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ABSTRACT 

Summary: Metagenomics approaches rely on identifying the 

presence of organisms in the microbial community from a set of 

unknown DNA sequences. Sequence classification has valuable 

applications in multiple important areas of medical and 

environmental research. Here we introduce FOCUS2, an update of 

the previously published computational method FOCUS. FOCUS2 

was tested with 10 simulated and 543 real metagenomes 

demonstrating that the program is more sensitive, faster, and more 

computationally efficient than existing methods. 

Availability: The Python implementation is freely available at 

https://edwards.sdsu.edu/FOCUS2. 

Supplementary information: available at Bioinformatics online. 

1 INTRODUCTION 

Prokaryotes are more abundant than any other group of 

organisms (Whitman et al., 1998), and characterizing their 

community composition and function is fundamental to medical, 

microbiological, and ecological investigations. In many 

environments a majority of the microbial community members 

cannot be cultured due to lack of information on how to grow the 

organisms or because some organisms only grow in groups or 

communities. This bias can be circumventing with metagenomics, 

making it a powerful tool for studying these communities. To 

understand the real diversity present in microbial communities in 

the wild, researchers use next-generation sequencing (NGS) and 

metagenomic profiling. These high-throughput technologies are 

promising for biological research avenues in which rapid 

turnaround time and large-scale characterization is advantageous. 

For example, metagenomic profiling can discriminate taxonomic 

profiles of microbes associated with human (Consortium, 2012a) 

and global ocean microbiomes (Sunagawa et al., 2015). 

Metagenomics uses high throughput sequencing, a fast and 

cheap sequencing method provided by recent NGS technologies.  

An alternative to metagenomes is metabarcoding, where DNA 

from a specific marker gene, such as 16s rRNA, is sequenced in 

order to understand the whole community. This approach only 

characterizes the taxonomic profile of community and it ignores 

the functional profile. The lack of functional characterization by 

metabarcoding makes metagenomics a more complete approach 

(see Figure 1 for a representation of the whole pipeline), with 

complex bioinformatic attempts to bridge the gap between 

barcoding and functional information [e.g., Tax4fun (Aßhauer et 

al., 2015) and PICRUSt (Langille et al., 2013)]. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. Environmental analysis: A) A sample is collected from the 

environment; B) DNA is extracted and sequenced which produces 

sequences from many species; and C) Depending on the study,only 

some sequences from the samples are targeted such as 16S rRNA 

for taxonomy; metagenomics is done when a functional 

understanding of the community is needed. 

 

Large metagenomic datasets are increasingly being generated 

due to declining sequencing cost and increasing access to 

sequencing platforms. However, many of the available tools do not 

scale well with increasing data volumes, precluding timely analysis 

or capitalizing on the depth of these datasets. 

We previously published FOCUS (Silva et al., 2014), an 

accurate computational method using non-negative least squares 

and 7-mers to profile large metagenomic datasets in seconds. Here 

we propose an update to FOCUS, named FOCUS2, which 
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guarantees more accurate taxonomic assignment of metagenomic 

datasets via homology to a reduced database. FOCUS2 was 

validated using simulated data and two large datasets from the 

Human Microbiome Project (HMP) (Consortium, 2012a) and Tara 

global ocean expedition (Sunagawa et al., 2015). Our approach 

was more sensitive, agile, and computationally efficient when 

compared to existing tools. 

2 METHODS 

The FOCUS2 workflow is presented in Fig. 2 and described below: 

1. Resample 80% (default; see Suppl. Methods) of the sequences in the 

input. 

2. Profile the resampled sequences via FOCUS using the PATRIC database 

(Wattam et al., 2013). Repeat steps 1 and 2 "n" times (n = 100 by default). 

3. Create a reduced database containing genomes present in at least 90% 

(default) of the profiles. 

4. Align input sequences against the reduced database using blastn/HS-

blastn (Chen et al., 2015a) (Aligner choice discussed in "Aligner choice" 

below). 

5. Write the classification for each sequence identified. 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Workflow of the FOCUS2 program. 

2.1 Aligner choice 

blastn is an available aligner choice for in FOCUS2. However, HS-

blastn (Chen et al., 2015b) is the default aligner because it is up to 22x 

faster than blastn with the same sensitivity. Any other aligner, which 

generates a tabular output, can be easily integrated into the FOCUS2 

pipeline. 

2.2 Reference dataset 

FOCUS2 expands the FOCUS database by using over 33,000 complete 

and draft genomes (~12 times more genomes than FOCUS) from the 

PATRIC platform. K-mer counting and normalization of the database were 

done as for FOCUS. 

2.3 Resampling of the data via Monte Carlo 

simulation 

We implemented an optional resampling strategy on step 1) of the 

FOCUS2 pipeline using Monte Carlo simulation to assess the confidence 

that organisms identified were present in input samples. 80% of the reads 

were randomly resampled 10 times, and the taxa frequencies recalculated. 

The species present in at least 80% of the profiles are considered 

robust/reliable taxa, and they are used to create the reduced database for 

step 4) of the tool pipeline. 

2.4 Simulated and real testing set 

FOCUS2 was evaluated with ten simulated big datasets (total of 100 

million reads) composed of the same taxa in the "HiSeq" and "MiSeq" 

datasets used by (Ounit et al., 2015). However, we recreated them using 

BEAR (Johnson et al., 2014) with the same number of sequences per 

sample, same taxa abundance, but with different sequences lengths (100, 

250, 500, 750, and 1,000 bp). In addition, 300 real dataset from the HMP 

from 15 sites and 243 samples from the Tara project (Suppl. Table 1) were 

selected as test sets.  

2.5 Sensitivity and precision FOCUS2 analysis 

Analyses of simulated data were evaluated by sensitivity, the ratio 

between the number of correct assignments by FOCUS2 and the total 

number of sequences in the sample, and precision, the ratio between the 

number of correct assignments by FOCUS2 and the total number of 

classified sequences by FOCUS2. 

2.6 Memory usage and speed: FOCUS2 vs CLARK 

In order to compare speeds between FOCUS2 and CLARK version 

1.2.2-b (Ounit et al., 2015), we analyzed 100 metagenomes from the HMP 

(Consortium, 2012b) using one thread: FOCUS2 was set to use the HS-

blastn aligner with no resampling, and CLARK was set to run in the default 

and full mode [high confidence assignments (i.e, confidence score >= 0.75, 

gamma score >= 0.03)] with k-mers of 21. FOCUS2 was able to classify 

841,742 reads per minute, while  CLARK classified 1,113,658 reads per 

minute in full mode and 3,492,330 in default mode. However, FOCUS2 

used ~2GB of RAM while CLARK on the full mode required ~70.7 GB, 

and ~47 GB on its default mode. CLARK has a light version (CLARK-l), 

which requires ~4GB of RAM; however, it has sensitivity  of only ~60 % 

(http://clark.cs.ucr.edu). FOCUS is ~10x faster than CLARK for databases 

of comparable size if we normalize the runtime by the database size. 

 

3 RESULTS AND DISCUSSION 

All the tools were run using the same database on a server with 

24 processors x 6 cores Intel(R) Xeon (R) CPU @2.67 GHz and 

189 GB RAM. 

3.1 Comparision of FOCUS2 and other tools 

Ten simulated metagenomes were analyzed using FOCUS2 and 
the results were compared to blastn best hit assignments (E-value 
10-5, min. 60% identity, and min. alignment length 15 amino 
acids). Fig. 3a shows that FOCUS2 is more sensitive and precise 
when compared to blastn for genus-level binning, and much more 
sensitive and precise than blastn in the species level (Fig. 3b). 
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Fig. 3. Box plots displaying the percent precision (yellow) and 

sensitivity (turquoise) of FOCUS2 and blastn binning assignments 

in the genus (A) and species (B) level for 10 simulated 

metagenomes. 

 
For the 543 real metagenomes from the HMP and the Tara 

expedition, we analyzed the data using FOCUS2, FOCUS, 
CLARK (Ounit et al., 2015) in default [CLARK (D)] and full 
mode [CLARK (F)] and displayed the results a normalized heat-
map of distance matrices Fig. 4. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Normalized heat-map generated from distance matrices of 

FOCUS(2) and CLARK (D/F).  

 

To compare the HMP and TARA datasets against the full 
PATRIC dataset, FOCUS2 required ~6GB of RAM. No other 
metagenomic profiling tool could be used to analyze these 
metagenomes with the full PATRIC database. In order to compare 
FOCUS2 to any other tool, we use the state-of-the-art binning tool, 
CLARK, but had to used a reduced dataset of ~2,800 genomes (the 
dataset we used in the original FOCUS paper). Even with this 
reduced dataset, CLARK required ~70.7 GB of RAM. FOCUS2 is 

~10x faster than CLARK for databases of comparable size (see 
Methods). A comparison of FOCUS(2) to CLARK (D/F; heat-map 
on Fig. 4) shows that the FOCUS2 profile is closer to CLARK (F) 
(and vice-versa) and that FOCUS is closer to CLARK (D), which 
suggests that FOCUS2 is as highly sensitive as CLARK (F). The 
same is suggested by the hierarchical clusters on Fig. 5 and 6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Hierarchical clustering of genus level taxonomic annotation 

performed using FOCUS2 (A) and FOCUS (B) on 543 

metagenomes from the HMP (squares) and Tara ocean expedition 

(circles) The color bars fringing the similarity plot represent the 

human (HMP; tan) and  ocean (Tara expedition; blue) biomes 

sampled and the 19 sites on those biomes. 

3.2 Final considerations 

FOCUS2 is a sensitive and fast solution to bin metagenomic 
samples. It first runs FOCUS to predict the taxa in the sample taxa 
and refines the profiling using a fast aligner with a reduced version 
of the PATRIC database created on the fly. The PATRIC database 
opens new horizons in the metagenomics binning world because it 
is over 12x bigger than previous databases and brings many new 
taxa into classification. The speed, sensitivity, and precision of 
FOCUS2 positions metagenomics to capitalize on expanding 
databases and ask novel interdisciplinary questions currently 
beyond reach. 
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Fig. 6. Hierarchical clustering of genus level taxonomic annotation 

performed using CLARK (A) in full mode considering only high 

confidence assignments; and (B), in default mode on 543 

metagenomes from the HMP and Tara ocean expedition. The color 

bars fringing the similarity plot represent the human (HMP; tan, 

squares) and  ocean (Tara expedition; blue, circles) biomes 

sampled and the 19 sites on those biomes. 

 

 

REFERENCES 

Aßhauer,K.P. et al. (2015) Tax4Fun: predicting functional profiles from 

metagenomic 16S rRNA data. Bioinformatics, 31, 2882–2884. 

Chen,Y. et al. (2015a) High speed BLASTN: an accelerated MegaBLAST 

search tool. Nucleic Acids Res., gkv784. 

Chen,Y. et al. (2015b) High speed BLASTN: an accelerated MegaBLAST 

search tool. Nucleic Acids Res., gkv784. 

Consortium,T.H.M.P. (2012a) Structure, function and diversity of the 

healthy human microbiome. Nature, 486, 207–214. 

Consortium,T.H.M.P. (2012b) Structure, function and diversity of the 

healthy human microbiome. Nature, 486, 207–214. 

Johnson,S. et al. (2014) A better sequence-read simulator program for 

metagenomics. BMC Bioinformatics, 15 Suppl 9, S14. 

Langille,M.G.I. et al. (2013) Predictive functional profiling of microbial 

communities using 16S rRNA marker gene sequences. Nat. 

Biotechnol., 31, 814–821. 

Ounit,R. et al. (2015) CLARK: fast and accurate classification of 

metagenomic and genomic sequences using discriminative k-

mers. BMC Genomics, 16, 236. 

Silva,G.G.Z. et al. (2014) FOCUS: an alignment-free model to identify 

organisms in metagenomes using non-negative least squares. 

PeerJ, 2, e425. 

Sunagawa,S. et al. (2015) Structure and function of the global ocean 

microbiome. Science, 348, 1261359. 

Wattam,A.R. et al. (2013) PATRIC, the bacterial bioinformatics database 

and analysis resource. Nucleic Acids Res., gkt1099. 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 31, 2016. ; https://doi.org/10.1101/046425doi: bioRxiv preprint 

https://doi.org/10.1101/046425
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 31, 2016. ; https://doi.org/10.1101/046425doi: bioRxiv preprint 

https://doi.org/10.1101/046425
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 31, 2016. ; https://doi.org/10.1101/046425doi: bioRxiv preprint 

https://doi.org/10.1101/046425
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 31, 2016. ; https://doi.org/10.1101/046425doi: bioRxiv preprint 

https://doi.org/10.1101/046425
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 31, 2016. ; https://doi.org/10.1101/046425doi: bioRxiv preprint 

https://doi.org/10.1101/046425
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 31, 2016. ; https://doi.org/10.1101/046425doi: bioRxiv preprint 

https://doi.org/10.1101/046425
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 31, 2016. ; https://doi.org/10.1101/046425doi: bioRxiv preprint 

https://doi.org/10.1101/046425
http://creativecommons.org/licenses/by-nc-nd/4.0/

