way classification d’ score (see below for how this was calculated) exceeded 1 (p < 0.001 

based on a permutation test, as described below) and the event related potential (ERP) for 

faces was larger than the ERP for the other non-face object categories.  

 There were 12 contacts on a depth electrode on the ventral temporal lobe 

extending along the anterior-posterior axis. Among all the contacts, only three (the 1st, 6th 

and 7th contacts, see figure 3a for the location of these contacts) satisfied the criterion 

described above (see Figure S1 for d’ timecourses from all contacts on the depth 
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electrode). The first contact was near the mid-fusiform gyrus while the other two were 

near posterior end of the fusiform gyrus/anterior end of the inferior occipital cortex. 

Hence we used the data from the first electrode as FFA signal and the averaged data 

across the 6th and 7th electrodes as the OFA signal (see Figure S2 for averaged ERP data 

in the two areas). Notably, the post-operative structural MRI scan did not allow us to 

carefully distinguish the precise localization of the “OFA” electrodes and it may be that 

these electrodes are in fact in the posterior fusiform and properly labeled “FFA-1” 

according to the recent nomenclature introduced byWeiner et al. (36). However, 

considering OFA and FFA-1 are contiguous with one another and it has not been 

determined what, if any, functional distinction there is between the two, we use “OFA” 

for the label of the electrodes out of convenience. 

 

MCPA Analysis 

MCPA was applied to classify the OFA-FFA connectivity for each possible pair 

of faces (total of 2415 pairs). For each specific pair of faces, averaged wavelet features 

within a 50 ms time window were used as features in MCPA. Principal Component 

Analysis (PCA) was used to reduce the dimensionality from 94 to P, where P 

corresponds to the number of PCs that capture 95% of variation in the data, the typical 

value of P is around 7~8. Leave-one-trial-out cross-validation was used in order to 

estimate the classification accuracy. This procedure was repeated for all 2415 pairs and 

all time windows slid with 10 ms step between 0 and 600ms after stimulus onset. Similar 

to previous simulations, d’ was used to quantify the performance of MCPA. 
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 Permutation test was used to determine the significance of the d’ timecourse of 

MCPA (37). During each permutation, the condition labels of all the trials were randomly 

permuted and the same procedure as described above was used to calculate the 

timecourse of d’ for each permutation. The permutation was repeated for a total of 200 

times. The mean d’ during 200-500 ms of each permutation was used as the test statistic 

and the null distribution of the test statistic was estimated using the histogram of the 

permutation test. The time window 200-500 ms was chosen based on the fact that the 

sensitivity of facial identity was only presented in OFA and FFA roughly 200 -500 ms 

after stimulus onset. (11) 

 

MVPA Analysis 

Similarly, MVPA was applied to classify the neural activity within OFA and FFA 

separately for each possible pair of faces (total of 2415 pairs). The same features 

extracted from OFA and FFA as described above were used in MVPA analysis. Naïve 

Bayes classifier was used as the linear classifier and leave-one-trial-out cross-validation 

was used in order to estimate the classification accuracy. This procedure was repeated for 

all 2415 pairs and all time windows slid with 10 ms step between 0 and 600 ms after 

stimulus onset. Similar to previous simulations, d’ was used to quantify the performance 

of MVPA. Permutation test, as described above, was used to test for the significance of 

the classification accuracy. 

 

Representational Similarity Analysis 
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 Based on the classification results, for each classification analysis (MCPA, 

MVPA on FFA, and MVPA on OFA), the dissimilarity matrix 𝑴 was constructed such 

that the jth element in the ith row 𝑚!" equals the dissimilarity (classification accuracy) 

between the face i and face j in the corresponding representational space defined by the 

analysis. The representation similarity between the representational space of the OFA-

FFA interactions and the individual representational space of OFA and FFA is measured 

as the correlation coefficient (Pearson’s linear correlation) between their corresponding 

dissimilarity matrices.  

 

Results 

Simulations 

We used simulations to test and verify the performance and properties of MCPA 

on synthetic data. Specifically, synthetic data representing neural activity of two distinct 

populations and the information represented in the interaction between those populations 

were manipulated to construct different testing conditions. These tests included 

determining the sensitivity and specificity of MCPA with respect to SNR, demonstrating 

the insensitivity of MCPA to information only encoded locally, and showing that MCPA 

is specifically sensitive to the representational content of the interaction and not 

functional connectivity alone. 

In the first simulation, we evaluated the ability of MCPA to detect information 

represented in the functional connectivity pattern when it was present as a factor of the 

SNR and the number of dimensions of the data. The mean and standard error of d’ from 

100 simulation runs for each particular setup (dimensionality and SNR) are shown in 
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Figure 2a. The performance of the MCPA classifier increased when SNR or effective 

dimensionality increased. Classification accuracy saturated to the maximum when SNR 

and number of dimensions were high enough (SNR > 10 dB, dimensionality > 10). The 

performance of MCPA was significantly higher than chance (p < 0.01, permutation test) 

for SNRs above -5 dB (𝜎! = 0.32) for all cases where the dimensionality was higher 

than 2, when the pattern of the multivariate mapping between the activity was changed 

between conditions. It is notable that significant MCPA classification was seen despite 

there being no local information present in either of the two simulated populations (p > 

0.1 for all SNRs and numbers of dimensions for MVPA on each individual activity 

pattern). Thus MCPA can decode the information represented in the neural interaction 

when the connectivity pattern has discriminant information, even when no local 

discriminant information is present in any of the local populations. 

After confirming that MCPA is sensitive to information represented in neural 

communication even in the absence of local information under realistic circumstances, 

we ran two control simulations to demonstrate that MCPA is not sensitive to changes in 

local information.  

The first control simulation was designed to confirm that when two unconnected 

populations both carry local discriminant information, MCPA would not be sensitive to 

that piece of information. As shown in Figure 2b, MCPA did not show any significant 

classification accuracy above chance (d’ = 0) as 𝑘 changed. On the other hand, the 

MVPA classifier that only took the data from local activity showed significant 

classification accuracy above chance level and the performance increased as local 

discriminant information increased.  
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The second control simulation was designed to test if MCPA would be sensitive 

to changes in local discriminant information when there was constant information coded 

in neural communication. Local discriminant information was injected into the 

populations by varying the ratio of the standard deviation (k) between the two conditions.. 

When MVPA was applied to the local activity, increasing classification accuracy was 

seen as k became larger (figure 2c). This result confirmed that discriminant information 

was indeed encoded in the local activity in the simulation. On the other hand, the 

performance of MCPA did not change with the level of local discriminant information, 

demonstrating that MCPA is only sensitive to changes in information contained in neural 

interactions.  

 The final control simulation tested whether MCPA is simply sensitive to the 

presence of functional connectivity between two populations per se or is only sensitive to 

the whether the functional connectivity contains discriminant information. Specifically, 

are local discriminant information in two populations, and a correlation between their 

activity, sufficient for MCPA decoding? It should not be considering that MCPA requires 

that the pattern of the mapping between the populations to change as a factor of the 

information being processed (see figure 1). For example, the local activity in either or 

both populations could code for the information being processed, but the mapping 

between the activity in each region could be constant and insensitive to the changes in 

conditions, e.g. the CCA coefficients could be the same. This would be the case if each 

population was an informationally encapsulated module where information transfer 

occurs in the same way regardless of the stimulus being processed or cognitive state. In 

this case, one would not want to infer that distributed processing was taking place 
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because the nature of the interregional communication is not sensitive to the computation 

being performed (e.g. the information transfer is passive, rather than reflecting distributed 

computational processing) and all of the information processing is done locally in each 

population. The final control simulation was designed to assess whether MCPA is 

sensitive to the case where two populations communicate, but in a way that would not 

imply distributed computational processing. Specifically, neural activity in areas A and B 

were simulated local discrimination was possible in each population and the activity of 

the two populations was correlated, but the interaction between them was invariant to the 

information being processed. Figure 2d shows that in this case MCPA did not classify the 

activity above chance, despite significant correlation between the regions and significant 

local classification (MVPA). This control simulation demonstrates that indeed MCPA is 

only sensitive to the case where the mapping itself changes with respect to the 

information being processed, which is a test of the presence of distributed neural 

computation. 

Taken together, the simulation results show that MCPA is sensitive to the 

discriminant information that is represented in the pattern of interactions between two 

populations, is insensitive to the discriminant information represented in unshared local 

activity, and the presence of functional connectivity and local information is not 

sufficient to infer distributed computational processing and produce significant MCPA 

decoding.  

 

IEEG Data 
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To assess its performance on real neural data, MCPA was applied on intracranial 

electroencephalography (iEEG) data recorded from OFA and FFA in one human epileptic 

patient during a visual cognition task (see Figure 3a for the electrode locations). MCPA 

was applied in the classification between each possible pair of faces. Previous studies on 

the timecourse of face individuation (11) have demonstrated that the 200-500 ms time 

window is critical for the processing of face individuation information. For MCPA, as 

shown in Figure 3, the classification accuracy was significantly above chance level across 

that time window (averaged d’ = 0.1491, p < 0.05, permutation test). Using MVPA, 

classification accuracy was significantly above chance level across that time window in 

FFA (averaged d’ = 0.3604, p < 0.05, permutation test), replicating previous reports 

(Ghuman et al. 2014), however classification accuracy did not reach chance level across 

that time window in OFA (averaged d’ = 0.1073, p > 0.1, permutation test). On the other 

hand, in the early time window, which is 50 – 200 ms after stimulus onset, MCPA did not 

show significant classification accuracy (averaged d’ = 0.0711, p > 0.1, permutation test). 

As a control analysis, we took a contact outside of the fusiform gyrus that did not 

show face sensitivity and performed the same analysis between the control contact and 

the OFA and FFA contacts. As shown in Figure 3b, the averaged d’ of MCPA between 

the control contact and both the OFA and FFA contacts was not significant above chance 

level (d’ = 0.0641 for control & FFA, d’ = 0.0094 for control & OFA, p > 0.1). 

To assess whether the information represented in the OFA-FFA interaction 

reflected a distinct computational process or merely reflected the representation in either 

OFA or FFA, a representational similarity analysis was performed. Specifically, we 

calculated the representational similarity based on pairwise classification accuracy 
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between each pair of the 70 different faces using MVPA on the activity in OFA and FFA 

and MCPA on the interaction. No significant correlation was seen between the 

representational structure in OFA and the OFA-FFA interaction (Pearson’s correlation 

coefficient ρ = 0.0195, p > 0.1) or between FFA and the OFA-FFA interaction (Pearson’s 

correlation coefficient ρ = 0.0176, p > 0.1). Thus, despite both the FFA and the OFA-

FFA interaction showing significant face decoding, little similarity between the 

representations reflected in those different aspects of the neural activity is seen. This 

suggests that the OFA-FFA interaction plays a computational role in face individuation 

that is distinct from the role that either the FFA or OFA play alone. 

These results support the hypothesis individual level face information is 

represented in the OFA-FFA interaction pattern and that distributed computational 

processing across this circuit plays a critical role in face individuation.  
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Discussion 

This paper presents a novel method to assess the information represented in the 

patterns of interactions between two neural populations. MCPA works by learning the 

mapping between the activity patterns from the populations from a training data set, and 

then classifying the neural communication pattern using these maps in a test data set. 

Simulated data demonstrated that MCPA was sensitive to information represented in 

neural interaction for realistic SNR ranges. Furthermore, MCPA is only sensitive to the 

discriminant information represented through different patterns of interactions 

irrespective of the information encoded in the local populations. Finally, we used this 

method to provide a novel neuroscientific insight: that the multivariate connectivity 

pattern between OFA and FFA represents information at the level of individual faces. 

 It is worth noting that significant discrimination within each population and 

significant functional connectivity between them is not sufficient to produce MCPA and 

indeed local classification within each population is not even necessary (Figures 2d and 

2a respectively). MCPA requires the pattern of connectivity between the two populations 

to vary across the different conditions. As an example, if the two populations interact, but 

the interaction behaves like a passive filter, mapping the activity between the populations 

in a similar way in all conditions, MCPA would not be sensitive to the interaction 

because the mapping does not change (Figure 2d). Instead, MCPA is more akin to testing 

for adaptive filtering or distributed, interactive computation where the nature of the 

interaction changes depending on the information that is being processed. Recent studies 

demonstrate that neural populations in perceptual areas alter their response properties 

based on context, task demands, etc. (38). These modulations of response properties 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 31, 2016. ; https://doi.org/10.1101/046441doi: bioRxiv preprint 

https://doi.org/10.1101/046441
http://creativecommons.org/licenses/by-nc-nd/4.0/


suggest that lateral and long-distance interactions are adaptive and dynamic processes 

responsive to the type of information being processed and MCPA provides a platform for 

examining the role of interregional connectivity patterns in this adaptive process. Indeed, 

MCPA can be interpreted as testing whether distributed computational “work” is being 

done in the interaction between the two populations and the interaction does not just 

reflect a passive relay of information between two encapsulated modules (25).  

In addition to allowing one to infer whether distributed computational work is 

being done in service of information processing, MCPA provides a platform for assessing 

its representational structure. Specifically, much as MVPA has been used in 

representational similarity analyses to measure the structure of the representational space 

at the level local neural populations (12, 13, 39), MCPA can be used to measure the 

structure of the representational space at the level of network interactions. Specifically, 

the representational geometry of the interaction can be mapped in terms of the similarity 

among the multivariate functional connectivity patterns corresponding to the brain states 

associated with varying input information. It is notable that this type of single-trial or 

single-stimulus representational similarity analysis is not possible by directly applying a 

classifier to functional connectivity features and requires learning the mapping between 

neural activity patterns, as described for MCPA (see next paragraph for further discussion 

of this distinction). The representational structure can be compared to behavioral 

measures of the structure to make brain-behavior inferences and assess what aspects of 

behavior a neural interaction contributes to. It can also be compared to models of the 

structure to test theoretical hypotheses regarding the computational role of the neural 

interaction (13, 39).  
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These two properties of MCPA, being able to assess distributed computational 

processing rather than just whether or not areas are communicating and being able to 

determine the representational structure of the information being processed, set MCPA 

apart from previously proposed multivariate functional connectivity methods. In these 

previous methods the functional connectivity calculation is performed separately from the 

classification calculation. Specifically, multivariate classification has been performed on 

a population of functional connectivity data (40-45) or classification is first performed in 

each region to extract the information and then the information represented in the two 

areas are correlated (13, 46). This separation of the connectivity and classification 

calculations precludes being able to assess distributed computational processes because 

these methods are sensitive to passive information exchange between encapsulated 

modules, as described above, and thus conflate passive and active information exchange. 

Critically, this separation also does not allow for single trial or single sample 

classification, as is required to perform the representational similarity analysis in a 

practical manner and decode how the information processed in the interaction is encoded 

and organized. As a concrete example, these previous methods would not be able to 

assess whether the interaction between OFA and FFA contain information about 

individual faces (Figure 3) and perform a representational similarity analysis.  

Two examples of the types of studies that can be performed using MCPA help 

highlight the potential utility of this method. First, MCPA can be used to provide a strong 

test of the binding-by-synchrony hypothesis (47). This hypothesis asserts that information 

that results from computations arising from spatially distinct regions of the brain combine 

their information into a coherent representation through interregional synchronization. 
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Thus far this hypothesis has primarily been tested by demonstrating increased 

interregional synchrony for conditions that show greater binding, such as showing greater 

synchrony when an image is perceived as a coherent Gestalt (48). However, increased 

synchrony could reflect a number of different effects, not all of which necessarily imply 

binding (49-51). MCPA provides a stronger test of the binding-by-synchrony hypothesis 

by allowing one to decode the representational content of the interaction. As a concrete 

example, one may be able to decode shape from certain regions of the brain (e.g. lateral 

occipital complex) and color from other regions (e.g. V4), but it is unclear how color and 

shape are bound into a coherent percept. One could certainly decode color and shape 

from pooled activity from V4 and the lateral occipital complex, but because these are 

distinct neural populations, the “AND” operation that binds color and shape still needs to 

be performed by the brain. If MCPA could be used to decode color and shape from the 

pattern of interactions between the regions, it would suggest that this “AND” operation is 

performed in the interregional synchrony pattern, consistent with the binding-by-

synchrony hypothesis. If color and shape could not be decoded using MCPA, that would 

suggest a third region that acts as a convergence zone to bind these features that needs to 

be found, inconsistent with the binding-by-synchrony hypothesis. 

A second potential use for MCPA is that a MCPA-based representational 

similarity analysis may help inform models of how representations are transformed 

between neural populations along a processing pathway (14). For example, when asked to 

verbally name a word being read, visual-orthographic representations must be 

transformed into phonological representations. This orthographic-phonological mapping 

implies a representational structure that is neither orthographic nor phonological, but 
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rather an intermediary between them. If a MCPA-based representational similarity 

analysis between regions responsible for orthographic and phonological computations 

were consistent with what would be predicted by an orthographic-phonological mapping, 

this would indicate that the mapping is performed through the interregional interactions 

between the areas. If not, it would suggest that another neural region should be found that 

is responsible for this mapping. 

The specific instantiation of MCPA presented here treats connectivity as a bi-

directional linear mapping between two populations. However, the MCPA framework 

could be easily generalized into more complicated cases. For example, instead of using 

correlation-based methods like CCA, other directed functional connectivity algorithms, 

such as Granger causality based on an autoregressive framework, could be used to 

examine directional interactions. Additionally, kernel methods, such as kernel CCA, 

could be applied to account for non-linear interactions. A more general framework would 

be to use non-parametric functional regression method to build a functional mapping 

between the two multidimensional spaces in the two populations. MCPA can also be 

expanded to look at network-level representation by implementing the multiset canonical 

correlation analysis, wherein the cross-correlation among multiple sets of activity 

patterns from different brain areas is calculated (52). MCPA could be used with a dual 

searchlight approach to examine whole brain, or multifeature communication (53). Also, 

MCPA could be optimized by regularizing the CCA algorithm to find the connectivity 

maps that uniquely describe, or at least best separate, the conditions of interest. 

Furthermore, both with and without these modification, the framework of MCPA may 

have a number of applications outside of assessing the representational content of 
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functional interactions in the brain, such as detecting the presence of distributed 

processing on a computer network, or examining genetic or proteomic interactions. 

The current prevalent view is that face perception is mediated by a distributed 

network with multiple brain areas including the OFA and FFA. Structural and functional 

connectivity analysis for the core network has shown that FFA is strongly connected to 

OFA (29-31). While these results suggest the hypothesis that face individuation may 

involve the interaction between these populations (and likely other face processing 

regions), direct evidence for this hypothesis has been lacking. Our results here support 

the hypothesis that individual-level facial information is not only encoded by the activity 

within certain brain populations, but also represented through recurrent interactions 

between multiple populations at a network level. In addition, MCPA showed significant 

face individuation in approximately the 200 – 500 ms time window after stimulus onset, 

but did not show any significant face individuation in the early time window (50 – 200 

ms after stimulus onset), which is consistent with a previous MVPA study based on iEEG 

recording from FFA only (11). This suggests that the face individuation process involves 

temporally synchronized, recurrent interactions between OFA and FFA and likely other 

nodes in the face-processing network. Representational similarity analysis showed that 

the structure of the representations of face information in OFA and FFA are different 

from the structure in the interaction between these areas (with the strong caveats that a 

non-significant correlation does not allow one to accept the null hypothesis and that these 

results require replication in more subjects). It is beyond the scope of the current work to 

assess whether this distinct representation reflects the binding of the OFA and FFA 

representations, the transformation of information between the representation in OFA and 
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FFA, or some other computational process. More broadly, the MCPA results suggest that 

the computational work done in service of face individuation occurs not only on the local 

level, but also at the level of distributed brain circuits. Further studies with broader 

coverage, especially anterior temporal areas, are required to shed light on what other 

populations are involved in face individuation. 

 

Conclusion 

Previously, multivariate pattern analysis have been used to analyze either the information 

processing within a certain area and functional connectivity methods have been used to 

assess whether or not brain networks participate in a particular process. With MCPA, the 

two perspectives are merged into one method, which extends multivariate pattern analysis 

to enable the detailed examination information processing at the network level. Thus, the 

introduction of MCPA provides a platform for examining how computation is carried out 

through the interactions between different brain areas, allowing us to directly test 

hypotheses regarding circuit-level information processing. 
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Figure 1 Illustration of the connectivity map and classifier of MCPA. 

a) An illustration of functional information mapping between two populations under 

condition 1. The representational state spaces of the two populations are shown as A and 

B, each colored dot corresponds to an observed data point from the population. The 

functional information mapping is demonstrated as the dotted lines that project points 

from one space onto another. One observation of the two populations results in two dots 

that are linked by one dotted line.  

b) An illustration of functional information mapping between two populations under 

condition 2.   
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c) An illustration of the predicted signal (shown as the grey dot) by mapping the observed 

neural activity from one population onto another using the mapping patterns learned from 

condition 1. The real signal in the second population is shown by red dot.  

d) An illustration of the predicted signal (shown as the grey dot) by mapping the 

observed neural activity from one population onto another using the mapping patterns 

learned from condition 2. The real signal in the second population is shown by red dot. 

In this case, MCPA would classify the activity as arising from condition 1 because of the 

better match between the predicted and real signal. 
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Figure 2. Synthetic data and control simulation experiments. The mean and standard 

error for 100 simulation runs are plotted. The horizontal gray line corresponds to chance 

level (d’ = 0). The dashed line (d’ = 0.42) corresponds to the chance threshold, p = 0.01, 

based on a permutation test. The maximum possible d’ = 4.65 (equivalent to 99% 

accuracy because the d’ for 100% accuracy is infinity). 

a) The sensitivity of MCPA for connectivity between two populations as a factor of SNR 

and the number of effective dimensions in each population. MCPA was applied to 

synthetic data, where two conditions had different patterns of functional connectivity 

(measured by SNR and dimensionality). Performance of MCPA was significantly higher 

than chance level when SNR ≥ -5 dB and the number of dimensions ≥ 2. Performance of 

MCPA saturated to maximum when SNR > 5 dB and the number of dimensions > 10.   
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b) The insensitivity of MCPA when there is variable local discriminant information, but 

no circuit-level information (control case 1). MCPA and MVPA were applied to control 

case 1. The SNR was fixed at 0 dB and the number of dimensions is fixed at 10 for panels 

b, c, and d. k corresponds to the ratio of the standard deviations of the two conditions in 

panels b, c, and d. 

c) The insensitivity of MCPA to changes in local discriminant information with fixed 

circuit-level information when there is both local and circuit-level information (control 

case 2).  

d) The insensitivity of MCPA to variable local discriminant information when the circuit-

level activity is correlated, but does not contain circuit-level information about what is 

being processed (control case 3).  
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Figure 3. iEEG expriments and MCPA results.  

a) Location of the electrodes of interest. The blue dot corresponds to the location of the 

FFA contact while the red dot corresponds to the location of the OFA contacts.  

b) MCPA applied between (1) the OFA and FFA channels, (2) the FFA channel and the 

control channel, (3) the OFA channel and the control channel. The mean d’ of pairwise 

face classification over all 2415 pair of faces across the 200-500 ms timewindow after 

stimulus onset is plotted. * p < 0.05, permutation test. 
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